diff options
Diffstat (limited to 'math/aarch64/experimental/cbrtf_1u5.c')
-rw-r--r-- | math/aarch64/experimental/cbrtf_1u5.c | 66 |
1 files changed, 66 insertions, 0 deletions
diff --git a/math/aarch64/experimental/cbrtf_1u5.c b/math/aarch64/experimental/cbrtf_1u5.c new file mode 100644 index 000000000000..5f0288e6d27a --- /dev/null +++ b/math/aarch64/experimental/cbrtf_1u5.c @@ -0,0 +1,66 @@ +/* + * Single-precision cbrt(x) function. + * + * Copyright (c) 2022-2024, Arm Limited. + * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception + */ + +#include "poly_scalar_f32.h" +#include "math_config.h" +#include "test_sig.h" +#include "test_defs.h" + +#define AbsMask 0x7fffffff +#define SignMask 0x80000000 +#define TwoThirds 0x1.555556p-1f + +#define T(i) __cbrtf_data.table[i] + +/* Approximation for single-precision cbrt(x), using low-order polynomial and + one Newton iteration on a reduced interval. Greatest error is 1.5 ULP. This + is observed for every value where the mantissa is 0x1.81410e and the + exponent is a multiple of 3, for example: + cbrtf(0x1.81410ep+30) got 0x1.255d96p+10 + want 0x1.255d92p+10. */ +float +cbrtf (float x) +{ + uint32_t ix = asuint (x); + uint32_t iax = ix & AbsMask; + uint32_t sign = ix & SignMask; + + if (unlikely (iax == 0 || iax == 0x7f800000)) + return x; + + /* |x| = m * 2^e, where m is in [0.5, 1.0]. + We can easily decompose x into m and e using frexpf. */ + int e; + float m = frexpf (asfloat (iax), &e); + + /* p is a rough approximation for cbrt(m) in [0.5, 1.0]. The better this is, + the less accurate the next stage of the algorithm needs to be. An order-4 + polynomial is enough for one Newton iteration. */ + float p = pairwise_poly_3_f32 (m, m * m, __cbrtf_data.poly); + + /* One iteration of Newton's method for iteratively approximating cbrt. */ + float m_by_3 = m / 3; + float a = fmaf (TwoThirds, p, m_by_3 / (p * p)); + + /* Assemble the result by the following: + + cbrt(x) = cbrt(m) * 2 ^ (e / 3). + + Let t = (2 ^ (e / 3)) / (2 ^ round(e / 3)). + + Then we know t = 2 ^ (i / 3), where i is the remainder from e / 3. + i is an integer in [-2, 2], so t can be looked up in the table T. + Hence the result is assembled as: + + cbrt(x) = cbrt(m) * t * 2 ^ round(e / 3) * sign. + Which can be done easily using ldexpf. */ + return asfloat (asuint (ldexpf (a * T (2 + e % 3), e / 3)) | sign); +} + +TEST_SIG (S, F, 1, cbrt, -10.0, 10.0) +TEST_ULP (cbrtf, 1.03) +TEST_SYM_INTERVAL (cbrtf, 0, inf, 1000000) |