diff options
Diffstat (limited to 'llvm/lib/Transforms/Scalar/LoopSink.cpp')
| -rw-r--r-- | llvm/lib/Transforms/Scalar/LoopSink.cpp | 384 | 
1 files changed, 384 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/Scalar/LoopSink.cpp b/llvm/lib/Transforms/Scalar/LoopSink.cpp new file mode 100644 index 000000000000..65e0dee0225a --- /dev/null +++ b/llvm/lib/Transforms/Scalar/LoopSink.cpp @@ -0,0 +1,384 @@ +//===-- LoopSink.cpp - Loop Sink Pass -------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This pass does the inverse transformation of what LICM does. +// It traverses all of the instructions in the loop's preheader and sinks +// them to the loop body where frequency is lower than the loop's preheader. +// This pass is a reverse-transformation of LICM. It differs from the Sink +// pass in the following ways: +// +// * It only handles sinking of instructions from the loop's preheader to the +//   loop's body +// * It uses alias set tracker to get more accurate alias info +// * It uses block frequency info to find the optimal sinking locations +// +// Overall algorithm: +// +// For I in Preheader: +//   InsertBBs = BBs that uses I +//   For BB in sorted(LoopBBs): +//     DomBBs = BBs in InsertBBs that are dominated by BB +//     if freq(DomBBs) > freq(BB) +//       InsertBBs = UseBBs - DomBBs + BB +//   For BB in InsertBBs: +//     Insert I at BB's beginning +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Scalar/LoopSink.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/AliasSetTracker.h" +#include "llvm/Analysis/BasicAliasAnalysis.h" +#include "llvm/Analysis/BlockFrequencyInfo.h" +#include "llvm/Analysis/Loads.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/LoopPass.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Metadata.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Transforms/Scalar/LoopPassManager.h" +#include "llvm/Transforms/Utils/LoopUtils.h" +using namespace llvm; + +#define DEBUG_TYPE "loopsink" + +STATISTIC(NumLoopSunk, "Number of instructions sunk into loop"); +STATISTIC(NumLoopSunkCloned, "Number of cloned instructions sunk into loop"); + +static cl::opt<unsigned> SinkFrequencyPercentThreshold( +    "sink-freq-percent-threshold", cl::Hidden, cl::init(90), +    cl::desc("Do not sink instructions that require cloning unless they " +             "execute less than this percent of the time.")); + +static cl::opt<unsigned> MaxNumberOfUseBBsForSinking( +    "max-uses-for-sinking", cl::Hidden, cl::init(30), +    cl::desc("Do not sink instructions that have too many uses.")); + +/// Return adjusted total frequency of \p BBs. +/// +/// * If there is only one BB, sinking instruction will not introduce code +///   size increase. Thus there is no need to adjust the frequency. +/// * If there are more than one BB, sinking would lead to code size increase. +///   In this case, we add some "tax" to the total frequency to make it harder +///   to sink. E.g. +///     Freq(Preheader) = 100 +///     Freq(BBs) = sum(50, 49) = 99 +///   Even if Freq(BBs) < Freq(Preheader), we will not sink from Preheade to +///   BBs as the difference is too small to justify the code size increase. +///   To model this, The adjusted Freq(BBs) will be: +///     AdjustedFreq(BBs) = 99 / SinkFrequencyPercentThreshold% +static BlockFrequency adjustedSumFreq(SmallPtrSetImpl<BasicBlock *> &BBs, +                                      BlockFrequencyInfo &BFI) { +  BlockFrequency T = 0; +  for (BasicBlock *B : BBs) +    T += BFI.getBlockFreq(B); +  if (BBs.size() > 1) +    T /= BranchProbability(SinkFrequencyPercentThreshold, 100); +  return T; +} + +/// Return a set of basic blocks to insert sinked instructions. +/// +/// The returned set of basic blocks (BBsToSinkInto) should satisfy: +/// +/// * Inside the loop \p L +/// * For each UseBB in \p UseBBs, there is at least one