aboutsummaryrefslogtreecommitdiff
path: root/math/aarch64/advsimd/finite_pow.h
diff options
context:
space:
mode:
Diffstat (limited to 'math/aarch64/advsimd/finite_pow.h')
-rw-r--r--math/aarch64/advsimd/finite_pow.h361
1 files changed, 361 insertions, 0 deletions
diff --git a/math/aarch64/advsimd/finite_pow.h b/math/aarch64/advsimd/finite_pow.h
new file mode 100644
index 000000000000..0c8350a1a77b
--- /dev/null
+++ b/math/aarch64/advsimd/finite_pow.h
@@ -0,0 +1,361 @@
+/*
+ * Double-precision x^y function.
+ *
+ * Copyright (c) 2018-2024, Arm Limited.
+ * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
+ */
+
+#include "math_config.h"
+
+/* Scalar version of pow used for fallbacks in vector implementations. */
+
+/* Data is defined in v_pow_log_data.c. */
+#define N_LOG (1 << V_POW_LOG_TABLE_BITS)
+#define Off 0x3fe6955500000000
+#define As __v_pow_log_data.poly
+
+/* Data is defined in v_pow_exp_data.c. */
+#define N_EXP (1 << V_POW_EXP_TABLE_BITS)
+#define SignBias (0x800 << V_POW_EXP_TABLE_BITS)
+#define SmallExp 0x3c9 /* top12(0x1p-54). */
+#define BigExp 0x408 /* top12(512.0). */
+#define ThresExp 0x03f /* BigExp - SmallExp. */
+#define InvLn2N __v_pow_exp_data.n_over_ln2
+#define Ln2HiN __v_pow_exp_data.ln2_over_n_hi
+#define Ln2LoN __v_pow_exp_data.ln2_over_n_lo
+#define SBits __v_pow_exp_data.sbits
+#define Cs __v_pow_exp_data.poly
+
+/* Constants associated with pow. */
+#define SmallPowX 0x001 /* top12(0x1p-126). */
+#define BigPowX 0x7ff /* top12(INFINITY). */
+#define ThresPowX 0x7fe /* BigPowX - SmallPowX. */
+#define SmallPowY 0x3be /* top12(0x1.e7b6p-65). */
+#define BigPowY 0x43e /* top12(0x1.749p62). */
+#define ThresPowY 0x080 /* BigPowY - SmallPowY. */
+
+/* Top 12 bits of a double (sign and exponent bits). */
+static inline uint32_t
+top12 (double x)
+{
+ return asuint64 (x) >> 52;
+}
+
+/* Compute y+TAIL = log(x) where the rounded result is y and TAIL has about
+ additional 15 bits precision. IX is the bit representation of x, but
+ normalized in the subnormal range using the sign bit for the exponent. */
+static inline double
+log_inline (uint64_t ix, double *tail)
+{
+ /* x = 2^k z; where z is in range [Off,2*Off) and exact.
+ The range is split into N subintervals.
