diff options
Diffstat (limited to 'math/aarch64/advsimd/finite_pow.h')
-rw-r--r-- | math/aarch64/advsimd/finite_pow.h | 361 |
1 files changed, 361 insertions, 0 deletions
diff --git a/math/aarch64/advsimd/finite_pow.h b/math/aarch64/advsimd/finite_pow.h new file mode 100644 index 000000000000..0c8350a1a77b --- /dev/null +++ b/math/aarch64/advsimd/finite_pow.h @@ -0,0 +1,361 @@ +/* + * Double-precision x^y function. + * + * Copyright (c) 2018-2024, Arm Limited. + * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception + */ + +#include "math_config.h" + +/* Scalar version of pow used for fallbacks in vector implementations. */ + +/* Data is defined in v_pow_log_data.c. */ +#define N_LOG (1 << V_POW_LOG_TABLE_BITS) +#define Off 0x3fe6955500000000 +#define As __v_pow_log_data.poly + +/* Data is defined in v_pow_exp_data.c. */ +#define N_EXP (1 << V_POW_EXP_TABLE_BITS) +#define SignBias (0x800 << V_POW_EXP_TABLE_BITS) +#define SmallExp 0x3c9 /* top12(0x1p-54). */ +#define BigExp 0x408 /* top12(512.0). */ +#define ThresExp 0x03f /* BigExp - SmallExp. */ +#define InvLn2N __v_pow_exp_data.n_over_ln2 +#define Ln2HiN __v_pow_exp_data.ln2_over_n_hi +#define Ln2LoN __v_pow_exp_data.ln2_over_n_lo +#define SBits __v_pow_exp_data.sbits +#define Cs __v_pow_exp_data.poly + +/* Constants associated with pow. */ +#define SmallPowX 0x001 /* top12(0x1p-126). */ +#define BigPowX 0x7ff /* top12(INFINITY). */ +#define ThresPowX 0x7fe /* BigPowX - SmallPowX. */ +#define SmallPowY 0x3be /* top12(0x1.e7b6p-65). */ +#define BigPowY 0x43e /* top12(0x1.749p62). */ +#define ThresPowY 0x080 /* BigPowY - SmallPowY. */ + +/* Top 12 bits of a double (sign and exponent bits). */ +static inline uint32_t +top12 (double x) +{ + return asuint64 (x) >> 52; +} + +/* Compute y+TAIL = log(x) where the rounded result is y and TAIL has about + additional 15 bits precision. IX is the bit representation of x, but + normalized in the subnormal range using the sign bit for the exponent. */ +static inline double +log_inline (uint64_t ix, double *tail) +{ + /* x = 2^k z; where z is in range [Off,2*Off) and exact. + The range is split into N subintervals. + The ith subinterval contains z and c is near its center. */ + uint64_t tmp = ix - Off; + int i = (tmp >> (52 - V_POW_LOG_TABLE_BITS)) & (N_LOG - 1); + int k = (int64_t) tmp >> 52; /* arithmetic shift. */ + uint64_t iz = ix - (tmp & 0xfffULL << 52); + double z = asdouble (iz); + double kd = (double) k; + + /* log(x) = k*Ln2 + log(c) + log1p(z/c-1). */ + double invc = __v_pow_log_data.invc[i]; + double logc = __v_pow_log_data.logc[i]; + double logctail = __v_pow_log_data.logctail[i]; + + /* Note: 1/c is j/N or j/N/2 where j is an integer in [N,2N) and + |z/c - 1| < 1/N, so r = z/c - 1 is exactly representible. */ + double r = fma (z, invc, -1.0); + + /* k*Ln2 + log(c) + r. */ + double t1 = kd * __v_pow_log_data.ln2_hi + logc; + double t2 = t1 + r; + double lo1 = kd * __v_pow_log_data.ln2_lo + logctail; + double lo2 = t1 - t2 + r; + + /* Evaluation is optimized assuming superscalar pipelined execution. */ + double ar = As[0] * r; + double ar2 = r * ar; + double ar3 = r * ar2; + /* k*Ln2 + log(c) + r + A[0]*r*r. */ + double hi = t2 + ar2; + double lo3 = fma (ar, r, -ar2); + double lo4 = t2 - hi + ar2; + /* p = log1p(r) - r - A[0]*r*r. */ + double p = (ar3 + * (As[1] + r * As[2] + + ar2 * (As[3] + r * As[4] + ar2 * (As[5] + r * As[6])))); + double lo = lo1 + lo2 + lo3 + lo4 + p; + double y = hi + lo; + *tail = hi - y + lo; + return y; +} + +/* Handle cases that may overflow or underflow when computing the result that + is scale*(1+TMP) without intermediate rounding. The bit representation of + scale is in SBITS, however it has a computed exponent that may have + overflown into the sign bit so that needs to be adjusted before using it as + a double. (int32_t)KI is the k used in the argument reduction and exponent + adjustment of scale, positive