BB in BBsToSinkInto +///   that domintates the UseBB +/// * Has minimum total frequency that is no greater than preheader frequency +/// +/// The purpose of the function is to find the optimal sinking points to +/// minimize execution cost, which is defined as "sum of frequency of +/// BBsToSinkInto". +/// As a result, the returned BBsToSinkInto needs to have minimum total +/// frequency. +/// Additionally, if the total frequency of BBsToSinkInto exceeds preheader +/// frequency, the optimal solution is not sinking (return empty set). +/// +/// \p ColdLoopBBs is used to help find the optimal sinking locations. +/// It stores a list of BBs that is: +/// +/// * Inside the loop \p L +/// * Has a frequency no larger than the loop's preheader +/// * Sorted by BB frequency +/// +/// The complexity of the function is O(UseBBs.size() * ColdLoopBBs.size()). +/// To avoid expensive computation, we cap the maximum UseBBs.size() in its +/// caller. +static SmallPtrSet<BasicBlock *, 2> +findBBsToSinkInto(const Loop &L, const SmallPtrSetImpl<BasicBlock *> &UseBBs, +                  const SmallVectorImpl<BasicBlock *> &ColdLoopBBs, +                  DominatorTree &DT, BlockFrequencyInfo &BFI) { +  SmallPtrSet<BasicBlock *, 2> BBsToSinkInto; +  if (UseBBs.size() == 0) +    return BBsToSinkInto; + +  BBsToSinkInto.insert(UseBBs.begin(), UseBBs.end()); +  SmallPtrSet<BasicBlock *, 2> BBsDominatedByColdestBB; + +  // For every iteration: +  //   * Pick the ColdestBB from ColdLoopBBs +  //   * Find the set BBsDominatedByColdestBB that satisfy: +  //     - BBsDominatedByColdestBB is a subset of BBsToSinkInto +  //     - Every BB in BBsDominatedByColdestBB is dominated by ColdestBB +  //   * If Freq(ColdestBB) < Freq(BBsDominatedByColdestBB), remove +  //     BBsDominatedByColdestBB from BBsToSinkInto, add ColdestBB to +  //     BBsToSinkInto +  for (BasicBlock *ColdestBB : ColdLoopBBs) { +    BBsDominatedByColdestBB.clear(); +    for (BasicBlock *SinkedBB : BBsToSinkInto) +      if (DT.dominates(ColdestBB, SinkedBB)) +        BBsDominatedByColdestBB.insert(SinkedBB); +    if (BBsDominatedByColdestBB.size() == 0) +      continue; +    if (adjustedSumFreq(BBsDominatedByColdestBB, BFI) > +        BFI.getBlockFreq(ColdestBB)) { +      for (BasicBlock *DominatedBB : BBsDominatedByColdestBB) { +        BBsToSinkInto.erase(DominatedBB); +      } +      BBsToSinkInto.insert(ColdestBB); +    } +  } + +  // Can't sink into blocks that have no valid insertion point. +  for (BasicBlock *BB : BBsToSinkInto) { +    if (BB->getFirstInsertionPt() == BB->end()) { +      BBsToSinkInto.clear(); +      break; +    } +  } + +  // If the total frequency of BBsToSinkInto is larger than preheader frequency, +  // do not sink. +  if (adjustedSumFreq(BBsToSinkInto, BFI) > +      BFI.getBlockFreq(L.getLoopPreheader())) +    BBsToSinkInto.clear(); +  return BBsToSinkInto; +} + +// Sinks \p I from the loop \p L's preheader to its uses. Returns true if +// sinking is successful. +// \p LoopBlockNumber is used to sort the insertion blocks to ensure +// determinism. +static bool sinkInstruction(Loop &L, Instruction &I, +                            const SmallVectorImpl<BasicBlock *> &ColdLoopBBs, +                            const SmallDenseMap<BasicBlock *, int, 16> &LoopBlockNumber, +                            LoopInfo &LI, DominatorTree &DT, +                            BlockFrequencyInfo &BFI) { +  // Compute the set of blocks in loop L which contain a use of I. +  SmallPtrSet<BasicBlock *, 2> BBs; +  for (auto &U : I.uses()) { +    Instruction *UI = cast<Instruction>(U.getUser()); +    // We cannot sink I to PHI-uses. +    if (dyn_cast<PHINode>(UI)) +      return false; +    // We cannot sink I if it has uses outside of the loop. +    if (!L.contains(LI.getLoopFor(UI->getParent()))) +      return false; +    