diff options
Diffstat (limited to 'ssl/t1_lib.c')
-rw-r--r-- | ssl/t1_lib.c | 2311 |
1 files changed, 1855 insertions, 456 deletions
diff --git a/ssl/t1_lib.c b/ssl/t1_lib.c index bbb3b514d77f..8d0c2647b79c 100644 --- a/ssl/t1_lib.c +++ b/ssl/t1_lib.c @@ -1,5 +1,5 @@ /* - * Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved. + * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy @@ -9,6 +9,7 @@ #include <stdio.h> #include <stdlib.h> +#include <ctype.h> #include <openssl/objects.h> #include <openssl/evp.h> #include <openssl/hmac.h> @@ -23,16 +24,15 @@ #include "internal/nelem.h" #include "internal/sizes.h" #include "internal/tlsgroups.h" -#include "internal/cryptlib.h" +#include "internal/ssl_unwrap.h" #include "ssl_local.h" +#include "quic/quic_local.h" #include <openssl/ct.h> -static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey); -static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu); +static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pkey); +static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op, const SIGALG_LOOKUP *lu); SSL3_ENC_METHOD const TLSv1_enc_data = { - tls1_enc, - tls1_mac, tls1_setup_key_block, tls1_generate_master_secret, tls1_change_cipher_state, @@ -48,8 +48,6 @@ SSL3_ENC_METHOD const TLSv1_enc_data = { }; SSL3_ENC_METHOD const TLSv1_1_enc_data = { - tls1_enc, - tls1_mac, tls1_setup_key_block, tls1_generate_master_secret, tls1_change_cipher_state, @@ -58,15 +56,13 @@ SSL3_ENC_METHOD const TLSv1_1_enc_data = { TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, tls1_alert_code, tls1_export_keying_material, - SSL_ENC_FLAG_EXPLICIT_IV, + 0, ssl3_set_handshake_header, tls_close_construct_packet, ssl3_handshake_write }; SSL3_ENC_METHOD const TLSv1_2_enc_data = { - tls1_enc, - tls1_mac, tls1_setup_key_block, tls1_generate_master_secret, tls1_change_cipher_state, @@ -75,7 +71,7 @@ SSL3_ENC_METHOD const TLSv1_2_enc_data = { TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, tls1_alert_code, tls1_export_keying_material, - SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF + SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF | SSL_ENC_FLAG_TLS1_2_CIPHERS, ssl3_set_handshake_header, tls_close_construct_packet, @@ -83,8 +79,6 @@ SSL3_ENC_METHOD const TLSv1_2_enc_data = { }; SSL3_ENC_METHOD const TLSv1_3_enc_data = { - tls13_enc, - tls1_mac, tls13_setup_key_block, tls13_generate_master_secret, tls13_change_cipher_state, @@ -99,13 +93,13 @@ SSL3_ENC_METHOD const TLSv1_3_enc_data = { ssl3_handshake_write }; -long tls1_default_timeout(void) +OSSL_TIME tls1_default_timeout(void) { /* * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for * http, the cache would over fill */ - return (60 * 60 * 2); + return ossl_seconds2time(60 * 60 * 2); } int tls1_new(SSL *s) @@ -120,25 +114,35 @@ int tls1_new(SSL *s) void tls1_free(SSL *s) { - OPENSSL_free(s->ext.session_ticket); + SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); + + if (sc == NULL) + return; + + OPENSSL_free(sc->ext.session_ticket); ssl3_free(s); } int tls1_clear(SSL *s) { + SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); + + if (sc == NULL) + return 0; + if (!ssl3_clear(s)) return 0; if (s->method->version == TLS_ANY_VERSION) - s->version = TLS_MAX_VERSION_INTERNAL; + sc->version = TLS_MAX_VERSION_INTERNAL; else - s->version = s->method->version; + sc->version = s->method->version; return 1; } /* Legacy NID to group_id mapping. Only works for groups we know about */ -static struct { +static const struct { int nid; uint16_t group_id; } nid_to_group[] = { @@ -172,13 +176,16 @@ static struct { {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1}, {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519}, {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448}, - {NID_id_tc26_gost_3410_2012_256_paramSetA, 0x0022}, - {NID_id_tc26_gost_3410_2012_256_paramSetB, 0x0023}, - {NID_id_tc26_gost_3410_2012_256_paramSetC, 0x0024}, - {NID_id_tc26_gost_3410_2012_256_paramSetD, 0x0025}, - {NID_id_tc26_gost_3410_2012_512_paramSetA, 0x0026}, - {NID_id_tc26_gost_3410_2012_512_paramSetB, 0x0027}, - {NID_id_tc26_gost_3410_2012_512_paramSetC, 0x0028}, + {NID_brainpoolP256r1tls13, OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13}, + {NID_brainpoolP384r1tls13, OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13}, + {NID_brainpoolP512r1tls13, OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13}, + {NID_id_tc26_gost_3410_2012_256_paramSetA, OSSL_TLS_GROUP_ID_gc256A}, + {NID_id_tc26_gost_3410_2012_256_paramSetB, OSSL_TLS_GROUP_ID_gc256B}, + {NID_id_tc26_gost_3410_2012_256_paramSetC, OSSL_TLS_GROUP_ID_gc256C}, + {NID_id_tc26_gost_3410_2012_256_paramSetD, OSSL_TLS_GROUP_ID_gc256D}, + {NID_id_tc26_gost_3410_2012_512_paramSetA, OSSL_TLS_GROUP_ID_gc512A}, + {NID_id_tc26_gost_3410_2012_512_paramSetB, OSSL_TLS_GROUP_ID_gc512B}, + {NID_id_tc26_gost_3410_2012_512_paramSetC, OSSL_TLS_GROUP_ID_gc512C}, {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048}, {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072}, {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096}, @@ -192,33 +199,21 @@ static const unsigned char ecformats_default[] = { TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2 }; -/* The default curves */ -static const uint16_t supported_groups_default[] = { - 29, /* X25519 (29) */ - 23, /* secp256r1 (23) */ - 30, /* X448 (30) */ - 25, /* secp521r1 (25) */ - 24, /* secp384r1 (24) */ - 34, /* GC256A (34) */ - 35, /* GC256B (35) */ - 36, /* GC256C (36) */ - 37, /* GC256D (37) */ - 38, /* GC512A (38) */ - 39, /* GC512B (39) */ - 40, /* GC512C (40) */ - 0x100, /* ffdhe2048 (0x100) */ - 0x101, /* ffdhe3072 (0x101) */ - 0x102, /* ffdhe4096 (0x102) */ - 0x103, /* ffdhe6144 (0x103) */ - 0x104, /* ffdhe8192 (0x104) */ -}; +/* Group list string of the built-in pseudo group DEFAULT */ +#define DEFAULT_GROUP_NAME "DEFAULT" +#define TLS_DEFAULT_GROUP_LIST \ + "?*X25519MLKEM768 / ?*X25519:?secp256r1 / ?X448:?secp384r1:?secp521r1 / ?ffdhe2048:?ffdhe3072" static const uint16_t suiteb_curves[] = { - TLSEXT_curve_P_256, - TLSEXT_curve_P_384 + OSSL_TLS_GROUP_ID_secp256r1, + OSSL_TLS_GROUP_ID_secp384r1, }; -struct provider_group_data_st { +/* Group list string of the built-in pseudo group DEFAULT_SUITE_B */ +#define SUITE_B_GROUP_NAME "DEFAULT_SUITE_B" +#define SUITE_B_GROUP_LIST "secp256r1:secp384r1", + +struct provider_ctx_data_st { SSL_CTX *ctx; OSSL_PROVIDER *provider; }; @@ -227,9 +222,8 @@ struct provider_group_data_st { static OSSL_CALLBACK add_provider_groups; static int add_provider_groups(const OSSL_PARAM params[], void *data) { - struct provider_group_data_st *pgd = data; + struct provider_ctx_data_st *pgd = data; SSL_CTX *ctx = pgd->ctx; - OSSL_PROVIDER *provider = pgd->provider; const OSSL_PARAM *p; TLS_GROUP_INFO *ginf = NULL; EVP_KEYMGMT *keymgmt; @@ -248,10 +242,8 @@ static int add_provider_groups(const OSSL_PARAM params[], void *data) (ctx->group_list_max_len + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE) * sizeof(TLS_GROUP_INFO)); - if (tmp == NULL) { - ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); + if (tmp == NULL) return 0; - } ctx->group_list = tmp; memset(tmp + ctx->group_list_max_len, 0, @@ -267,10 +259,8 @@ static int add_provider_groups(const