diff options
Diffstat (limited to 'llvm/lib/Transforms/Utils/BasicBlockUtils.cpp')
| -rw-r--r-- | llvm/lib/Transforms/Utils/BasicBlockUtils.cpp | 972 | 
1 files changed, 972 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp b/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp new file mode 100644 index 000000000000..d85cc40c372a --- /dev/null +++ b/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp @@ -0,0 +1,972 @@ +//===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This family of functions perform manipulations on basic blocks, and +// instructions contained within basic blocks. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Twine.h" +#include "llvm/Analysis/CFG.h" +#include "llvm/Analysis/DomTreeUpdater.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/MemoryDependenceAnalysis.h" +#include "llvm/Analysis/MemorySSAUpdater.h" +#include "llvm/Analysis/PostDominators.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/CFG.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DebugInfoMetadata.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/User.h" +#include "llvm/IR/Value.h" +#include "llvm/IR/ValueHandle.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Utils/Local.h" +#include <cassert> +#include <cstdint> +#include <string> +#include <utility> +#include <vector> + +using namespace llvm; + +#define DEBUG_TYPE "basicblock-utils" + +void llvm::DetatchDeadBlocks( +    ArrayRef<BasicBlock *> BBs, +    SmallVectorImpl<DominatorTree::UpdateType> *Updates, +    bool KeepOneInputPHIs) { +  for (auto *BB : BBs) { +    // Loop through all of our successors and make sure they know that one +    // of their predecessors is going away. +    SmallPtrSet<BasicBlock *, 4> UniqueSuccessors; +    for (BasicBlock *Succ : successors(BB)) { +      Succ->removePredecessor(BB, KeepOneInputPHIs); +      if (Updates && UniqueSuccessors.insert(Succ).second) +        Updates->push_back({DominatorTree::Delete, BB, Succ}); +    } + +    // Zap all the instructions in the block. +    while (!BB->empty()) { +      Instruction &I = BB->back(); +      // If this instruction is used, replace uses with an arbitrary value. +      // Because control flow can't get here, we don't care what we replace the +      // value with.  Note that since this block is unreachable, and all values +      // contained within it must dominate their uses, that all uses will +      // eventually be removed (they are themselves dead). +      if (!I.use_empty()) +        I.replaceAllUsesWith(UndefValue::get(I.getType())); +      BB->getInstList().pop_back(); +    } +    new UnreachableInst(BB->getContext(), BB); +    assert(BB->getInstList().size() == 1 && +           isa<UnreachableInst>(BB->getTerminator()) && +           "The successor list of BB isn't empty before " +           "applying corresponding DTU updates."); +  } +} + +void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU, +                           bool KeepOneInputPHIs) { +  DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs); +} + +void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU, +                            bool KeepOneInputPHIs) { +#ifndef NDEBUG +  // Make sure that all predecessors of each dead block is also dead. +  SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end()); +  assert(Dead.size() == BBs.size() && "Duplicating blocks?"); +  for (auto *BB : Dead) +    for (BasicBlock *Pred : predecessors(BB)) +      assert(Dead.count(Pred) && "All predecessors must be dead!"); +#endif + +  SmallVector<DominatorTree::UpdateType, 4> Updates; +  DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs); + +  if (DTU) +    DTU->applyUpdatesPermissive(Updates); + +  for (BasicBlock *BB : BBs) +    if (DTU) +      DTU->deleteBB(BB); +    else +      BB->eraseFromParent(); +} + +bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU, +                                      bool KeepOneInputPHIs) { +  df_iterator_default_set<BasicBlock*> Reachable; + +  // Mark all reachable blocks. +  for (BasicBlock *BB : depth_first_ext(&F, Reachable)) +    (void)BB/* Mark all reachable blocks */; + +  // Collect all dead blocks. +  std::vector<BasicBlock*> DeadBlocks; +  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) +    if (!Reachable.count(&*I)) { +      BasicBlock *BB = &*I; +      DeadBlocks.push_back(BB); +    } + +  // Delete the dead blocks. +  DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs); + +  return !DeadBlocks.empty(); +} + +void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, +                                   MemoryDependenceResults *MemDep) { +  if (!isa<PHINode>(BB->begin())) return; + +  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { +    if (PN->getIncomingValue(0) != PN) +      PN->replaceAllUsesWith(PN->getIncomingValue(0)); +    else +      PN->replaceAllUsesWith(UndefValue::get(PN->getType())); + +    if (MemDep) +      MemDep->removeInstruction(PN);  // Memdep updates AA itself. + +    PN->eraseFromParent(); +  } +} + +bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) { +  // Recursively deleting a PHI may cause multiple PHIs to be deleted +  // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete. +  SmallVector<WeakTrackingVH, 8> PHIs; +  for (PHINode &PN : BB->phis()) +    PHIs.push_back(&PN); + +  bool Changed = false; +  for (unsigned i = 0, e = PHIs.size(); i != e; ++i) +    if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*())) +      Changed |= RecursivelyDeleteDeadPHINode(PN, TLI); + +  return Changed; +} + +bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU, +                                     LoopInfo *LI, MemorySSAUpdater *MSSAU, +                                     MemoryDependenceResults *MemDep, +                                     bool PredecessorWithTwoSuccessors) { +  if (BB->hasAddressTaken()) +    return false; + +  // Can't merge if there are multiple predecessors, or no predecessors. +  BasicBlock *PredBB = BB->getUniquePredecessor(); +  if (!PredBB) return false; + +  // Don't break self-loops. +  if (PredBB == BB) return false; +  // Don't break unwinding instructions. +  if (PredBB->getTerminator()->isExceptionalTerminator()) +    return false; + +  // Can't merge if there are multiple distinct successors. +  if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB) +    return false; + +  // Currently only allow PredBB to have two predecessors, one being BB. +  // Update BI to branch to BB's only successor instead of BB. +  BranchInst *PredBB_BI; +  BasicBlock *NewSucc = nullptr; +  unsigned FallThruPath; +  if (PredecessorWithTwoSuccessors) { +    if (!(PredBB_BI = dyn_cast<BranchInst>(PredBB->getTerminator()))) +      return false; +    BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator()); +    if (!BB_JmpI || !BB_JmpI->isUnconditional()) +      return false; +    NewSucc = BB_JmpI->getSuccessor(0); +    FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1; +  } + +  // Can't merge if there is PHI loop. +  for (PHINode &PN : BB->phis()) +    for (Value *IncValue : PN.incoming_values()) +      if (IncValue == &PN) +        return false; + +  LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into " +                    << PredBB->getName() << "\n"); + +  // Begin by getting rid of unneeded PHIs. +  SmallVector<AssertingVH<Value>, 4> IncomingValues; +  if (isa<PHINode>(BB->front())) { +    for (PHINode &PN : BB->phis()) +      if (!isa<PHINode>(PN.getIncomingValue(0)) || +          cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB) +        IncomingValues.push_back(PN.getIncomingValue(0)); +    FoldSingleEntryPHINodes(BB, MemDep); +  } + +  // DTU update: Collect all the edges that exit BB. +  // These dominator edges will be redirected from Pred. +  std::vector<DominatorTree::UpdateType> Updates; +  if (DTU) { +    Updates.reserve(1 + (2 * succ_size(BB))); +    // Add insert edges first. Experimentally, for the particular case of two +    // blocks that can be merged, with a single successor and single predecessor +    // respectively, it is beneficial to have all insert updates first. Deleting +    // edges first may lead to unreachable blocks, followed by inserting edges +    // making the blocks reachable again. Such DT updates lead to high compile +    // times. We add inserts before deletes here to reduce compile time. +    for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I) +      // This successor of BB may already have PredBB as a predecessor. +      if (llvm::find(successors(PredBB), *I) == succ_end(PredBB)) +        Updates.push_back({DominatorTree::Insert, PredBB, *I}); +    for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I) +      Updates.push_back({DominatorTree::Delete, BB, *I}); +    Updates.push_back({DominatorTree::Delete, PredBB, BB}); +  } + +  Instruction *PTI = PredBB->getTerminator(); +  Instruction *STI = BB->getTerminator(); +  Instruction *Start = &*BB->begin(); +  // If there's nothing to move, mark the starting instruction as the last +  // instruction in the block. +  if (Start == STI) +    Start = PTI; + +  // Move all definitions in the successor to the predecessor... +  PredBB->getInstList().splice(PTI->getIterator(), BB->getInstList(), +                               BB->begin(), STI->getIterator()); + +  