diff options
Diffstat (limited to 'math/aarch64/advsimd/erf.c')
-rw-r--r-- | math/aarch64/advsimd/erf.c | 166 |
1 files changed, 166 insertions, 0 deletions
diff --git a/math/aarch64/advsimd/erf.c b/math/aarch64/advsimd/erf.c new file mode 100644 index 000000000000..40717a660ce2 --- /dev/null +++ b/math/aarch64/advsimd/erf.c @@ -0,0 +1,166 @@ +/* + * Double-precision vector erf(x) function. + * + * Copyright (c) 2023-2024, Arm Limited. + * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception + */ + +#include "v_math.h" +#include "test_sig.h" +#include "test_defs.h" + +static const struct data +{ + float64x2_t third; + float64x2_t tenth, two_over_five, two_over_nine; + double two_over_fifteen, two_over_fortyfive; + float64x2_t max, shift; + uint64x2_t max_idx; +#if WANT_SIMD_EXCEPT + float64x2_t tiny_bound, huge_bound, scale_minus_one; +#endif +} data = { + .max_idx = V2 (768), + .third = V2 (0x1.5555555555556p-2), /* used to compute 2/3 and 1/6 too. */ + .two_over_fifteen = 0x1.1111111111111p-3, + .tenth = V2 (-0x1.999999999999ap-4), + .two_over_five = V2 (-0x1.999999999999ap-2), + .two_over_nine = V2 (-0x1.c71c71c71c71cp-3), + .two_over_fortyfive = 0x1.6c16c16c16c17p-5, + .max = V2 (5.9921875), /* 6 - 1/128. */ + .shift = V2 (0x1p45), +#if WANT_SIMD_EXCEPT + .huge_bound = V2 (0x1p205), + .tiny_bound = V2 (0x1p-226), + .scale_minus_one = V2 (0x1.06eba8214db69p-3), /* 2/sqrt(pi) - 1.0. */ +#endif +}; + +#define AbsMask 0x7fffffffffffffff + +struct entry +{ + float64x2_t erf; + float64x2_t scale; +}; + +static inline struct entry +lookup (uint64x2_t i) +{ + struct entry e; + float64x2_t e1 = vld1q_f64 (&__v_erf_data.tab[vgetq_lane_u64 (i, 0)].erf), + e2 = vld1q_f64 (&__v_erf_data.tab[vgetq_lane_u64 (i, 1)].erf); + e.erf = vuzp1q_f64 (e1, e2); + e.scale = vuzp2q_f64 (e1, e2); + return e; +} + +/* Double-precision implementation of vector erf(x). + Approximation based on series expansion near x rounded to + nearest multiple of 1/128. + Let d = x - r, and scale = 2 / sqrt(pi) * exp(-r^2). For x near r, + + erf(x) ~ erf(r) + scale * d * [ + + 1 + - r d + + 1/3 (2 r^2 - 1) d^2 + - 1/6 (r (2 r^2 - 3)) d^3 + + 1/30 (4 r^4 - 12 r^2 + 3) d^4 + - 1/90 (4 r^4 - 20 r^2 + 15) d^5 + ] + + Maximum measure error: 2.29 ULP + V_NAME_D1 (erf)(-0x1.00003c924e5d1p-8) got -0x1.20dd59132ebadp-8 + want -0x1.20dd59132ebafp-8. */ +float64x2_t VPCS_ATTR V_NAME_D1 (erf) (float64x2_t x) +{ + const struct data *dat = ptr_barrier (&data); + + float64x2_t a = vabsq_f64 (x); + /* Reciprocal conditions that do not catch NaNs so they can be used in BSLs + to return expected results. */ + uint64x2_t a_le_max = vcaleq_f64 (x, dat->max); + uint64x2_t a_gt_max = vcagtq_f64 (x, dat->max); + +#if WANT_SIMD_EXCEPT + /* |x| huge or tiny. */ + uint64x2_t cmp1 = vcgtq_f64 (a, dat->huge_bound); + uint64x2_t