aboutsummaryrefslogtreecommitdiff
path: root/math/aarch64/sve/tan.c
diff options
context:
space:
mode:
Diffstat (limited to 'math/aarch64/sve/tan.c')
-rw-r--r--math/aarch64/sve/tan.c131
1 files changed, 131 insertions, 0 deletions
diff --git a/math/aarch64/sve/tan.c b/math/aarch64/sve/tan.c
new file mode 100644
index 000000000000..1dfc5c422d5e
--- /dev/null
+++ b/math/aarch64/sve/tan.c
@@ -0,0 +1,131 @@
+/*
+ * Double-precision SVE tan(x) function.
+ *
+ * Copyright (c) 2023-2024, Arm Limited.
+ * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
+ */
+
+#include "sv_math.h"
+#include "test_sig.h"
+#include "test_defs.h"
+
+static const struct data
+{
+ double c2, c4, c6, c8;
+ double poly_1357[4];
+ double c0, inv_half_pi;
+ double half_pi_hi, half_pi_lo, range_val;
+} data = {
+ /* Polynomial generated with FPMinimax. */
+ .c2 = 0x1.ba1ba1bb46414p-5,
+ .c4 = 0x1.226e5e5ecdfa3p-7,
+ .c6 = 0x1.7ea75d05b583ep-10,
+ .c8 = 0x1.4e4fd14147622p-12,
+ .poly_1357 = { 0x1.1111111110a63p-3, 0x1.664f47e5b5445p-6,
+ 0x1.d6c7ddbf87047p-9, 0x1.289f22964a03cp-11 },
+ .c0 = 0x1.5555555555556p-2,
+ .inv_half_pi = 0x1.45f306dc9c883p-1,
+ .half_pi_hi = 0x1.921fb54442d18p0,
+ .half_pi_lo = 0x1.1a62633145c07p-54,
+ .range_val = 0x1p23,
+};
+
+static svfloat64_t NOINLINE
+special_case (svfloat64_t x, svfloat64_t p, svfloat64_t q, svbool_t pg,
+ svbool_t special)
+{
+ svbool_t use_recip = svcmpeq (
+ pg, svand_x (pg, svreinterpret_u64 (svcvt_s64_x (pg, q)), 1), 0);
+
+ svfloat64_t n = svmad_x (pg, p, p, -1);
+ svfloat64_t d = svmul_x (svptrue_b64 (), p, 2);
+ svfloat64_t swap = n;
+ n = svneg_m (n, use_recip, d);
+ d = svsel (use_recip, swap, d);
+ svfloat64_t y = svdiv_x (svnot_z (pg, special), n, d);
+ return sv_call_f64 (tan, x, y, special);
+}
+
+/* Vector approximation for double-precision tan.
+ Maximum measured error is 3.48 ULP:
+ _ZGVsMxv_tan(0x1.4457047ef78d8p+20) got -0x1.f6ccd8ecf7dedp+37
+ want -0x1.f6ccd8ecf7deap+37. */
+svfloat64_t SV_NAME_D1 (tan) (svfloat64_t x, svbool_t pg)
+{
+ const struct data *dat = ptr_barrier (&data);
+ svfloat64_t half_pi_c0 = svld1rq (svptrue_b64 (), &dat->c0);
+ /* q = nearest integer to 2 * x / pi. */
+ svfloat64_t q = svmul_lane (x, half_pi_c0, 1);
+ q = svrinta_x (pg, q);
+
+ /* Use q to reduce x to r in [-pi/4, pi/4], by:
+ r = x - q * pi/2, in extended precision. */
+ svfloat64_t r = x;
+ svfloat64_t half_pi = svld1rq (svptrue_b64 (), &dat->half_pi_hi);
+ r = svmls_lane (r, q, half_pi, 0);
+ r = svmls_lane (r, q, half_pi, 1);
+ /* Further reduce r to [-pi/8, pi/8], to be reconstructed using double angle
+ formula. */
+ r = svmul_x (svptrue_b64 (), r, 0.5);
+
+ /* Approximate tan(r) using order 8 polynomial.
