aboutsummaryrefslogtreecommitdiff
path: root/math/aarch64/experimental/asin_3u.c
diff options
context:
space:
mode:
Diffstat (limited to 'math/aarch64/experimental/asin_3u.c')
-rw-r--r--math/aarch64/experimental/asin_3u.c106
1 files changed, 106 insertions, 0 deletions
diff --git a/math/aarch64/experimental/asin_3u.c b/math/aarch64/experimental/asin_3u.c
new file mode 100644
index 000000000000..56e63e451ba1
--- /dev/null
+++ b/math/aarch64/experimental/asin_3u.c
@@ -0,0 +1,106 @@
+/*
+ * Double-precision asin(x) function.
+ *
+ * Copyright (c) 2023-2024, Arm Limited.
+ * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
+ */
+
+#include "poly_scalar_f64.h"
+#include "math_config.h"
+#include "test_sig.h"
+#include "test_defs.h"
+
+#define AbsMask 0x7fffffffffffffff
+#define Half 0x3fe0000000000000
+#define One 0x3ff0000000000000
+#define PiOver2 0x1.921fb54442d18p+0
+#define Small 0x3e50000000000000 /* 2^-26. */
+#define Small16 0x3e50
+#define QNaN 0x7ff8
+
+/* Fast implementation of double-precision asin(x) based on polynomial
+ approximation.
+
+ For x < Small, approximate asin(x) by x. Small = 2^-26 for correct rounding.
+
+ For x in [Small, 0.5], use an order 11 polynomial P such that the final
+ approximation is an odd polynomial: asin(x) ~ x + x^3 P(x^2).
+
+ The largest observed error in this region is 1.01 ulps,
+ asin(0x1.da9735b5a9277p-2) got 0x1.ed78525a927efp-2
+ want 0x1.ed78525a927eep-2.
+
+ No cheap approximation can be obtained near x = 1, since the function is not
+ continuously differentiable on 1.
+
+ For x in [0.5, 1.0], we use a method based on a trigonometric identity
+
+ asin(x) = pi/2 - acos(x)
+
+ and a generalized power series expansion of acos(y) near y=1, that reads as
+
+ acos(y)/sqrt(2y) ~ 1 + 1/12 * y + 3/160 * y^2 + ... (1)
+
+ The Taylor series of asin(z) near z = 0, reads as
+
+ asin(z) ~ z + z^3 P(z^2) = z + z^3 * (1/6 + 3/40 z^2 + ...).
+
+ Therefore, (1) can be written in terms of P(y/2) or even asin(y/2)
+
+ acos(y) ~ sqrt(2y) (1 + y/2 * P(y/2)) = 2 * sqrt(y/2) (1 + y/2 * P(y/2)
+
+ Hence, if we write z = (1-x)/2, z is near 0 when x approaches 1 and
+
+ asin(x) ~ pi/2 - acos(x) ~ pi/2 - 2 * sqrt(z) (1 + z * P(z)).
+
+ The largest observed error in this region is 2.69 ulps,
+ asin(0x1.044e8cefee301p-1) got 0x1.1111dd54ddf96p-1
+ want 0x1.1111dd54ddf99p-1. */
+double
+asin (double x)
+{
+ uint64_t ix = asuint64 (x);
+ uint64_t ia = ix & AbsMask;
+ uint64_t ia16 = ia >> 48;
+ double ax = asdouble (ia);
+ uint64_t sign = ix & ~AbsMask;
+
+ /* Special values and invalid range. */
+ if (unlikely (ia16 == QNaN))
+ return x;
+ if (ia > One)
+ return __math_invalid (x);
+ if (ia16 < Small16)
+ return x;
+
+ /* Evaluate polynomial Q(x) = y + y * z * P(z) with
+ z2 = x ^ 2 and z = |x| , if |x| < 0.5
+ z2 = (1 - |x|) / 2 and z = sqrt(z2), if |x| >= 0.5. */
+ double z2 = ax < 0.5 ? x * x : fma (-0.5, ax, 0.5);
+ double z = ax < 0.5 ? ax : sqrt (z2);
+
+ /* Use a single polynomial approximation P for both intervals. */
+ double z4 = z2 * z2;
+ double z8 = z4 * z4;
+ double z16 = z8 * z8;
+ double p = estrin_11_f64 (z2, z4, z8, z16, __asin_poly);
+
+ /* Finalize polynomial: z + z * z2 * P(z2). */
+ p = fma (z * z2, p, z);
+
+ /* asin(|x|) = Q(|x|) , for |x| < 0.5
+ = pi/2 - 2 Q(|x|), for |x| >= 0.5. */
+ double y = ax < 0.5 ? p : fma (-2.0, p, PiOver2);
+
+ /* Copy sign. */
+ return asdouble (asuint64 (y) | sign);
+}
+
+TEST_SIG (S, D, 1, asin, -1.0, 1.0)
+TEST_ULP (asin, 2.20)
+TEST_INTERVAL (asin, 0, Small, 5000)
+TEST_INTERVAL (asin, Small, 0.5, 50000)
+TEST_INTERVAL (asin, 0.5, 1.0, 50000)
+TEST_INTERVAL (asin, 1.0, 0x1p11, 50000)
+TEST_INTERVAL (asin, 0x1p11, inf, 20000)
+TEST_INTERVAL (asin, -0, -inf, 20000)