k here means the result may overflow and + negative k means the result may underflow. */ +static inline double +special_case (double tmp, uint64_t sbits, uint64_t ki) +{ + double scale, y; + + if ((ki & 0x80000000) == 0) + { + /* k > 0, the exponent of scale might have overflowed by <= 460. */ + sbits -= 1009ull << 52; + scale = asdouble (sbits); + y = 0x1p1009 * (scale + scale * tmp); + return y; + } + /* k < 0, need special care in the subnormal range. */ + sbits += 1022ull << 52; + /* Note: sbits is signed scale. */ + scale = asdouble (sbits); + y = scale + scale * tmp; +#if WANT_SIMD_EXCEPT + if (fabs (y) < 1.0) + { + /* Round y to the right precision before scaling it into the subnormal + range to avoid double rounding that can cause 0.5+E/2 ulp error where + E is the worst-case ulp error outside the subnormal range. So this + is only useful if the goal is better than 1 ulp worst-case error. */ + double hi, lo, one = 1.0; + if (y < 0.0) + one = -1.0; + lo = scale - y + scale * tmp; + hi = one + y; + lo = one - hi + y + lo; + y = (hi + lo) - one; + /* Fix the sign of 0. */ + if (y == 0.0) + y = asdouble (sbits & 0x8000000000000000); + /* The underflow exception needs to be signaled explicitly. */ + force_eval_double (opt_barrier_double (0x1p-1022) * 0x1p-1022); + } +#endif + y = 0x1p-1022 * y; + return y; +} + +/* Computes sign*exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|. + The sign_bias argument is SignBias or 0 and sets the sign to -1 or 1. */ +static inline double +exp_inline (double x, double xtail, uint32_t sign_bias) +{ + uint32_t abstop = top12 (x) & 0x7ff; + if (unlikely (abstop - SmallExp >= ThresExp)) + { + if (abstop - SmallExp >= 0x80000000) + { + /* Avoid spurious underflow for tiny x. */ + /* Note: 0 is common input. */ + return sign_bias ? -1.0 : 1.0; + } + if (abstop >= top12 (1024.0)) + { + /* Note: inf and nan are already handled. */ + /* Skip errno handling. */ +#if WANT_SIMD_EXCEPT + return asuint64 (x) >> 63 ? __math_uflow (sign_bias) + : __math_oflow (sign_bias); +#else + double res_uoflow = asuint64 (x) >> 63 ? 0.0 : INFINITY; + return sign_bias ? -res_uoflow : res_uoflow; +#endif + } + /* Large x is special cased below. */ + abstop = 0; + } + + /* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */ + /* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N]. */ + double z = InvLn2N * x; + double kd = round (z); + uint64_t ki = lround (z); + double r = x - kd * Ln2HiN - kd * Ln2LoN; + /* The code assumes 2^-200 < |xtail| < 2^-8/N. */ + r += xtail; + /* 2^(k/N) ~= scale. */ + uint64_t idx = ki & (N_EXP - 1); + uint64_t top = (ki + sign_bias) << (52 - V_POW_EXP_TABLE_BITS); + /* This is only a valid scale when -1023*N < k < 1024*N. */ + uint64_t sbits = SBits[idx] + top; + /* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (exp(r) - 1). */ + /* Evaluation is optimized assuming superscalar pipelined execution. */ + double r2 = r * r; + double tmp = r + r2 * Cs[0] + r * r2 * (Cs[1] + r * Cs[2]); + if (unlikely (abstop == 0)) + return special_case (tmp, sbits, ki); + double scale = asdouble (sbits); + /* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there + is no spurious underflow here even without fma. */ + return scale + scale * tmp; +} + +/* Computes exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|. + A version of exp_inline that is not inlined and for which sign_bias is + equal to 0. */ +static double NOINLINE +exp_nosignbias (double x, double xtail) +{ + uint32_t abstop = top12 (x) & 0x7ff; + if (unlikely (abstop - SmallExp >= ThresExp)) + { + /* Avoid spurious underflow for tiny x. */ + if (abstop - SmallExp >= 0x80000000) + return 1.0; + /* Note: inf and nan are already handled. */ + if (abstop >= top12 (1024.0)) +#if WANT_SIMD_EXCEPT + return asuint64 (x) >> 63 ? __math_uflow (0) : __math_oflow (0); +#else + return asuint64 (x) >> 63 ? 