cmp2 = vcltq_f64 (a, dat->tiny_bound); + uint64x2_t cmp = vorrq_u64 (cmp1, cmp2); + /* If any lanes are special, mask them with 1 for small x or 8 for large + values and retain a copy of a to allow special case handler to fix special + lanes later. This is only necessary if fenv exceptions are to be triggered + correctly. */ + if (unlikely (v_any_u64 (cmp))) + { + a = vbslq_f64 (cmp1, v_f64 (8.0), a); + a = vbslq_f64 (cmp2, v_f64 (1.0), a); + } +#endif + + /* Set r to multiple of 1/128 nearest to |x|. */ + float64x2_t shift = dat->shift; + float64x2_t z = vaddq_f64 (a, shift); + + /* Lookup erf(r) and scale(r) in table, without shortcut for small values, + but with saturated indices for large values and NaNs in order to avoid + segfault. */ + uint64x2_t i + = vsubq_u64 (vreinterpretq_u64_f64 (z), vreinterpretq_u64_f64 (shift)); + i = vbslq_u64 (a_le_max, i, dat->max_idx); + struct entry e = lookup (i); + + float64x2_t r = vsubq_f64 (z, shift); + + /* erf(x) ~ erf(r) + scale * d * poly (r, d). */ + float64x2_t d = vsubq_f64 (a, r); + float64x2_t d2 = vmulq_f64 (d, d); + float64x2_t r2 = vmulq_f64 (r, r); + + float64x2_t two_over_fifteen_and_fortyfive + = vld1q_f64 (&dat->two_over_fifteen); + + /* poly (d, r) = 1 + p1(r) * d + p2(r) * d^2 + ... + p5(r) * d^5. */ + float64x2_t p1 = r; + float64x2_t p2 + = vfmsq_f64 (dat->third, r2, vaddq_f64 (dat->third, dat->third)); + float64x2_t p3 = vmulq_f64 (r, vfmaq_f64 (v_f64 (-0.5), r2, dat->third)); + float64x2_t p4 = vfmaq_laneq_f64 (dat->two_over_five, r2, + two_over_fifteen_and_fortyfive, 0); + p4 = vfmsq_f64 (dat->tenth, r2, p4); + float64x2_t p5 = vfmaq_laneq_f64 (dat->two_over_nine, r2, + two_over_fifteen_and_fortyfive, 1); + p5 = vmulq_f64 (r, vfmaq_f64 (vmulq_f64 (v_f64 (0.5), dat->third), r2, p5)); + + float64x2_t p34 = vfmaq_f64 (p3, d, p4); + float64x2_t p12 = vfmaq_f64 (p1, d, p2); + float64x2_t y = vfmaq_f64 (p34, d2, p5); + y = vfmaq_f64 (p12, d2, y); + + y = vfmaq_f64 (e.erf, e.scale, vfmsq_f64 (d, d2, y)); + + /* Solves the |x| = inf and NaN cases. */ + y = vbslq_f64 (a_gt_max, v_f64 (1.0), y); + + /* Copy sign. */ + y = vbslq_f64 (v_u64 (AbsMask), y, x); + +#if WANT_SIMD_EXCEPT + if (unlikely (v_any_u64 (cmp2))) + { + /* Neutralise huge values of x before fixing small values. */ + x = vbslq_f64 (cmp1, v_f64 (1.0), x); + /* Fix tiny values that trigger spurious underflow. */ + return vbslq_f64 (cmp2, vfmaq_f64 (x, dat->scale_minus_one, x), y); + } +#endif + return y; +} + +TEST_SIG (V, D, 1, erf, -6.0, 6.0) +TEST_ULP (V_NAME_D1 (erf), 1.79) +/* WANT_SIMD_EXCEPT blocks miss some cases. */ +TEST_DISABLE_FENV (V_NAME_D1 (erf)) +TEST_SYM_INTERVAL (V_NAME_D1 (erf), 0, 5.9921875, 40000) +TEST_SYM_INTERVAL (V_NAME_D1 (erf), 5.9921875, inf, 40000) +TEST_SYM_INTERVAL (V_NAME_D1 (erf), 0, inf, 40000) |