BBs.insert(UI->getParent()); +  } + +  // findBBsToSinkInto is O(BBs.size() * ColdLoopBBs.size()). We cap the max +  // BBs.size() to avoid expensive computation. +  // FIXME: Handle code size growth for min_size and opt_size. +  if (BBs.size() > MaxNumberOfUseBBsForSinking) +    return false; + +  // Find the set of BBs that we should insert a copy of I. +  SmallPtrSet<BasicBlock *, 2> BBsToSinkInto = +      findBBsToSinkInto(L, BBs, ColdLoopBBs, DT, BFI); +  if (BBsToSinkInto.empty()) +    return false; + +  // Return if any of the candidate blocks to sink into is non-cold. +  if (BBsToSinkInto.size() > 1) { +    for (auto *BB : BBsToSinkInto) +      if (!LoopBlockNumber.count(BB)) +        return false; +  } + +  // Copy the final BBs into a vector and sort them using the total ordering +  // of the loop block numbers as iterating the set doesn't give a useful +  // order. No need to stable sort as the block numbers are a total ordering. +  SmallVector<BasicBlock *, 2> SortedBBsToSinkInto; +  SortedBBsToSinkInto.insert(SortedBBsToSinkInto.begin(), BBsToSinkInto.begin(), +                             BBsToSinkInto.end()); +  llvm::sort(SortedBBsToSinkInto, [&](BasicBlock *A, BasicBlock *B) { +    return LoopBlockNumber.find(A)->second < LoopBlockNumber.find(B)->second; +  }); + +  BasicBlock *MoveBB = *SortedBBsToSinkInto.begin(); +  // FIXME: Optimize the efficiency for cloned value replacement. The current +  //        implementation is O(SortedBBsToSinkInto.size() * I.num_uses()). +  for (BasicBlock *N : makeArrayRef(SortedBBsToSinkInto).drop_front(1)) { +    assert(LoopBlockNumber.find(N)->second > +               LoopBlockNumber.find(MoveBB)->second && +           "BBs not sorted!"); +    // Clone I and replace its uses. +    Instruction *IC = I.clone(); +    IC->setName(I.getName()); +    IC->insertBefore(&*N->getFirstInsertionPt()); +    // Replaces uses of I with IC in N +    I.replaceUsesWithIf(IC, [N](Use &U) { +      return cast<Instruction>(U.getUser())->getParent() == N; +    }); +    // Replaces uses of I with IC in blocks dominated by N +    replaceDominatedUsesWith(&I, IC, DT, N); +    LLVM_DEBUG(dbgs() << "Sinking a clone of " << I << " To: " << N->getName() +                      << '\n'); +    NumLoopSunkCloned++; +  } +  LLVM_DEBUG(dbgs() << "Sinking " << I << " To: " << MoveBB->getName() << '\n'); +  NumLoopSunk++; +  I.moveBefore(&*MoveBB->getFirstInsertionPt()); + +  return true; +} + +/// Sinks instructions from loop's preheader to the loop body if the +/// sum frequency of inserted copy is smaller than preheader's frequency. +static bool sinkLoopInvariantInstructions(Loop &L, AAResults &AA, LoopInfo &LI, +                                          DominatorTree &DT, +                                          BlockFrequencyInfo &BFI, +                                          ScalarEvolution *SE) { +  BasicBlock *Preheader = L.getLoopPreheader(); +  if (!Preheader) +    return false; + +  // Enable LoopSink only when runtime profile is available. +  // With static profile, the sinking decision may be sub-optimal. +  if (!Preheader->getParent()->hasProfileData()) +    return false; + +  const BlockFrequency PreheaderFreq = BFI.getBlockFreq(Preheader); +  // If there are no basic blocks with lower frequency than the preheader then +  // we can avoid the detailed analysis as we will never find profitable sinking +  // opportunities. +  if (all_of(L.blocks(), [&](const BasicBlock *BB) { +        return BFI.getBlockFreq(BB) > PreheaderFreq; +      })) +    return false; + +  bool Changed = false; +  AliasSetTracker CurAST(AA); + +  // Compute alias set. +  for (BasicBlock *BB : L.blocks()) +    CurAST.add(*BB); +  CurAST.add(*Preheader); + +  // Sort loop's basic blocks by frequency +  SmallVector<BasicBlock *, 10> ColdLoopBBs; +  SmallDenseMap<BasicBlock *, int, 