+ The ith subinterval contains z and c is near its center. */
+ uint64_t tmp = ix - Off;
+ int i = (tmp >> (52 - V_POW_LOG_TABLE_BITS)) & (N_LOG - 1);
+ int k = (int64_t) tmp >> 52; /* arithmetic shift. */
+ uint64_t iz = ix - (tmp & 0xfffULL << 52);
+ double z = asdouble (iz);
+ double kd = (double) k;
+
+ /* log(x) = k*Ln2 + log(c) + log1p(z/c-1). */
+ double invc = __v_pow_log_data.invc[i];
+ double logc = __v_pow_log_data.logc[i];
+ double logctail = __v_pow_log_data.logctail[i];
+
+ /* Note: 1/c is j/N or j/N/2 where j is an integer in [N,2N) and
+ |z/c - 1| < 1/N, so r = z/c - 1 is exactly representible. */
+ double r = fma (z, invc, -1.0);
+
+ /* k*Ln2 + log(c) + r. */
+ double t1 = kd * __v_pow_log_data.ln2_hi + logc;
+ double t2 = t1 + r;
+ double lo1 = kd * __v_pow_log_data.ln2_lo + logctail;
+ double lo2 = t1 - t2 + r;
+
+ /* Evaluation is optimized assuming superscalar pipelined execution. */
+ double ar = As[0] * r;
+ double ar2 = r * ar;
+ double ar3 = r * ar2;
+ /* k*Ln2 + log(c) + r + A[0]*r*r. */
+ double hi = t2 + ar2;
+ double lo3 = fma (ar, r, -ar2);
+ double lo4 = t2 - hi + ar2;
+ /* p = log1p(r) - r - A[0]*r*r. */
+ double p = (ar3
+ * (As[1] + r * As[2]
+ + ar2 * (As[3] + r * As[4] + ar2 * (As[5] + r * As[6]))));
+ double lo = lo1 + lo2 + lo3 + lo4 + p;
+ double y = hi + lo;
+ *tail = hi - y + lo;
+ return y;
+}
+
+/* Handle cases that may overflow or underflow when computing the result that
+ is scale*(1+TMP) without intermediate rounding. The bit representation of
+ scale is in SBITS, however it has a computed exponent that may have
+ overflown into the sign bit so that needs to be adjusted before using it as
+ a double. (int32_t)KI is the k used in the argument reduction and exponent
+ adjustment of scale, positive k here means the result may overflow and
+ negative k means the result may underflow. */
+static inline double
+special_case (double tmp, uint64_t sbits, uint64_t ki)
+{
+ double scale, y;
+
+ if ((ki & 0x80000000) == 0)
+ {
+ /* k > 0, the exponent of scale might have overflowed by <= 460. */
+ sbits -= 1009ull << 52;
+ scale = asdouble (sbits);
+ y = 0x1p1009 * (scale + scale * tmp);
+ return y;
+ }
+ /* k < 0, need special care in the subnormal range. */
+ sbits += 1022ull << 52;
+ /* Note: sbits is signed scale. */
+ scale = asdouble (sbits);
+ y = scale + scale * tmp;
+#if WANT_SIMD_EXCEPT
+ if (fabs (y) < 1.0)
+ {
+ /* Round y to the right precision before scaling it into the subnormal
+ range to avoid double rounding that can cause 0.5+E/2 ulp error where
+ E is the worst-case ulp error outside the subnormal range. So this
+ is only useful if the goal is better than 1 ulp worst-case error. */
+ double hi, lo, one = 1.0;
+ if (y < 0.0)
+ one = -1.0;
+ lo = scale - y + scale * tmp;
+ hi = one + y;
+ lo = one - hi + y + lo;
+ y = (hi + lo) - one;
+ /* Fix the sign of 0. */
+ if (y == 0.0)
+ y = asdouble (sbits & 0x8000000000000000);
+ /* The underflow exception needs to be signaled explicitly. */
+ force_eval_double (opt_barrier_double (0x1p-1022) * 0x1p-1022);
+ }
+#endif
+ y = 0x1p-1022 * y;
+ return y;
+}
+
+/* Computes sign*exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|.
