aboutsummaryrefslogtreecommitdiff
path: root/pl/math/v_log1p_2u5.c
diff options
context:
space:
mode:
Diffstat (limited to 'pl/math/v_log1p_2u5.c')
-rw-r--r--pl/math/v_log1p_2u5.c128
1 files changed, 0 insertions, 128 deletions
diff --git a/pl/math/v_log1p_2u5.c b/pl/math/v_log1p_2u5.c
deleted file mode 100644
index face02ddc6c3..000000000000
--- a/pl/math/v_log1p_2u5.c
+++ /dev/null
@@ -1,128 +0,0 @@
-/*
- * Double-precision vector log(1+x) function.
- *
- * Copyright (c) 2022-2023, Arm Limited.
- * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
- */
-
-#include "v_math.h"
-#include "poly_advsimd_f64.h"
-#include "pl_sig.h"
-#include "pl_test.h"
-
-const static struct data
-{
- float64x2_t poly[19], ln2[2];
- uint64x2_t hf_rt2_top, one_m_hf_rt2_top, umask, inf, minus_one;
- int64x2_t one_top;
-} data = {
- /* Generated using Remez, deg=20, in [sqrt(2)/2-1, sqrt(2)-1]. */
- .poly = { V2 (-0x1.ffffffffffffbp-2), V2 (0x1.55555555551a9p-2),
- V2 (-0x1.00000000008e3p-2), V2 (0x1.9999999a32797p-3),
- V2 (-0x1.555555552fecfp-3), V2 (0x1.249248e071e5ap-3),
- V2 (-0x1.ffffff8bf8482p-4), V2 (0x1.c71c8f07da57ap-4),
- V2 (-0x1.9999ca4ccb617p-4), V2 (0x1.7459ad2e1dfa3p-4),
- V2 (-0x1.554d2680a3ff2p-4), V2 (0x1.3b4c54d487455p-4),
- V2 (-0x1.2548a9ffe80e6p-4), V2 (0x1.0f389a24b2e07p-4),
- V2 (-0x1.eee4db15db335p-5), V2 (0x1.e95b494d4a5ddp-5),
- V2 (-0x1.15fdf07cb7c73p-4), V2 (0x1.0310b70800fcfp-4),
- V2 (-0x1.cfa7385bdb37ep-6) },
- .ln2 = { V2 (0x1.62e42fefa3800p-1), V2 (0x1.ef35793c76730p-45) },
- /* top32(asuint64(sqrt(2)/2)) << 32. */
- .hf_rt2_top = V2 (0x3fe6a09e00000000),
- /* (top32(asuint64(1)) - top32(asuint64(sqrt(2)/2))) << 32. */
- .one_m_hf_rt2_top = V2 (0x00095f6200000000),
- .umask = V2 (0x000fffff00000000),
- .one_top = V2 (0x3ff),
- .inf = V2 (0x7ff0000000000000),
- .minus_one = V2 (0xbff0000000000000)
-};
-
-#define BottomMask v_u64 (0xffffffff)
-
-static float64x2_t VPCS_ATTR NOINLINE
-special_case (float64x2_t x, float64x2_t y, uint64x2_t special)
-{
- return v_call_f64 (log1p, x, y, special);
-}
-
-/* Vector log1p approximation using polynomial on reduced interval. Routine is
- a modification of the algorithm used in scalar log1p, with no shortcut for
- k=0 and no narrowing for f and k. Maximum observed error is 2.45 ULP:
- _ZGVnN2v_log1p(0x1.658f7035c4014p+11) got 0x1.fd61d0727429dp+2
- want 0x1.fd61d0727429fp+2 . */
-VPCS_ATTR float64x2_t V_NAME_D1 (log1p) (float64x2_t x)
-{
- const struct data *d = ptr_barrier (&data);
- uint64x2_t ix = vreinterpretq_u64_f64 (x);
- uint64x2_t ia = vreinterpretq_u64_f64 (vabsq_f64 (x));
- uint64x2_t special = vcgeq_u64 (ia, d->inf);
-
-#if WANT_SIMD_EXCEPT
- special = vorrq_u64 (special,
- vcgeq_u64 (ix, vreinterpretq_u64_f64 (v_f64 (-1))));
- if (unlikely (v_any_u64 (special)))
- x = v_zerofy_f64 (x, special);
-#else
- special = vorrq_u64 (special, vcleq_f64 (x, v_f64 (-1)));
-#endif
-
- /* With x + 1 = t * 2^k (where t = f + 1 and k is chosen such that f
- is in [sqrt(2)/2, sqrt(2)]):
- log1p(x) = k*log(2) + log1p(f).
