aboutsummaryrefslogtreecommitdiff
path: root/math/aarch64/advsimd/tanf.c
diff options
context:
space:
mode:
Diffstat (limited to 'math/aarch64/advsimd/tanf.c')
-rw-r--r--math/aarch64/advsimd/tanf.c130
1 files changed, 130 insertions, 0 deletions
diff --git a/math/aarch64/advsimd/tanf.c b/math/aarch64/advsimd/tanf.c
new file mode 100644
index 000000000000..ed5448649f6c
--- /dev/null
+++ b/math/aarch64/advsimd/tanf.c
@@ -0,0 +1,130 @@
+/*
+ * Single-precision vector tan(x) function.
+ *
+ * Copyright (c) 2021-2024, Arm Limited.
+ * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
+ */
+
+#include "v_math.h"
+#include "v_poly_f32.h"
+#include "test_sig.h"
+#include "test_defs.h"
+
+static const struct data
+{
+ float32x4_t poly[6];
+ float pi_consts[4];
+ float32x4_t shift;
+#if !WANT_SIMD_EXCEPT
+ float32x4_t range_val;
+#endif
+} data = {
+ /* Coefficients generated using FPMinimax. */
+ .poly = { V4 (0x1.55555p-2f), V4 (0x1.11166p-3f), V4 (0x1.b88a78p-5f),
+ V4 (0x1.7b5756p-6f), V4 (0x1.4ef4cep-8f), V4 (0x1.0e1e74p-7f) },
+ /* Stores constants: (-pi/2)_high, (-pi/2)_mid, (-pi/2)_low, and 2/pi. */
+ .pi_consts
+ = { -0x1.921fb6p+0f, 0x1.777a5cp-25f, 0x1.ee59dap-50f, 0x1.45f306p-1f },
+ .shift = V4 (0x1.8p+23f),
+#if !WANT_SIMD_EXCEPT
+ .range_val = V4 (0x1p15f),
+#endif
+};
+
+#define RangeVal v_u32 (0x47000000) /* asuint32(0x1p15f). */
+#define TinyBound v_u32 (0x30000000) /* asuint32 (0x1p-31f). */
+#define Thresh v_u32 (0x16000000) /* asuint32(RangeVal) - TinyBound. */
+
+/* Special cases (fall back to scalar calls). */
+static float32x4_t VPCS_ATTR NOINLINE
+special_case (float32x4_t x, float32x4_t y, uint32x4_t cmp)
+{
+ return v_call_f32 (tanf, x, y, cmp);
+}
+
+/* Use a full Estrin scheme to evaluate polynomial. */
+static inline float32x4_t
+eval_poly (float32x4_t z, const struct data *d)
+{
+ float32x4_t z2 = vmulq_f32 (z, z);
+#if WANT_SIMD_EXCEPT
+ /* Tiny z (<= 0x1p-31) will underflow when calculating z^4.
+ If fp exceptions are to be triggered correctly,
+ sidestep this by fixing such lanes to 0. */
+ uint32x4_t will_uflow
+ = vcleq_u32 (vreinterpretq_u32_f32 (vabsq_f32 (z)), TinyBound);
+ if (unlikely (v_any_u32 (will_uflow)))
+ z2 = vbslq_f32 (will_uflow, v_f32 (0), z2);
+#endif
+ float32x4_t z4 = vmulq_f32 (z2, z2);
+ return v_estrin_5_f32 (z, z2, z4, d->poly);
+}
+
+/* Fast implementation of AdvSIMD tanf.
+ Maximum error is 3.45 ULP:
+ __v_tanf(-0x1.e5f0cap+13) got 0x1.ff9856p-1
+ want 0x1.ff9850p-1. */
+float32x4_t VPCS_ATTR NOINLINE V_NAME_F1 (tan) (float32x4_t x)
+{
+ const struct data *d = ptr_barrier (&data);
+ float32x4_t special_arg = x;
+
+ /* iax >= RangeVal means x, if not inf or NaN, is too large to perform fast
+ regression. */
+#if WANT_SIMD_EXCEPT
+ uint32x4_t iax = vreinterpretq_u32_f32 (vabsq_f32 (x));
+ /* If fp exceptions are to be triggered correctly, also special-case tiny
+ input, as this will load to overflow later. Fix any special lanes to 1 to
+ prevent any exceptions being triggered. */
+ uint32x4_t special = vcgeq_u32 (vsubq_u32 (iax, TinyBound), Thresh);
+ if (unlikely (v_any_u32 (special)))
+ x = vbslq_f32 (special, v_f32 (1.0f), x);
+#else
+ /* Otherwise, special-case large and special values. */
+ uint32x4_t special = vcageq_f32 (x, d->range_val);
+#endif
+
+ /* n = rint(x/(pi/2)). */
+ float32x4_t pi_consts = vld1q_f32 (d->pi_consts);
+ float32x4_t q = vfmaq_laneq_f32 (d->shift, x, pi_consts, 3);
+ float32x4_t n = vsubq_f32 (q, d->shift);
+ /* Determine if x lives in an interval, where |tan(x)| grows to infinity. */
+ uint32x4_t pred_alt = vtstq_u32 (vreinterpretq_u32_f32 (q), v_u32 (1));
+
+ /* r = x - n * (pi/2) (range reduction into -pi./4 .. pi/4). */
+ float32x4_t r;
+ r = vfmaq_laneq_f32 (x, n, pi_consts, 0);
+ r = vfmaq_laneq_f32 (r, n, pi_consts, 1);
+ r = vfmaq_laneq_f32 (r, n, pi_consts, 2);
+
+ /* If x lives in an interval, where |tan(x)|
+ - is finite, then use a polynomial approximation of the form
+ tan(r) ~ r + r^3 * P(r^2) = r + r * r^2 * P(r^2).
+ - grows to infinity then use symmetries of tangent and the identity
+ tan(r) = cotan(pi/2 - r) to express tan(x) as 1/tan(-r). Finally, use
+ the same polynomial approximation of tan as above. */
+
+ /* Invert sign of r if odd quadrant. */
+ float32x4_t z = vmulq_f32 (r, vbslq_f32 (pred_alt, v_f32 (-1), v_f32 (1)));
+
+ /* Evaluate polynomial approximation of tangent on [-pi/4, pi/4]. */
+ float32x4_t z2 = vmulq_f32 (r, r);
+ float32x4_t p = eval_poly (z2, d);
+ float32x4_t y = vfmaq_f32 (z, vmulq_f32 (z, z2), p);
+
+ /* Compute reciprocal and apply if required. */
+ float32x4_t inv_y = vdivq_f32 (v_f32 (1.0f), y);
+
+ if (unlikely (v_any_u32 (special)))
+ return special_case (special_arg, vbslq_f32 (pred_alt, inv_y, y), special);
+ return vbslq_f32 (pred_alt, inv_y, y);
+}
+
+HALF_WIDTH_ALIAS_F1 (tan)
+
+TEST_SIG (V, F, 1, tan, -3.1, 3.1)
+TEST_ULP (V_NAME_F1 (tan), 2.96)
+TEST_DISABLE_FENV_IF_NOT (V_NAME_F1 (tan), WANT_SIMD_EXCEPT)
+TEST_SYM_INTERVAL (V_NAME_F1 (tan), 0, 0x1p-31, 5000)
+TEST_SYM_INTERVAL (V_NAME_F1 (tan), 0x1p-31, 0x1p15, 500000)
+TEST_SYM_INTERVAL (V_NAME_F1 (tan), 0x1p15, inf, 5000)