aboutsummaryrefslogtreecommitdiff
path: root/math/aarch64/advsimd/v_log1pf_inline.h
diff options
context:
space:
mode:
Diffstat (limited to 'math/aarch64/advsimd/v_log1pf_inline.h')
-rw-r--r--math/aarch64/advsimd/v_log1pf_inline.h94
1 files changed, 94 insertions, 0 deletions
diff --git a/math/aarch64/advsimd/v_log1pf_inline.h b/math/aarch64/advsimd/v_log1pf_inline.h
new file mode 100644
index 000000000000..e81fa24486ae
--- /dev/null
+++ b/math/aarch64/advsimd/v_log1pf_inline.h
@@ -0,0 +1,94 @@
+/*
+ * Helper for single-precision routines which calculate log(1 + x) and do not
+ * need special-case handling
+ *
+ * Copyright (c) 2022-2024, Arm Limited.
+ * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
+ */
+
+#ifndef MATH_V_LOG1PF_INLINE_H
+#define MATH_V_LOG1PF_INLINE_H
+
+#include "v_math.h"
+#include "v_poly_f32.h"
+
+struct v_log1pf_data
+{
+ uint32x4_t four;
+ int32x4_t three_quarters;
+ float c0, c3, c5, c7;
+ float32x4_t c4, c6, c1, c2, ln2;
+};
+
+/* Polynomial generated using FPMinimax in [-0.25, 0.5]. First two coefficients
+ (1, -0.5) are not stored as they can be generated more efficiently. */
+#define V_LOG1PF_CONSTANTS_TABLE \
+ { \
+ .c0 = 0x1.5555aap-2f, .c1 = V4 (-0x1.000038p-2f), \
+ .c2 = V4 (0x1.99675cp-3f), .c3 = -0x1.54ef78p-3f, \
+ .c4 = V4 (0x1.28a1f4p-3f), .c5 = -0x1.0da91p-3f, \
+ .c6 = V4 (0x1.abcb6p-4f), .c7 = -0x1.6f0d5ep-5f, \
+ .ln2 = V4 (0x1.62e43p-1f), .four = V4 (0x40800000), \
+ .three_quarters = V4 (0x3f400000) \
+ }
+
+static inline float32x4_t
+eval_poly (float32x4_t m, const struct v_log1pf_data *d)
+{
+ /* Approximate log(1+m) on [-0.25, 0.5] using pairwise Horner. */
+ float32x4_t c0357 = vld1q_f32 (&d->c0);
+ float32x4_t q = vfmaq_laneq_f32 (v_f32 (-0.5), m, c0357, 0);
+ float32x4_t m2 = vmulq_f32 (m, m);
+ float32x4_t p67 = vfmaq_laneq_f32 (d->c6, m, c0357, 3);
+ float32x4_t p45 = vfmaq_laneq_f32 (d->c4, m, c0357, 2);
+ float32x4_t p23 = vfmaq_laneq_f32 (d->c2, m, c0357, 1);
+ float32x4_t p = vfmaq_f32 (p45, m2, p67);
+ p = vfmaq_f32 (p23, m2, p);
+ p = vfmaq_f32 (d->c1, m, p);
+ p = vmulq_f32 (m2, p);
+ p = vfmaq_f32 (m, m2, p);
+ return vfmaq_f32 (p, m2, q);
+}
+
+static inline float32x4_t
+log1pf_inline (float32x4_t x, const struct v_log1pf_data *d)
+{
+ /* Helper for calculating log(x + 1). */
+
+ /* With x + 1 = t * 2^k (where t = m + 1 and k is chosen such that m
+ is in [-0.25, 0.5]):
+ log1p(x) = log(t) + log(2^k) = log1p(m) + k*log(2).
+
+ We approximate log1p(m) with a polynomial, then scale by
+ k*log(2). Instead of doing this directly, we use an intermediate
+ scale factor s = 4*k*log(2) to ensure the scale is representable
+ as a normalised fp32 number. */
+ float32x4_t m = vaddq_f32 (x, v_f32 (1.0f));
+
+ /* Choose k to scale x to the range [-1/4, 1/2]. */
+ int32x4_t k
+ = vandq_s32 (vsubq_s32 (vreinterpretq_s32_f32 (m), d->three_quarters),
+ v_s32 (0xff800000));
+ uint32x4_t ku = vreinterpretq_u32_s32 (k);
+
+ /* Scale up to ensure that the scale factor is representable as normalised
+ fp32 number, and scale m down accordingly. */
+ float32x4_t s = vreinterpretq_f32_u32 (vsubq_u32 (d->four, ku));
+
+ /* Scale x by exponent manipulation. */
+ float32x4_t m_scale
+ = vreinterpretq_f32_u32 (vsubq_u32 (vreinterpretq_u32_f32 (x), ku));
+ m_scale = vaddq_f32 (m_scale, vfmaq_f32 (v_f32 (-1.0f), v_f32 (0.25f), s));
+
+ /* Evaluate polynomial on the reduced interval. */
+ float32x4_t p = eval_poly (m_scale, d);
+
+ /* The scale factor to be applied back at the end - by multiplying float(k)
+ by 2^-23 we get the unbiased exponent of k. */
+ float32x4_t scale_back = vmulq_f32 (vcvtq_f32_s32 (k), v_f32 (0x1.0p-23f));
+
+ /* Apply the scaling back. */
+ return vfmaq_f32 (p, scale_back, d->ln2);
+}
+
+#endif // MATH_V_LOG1PF_INLINE_H