+ tan(x) is odd, so polynomial has the form:
+ tan(x) ~= x + C0 * x^3 + C1 * x^5 + C3 * x^7 + ...
+ Hence we first approximate P(r) = C1 + C2 * r^2 + C3 * r^4 + ...
+ Then compute the approximation by:
+ tan(r) ~= r + r^3 * (C0 + r^2 * P(r)). */
+
+ svfloat64_t r2 = svmul_x (svptrue_b64 (), r, r);
+ svfloat64_t r4 = svmul_x (svptrue_b64 (), r2, r2);
+ svfloat64_t r8 = svmul_x (svptrue_b64 (), r4, r4);
+ /* Use offset version coeff array by 1 to evaluate from C1 onwards. */
+ svfloat64_t C_24 = svld1rq (svptrue_b64 (), &dat->c2);
+ svfloat64_t C_68 = svld1rq (svptrue_b64 (), &dat->c6);
+
+ /* Use offset version coeff array by 1 to evaluate from C1 onwards. */
+ svfloat64_t p01 = svmla_lane (sv_f64 (dat->poly_1357[0]), r2, C_24, 0);
+ svfloat64_t p23 = svmla_lane_f64 (sv_f64 (dat->poly_1357[1]), r2, C_24, 1);
+ svfloat64_t p03 = svmla_x (pg, p01, p23, r4);
+
+ svfloat64_t p45 = svmla_lane (sv_f64 (dat->poly_1357[2]), r2, C_68, 0);
+ svfloat64_t p67 = svmla_lane (sv_f64 (dat->poly_1357[3]), r2, C_68, 1);
+ svfloat64_t p47 = svmla_x (pg, p45, p67, r4);
+
+ svfloat64_t p = svmla_x (pg, p03, p47, r8);
+
+ svfloat64_t z = svmul_x (svptrue_b64 (), p, r);
+ z = svmul_x (svptrue_b64 (), r2, z);
+ z = svmla_lane (z, r, half_pi_c0, 0);
+ p = svmla_x (pg, r, r2, z);
+
+ /* Recombination uses double-angle formula:
+ tan(2x) = 2 * tan(x) / (1 - (tan(x))^2)
+ and reciprocity around pi/2:
+ tan(x) = 1 / (tan(pi/2 - x))
+ to assemble result using change-of-sign and conditional selection of
+ numerator/denominator dependent on odd/even-ness of q (quadrant). */
+
+ /* Invert condition to catch NaNs and Infs as well as large values. */
+ svbool_t special = svnot_z (pg, svaclt (pg, x, dat->range_val));
+
+ if (unlikely (svptest_any (pg, special)))
+ {
+ return special_case (x, p, q, pg, special);
+ }
+ svbool_t use_recip = svcmpeq (
+ pg, svand_x (pg, svreinterpret_u64 (svcvt_s64_x (pg, q)), 1), 0);
+
+ svfloat64_t n = svmad_x (pg, p, p, -1);
+ svfloat64_t d = svmul_x (svptrue_b64 (), p, 2);
+ svfloat64_t swap = n;
+ n = svneg_m (n, use_recip, d);
+ d = svsel (use_recip, swap, d);
+ return svdiv_x (pg, n, d);
+}
+
+TEST_SIG (SV, D, 1, tan, -3.1, 3.1)
+TEST_ULP (SV_NAME_D1 (tan), 2.99)
+TEST_DISABLE_FENV (SV_NAME_D1 (tan))
+TEST_SYM_INTERVAL (SV_NAME_D1 (tan), 0, 0x1p23, 500000)
+TEST_SYM_INTERVAL (SV_NAME_D1 (tan), 0x1p23, inf, 5000)
+CLOSE_SVE_ATTR