16> LoopBlockNumber; +  int i = 0; +  for (BasicBlock *B : L.blocks()) +    if (BFI.getBlockFreq(B) < BFI.getBlockFreq(L.getLoopPreheader())) { +      ColdLoopBBs.push_back(B); +      LoopBlockNumber[B] = ++i; +    } +  llvm::stable_sort(ColdLoopBBs, [&](BasicBlock *A, BasicBlock *B) { +    return BFI.getBlockFreq(A) < BFI.getBlockFreq(B); +  }); + +  // Traverse preheader's instructions in reverse order becaue if A depends +  // on B (A appears after B), A needs to be sinked first before B can be +  // sinked. +  for (auto II = Preheader->rbegin(), E = Preheader->rend(); II != E;) { +    Instruction *I = &*II++; +    // No need to check for instruction's operands are loop invariant. +    assert(L.hasLoopInvariantOperands(I) && +           "Insts in a loop's preheader should have loop invariant operands!"); +    if (!canSinkOrHoistInst(*I, &AA, &DT, &L, &CurAST, nullptr, false)) +      continue; +    if (sinkInstruction(L, *I, ColdLoopBBs, LoopBlockNumber, LI, DT, BFI)) +      Changed = true; +  } + +  if (Changed && SE) +    SE->forgetLoopDispositions(&L); +  return Changed; +} + +PreservedAnalyses LoopSinkPass::run(Function &F, FunctionAnalysisManager &FAM) { +  LoopInfo &LI = FAM.getResult<LoopAnalysis>(F); +  // Nothing to do if there are no loops. +  if (LI.empty()) +    return PreservedAnalyses::all(); + +  AAResults &AA = FAM.getResult<AAManager>(F); +  DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); +  BlockFrequencyInfo &BFI = FAM.getResult<BlockFrequencyAnalysis>(F); + +  // We want to do a postorder walk over the loops. Since loops are a tree this +  // is equivalent to a reversed preorder walk and preorder is easy to compute +  // without recursion. Since we reverse the preorder, we will visit siblings +  // in reverse program order. This isn't expected to matter at all but is more +  // consistent with sinking algorithms which generally work bottom-up. +  SmallVector<Loop *, 4> PreorderLoops = LI.getLoopsInPreorder(); + +  bool Changed = false; +  do { +    Loop &L = *PreorderLoops.pop_back_val(); + +    // Note that we don't pass SCEV here because it is only used to invalidate +    // loops in SCEV and we don't preserve (or request) SCEV at all making that +    // unnecessary. +    Changed |= sinkLoopInvariantInstructions(L, AA, LI, DT, BFI, +                                             /*ScalarEvolution*/ nullptr); +  } while (!PreorderLoops.empty()); + +  if (!Changed) +    return PreservedAnalyses::all(); + +  PreservedAnalyses PA; +  PA.preserveSet<CFGAnalyses>(); +  return PA; +} + +namespace { +struct LegacyLoopSinkPass : public LoopPass { +  static char ID; +  LegacyLoopSinkPass() : LoopPass(ID) { +    initializeLegacyLoopSinkPassPass(*PassRegistry::getPassRegistry()); +  } + +  bool runOnLoop(Loop *L, LPPassManager &LPM) override { +    if (skipLoop(L)) +      return false; + +    auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); +    return sinkLoopInvariantInstructions( +        *L, getAnalysis<AAResultsWrapperPass>().getAAResults(), +        getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), +        getAnalysis<DominatorTreeWrapperPass>().getDomTree(), +        getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(), +        SE ? &SE->getSE() : nullptr); +  } + +  void getAnalysisUsage(AnalysisUsage &AU) const override { +    AU.setPreservesCFG(); +    AU.addRequired<BlockFrequencyInfoWrapperPass>(); +    getLoopAnalysisUsage(AU); +  } +}; +} + +char LegacyLoopSinkPass::ID = 0; +INITIALIZE_PASS_BEGIN(LegacyLoopSinkPass, "loop-sink", "Loop Sink", false, +                      false) +INITIALIZE_PASS_DEPENDENCY(LoopPass) +INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) +INITIALIZE_PASS_END(LegacyLoopSinkPass, "loop-sink", "Loop Sink", false, false) + +Pass *llvm::createLoopSinkPass() { return new LegacyLoopSinkPass(); }  | 
