aboutsummaryrefslogtreecommitdiff
path: root/pl/math/cbrtf_1u5.c
diff options
context:
space:
mode:
Diffstat (limited to 'pl/math/cbrtf_1u5.c')
-rw-r--r--pl/math/cbrtf_1u5.c66
1 files changed, 0 insertions, 66 deletions
diff --git a/pl/math/cbrtf_1u5.c b/pl/math/cbrtf_1u5.c
deleted file mode 100644
index 88fcb7162ef6..000000000000
--- a/pl/math/cbrtf_1u5.c
+++ /dev/null
@@ -1,66 +0,0 @@
-/*
- * Single-precision cbrt(x) function.
- *
- * Copyright (c) 2022-2023, Arm Limited.
- * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
- */
-
-#include "poly_scalar_f32.h"
-#include "math_config.h"
-#include "pl_sig.h"
-#include "pl_test.h"
-
-#define AbsMask 0x7fffffff
-#define SignMask 0x80000000
-#define TwoThirds 0x1.555556p-1f
-
-#define T(i) __cbrtf_data.table[i]
-
-/* Approximation for single-precision cbrt(x), using low-order polynomial and
- one Newton iteration on a reduced interval. Greatest error is 1.5 ULP. This
- is observed for every value where the mantissa is 0x1.81410e and the exponent
- is a multiple of 3, for example:
- cbrtf(0x1.81410ep+30) got 0x1.255d96p+10
- want 0x1.255d92p+10. */
-float
-cbrtf (float x)
-{
- uint32_t ix = asuint (x);
- uint32_t iax = ix & AbsMask;
- uint32_t sign = ix & SignMask;
-
- if (unlikely (iax == 0 || iax == 0x7f800000))
- return x;
-
- /* |x| = m * 2^e, where m is in [0.5, 1.0].
- We can easily decompose x into m and e using frexpf. */
- int e;
- float m = frexpf (asfloat (iax), &e);
-
- /* p is a rough approximation for cbrt(m) in [0.5, 1.0]. The better this is,
- the less accurate the next stage of the algorithm needs to be. An order-4
- polynomial is enough for one Newton iteration. */
- float p = pairwise_poly_3_f32 (m, m * m, __cbrtf_data.poly);
-
- /* One iteration of Newton's method for iteratively approximating cbrt. */
- float m_by_3 = m / 3;
- float a = fmaf (TwoThirds, p, m_by_3 / (p * p));
-
- /* Assemble the result by the following:
-
- cbrt(x) = cbrt(m) * 2 ^ (e / 3).
-
- Let t = (2 ^ (e / 3)) / (2 ^ round(e / 3)).
-
- Then we know t = 2 ^ (i / 3), where i is the remainder from e / 3.
- i is an integer in [-2, 2], so t can be looked up in the table T.
- Hence the result is assembled as:
-
- cbrt(x) = cbrt(m) * t * 2 ^ round(e / 3) * sign.
- Which can be done easily using ldexpf. */
- return asfloat (asuint (ldexpf (a * T (2 + e % 3), e / 3)) | sign);
-}
-
-PL_SIG (S, F, 1, cbrt, -10.0, 10.0)
-PL_TEST_ULP (cbrtf, 1.03)
-PL_TEST_SYM_INTERVAL (cbrtf, 0, inf, 1000000)