if (MSSAU) +    MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start); + +  // Make all PHI nodes that referred to BB now refer to Pred as their +  // source... +  BB->replaceAllUsesWith(PredBB); + +  if (PredecessorWithTwoSuccessors) { +    // Delete the unconditional branch from BB. +    BB->getInstList().pop_back(); + +    // Update branch in the predecessor. +    PredBB_BI->setSuccessor(FallThruPath, NewSucc); +  } else { +    // Delete the unconditional branch from the predecessor. +    PredBB->getInstList().pop_back(); + +    // Move terminator instruction. +    PredBB->getInstList().splice(PredBB->end(), BB->getInstList()); +  } +  // Add unreachable to now empty BB. +  new UnreachableInst(BB->getContext(), BB); + +  // Eliminate duplicate dbg.values describing the entry PHI node post-splice. +  for (auto Incoming : IncomingValues) { +    if (isa<Instruction>(*Incoming)) { +      SmallVector<DbgValueInst *, 2> DbgValues; +      SmallDenseSet<std::pair<DILocalVariable *, DIExpression *>, 2> +          DbgValueSet; +      llvm::findDbgValues(DbgValues, Incoming); +      for (auto &DVI : DbgValues) { +        auto R = DbgValueSet.insert({DVI->getVariable(), DVI->getExpression()}); +        if (!R.second) +          DVI->eraseFromParent(); +      } +    } +  } + +  // Inherit predecessors name if it exists. +  if (!PredBB->hasName()) +    PredBB->takeName(BB); + +  if (LI) +    LI->removeBlock(BB); + +  if (MemDep) +    MemDep->invalidateCachedPredecessors(); + +  // Finally, erase the old block and update dominator info. +  if (DTU) { +    assert(BB->getInstList().size() == 1 && +           isa<UnreachableInst>(BB->getTerminator()) && +           "The successor list of BB isn't empty before " +           "applying corresponding DTU updates."); +    DTU->applyUpdatesPermissive(Updates); +    DTU->deleteBB(BB); +  } else { +    BB->eraseFromParent(); // Nuke BB if DTU is nullptr. +  } + +  return true; +} + +void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL, +                                BasicBlock::iterator &BI, Value *V) { +  Instruction &I = *BI; +  // Replaces all of the uses of the instruction with uses of the value +  I.replaceAllUsesWith(V); + +  // Make sure to propagate a name if there is one already. +  if (I.hasName() && !V->hasName()) +    V->takeName(&I); + +  // Delete the unnecessary instruction now... +  BI = BIL.erase(BI); +} + +void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL, +                               BasicBlock::iterator &BI, Instruction *I) { +  assert(I->getParent() == nullptr && +         "ReplaceInstWithInst: Instruction already inserted into basic block!"); + +  // Copy debug location to newly added instruction, if it wasn't already set +  // by the caller. +  if (!I->getDebugLoc()) +    I->setDebugLoc(BI->getDebugLoc()); + +  // Insert the new instruction into the basic block... +  BasicBlock::iterator New = BIL.insert(BI, I); + +  // Replace all uses of the old instruction, and delete it. +  ReplaceInstWithValue(BIL, BI, I); + +  // Move BI back to point to the newly inserted instruction +  BI = New; +} + +void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { +  BasicBlock::iterator BI(From); +  ReplaceInstWithInst(From->getParent()->getInstList(), BI, To); +} + +BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT, +                            LoopInfo *LI, MemorySSAUpdater *MSSAU) { +  unsigned SuccNum = GetSuccessorNumber(BB, Succ); + +  // If this is a critical edge, let SplitCriticalEdge do it. +  Instruction *LatchTerm = BB->getTerminator(); +  if (SplitCriticalEdge( +          LatchTerm, SuccNum, +          CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA())) +    return LatchTerm->getSuccessor(SuccNum); + +  // If the edge isn't critical, then BB has a single successor or Succ has a +  // single pred.  Split the block. +  if (BasicBlock *SP = Succ->getSinglePredecessor()) { +    // If the successor only has a single pred, split the top of the successor +    // block. +    assert(SP == BB && "CFG broken"); +    SP = nullptr; +    return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU); +  } + +  // Otherwise, if BB has a single successor, split it at the bottom of the +  // block. +  assert(BB->getTerminator()->getNumSuccessors() == 1 && +         "Should have a single succ!"); +  return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU); +} + +unsigned +llvm::SplitAllCriticalEdges(Function &F, +                            const CriticalEdgeSplittingOptions &Options) { +  unsigned NumBroken = 0; +  for (BasicBlock &BB : F) { +    Instruction *TI = BB.getTerminator(); +    if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI)) +      for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) +        if (SplitCriticalEdge(TI, i, Options)) +          ++NumBroken; +  } +  return NumBroken; +} + +BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, +                             DominatorTree *DT, LoopInfo *LI, +                             MemorySSAUpdater *MSSAU, const Twine &BBName) { +  BasicBlock::iterator SplitIt = SplitPt->getIterator(); +  while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) +    ++SplitIt; +  std::string Name = BBName.str(); +  BasicBlock *New = Old->splitBasicBlock( +      SplitIt, Name.empty() ? Old->getName() + ".split" : Name); + +  // The new block lives in whichever loop the old one did. This preserves +  // LCSSA as well, because we force the split point to be after any PHI nodes. +  if (LI) +    if (Loop *L = LI->getLoopFor(Old)) +      L->addBasicBlockToLoop(New, *LI); + +  if (DT) +    // Old dominates New. New node dominates all other nodes dominated by Old. +    if (DomTreeNode *OldNode = DT->getNode(Old)) { +      std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); + +      DomTreeNode *NewNode = DT->addNewBlock(New, Old); +      for (DomTreeNode *I : Children) +        DT->changeImmediateDominator(I, NewNode); +    } + +  // Move MemoryAccesses still tracked in Old, but part of New now. +  // Update accesses in successor blocks accordingly. +  if (MSSAU) +    MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin())); + +  return New; +} + +/// Update DominatorTree, LoopInfo, and LCCSA analysis information. +static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB, +                                      ArrayRef<BasicBlock *> Preds, +                                      DominatorTree *DT, LoopInfo *LI, +                                      MemorySSAUpdater *MSSAU, +                                      bool PreserveLCSSA, bool &HasLoopExit) { +  // Update dominator tree if available. +  if (DT) { +    if (OldBB == DT->getRootNode()->getBlock()) { +      assert(NewBB == &NewBB->getParent()->getEntryBlock()); +      DT->setNewRoot(NewBB); +    } else { +      // Split block expects NewBB to have a non-empty set of predecessors. +      DT->splitBlock(NewBB); +    } +  } + +  // Update MemoryPhis after split if MemorySSA is available +  if (MSSAU) +    MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds); + +  // The rest of the logic is only relevant for updating the loop structures. +  if (!LI) +    return; + +  assert(DT && "DT should be available to update LoopInfo!"); +  Loop *L = LI->getLoopFor(OldBB); + +  // If we need to preserve loop analyses, collect some information about how +  // this split will affect loops. +  bool IsLoopEntry = !!L; +  bool SplitMakesNewLoopHeader = false; +  for (BasicBlock *Pred : Preds) { +    // Preds that are not reachable from entry should not be used to identify if +    // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks +    // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader +    // as true and make the NewBB the header of some loop. This breaks LI. +    if (!DT->isReachableFromEntry(Pred)) +      continue; +    // If we need to preserve LCSSA, determine if any of the preds is a loop +    // exit. +    if (PreserveLCSSA) +      if (Loop *PL = LI->getLoopFor(Pred)) +        if (!PL->contains(OldBB)) +          HasLoopExit = true; + +    // If we need to preserve LoopInfo, note whether any of the preds crosses +    // an interesting loop boundary. +    if (!L) +      continue; +    if (L->contains(Pred)) +      IsLoopEntry = false; +    else +      SplitMakesNewLoopHeader = true; +  } + +  // Unless we have a loop for OldBB, nothing else to do here. +  if (!L) +    return; + +  if (IsLoopEntry) { +    // Add the new block to the nearest enclosing loop (and not an adjacent +    // loop). To find this, examine each of the predecessors and determine which +    // loops enclose them, and select the most-nested loop which contains the +    // loop containing the block being split. +    Loop *InnermostPredLoop = nullptr; +    for (BasicBlock *Pred : Preds) { +      if (Loop *PredLoop = LI->getLoopFor(Pred)) { +        // Seek a loop which actually contains the block being split (to avoid +        // adjacent loops). +        while (PredLoop && !PredLoop->contains(OldBB)) +          PredLoop = PredLoop->getParentLoop(); + +        // Select the most-nested of these loops which contains the block. +        if (PredLoop && PredLoop->contains(OldBB) && +            (!InnermostPredLoop || +             InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) +          InnermostPredLoop = PredLoop; +      } +    } + +    if (InnermostPredLoop) +      InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI); +  } else { +    L->addBasicBlockToLoop(NewBB, *LI); +    if (SplitMakesNewLoopHeader) +      L->moveToHeader(NewBB); +  } +} + +/// Update the PHI nodes in OrigBB to include the values coming from NewBB. +/// This also updates AliasAnalysis, if available. +static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB, +                           ArrayRef<BasicBlock *> Preds, BranchInst *BI, +                           bool HasLoopExit) { +  // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB. +  SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end()); +  for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) { +    PHINode *PN = cast<PHINode>(I++); + +    // Check to see if all of the values coming in are the same.  If so, we +    // don't need to create a new PHI node, unless it's needed for LCSSA. +    Value *InVal = nullptr; +    if (!HasLoopExit) { +      InVal = PN->getIncomingValueForBlock(Preds[0]); +      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { +        if (!PredSet.count(PN->getIncomingBlock(i))) +          continue; +        if (!InVal) +          InVal = PN->getIncomingValue(i); +        else if (InVal != PN->getIncomingValue(i)) { +          InVal = nullptr; +          break; +        } +      } +    } + +    if (InVal) { +      // If all incoming values for the new PHI would be the same, just don't +      // make a new PHI.  Instead, just remove the incoming values from the old +      // PHI. + +      // NOTE! This loop walks backwards for a reason! First off, this minimizes +      // the cost of removal if we end up removing a large number of values, and +      // second off, this ensures that the indices for the incoming values +      // aren't invalidated when we remove one. +      for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) +        if (PredSet.count(PN->getIncomingBlock(i))) +          PN->removeIncomingValue(i, false); + +      // Add an incoming value to the PHI node in the loop for the preheader +      // edge. +      PN->addIncoming(InVal, NewBB); +      continue; +    } + +    // If the values coming into the block are not the same, we need a new +    // PHI. +    // Create the new PHI node, insert it into NewBB at the end of the block +    PHINode *NewPHI = +        PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI); + +    // NOTE! This loop walks backwards for a reason! First off, this minimizes +    // the cost of removal if we end up removing a large number of values, and +    // second off, this ensures that the indices for the incoming values aren't +    // invalidated when we remove one. +    for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) { +      BasicBlock *IncomingBB = PN->getIncomingBlock(i); +      if (PredSet.count(IncomingBB)) { +        Value *V = PN->removeIncomingValue(i, false); +        NewPHI->addIncoming(V, IncomingBB); +      } +    } + +    PN->addIncoming(NewPHI, NewBB); +  } +} + +BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, +                                         ArrayRef<BasicBlock *> Preds, +                                         const char *Suffix, DominatorTree *DT, +                                         LoopInfo *LI, MemorySSAUpdater *MSSAU, +                                         bool PreserveLCSSA) { +  // Do not attempt to split that which cannot be split. +  if (!BB->canSplitPredecessors()) +    return nullptr; + +  // For the landingpads we need to act a bit differently. +  // Delegate this work to the SplitLandingPadPredecessors. +  if (BB->isLandingPad()) { +    SmallVector<BasicBlock*, 2> NewBBs; +    std::string NewName = std::string(Suffix) + ".split-lp"; + +    SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT, +                                LI, MSSAU, PreserveLCSSA); +    return NewBBs[0]; +  } + +  // Create new basic block, insert right before the original block. +  BasicBlock *NewBB = BasicBlock::Create( +      BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB); + +  // The new block unconditionally branches to the old block. +  BranchInst *BI = BranchInst::Create(BB, NewBB); +  // Splitting the predecessors of a loop header creates a preheader block. +  if (LI && LI->isLoopHeader(BB)) +    // Using the loop start line number prevents debuggers stepping into the +    // loop body for this instruction. +    BI->setDebugLoc(LI->getLoopFor(BB)->getStartLoc()); +  else +    BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc()); + +  // Move the edges from Preds to point to NewBB instead of BB. +  for (unsigned i = 0, e = Preds.size(); i != e; ++i) { +    // This is slightly more strict than necessary; the minimum requirement +    // is that there be no more than one indirectbr branching to BB. And +    // all BlockAddress uses would need to be updated. +    assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && +           "Cannot split an edge from an IndirectBrInst"); +    assert(!isa<CallBrInst>(Preds[i]->getTerminator()) && +           "Cannot split an edge from a CallBrInst"); +    Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB); +  } + +  // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI +  // node becomes an incoming value for BB's phi node.  However, if the Preds +  // list is empty, we need to insert dummy entries into the PHI nodes in BB to +  // account for the newly created predecessor. +  if (Preds.empty()) { +    // Insert dummy values as the incoming value. +    for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) +      cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB); +  } + +  // Update DominatorTree, LoopInfo, and LCCSA analysis information. +  bool HasLoopExit = false; +  UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, MSSAU, PreserveLCSSA, +                            HasLoopExit); + +  if (!Preds.empty()) { +    // Update the PHI nodes in BB with the values coming from NewBB. +    UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit); +  } + +  return NewBB; +} + +void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, +                                       ArrayRef<BasicBlock *> Preds, +                                       const char *Suffix1, const char *Suffix2, +                                       SmallVectorImpl<BasicBlock *> &NewBBs, +                                       DominatorTree *DT, LoopInfo *LI, +                                       MemorySSAUpdater *MSSAU, +                                       bool PreserveLCSSA) { +  assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!"); + +  // Create a new basic block for OrigBB's predecessors listed in Preds. Insert +  // it right before the original block. +  BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(), +                                          OrigBB->getName() + Suffix1, +                                          OrigBB->getParent(), OrigBB); +  NewBBs.push_back(NewBB1); + +  // The new block unconditionally branches to the old block. +  BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1); +  BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); + +  // Move the edges from Preds to point to NewBB1 instead of OrigBB. +  for (unsigned i = 0, e = Preds.size(); i != e; ++i) { +    // This is slightly more strict than necessary; the minimum requirement +    // is that there be no more than one indirectbr branching to BB. And +    // all BlockAddress uses would need to be updated. +    assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && +           "Cannot split an edge from an IndirectBrInst"); +    Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1); +  } + +  bool HasLoopExit = false; +  UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, MSSAU, PreserveLCSSA, +                            HasLoopExit); + +  // Update the PHI nodes in OrigBB with the values coming from NewBB1. +  UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit); + +  // Move the remaining edges from OrigBB to point to NewBB2. +  SmallVector<BasicBlock*, 8> NewBB2Preds; +  for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB); +       i != e; ) { +    BasicBlock *Pred = *i++; +    if (Pred == NewBB1) continue; +    assert(!isa<IndirectBrInst>(Pred->getTerminator()) && +           "Cannot split an edge from an IndirectBrInst"); +    NewBB2Preds.push_back(Pred); +    e = pred_end(OrigBB); +  } + +  BasicBlock *NewBB2 = nullptr; +  if (!NewBB2Preds.empty()) { +    // Create another basic block for the rest of OrigBB's predecessors. +    NewBB2 = BasicBlock::Create(OrigBB->getContext(), +                                OrigBB->getName() + Suffix2, +                                OrigBB->getParent(), OrigBB); +    NewBBs.push_back(NewBB2); + +    // The new block unconditionally branches to the old block. +    BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2); +    BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); + +    // Move the remaining edges from OrigBB to point to NewBB2. +    for (BasicBlock *NewBB2Pred : NewBB2Preds) +      NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2); + +    // Update DominatorTree, LoopInfo, and LCCSA analysis information. +    HasLoopExit = false; +    UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI, MSSAU, +                              PreserveLCSSA, HasLoopExit); + +    // Update the PHI nodes in OrigBB with the values coming from NewBB2. +    UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit); +  } + +  LandingPadInst *LPad = OrigBB->getLandingPadInst(); +  Instruction *Clone1 = LPad->clone(); +  Clone1->setName(Twine("lpad") + Suffix1); +  NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1); + +  if (NewBB2) { +    Instruction *Clone2 = LPad->clone(); +    Clone2->setName(Twine("lpad") + Suffix2); +    NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2); + +    // Create a PHI node for the two cloned landingpad instructions only +    // if the original landingpad instruction has some uses. +    if (!LPad->use_empty()) { +      assert(!LPad->getType()->isTokenTy() && +             "Split cannot be applied if LPad is token type. Otherwise an " +             "invalid PHINode of token type would be created."); +      PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad); +      PN->addIncoming(Clone1, NewBB1); +      PN->addIncoming(Clone2, NewBB2); +      LPad->replaceAllUsesWith(PN); +    } +    LPad->eraseFromParent(); +  } else { +    // There is no second clone. Just replace the landing pad with the first +    // clone. +    LPad->replaceAllUsesWith(Clone1); +    LPad->eraseFromParent(); +  } +} + +ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, +                                             BasicBlock *Pred, +                                             DomTreeUpdater *DTU) { +  Instruction *UncondBranch = Pred->getTerminator(); +  // Clone the return and add it to the end of the predecessor. +  Instruction *NewRet = RI->clone(); +  Pred->getInstList().push_back(NewRet); + +  // If the return instruction returns a value, and if the value was a +  // PHI node in "BB", propagate the right value into the return. +  for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end(); +       i != e; ++i) { +    Value *V = *i; +    Instruction *NewBC = nullptr; +    if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) { +      // Return value might be bitcasted. Clone and insert it before the +      // return instruction. +      V = BCI->getOperand(0); +      NewBC = BCI->clone(); +      Pred->getInstList().insert(NewRet->getIterator(), NewBC); +      *i = NewBC; +    } +    if (PHINode *PN = dyn_cast<PHINode>(V)) { +      if (PN->getParent() == BB) { +        if (NewBC) +          NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred)); +        else +          *i = PN->getIncomingValueForBlock(Pred); +      } +    } +  } + +  // Update any PHI nodes in the returning block to realize that we no +  // longer branch to them. +  BB->removePredecessor(Pred); +  UncondBranch->eraseFromParent(); + +  if (DTU) +    DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}}); + +  return cast<ReturnInst>(NewRet); +} + +Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond, +                                             Instruction *SplitBefore, +                                             bool Unreachable, +                                             MDNode *BranchWeights, +                                             DominatorTree *DT, LoopInfo *LI, +                                             BasicBlock *ThenBlock) { +  BasicBlock *Head = SplitBefore->getParent(); +  BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); +  Instruction *HeadOldTerm = Head->getTerminator(); +  LLVMContext &C = Head->getContext(); +  Instruction *CheckTerm; +  bool CreateThenBlock = (ThenBlock == nullptr); +  if (CreateThenBlock) { +    ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); +    if (Unreachable) +      CheckTerm = new UnreachableInst(C, ThenBlock); +    else +      CheckTerm = BranchInst::Create(Tail, ThenBlock); +    CheckTerm->setDebugLoc(SplitBefore->getDebugLoc()); +  } else +    CheckTerm = ThenBlock->getTerminator(); +  BranchInst *HeadNewTerm = +    BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond); +  HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); +  ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); + +  if (DT) { +    if (DomTreeNode *OldNode = DT->getNode(Head)) { +      std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); + +      DomTreeNode *NewNode = DT->addNewBlock(Tail, Head); +      for (DomTreeNode *Child : Children) +        DT->changeImmediateDominator(Child, NewNode); + +      // Head dominates ThenBlock. +      if (CreateThenBlock) +        DT->addNewBlock(ThenBlock, Head); +      else +        DT->changeImmediateDominator(ThenBlock, Head); +    } +  } + +  if (LI) { +    if (Loop *L = LI->getLoopFor(Head)) { +      L->addBasicBlockToLoop(ThenBlock, *LI); +      L->addBasicBlockToLoop(Tail, *LI); +    } +  } + +  return CheckTerm; +} + +void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore, +                                         Instruction **ThenTerm, +                                         Instruction **ElseTerm, +                                         MDNode *BranchWeights) { +  BasicBlock *Head = SplitBefore->getParent(); +  BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); +  Instruction *HeadOldTerm = Head->getTerminator(); +  LLVMContext &C = Head->getContext(); +  BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); +  BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); +  *ThenTerm = BranchInst::Create(Tail, ThenBlock); +  (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc()); +  *ElseTerm = BranchInst::Create(Tail, ElseBlock); +  (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc()); +  BranchInst *HeadNewTerm = +    BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond); +  HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); +  ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); +} + +Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, +                             BasicBlock *&IfFalse) { +  PHINode *SomePHI = dyn_cast<PHINode>(BB->begin()); +  BasicBlock *Pred1 = nullptr; +  BasicBlock *Pred2 = nullptr; + +  if (SomePHI) { +    if (SomePHI->getNumIncomingValues() != 2) +      return nullptr; +    Pred1 = SomePHI->getIncomingBlock(0); +    Pred2 = SomePHI->getIncomingBlock(1); +  } else { +    pred_iterator PI = pred_begin(BB), PE = pred_end(BB); +    if (PI == PE) // No predecessor +      return nullptr; +    Pred1 = *PI++; +    if (PI == PE) // Only one predecessor +      return nullptr; +    Pred2 = *PI++; +    if (PI != PE) // More than two predecessors +      return nullptr; +  } + +  // We can only handle branches.  Other control flow will be lowered to +  // branches if possible anyway. +  BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); +  BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); +  if (!Pred1Br || !Pred2Br) +    return nullptr; + +  // Eliminate code duplication by ensuring that Pred1Br is conditional if +  // either are. +  if (Pred2Br->isConditional()) { +    // If both branches are conditional, we don't have an "if statement".  In +    // reality, we could transform this case, but since the condition will be +    // required anyway, we stand no chance of eliminating it, so the xform is +    // probably not profitable. +    if (Pred1Br->isConditional()) +      return nullptr; + +    std::swap(Pred1, Pred2); +    std::swap(Pred1Br, Pred2Br); +  } + +  if (Pred1Br->isConditional()) { +    // The only thing we have to watch out for here is to make sure that Pred2 +    // doesn't have incoming edges from other blocks.  If it does, the condition +    // doesn't dominate BB. +    if (!Pred2->getSinglePredecessor()) +      return nullptr; + +    // If we found a conditional branch predecessor, make sure that it branches +    // to BB and Pred2Br.  If it doesn't, this isn't an "if statement". +    if (Pred1Br->getSuccessor(0) == BB && +        Pred1Br->getSuccessor(1) == Pred2) { +      IfTrue = Pred1; +      IfFalse = Pred2; +    } else if (Pred1Br->getSuccessor(0) == Pred2 && +               Pred1Br->getSuccessor(1) == BB) { +      IfTrue = Pred2; +      IfFalse = Pred1; +    } else { +      // We know that one arm of the conditional goes to BB, so the other must +      // go somewhere unrelated, and this must not be an "if statement". +      return nullptr; +    } + +    return Pred1Br->getCondition(); +  } + +  // Ok, if we got here, both predecessors end with an unconditional branch to +  // BB.  Don't panic!  If both blocks only have a single (identical) +  // predecessor, and THAT is a conditional branch, then we're all ok! +  BasicBlock *CommonPred = Pred1->getSinglePredecessor(); +  if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor()) +    return nullptr; + +  // Otherwise, if this is a conditional branch, then we can use it! +  BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); +  if (!BI) return nullptr; + +  assert(BI->isConditional() && "Two successors but not conditional?"); +  if (BI->getSuccessor(0) == Pred1) { +    IfTrue = Pred1; +    IfFalse = Pred2; +  } else { +    IfTrue = Pred2; +    IfFalse = Pred1; +  } +  return BI->getCondition(); +}  | 
