aboutsummaryrefslogtreecommitdiff
path: root/math/aarch64/experimental/cbrtf_1u5.c
diff options
context:
space:
mode:
Diffstat (limited to 'math/aarch64/experimental/cbrtf_1u5.c')
-rw-r--r--math/aarch64/experimental/cbrtf_1u5.c66
1 files changed, 66 insertions, 0 deletions
diff --git a/math/aarch64/experimental/cbrtf_1u5.c b/math/aarch64/experimental/cbrtf_1u5.c
new file mode 100644
index 000000000000..5f0288e6d27a
--- /dev/null
+++ b/math/aarch64/experimental/cbrtf_1u5.c
@@ -0,0 +1,66 @@
+/*
+ * Single-precision cbrt(x) function.
+ *
+ * Copyright (c) 2022-2024, Arm Limited.
+ * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
+ */
+
+#include "poly_scalar_f32.h"
+#include "math_config.h"
+#include "test_sig.h"
+#include "test_defs.h"
+
+#define AbsMask 0x7fffffff
+#define SignMask 0x80000000
+#define TwoThirds 0x1.555556p-1f
+
+#define T(i) __cbrtf_data.table[i]
+
+/* Approximation for single-precision cbrt(x), using low-order polynomial and
+ one Newton iteration on a reduced interval. Greatest error is 1.5 ULP. This
+ is observed for every value where the mantissa is 0x1.81410e and the
+ exponent is a multiple of 3, for example:
+ cbrtf(0x1.81410ep+30) got 0x1.255d96p+10
+ want 0x1.255d92p+10. */
+float
+cbrtf (float x)
+{
+ uint32_t ix = asuint (x);
+ uint32_t iax = ix & AbsMask;
+ uint32_t sign = ix & SignMask;
+
+ if (unlikely (iax == 0 || iax == 0x7f800000))
+ return x;
+
+ /* |x| = m * 2^e, where m is in [0.5, 1.0].
+ We can easily decompose x into m and e using frexpf. */
+ int e;
+ float m = frexpf (asfloat (iax), &e);
+
+ /* p is a rough approximation for cbrt(m) in [0.5, 1.0]. The better this is,
+ the less accurate the next stage of the algorithm needs to be. An order-4
+ polynomial is enough for one Newton iteration. */
+ float p = pairwise_poly_3_f32 (m, m * m, __cbrtf_data.poly);
+
+ /* One iteration of Newton's method for iteratively approximating cbrt. */
+ float m_by_3 = m / 3;
+ float a = fmaf (TwoThirds, p, m_by_3 / (p * p));
+
+ /* Assemble the result by the following:
+
+ cbrt(x) = cbrt(m) * 2 ^ (e / 3).
+
+ Let t = (2 ^ (e / 3)) / (2 ^ round(e / 3)).
+
+ Then we know t = 2 ^ (i / 3), where i is the remainder from e / 3.
+ i is an integer in [-2, 2], so t can be looked up in the table T.
+ Hence the result is assembled as:
+
+ cbrt(x) = cbrt(m) * t * 2 ^ round(e / 3) * sign.
+ Which can be done easily using ldexpf. */
+ return asfloat (asuint (ldexpf (a * T (2 + e % 3), e / 3)) | sign);
+}
+
+TEST_SIG (S, F, 1, cbrt, -10.0, 10.0)
+TEST_ULP (cbrtf, 1.03)
+TEST_SYM_INTERVAL (cbrtf, 0, inf, 1000000)