diff options
Diffstat (limited to 'math/aarch64/sve/sv_log1pf_inline.h')
-rw-r--r-- | math/aarch64/sve/sv_log1pf_inline.h | 83 |
1 files changed, 83 insertions, 0 deletions
diff --git a/math/aarch64/sve/sv_log1pf_inline.h b/math/aarch64/sve/sv_log1pf_inline.h new file mode 100644 index 000000000000..238079c61a5b --- /dev/null +++ b/math/aarch64/sve/sv_log1pf_inline.h @@ -0,0 +1,83 @@ +/* + * Helper for SVE routines which calculate log(1 + x) and do not + * need special-case handling + * + * Copyright (c) 2023-2024, Arm Limited. + * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception + */ + +#ifndef MATH_SV_LOG1PF_INLINE_H +#define MATH_SV_LOG1PF_INLINE_H + +#define SignExponentMask 0xff800000 + +static const struct sv_log1pf_data +{ + float c0, c2, c4, c6; + float c1, c3, c5, c7; + float ln2, exp_bias, quarter; + uint32_t four, three_quarters; +} sv_log1pf_data = { + /* Do not store first term of polynomial, which is -0.5, as + this can be fmov-ed directly instead of including it in + the main load-and-mla polynomial schedule. */ + .c0 = 0x1.5555aap-2f, .c1 = -0x1.000038p-2f, .c2 = 0x1.99675cp-3f, + .c3 = -0x1.54ef78p-3f, .c4 = 0x1.28a1f4p-3f, .c5 = -0x1.0da91p-3f, + .c6 = 0x1.abcb6p-4f, .c7 = -0x1.6f0d5ep-5f, .ln2 = 0x1.62e43p-1f, + .exp_bias = 0x1p-23f, .quarter = 0x1p-2f, .four = 0x40800000, + .three_quarters = 0x3f400000, +}; + +static inline svfloat32_t +sv_log1pf_inline (svfloat32_t x, svbool_t pg) +{ + const struct sv_log1pf_data *d = ptr_barrier (&sv_log1pf_data); + + /* With x + 1 = t * 2^k (where t = m + 1 and k is chosen such that m + is in [-0.25, 0.5]): + log1p(x) = log(t) + log(2^k) = log1p(m) + k*log(2). + + We approximate log1p(m) with a polynomial, then scale by + k*log(2). Instead of doing this directly, we use an intermediate + scale factor s = 4*k*log(2) to ensure the scale is representable + as a normalised fp32 number. */ + svfloat32_t m = svadd_x (pg, x, 1); + + /* Choose k to scale x to the range [-1/4, 1/2]. */ + svint32_t k + = svand_x (pg, svsub_x (pg, svreinterpret_s32 (m), d->three_quarters), + sv_s32 (SignExponentMask)); + + /* Scale x by exponent manipulation. */ + svfloat32_t m_scale = svreinterpret_f32 ( + svsub_x (pg, svreinterpret_u32 (x), svreinterpret_u32 (k))); + + /* Scale up to ensure that the scale factor is representable as normalised + fp32 number, and scale m down accordingly. */ + svfloat32_t s = svreinterpret_f32 (svsubr_x (pg, k, d->four)); + svfloat32_t fconst = svld1rq_f32 (svptrue_b32 (), &d->ln2); + m_scale = svadd_x (pg, m_scale, svmla_lane_f32 (sv_f32 (-1), s, fconst, 2)); + + /* Evaluate polynomial on reduced interval. */ + svfloat32_t ms2 = svmul_x (svptrue_b32 (), m_scale, m_scale); + + svfloat32_t c1357 = svld1rq_f32 (svptrue_b32 (), &d->c1); + svfloat32_t p01 = svmla_lane_f32 (sv_f32 (d->c0), m_scale, c1357, 0); + svfloat32_t p23 = svmla_lane_f32 (sv_f32 (d->c2), m_scale, c1357, 1); + svfloat32_t p45 = svmla_lane_f32 (sv_f32 (d->c4), m_scale, c1357, 2); + svfloat32_t p67 = svmla_lane_f32 (sv_f32 (d->c6), m_scale, c1357, 3); + + svfloat32_t p = svmla_x (pg, p45, p67, ms2); + p = svmla_x (pg, p23, p, ms2); + p = svmla_x (pg, p01, p, ms2); + + p = svmad_x (pg, m_scale, p, -0.5); + p = svmla_x (pg, m_scale, m_scale, svmul_x (pg, m_scale, p)); + + /* The scale factor to be applied back at the end - by multiplying float(k) + by 2^-23 we get the unbiased exponent of k. */ + svfloat32_t scale_back = svmul_lane_f32 (svcvt_f32_x (pg, k), fconst, 1); + return svmla_lane_f32 (p, scale_back, fconst, 0); +} + +#endif // SV_LOG1PF_INLINE_H |