diff options
Diffstat (limited to 'pl/math/tools/log10f.sollya')
-rw-r--r-- | pl/math/tools/log10f.sollya | 37 |
1 files changed, 0 insertions, 37 deletions
diff --git a/pl/math/tools/log10f.sollya b/pl/math/tools/log10f.sollya deleted file mode 100644 index 94bf32f2c449..000000000000 --- a/pl/math/tools/log10f.sollya +++ /dev/null @@ -1,37 +0,0 @@ -// polynomial for approximating log10f(1+x) -// -// Copyright (c) 2019-2023, Arm Limited. -// SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception - -// Computation of log10f(1+x) will be carried out in double precision - -deg = 4; // poly degree -// [OFF; 2*OFF] is divided in 2^4 intervals with OFF~0.7 -a = -0.04375; -b = 0.04375; - -// find log(1+x)/x polynomial with minimal relative error -// (minimal relative error polynomial for log(1+x) is the same * x) -deg = deg-1; // because of /x - -// f = log(1+x)/x; using taylor series -f = 0; -for i from 0 to 60 do { f = f + (-x)^i/(i+1); }; - -// return p that minimizes |f(x) - poly(x) - x^d*p(x)|/|f(x)| -approx = proc(poly,d) { - return remez(1 - poly(x)/f(x), deg-d, [a;b], x^d/f(x), 1e-10); -}; - -// first coeff is fixed, iteratively find optimal double prec coeffs -poly = 1; -for i from 1 to deg do { - p = roundcoefficients(approx(poly,i), [|D ...|]); - poly = poly + x^i*coeff(p,0); -}; - -display = hexadecimal; -print("rel error:", accurateinfnorm(1-poly(x)/f(x), [a;b], 30)); -print("in [",a,b,"]"); -print("coeffs:"); -for i from 0 to deg do double(coeff(poly,i)); |