OSSL_PARAM params[], void *data) goto err; } ginf->tlsname = OPENSSL_strdup(p->data); - if (ginf->tlsname == NULL) { - ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); + if (ginf->tlsname == NULL) goto err; - } p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL); if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) { @@ -278,10 +268,8 @@ static int add_provider_groups(const OSSL_PARAM params[], void *data) goto err; } ginf->realname = OPENSSL_strdup(p->data); - if (ginf->realname == NULL) { - ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); + if (ginf->realname == NULL) goto err; - } p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID); if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) { @@ -296,10 +284,8 @@ static int add_provider_groups(const OSSL_PARAM params[], void *data) goto err; } ginf->algorithm = OPENSSL_strdup(p->data); - if (ginf->algorithm == NULL) { - ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); + if (ginf->algorithm == NULL) goto err; - } p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS); if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) { @@ -347,23 +333,9 @@ static int add_provider_groups(const OSSL_PARAM params[], void *data) ERR_set_mark(); keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq); if (keymgmt != NULL) { - /* - * We have successfully fetched the algorithm - however if the provider - * doesn't match this one then we ignore it. - * - * Note: We're cheating a little here. Technically if the same algorithm - * is available from more than one provider then it is undefined which - * implementation you will get back. Theoretically this could be - * different every time...we assume here that you'll always get the - * same one back if you repeat the exact same fetch. Is this a reasonable - * assumption to make (in which case perhaps we should document this - * behaviour)? - */ - if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) { - /* We have a match - so we will use this group */ - ctx->group_list_len++; - ginf = NULL; - } + /* We have successfully fetched the algorithm, we can use the group. */ + ctx->group_list_len++; + ginf = NULL; EVP_KEYMGMT_free(keymgmt); } ERR_pop_to_mark(); @@ -379,7 +351,7 @@ static int add_provider_groups(const OSSL_PARAM params[], void *data) static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx) { - struct provider_group_data_st pgd; + struct provider_ctx_data_st pgd; pgd.ctx = vctx; pgd.provider = provider; @@ -389,36 +361,342 @@ static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx) int ssl_load_groups(SSL_CTX *ctx) { - size_t i, j, num_deflt_grps = 0; - uint16_t tmp_supp_groups[OSSL_NELEM(supported_groups_default)]; - if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx)) return 0; - for (i = 0; i < OSSL_NELEM(supported_groups_default); i++) { - for (j = 0; j < ctx->group_list_len; j++) { - if (ctx->group_list[j].group_id == supported_groups_default[i]) { - tmp_supp_groups[num_deflt_grps++] = ctx->group_list[j].group_id; - break; + return SSL_CTX_set1_groups_list(ctx, TLS_DEFAULT_GROUP_LIST); +} + +#define TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE 10 +static OSSL_CALLBACK add_provider_sigalgs; +static int add_provider_sigalgs(const OSSL_PARAM params[], void *data) +{ + struct provider_ctx_data_st *pgd = data; + SSL_CTX *ctx = pgd->ctx; + OSSL_PROVIDER *provider = pgd->provider; + const OSSL_PARAM *p; + TLS_SIGALG_INFO *sinf = NULL; + EVP_KEYMGMT *keymgmt; + const char *keytype; + unsigned int code_point = 0; + int ret = 0; + + if (ctx->sigalg_list_max_len == ctx->sigalg_list_len) { + TLS_SIGALG_INFO *tmp = NULL; + + if (ctx->sigalg_list_max_len == 0) + tmp = OPENSSL_malloc(sizeof(TLS_SIGALG_INFO) + * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE); + else + tmp = OPENSSL_realloc(ctx->sigalg_list, + (ctx->sigalg_list_max_len + + TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE) + * sizeof(TLS_SIGALG_INFO)); + if (tmp == NULL) + return 0; + ctx->sigalg_list = tmp; + memset(tmp + ctx->sigalg_list_max_len, 0, + sizeof(TLS_SIGALG_INFO) * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE); + ctx->sigalg_list_max_len += TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE; + } + + sinf = &ctx->sigalg_list[ctx->sigalg_list_len]; + + /* First, mandatory parameters */ + p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_NAME); + if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) { + ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); + goto err; + } + OPENSSL_free(sinf->sigalg_name); + sinf->sigalg_name = OPENSSL_strdup(p->data); + if (sinf->sigalg_name == NULL) + goto err; + + p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_IANA_NAME); + if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) { + ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); + goto err; + } + OPENSSL_free(sinf->name); + sinf->name = OPENSSL_strdup(p->data); + if (sinf->name == NULL) + goto err; + + p = OSSL_PARAM_locate_const(params, + OSSL_CAPABILITY_TLS_SIGALG_CODE_POINT); + if (p == NULL + || !OSSL_PARAM_get_uint(p, &code_point) + || code_point > UINT16_MAX) { + ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); + goto err; + } + sinf->code_point = (uint16_t)code_point; + + p = OSSL_PARAM_locate_const(params, + OSSL_CAPABILITY_TLS_SIGALG_SECURITY_BITS); + if (p == NULL || !OSSL_PARAM_get_uint(p, &sinf->secbits)) { + ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); + goto err; + } + + /* Now, optional parameters */ + p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_OID); + if (p == NULL) { + sinf->sigalg_oid = NULL; + } else if (p->data_type != OSSL_PARAM_UTF8_STRING) { + goto err; + } else { + OPENSSL_free(sinf->sigalg_oid); + sinf->sigalg_oid = OPENSSL_strdup(p->data); + if (sinf->sigalg_oid == NULL) + goto err; + } + + p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_NAME); + if (p == NULL) { + sinf->sig_name = NULL; + } else if (p->data_type != OSSL_PARAM_UTF8_STRING) { + goto err; + } else { + OPENSSL_free(sinf->sig_name); + sinf->sig_name = OPENSSL_strdup(p->data); + if (sinf->sig_name == NULL) + goto err; + } + + p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_OID); + if (p == NULL) { + sinf->sig_oid = NULL; + } else if (p->data_type != OSSL_PARAM_UTF8_STRING) { + goto err; + } else { + OPENSSL_free(sinf->sig_oid); + sinf->sig_oid = OPENSSL_strdup(p->data); + if (sinf->sig_oid == NULL) + goto err; + } + + p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_NAME); + if (p == NULL) { + sinf->hash_name = NULL; + } else if (p->data_type != OSSL_PARAM_UTF8_STRING) { + goto err; + } else { + OPENSSL_free(sinf->hash_name); + sinf->hash_name = OPENSSL_strdup(p->data); + if (sinf->hash_name == NULL) + goto err; + } + + p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_OID); + if (p == NULL) { + sinf->hash_oid = NULL; + } else if (p->data_type != OSSL_PARAM_UTF8_STRING) { + goto err; + } else { + OPENSSL_free(sinf->hash_oid); + sinf->hash_oid = OPENSSL_strdup(p->data); + if (sinf->hash_oid == NULL) + goto err; + } + + p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE); + if (p == NULL) { + sinf->keytype = NULL; + } else if (p->data_type != OSSL_PARAM_UTF8_STRING) { + goto err; + } else { + OPENSSL_free(sinf->keytype); + sinf->keytype = OPENSSL_strdup(p->data); + if (sinf->keytype == NULL) + goto err; + } + + p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE_OID); + if (p == NULL) { + sinf->keytype_oid = NULL; + } else if (p->data_type != OSSL_PARAM_UTF8_STRING) { + goto err; + } else { + OPENSSL_free(sinf->keytype_oid); + sinf->keytype_oid = OPENSSL_strdup(p->data); + if (sinf->keytype_oid == NULL) + goto err; + } + + /* Optional, not documented prior to 3.5 */ + sinf->mindtls = sinf->maxdtls = -1; + p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_DTLS); + if (p != NULL && !OSSL_PARAM_get_int(p, &sinf->mindtls)) { + ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); + goto err; + } + p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_DTLS); + if (p != NULL && !OSSL_PARAM_get_int(p, &sinf->maxdtls)) { + ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); + goto err; + } + /* DTLS version numbers grow downward */ + if ((sinf->maxdtls != 0) && (sinf->maxdtls != -1) && + ((sinf->maxdtls > sinf->mindtls))) { + ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); + goto err; + } + /* No provider sigalgs are supported in DTLS, reset after checking. */ + sinf->mindtls = sinf->maxdtls = -1; + + /* The remaining parameters below are mandatory again */ + p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_TLS); + if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->mintls)) { + ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); + goto err; + } + p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_TLS); + if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->maxtls)) { + ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); + goto err; + } + if ((sinf->maxtls != 0) && (sinf->maxtls != -1) && + ((sinf->maxtls < sinf->mintls))) { + ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); + goto err; + } + if ((sinf->mintls != 0) && (sinf->mintls != -1) && + ((sinf->mintls > TLS1_3_VERSION))) + sinf->mintls = sinf->maxtls = -1; + if ((sinf->maxtls != 0) && (sinf->maxtls != -1) && + ((sinf->maxtls < TLS1_3_VERSION))) + sinf->mintls = sinf->maxtls = -1; + + /* Ignore unusable sigalgs */ + if (sinf->mintls == -1 && sinf->mindtls == -1) { + ret = 1; + goto err; + } + + /* + * Now check that the algorithm is actually usable for our property query + * string. Regardless of the result we still return success because we have + * successfully processed this signature, even though we may decide not to + * use it. + */ + ret = 1; + ERR_set_mark(); + keytype = (sinf->keytype != NULL + ? sinf->keytype + : (sinf->sig_name != NULL + ? sinf->sig_name + : sinf->sigalg_name)); + keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, keytype, ctx->propq); + if (keymgmt != NULL) { + /* + * We have successfully fetched the algorithm - however if the provider + * doesn't match this one then we ignore it. + * + * Note: We're cheating a little here. Technically if the same algorithm + * is available from more than one provider then it is undefined which + * implementation you will get back. Theoretically this could be + * different every time...we assume here that you'll always get the + * same one back if you repeat the exact same fetch. Is this a reasonable + * assumption to make (in which case perhaps we should document this + * behaviour)? + */ + if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) { + /* + * We have a match - so we could use this signature; + * Check proper object registration first, though. + * Don't care about return value as this may have been + * done within providers or previous calls to + * add_provider_sigalgs. + */ + OBJ_create(sinf->sigalg_oid, sinf->sigalg_name, NULL); + /* sanity check: Without successful registration don't use alg */ + if ((OBJ_txt2nid(sinf->sigalg_name) == NID_undef) || + (OBJ_nid2obj(OBJ_txt2nid(sinf->sigalg_name)) == NULL)) { + ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); + goto err; } + if (sinf->sig_name != NULL) + OBJ_create(sinf->sig_oid, sinf->sig_name, NULL); + if (sinf->keytype != NULL) + OBJ_create(sinf->keytype_oid, sinf->keytype, NULL); + if (sinf->hash_name != NULL) + OBJ_create(sinf->hash_oid, sinf->hash_name, NULL); + OBJ_add_sigid(OBJ_txt2nid(sinf->sigalg_name), + (sinf->hash_name != NULL + ? OBJ_txt2nid(sinf->hash_name) + : NID_undef), + OBJ_txt2nid(keytype)); + ctx->sigalg_list_len++; + sinf = NULL; } + EVP_KEYMGMT_free(keymgmt); } + ERR_pop_to_mark(); + err: + if (sinf != NULL) { + OPENSSL_free(sinf->name); + sinf->name = NULL; + OPENSSL_free(sinf->sigalg_name); + sinf->sigalg_name = NULL; + OPENSSL_free(sinf->sigalg_oid); + sinf->sigalg_oid = NULL; + OPENSSL_free(sinf->sig_name); + sinf->sig_name = NULL; + OPENSSL_free(sinf->sig_oid); + sinf->sig_oid = NULL; + OPENSSL_free(sinf->hash_name); + sinf->hash_name = NULL; + OPENSSL_free(sinf->hash_oid); + sinf->hash_oid = NULL; + OPENSSL_free(sinf->keytype); + sinf->keytype = NULL; + OPENSSL_free(sinf->keytype_oid); + sinf->keytype_oid = NULL; + } + return ret; +} - if (num_deflt_grps == 0) - return 1; +static int discover_provider_sigalgs(OSSL_PROVIDER *provider, void *vctx) +{ + struct provider_ctx_data_st pgd; + + pgd.ctx = vctx; + pgd.provider = provider; + OSSL_PROVIDER_get_capabilities(provider, "TLS-SIGALG", + add_provider_sigalgs, &pgd); + /* + * Always OK, even if provider doesn't support the capability: + * Reconsider testing retval when legacy sigalgs are also loaded this way. + */ + return 1; +} - ctx->ext.supported_groups_default - = OPENSSL_malloc(sizeof(uint16_t) * num_deflt_grps); +int ssl_load_sigalgs(SSL_CTX *ctx) +{ + size_t i; + SSL_CERT_LOOKUP lu; - if (ctx->ext.supported_groups_default == NULL) { - ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); + if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_sigalgs, ctx)) return 0; + + /* now populate ctx->ssl_cert_info */ + if (ctx->sigalg_list_len > 0) { + OPENSSL_free(ctx->ssl_cert_info); + ctx->ssl_cert_info = OPENSSL_zalloc(sizeof(lu) * ctx->sigalg_list_len); + if (ctx->ssl_cert_info == NULL) + return 0; + for(i = 0; i < ctx->sigalg_list_len; i++) { + ctx->ssl_cert_info[i].nid = OBJ_txt2nid(ctx->sigalg_list[i].sigalg_name); + ctx->ssl_cert_info[i].amask = SSL_aANY; + } } - memcpy(ctx->ext.supported_groups_default, - tmp_supp_groups, - num_deflt_grps * sizeof(tmp_supp_groups[0])); - ctx->ext.supported_groups_default_len = num_deflt_grps; + /* + * For now, leave it at this: legacy sigalgs stay in their own + * data structures until "legacy cleanup" occurs. + */ return 1; } @@ -428,8 +706,8 @@ static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name) size_t i; for (i = 0; i < ctx->group_list_len; i++) { - if (strcmp(ctx->group_list[i].tlsname, name) == 0 - || strcmp(ctx->group_list[i].realname, name) == 0) + if (OPENSSL_strcasecmp(ctx->group_list[i].tlsname, name) == 0 + || OPENSSL_strcasecmp(ctx->group_list[i].realname, name) == 0) return ctx->group_list[i].group_id; } @@ -448,6 +726,16 @@ const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id) return NULL; } +const char *tls1_group_id2name(SSL_CTX *ctx, uint16_t group_id) +{ + const TLS_GROUP_INFO *tls_group_info = tls1_group_id_lookup(ctx, group_id); + + if (tls_group_info == NULL) + return NULL; + + return tls_group_info->tlsname; +} + int