diff options
Diffstat (limited to 'math/tools/log10f.sollya')
-rw-r--r-- | math/tools/log10f.sollya | 37 |
1 files changed, 37 insertions, 0 deletions
diff --git a/math/tools/log10f.sollya b/math/tools/log10f.sollya new file mode 100644 index 000000000000..c64a30aa8e18 --- /dev/null +++ b/math/tools/log10f.sollya @@ -0,0 +1,37 @@ +// polynomial for approximating log10f(1+x) +// +// Copyright (c) 2019-2024, Arm Limited. +// SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception + +// Computation of log10f(1+x) will be carried out in double precision + +deg = 4; // poly degree +// [OFF; 2*OFF] is divided in 2^4 intervals with OFF~0.7 +a = -0.04375; +b = 0.04375; + +// find log(1+x)/x polynomial with minimal relative error +// (minimal relative error polynomial for log(1+x) is the same * x) +deg = deg-1; // because of /x + +// f = log(1+x)/x; using taylor series +f = 0; +for i from 0 to 60 do { f = f + (-x)^i/(i+1); }; + +// return p that minimizes |f(x) - poly(x) - x^d*p(x)|/|f(x)| +approx = proc(poly,d) { + return remez(1 - poly(x)/f(x), deg-d, [a;b], x^d/f(x), 1e-10); +}; + +// first coeff is fixed, iteratively find optimal double prec coeffs +poly = 1; +for i from 1 to deg do { + p = roundcoefficients(approx(poly,i), [|D ...|]); + poly = poly + x^i*coeff(p,0); +}; + +display = hexadecimal; +print("rel error:", accurateinfnorm(1-poly(x)/f(x), [a;b], 30)); +print("in [",a,b,"]"); +print("coeffs:"); +for i from 0 to deg do double(coeff(poly,i)); |