+ The sign_bias argument is SignBias or 0 and sets the sign to -1 or 1. */
+static inline double
+exp_inline (double x, double xtail, uint32_t sign_bias)
+{
+ uint32_t abstop = top12 (x) & 0x7ff;
+ if (unlikely (abstop - SmallExp >= ThresExp))
+ {
+ if (abstop - SmallExp >= 0x80000000)
+ {
+ /* Avoid spurious underflow for tiny x. */
+ /* Note: 0 is common input. */
+ return sign_bias ? -1.0 : 1.0;
+ }
+ if (abstop >= top12 (1024.0))
+ {
+ /* Note: inf and nan are already handled. */
+ /* Skip errno handling. */
+#if WANT_SIMD_EXCEPT
+ return asuint64 (x) >> 63 ? __math_uflow (sign_bias)
+ : __math_oflow (sign_bias);
+#else
+ double res_uoflow = asuint64 (x) >> 63 ? 0.0 : INFINITY;
+ return sign_bias ? -res_uoflow : res_uoflow;
+#endif
+ }
+ /* Large x is special cased below. */
+ abstop = 0;
+ }
+
+ /* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */
+ /* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N]. */
+ double z = InvLn2N * x;
+ double kd = round (z);
+ uint64_t ki = lround (z);
+ double r = x - kd * Ln2HiN - kd * Ln2LoN;
+ /* The code assumes 2^-200 < |xtail| < 2^-8/N. */
+ r += xtail;
+ /* 2^(k/N) ~= scale. */
+ uint64_t idx = ki & (N_EXP - 1);
+ uint64_t top = (ki + sign_bias) << (52 - V_POW_EXP_TABLE_BITS);
+ /* This is only a valid scale when -1023*N < k < 1024*N. */
+ uint64_t sbits = SBits[idx] + top;
+ /* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (exp(r) - 1). */
+ /* Evaluation is optimized assuming superscalar pipelined execution. */
+ double r2 = r * r;
+ double tmp = r + r2 * Cs[0] + r * r2 * (Cs[1] + r * Cs[2]);
+ if (unlikely (abstop == 0))
+ return special_case (tmp, sbits, ki);
+ double scale = asdouble (sbits);
+ /* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there
+ is no spurious underflow here even without fma. */
+ return scale + scale * tmp;
+}
+
+/* Computes exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|.
+ A version of exp_inline that is not inlined and for which sign_bias is
+ equal to 0. */
+static double NOINLINE
+exp_nosignbias (double x, double xtail)
+{
+ uint32_t abstop = top12 (x) & 0x7ff;
+ if (unlikely (abstop - SmallExp >= ThresExp))
+ {
+ /* Avoid spurious underflow for tiny x. */
+ if (abstop - SmallExp >= 0x80000000)
+ return 1.0;
+ /* Note: inf and nan are already handled. */
+ if (abstop >= top12 (1024.0))
+#if WANT_SIMD_EXCEPT
+ return asuint64 (x) >> 63 ? __math_uflow (0) : __math_oflow (0);
+#else
+ return asuint64 (x) >> 63 ? 0.0 : INFINITY;
+#endif
+ /* Large x is special cased below. */
+ abstop = 0;
+ }
+
+ /* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */
+ /* x = ln2/N*k + r, with k integer and r in [-ln2/2N, ln2/2N]. */
+ double z = InvLn2N * x;
+ double kd = round (z);
+ uint64_t ki = lround (z);
+ double r = x - kd * Ln2HiN - kd * Ln2LoN;
+ /* The code assumes 2^-200 < |xtail| < 2^-8/N. */
+ r += xtail;
+ /* 2^(k/N) ~= scale. */
+ uint64_t idx = ki & (N_EXP - 1);
+ uint64_t top = ki << (52 - V_POW_EXP_TABLE_BITS);
+ /* This is only a valid scale when -1023*N < k < 1024*N. */
+ uint64_t sbits = SBits[idx] + top;
+ /* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1). */
+ double r2 = r * r;
+ double tmp = r + r2 * Cs[0] + r * r2 * (Cs[1] + r * Cs[2]);