-
- f may not be representable exactly, so we need a correction term:
- let m = round(1 + x), c = (1 + x) - m.
- c << m: at very small x, log1p(x) ~ x, hence:
- log(1+x) - log(m) ~ c/m.
-
- We therefore calculate log1p(x) by k*log2 + log1p(f) + c/m. */
-
- /* Obtain correctly scaled k by manipulation in the exponent.
- The scalar algorithm casts down to 32-bit at this point to calculate k and
- u_red. We stay in double-width to obtain f and k, using the same constants
- as the scalar algorithm but shifted left by 32. */
- float64x2_t m = vaddq_f64 (x, v_f64 (1));
- uint64x2_t mi = vreinterpretq_u64_f64 (m);
- uint64x2_t u = vaddq_u64 (mi, d->one_m_hf_rt2_top);
-
- int64x2_t ki
- = vsubq_s64 (vreinterpretq_s64_u64 (vshrq_n_u64 (u, 52)), d->one_top);
- float64x2_t k = vcvtq_f64_s64 (ki);
-
- /* Reduce x to f in [sqrt(2)/2, sqrt(2)]. */
- uint64x2_t utop = vaddq_u64 (vandq_u64 (u, d->umask), d->hf_rt2_top);
- uint64x2_t u_red = vorrq_u64 (utop, vandq_u64 (mi, BottomMask));
- float64x2_t f = vsubq_f64 (vreinterpretq_f64_u64 (u_red), v_f64 (1));
-
- /* Correction term c/m. */
- float64x2_t cm = vdivq_f64 (vsubq_f64 (x, vsubq_f64 (m, v_f64 (1))), m);
-
- /* Approximate log1p(x) on the reduced input using a polynomial. Because
- log1p(0)=0 we choose an approximation of the form:
- x + C0*x^2 + C1*x^3 + C2x^4 + ...
- Hence approximation has the form f + f^2 * P(f)
- where P(x) = C0 + C1*x + C2x^2 + ...
- Assembling this all correctly is dealt with at the final step. */
- float64x2_t f2 = vmulq_f64 (f, f);
- float64x2_t p = v_pw_horner_18_f64 (f, f2, d->poly);
-
- float64x2_t ylo = vfmaq_f64 (cm, k, d->ln2[1]);
- float64x2_t yhi = vfmaq_f64 (f, k, d->ln2[0]);
- float64x2_t y = vaddq_f64 (ylo, yhi);
-
- if (unlikely (v_any_u64 (special)))
- return special_case (vreinterpretq_f64_u64 (ix), vfmaq_f64 (y, f2, p),
- special);
-
- return vfmaq_f64 (y, f2, p);
-}
-
-PL_SIG (V, D, 1, log1p, -0.9, 10.0)
-PL_TEST_ULP (V_NAME_D1 (log1p), 1.97)
-PL_TEST_EXPECT_FENV (V_NAME_D1 (log1p), WANT_SIMD_EXCEPT)
-PL_TEST_SYM_INTERVAL (V_NAME_D1 (log1p), 0.0, 0x1p-23, 50000)
-PL_TEST_SYM_INTERVAL (V_NAME_D1 (log1p), 0x1p-23, 0.001, 50000)
-PL_TEST_SYM_INTERVAL (V_NAME_D1 (log1p), 0.001, 1.0, 50000)
-PL_TEST_INTERVAL (V_NAME_D1 (log1p), 1, inf, 40000)
-PL_TEST_INTERVAL (V_NAME_D1 (log1p), -1.0, -inf, 500)