0.0 : INFINITY; +#endif + /* Large x is special cased below. */ + abstop = 0; + } + + /* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */ + /* x = ln2/N*k + r, with k integer and r in [-ln2/2N, ln2/2N]. */ + double z = InvLn2N * x; + double kd = round (z); + uint64_t ki = lround (z); + double r = x - kd * Ln2HiN - kd * Ln2LoN; + /* The code assumes 2^-200 < |xtail| < 2^-8/N. */ + r += xtail; + /* 2^(k/N) ~= scale. */ + uint64_t idx = ki & (N_EXP - 1); + uint64_t top = ki << (52 - V_POW_EXP_TABLE_BITS); + /* This is only a valid scale when -1023*N < k < 1024*N. */ + uint64_t sbits = SBits[idx] + top; + /* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1). */ + double r2 = r * r; + double tmp = r + r2 * Cs[0] + r * r2 * (Cs[1] + r * Cs[2]); + if (unlikely (abstop == 0)) + return special_case (tmp, sbits, ki); + double scale = asdouble (sbits); + /* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there + is no spurious underflow here even without fma. */ + return scale + scale * tmp; +} + +/* Returns 0 if not int, 1 if odd int, 2 if even int. The argument is + the bit representation of a non-zero finite floating-point value. */ +static inline int +checkint (uint64_t iy) +{ + int e = iy >> 52 & 0x7ff; + if (e < 0x3ff) + return 0; + if (e > 0x3ff + 52) + return 2; + if (iy & ((1ULL << (0x3ff + 52 - e)) - 1)) + return 0; + if (iy & (1ULL << (0x3ff + 52 - e))) + return 1; + return 2; +} + +/* Returns 1 if input is the bit representation of 0, infinity or nan. */ +static inline int +zeroinfnan (uint64_t i) +{ + return 2 * i - 1 >= 2 * asuint64 (INFINITY) - 1; +} + +static double NOINLINE +pow_scalar_special_case (double x, double y) +{ + uint32_t sign_bias = 0; + uint64_t ix, iy; + uint32_t topx, topy; + + ix = asuint64 (x); + iy = asuint64 (y); + topx = top12 (x); + topy = top12 (y); + if (unlikely (topx - SmallPowX >= ThresPowX + || (topy & 0x7ff) - SmallPowY >= ThresPowY)) + { + /* Note: if |y| > 1075 * ln2 * 2^53 ~= 0x1.749p62 then pow(x,y) = inf/0 + and if |y| < 2^-54 / 1075 ~= 0x1.e7b6p-65 then pow(x,y) = +-1. */ + /* Special cases: (x < 0x1p-126 or inf or nan) or + (|y| < 0x1p-65 or |y| >= 0x1p63 or nan). */ + if (unlikely (zeroinfnan (iy))) + { + if (2 * iy == 0) + return issignaling_inline (x) ? x + y : 1.0; + if (ix == asuint64 (1.0)) + return issignaling_inline (y) ? x + y : 1.0; + if (2 * ix > 2 * asuint64 (INFINITY) + || 2 * iy > 2 * asuint64 (INFINITY)) + return x + y; + if (2 * ix == 2 * asuint64 (1.0)) + return 1.0; + if ((2 * ix < 2 * asuint64 (1.0)) == !(iy >> 63)) + return 0.0; /* |x|<1 && y==inf or |x|>1 && y==-inf. */ + return y * y; + } + if (unlikely (zeroinfnan (ix))) + { + double x2 = x * x; + if (ix >> 63 && checkint (iy) == 1) + { + x2 = -x2; + sign_bias = 1; + } +#if WANT_SIMD_EXCEPT + if (2 * ix == 0 && iy >> 63) + return __math_divzero (sign_bias); +#endif + return iy >> 63 ? 1 / x2 : x2; + } + /* Here x and y are non-zero finite. */ + if (ix >> 63) + { + /* Finite x < 0. */ + int yint = checkint (iy); + if (yint == 0) +#if WANT_SIMD_EXCEPT + return __math_invalid (x); +#else + return __builtin_nan (""); +#endif + if (yint == 1) + sign_bias = SignBias; + ix &= 0x7fffffffffffffff; + topx &= 0x7ff; + } + if ((topy & 0x7ff) - SmallPowY >= ThresPowY) + { + /* Note: sign_bias == 0 here because y is not odd. */ + if (ix == asuint64 (1.0)) + return 1.0; + /* |y| < 2^-65, x^y ~= 1 + y*log(x). */ + if ((topy & 0x7ff) < SmallPowY) + return 1.0; +#if WANT_SIMD_EXCEPT + return (ix > asuint64 (1.0)) == (topy < 0x800) ? __math_oflow (0) + : __math_uflow (0); +#else + return (ix > asuint64 (1.0)) == (topy < 0x800) ? INFINITY : 0; +#endif + } + if (topx == 0) + { + /* Normalize subnormal x so exponent becomes negative. */ + ix = asuint64 (x * 0x1p52); + ix &= 0x7fffffffffffffff; + ix -= 52ULL << 52; + } + } + + double lo; + double hi = log_inline (ix, &lo); + double ehi = y * hi; + double elo = y * lo + fma (y, hi, -ehi); + return exp_inline (ehi, elo, sign_bias); +} |