aboutsummaryrefslogtreecommitdiff
path: root/pl/math/atanf_common.h
diff options
context:
space:
mode:
Diffstat (limited to 'pl/math/atanf_common.h')
-rw-r--r--pl/math/atanf_common.h38
1 files changed, 0 insertions, 38 deletions
diff --git a/pl/math/atanf_common.h b/pl/math/atanf_common.h
deleted file mode 100644
index 8952e7e0078b..000000000000
--- a/pl/math/atanf_common.h
+++ /dev/null
@@ -1,38 +0,0 @@
-/*
- * Single-precision polynomial evaluation function for scalar
- * atan(x) and atan2(y,x).
- *
- * Copyright (c) 2021-2023, Arm Limited.
- * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
- */
-
-#ifndef PL_MATH_ATANF_COMMON_H
-#define PL_MATH_ATANF_COMMON_H
-
-#include "math_config.h"
-#include "poly_scalar_f32.h"
-
-/* Polynomial used in fast atanf(x) and atan2f(y,x) implementations
- The order 7 polynomial P approximates (atan(sqrt(x))-sqrt(x))/x^(3/2). */
-static inline float
-eval_poly (float z, float az, float shift)
-{
- /* Use 2-level Estrin scheme for P(z^2) with deg(P)=7. However,
- a standard implementation using z8 creates spurious underflow
- in the very last fma (when z^8 is small enough).
- Therefore, we split the last fma into a mul and and an fma.
- Horner and single-level Estrin have higher errors that exceed
- threshold. */
- float z2 = z * z;
- float z4 = z2 * z2;
-
- /* Then assemble polynomial. */
- float y = fmaf (
- z4, z4 * pairwise_poly_3_f32 (z2, z4, __atanf_poly_data.poly + 4),
- pairwise_poly_3_f32 (z2, z4, __atanf_poly_data.poly));
- /* Finalize:
- y = shift + z * P(z^2). */
- return fmaf (y, z2 * az, az) + shift;
-}
-
-#endif // PL_MATH_ATANF_COMMON_H