+ if (unlikely (abstop == 0))
+ return special_case (tmp, sbits, ki);
+ double scale = asdouble (sbits);
+ /* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there
+ is no spurious underflow here even without fma. */
+ return scale + scale * tmp;
+}
+
+/* Returns 0 if not int, 1 if odd int, 2 if even int. The argument is
+ the bit representation of a non-zero finite floating-point value. */
+static inline int
+checkint (uint64_t iy)
+{
+ int e = iy >> 52 & 0x7ff;
+ if (e < 0x3ff)
+ return 0;
+ if (e > 0x3ff + 52)
+ return 2;
+ if (iy & ((1ULL << (0x3ff + 52 - e)) - 1))
+ return 0;
+ if (iy & (1ULL << (0x3ff + 52 - e)))
+ return 1;
+ return 2;
+}
+
+/* Returns 1 if input is the bit representation of 0, infinity or nan. */
+static inline int
+zeroinfnan (uint64_t i)
+{
+ return 2 * i - 1 >= 2 * asuint64 (INFINITY) - 1;
+}
+
+static double NOINLINE
+pow_scalar_special_case (double x, double y)
+{
+ uint32_t sign_bias = 0;
+ uint64_t ix, iy;
+ uint32_t topx, topy;
+
+ ix = asuint64 (x);
+ iy = asuint64 (y);
+ topx = top12 (x);
+ topy = top12 (y);
+ if (unlikely (topx - SmallPowX >= ThresPowX
+ || (topy & 0x7ff) - SmallPowY >= ThresPowY))
+ {
+ /* Note: if |y| > 1075 * ln2 * 2^53 ~= 0x1.749p62 then pow(x,y) = inf/0
+ and if |y| < 2^-54 / 1075 ~= 0x1.e7b6p-65 then pow(x,y) = +-1. */
+ /* Special cases: (x < 0x1p-126 or inf or nan) or
+ (|y| < 0x1p-65 or |y| >= 0x1p63 or nan). */
+ if (unlikely (zeroinfnan (iy)))
+ {
+ if (2 * iy == 0)
+ return issignaling_inline (x) ? x + y : 1.0;
+ if (ix == asuint64 (1.0))
+ return issignaling_inline (y) ? x + y : 1.0;
+ if (2 * ix > 2 * asuint64 (INFINITY)
+ || 2 * iy > 2 * asuint64 (INFINITY))
+ return x + y;
+ if (2 * ix == 2 * asuint64 (1.0))
+ return 1.0;
+ if ((2 * ix < 2 * asuint64 (1.0)) == !(iy >> 63))
+ return 0.0; /* |x|<1 && y==inf or |x|>1 && y==-inf. */
+ return y * y;
+ }
+ if (unlikely (zeroinfnan (ix)))
+ {
+ double x2 = x * x;
+ if (ix >> 63 && checkint (iy) == 1)
+ {
+ x2 = -x2;
+ sign_bias = 1;
+ }
+#if WANT_SIMD_EXCEPT
+ if (2 * ix == 0 && iy >> 63)
+ return __math_divzero (sign_bias);
+#endif
+ return iy >> 63 ? 1 / x2 : x2;
+ }
+ /* Here x and y are non-zero finite. */
+ if (ix >> 63)
+ {
+ /* Finite x < 0. */
+ int yint = checkint (iy);
+ if (yint == 0)
+#if WANT_SIMD_EXCEPT
+ return __math_invalid (x);
+#else
+ return __builtin_nan ("");
+#endif
+ if (yint == 1)
+ sign_bias = SignBias;
+ ix &= 0x7fffffffffffffff;
+ topx &= 0x7ff;
+ }
+ if ((topy & 0x7ff) - SmallPowY >= ThresPowY)
+ {
+ /* Note: sign_bias == 0 here because y is not odd. */
+ if (ix == asuint64 (1.0))
+ return 1.0;
+ /* |y| < 2^-65, x^y ~= 1 + y*log(x). */
+ if ((topy & 0x7ff) < SmallPowY)
+ return 1.0;
+#if WANT_SIMD_EXCEPT
+ return (ix > asuint64 (1.0)) == (topy < 0x800) ? __math_oflow (0)
+ : __math_uflow (0);
+#else
+ return (ix > asuint64 (1.0)) == (topy < 0x800) ? INFINITY : 0;
+#endif
+ }
+ if (topx == 0)
+ {
+ /* Normalize subnormal x so exponent becomes negative. */
+ ix = asuint64 (x * 0x1p52);
+ ix &= 0x7fffffffffffffff;
+ ix -= 52ULL << 52;
+ }
+ }
+
+ double lo;
+ double hi = log_inline (ix, &lo);
+ double ehi = y * hi;
+ double elo = y * lo + fma (y, hi, -ehi);
+ return exp_inline (ehi, elo, sign_bias);
+}