tls1_group_id2nid(uint16_t group_id, int include_unknown) { size_t i; @@ -490,9 +778,11 @@ uint16_t tls1_nid2group_id(int nid) * Set *pgroups to the supported groups list and *pgroupslen to * the number of groups supported. */ -void tls1_get_supported_groups(SSL *s, const uint16_t **pgroups, +void tls1_get_supported_groups(SSL_CONNECTION *s, const uint16_t **pgroups, size_t *pgroupslen) { + SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s); + /* For Suite B mode only include P-256, P-384 */ switch (tls1_suiteb(s)) { case SSL_CERT_FLAG_SUITEB_128_LOS: @@ -512,8 +802,8 @@ void tls1_get_supported_groups(SSL *s, const uint16_t **pgroups, default: if (s->ext.supportedgroups == NULL) { - *pgroups = s->ctx->ext.supported_groups_default; - *pgroupslen = s->ctx->ext.supported_groups_default_len; + *pgroups = sctx->ext.supportedgroups; + *pgroupslen = sctx->ext.supportedgroups_len; } else { *pgroups = s->ext.supportedgroups; *pgroupslen = s->ext.supportedgroups_len; @@ -522,11 +812,55 @@ void tls1_get_supported_groups(SSL *s, const uint16_t **pgroups, } } -int tls_valid_group(SSL *s, uint16_t group_id, int minversion, int maxversion, +/* + * Some comments for the function below: + * s->ext.supportedgroups == NULL means legacy syntax (no [*,/,-]) from built-in group array. + * In this case, we need to send exactly one key share, which MUST be the first (leftmost) + * eligible group from the legacy list. Therefore, we provide the entire list of supported + * groups in this case. + * + * A 'flag' to indicate legacy syntax is created by setting the number of key shares to 1, + * but the groupID to 0. + * The 'flag' is checked right at the beginning in tls_construct_ctos_key_share and either + * the "list of requested key share groups" is used, or the "list of supported groups" in + * combination with setting add_only_one = 1 is applied. + */ +void tls1_get_requested_keyshare_groups(SSL_CONNECTION *s, const uint16_t **pgroups, + size_t *pgroupslen) +{ + SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s); + + if (s->ext.supportedgroups == NULL) { + *pgroups = sctx->ext.supportedgroups; + *pgroupslen = sctx->ext.supportedgroups_len; + } else { + *pgroups = s->ext.keyshares; + *pgroupslen = s->ext.keyshares_len; + } +} + +void tls1_get_group_tuples(SSL_CONNECTION *s, const size_t **ptuples, + size_t *ptupleslen) +{ + SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s); + + if (s->ext.supportedgroups == NULL) { + *ptuples = sctx->ext.tuples; + *ptupleslen = sctx->ext.tuples_len; + } else { + *ptuples = s->ext.tuples; + *ptupleslen = s->ext.tuples_len; + } +} + +int tls_valid_group(SSL_CONNECTION *s, uint16_t group_id, + int minversion, int maxversion, int isec, int *okfortls13) { - const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(s->ctx, group_id); + const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s), + group_id); int ret; + int group_minversion, group_maxversion; if (okfortls13 != NULL) *okfortls13 = 0; @@ -534,27 +868,22 @@ int tls_valid_group(SSL *s, uint16_t group_id, int minversion, int maxversion, if (ginfo == NULL) return 0; - if (SSL_IS_DTLS(s)) { - if (ginfo->mindtls < 0 || ginfo->maxdtls < 0) - return 0; - if (ginfo->maxdtls == 0) - ret = 1; - else - ret = DTLS_VERSION_LE(minversion, ginfo->maxdtls); - if (ginfo->mindtls > 0) - ret &= DTLS_VERSION_GE(maxversion, ginfo->mindtls); - } else { - if (ginfo->mintls < 0 || ginfo->maxtls < 0) - return 0; - if (ginfo->maxtls == 0) - ret = 1; - else - ret = (minversion <= ginfo->maxtls); - if (ginfo->mintls > 0) - ret &= (maxversion >= ginfo->mintls); + group_minversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->mindtls : ginfo->mintls; + group_maxversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->maxdtls : ginfo->maxtls; + + if (group_minversion < 0 || group_maxversion < 0) + return 0; + if (group_maxversion == 0) + ret = 1; + else + ret = (ssl_version_cmp(s, minversion, group_maxversion) <= 0); + if (group_minversion > 0) + ret &= (ssl_version_cmp(s, maxversion, group_minversion) >= 0); + + if (!SSL_CONNECTION_IS_DTLS(s)) { if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION) - *okfortls13 = (ginfo->maxtls == 0) - || (ginfo->maxtls >= TLS1_3_VERSION); + *okfortls13 = (group_maxversion == 0) + || (group_maxversion >= TLS1_3_VERSION); } ret &= !isec || strcmp(ginfo->algorithm, "EC") == 0 @@ -565,9 +894,10 @@ int tls_valid_group(SSL *s, uint16_t group_id, int minversion, int maxversion, } /* See if group is allowed by security callback */ -int tls_group_allowed(SSL *s, uint16_t group, int op) +int tls_group_allowed(SSL_CONNECTION *s, uint16_t group, int op) { - const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(s->ctx, group); + const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s), + group); unsigned char gtmp[2]; if (ginfo == NULL) @@ -589,6 +919,80 @@ static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen) return 0; } +typedef struct { + TLS_GROUP_INFO *grp; + size_t ix; +} TLS_GROUP_IX; + +DEFINE_STACK_OF(TLS_GROUP_IX) + +static void free_wrapper(TLS_GROUP_IX *a) +{ + OPENSSL_free(a); +} + +static int tls_group_ix_cmp(const TLS_GROUP_IX *const *a, + const TLS_GROUP_IX *const *b) +{ + int idcmpab = (*a)->grp->group_id < (*b)->grp->group_id; + int idcmpba = (*b)->grp->group_id < (*a)->grp->group_id; + int ixcmpab = (*a)->ix < (*b)->ix; + int ixcmpba = (*b)->ix < (*a)->ix; + + /* Ascending by group id */ + if (idcmpab != idcmpba) + return (idcmpba - idcmpab); + /* Ascending by original appearance index */ + return ixcmpba - ixcmpab; +} + +int tls1_get0_implemented_groups(int min_proto_version, int max_proto_version, + TLS_GROUP_INFO *grps, size_t num, long all, + STACK_OF(OPENSSL_CSTRING) *out) +{ + STACK_OF(TLS_GROUP_IX) *collect = NULL; + TLS_GROUP_IX *gix; + uint16_t id = 0; + int ret = 0; + size_t ix; + + if (grps == NULL || out == NULL) + return 0; + if ((collect = sk_TLS_GROUP_IX_new(tls_group_ix_cmp)) == NULL) + return 0; + for (ix = 0; ix < num; ++ix, ++grps) { + if (grps->mintls > 0 && max_proto_version > 0 + && grps->mintls > max_proto_version) + continue; + if (grps->maxtls > 0 && min_proto_version > 0 + && grps->maxtls < min_proto_version) + continue; + + if ((gix = OPENSSL_malloc(sizeof(*gix))) == NULL) + goto end; + gix->grp = grps; + gix->ix = ix; + if (sk_TLS_GROUP_IX_push(collect, gix) <= 0) + goto end; + } + + sk_TLS_GROUP_IX_sort(collect); + num = sk_TLS_GROUP_IX_num(collect); + for (ix = 0; ix < num; ++ix) { + gix = sk_TLS_GROUP_IX_value(collect, ix); + if (!all && gix->grp->group_id == id) + continue; + id = gix->grp->group_id; + if (sk_OPENSSL_CSTRING_push(out, gix->grp->tlsname) <= 0) + goto end; + } + ret = 1; + + end: + sk_TLS_GROUP_IX_pop_free(collect, free_wrapper); + return ret; +} + /*- * For nmatch >= 0, return the id of the |nmatch|th shared group or 0 * if there is no match. @@ -596,12 +1000,12 @@ static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen) * For nmatch == -2, return the id of the group to use for * a tmp key, or 0 if there is no match. */ -uint16_t tls1_shared_group(SSL *s, int nmatch) +uint16_t tls1_shared_group(SSL_CONNECTION *s, int nmatch) { const uint16_t *pref, *supp; size_t num_pref, num_supp, i; int k; - SSL_CTX *ctx = s->ctx; + SSL_CTX *ctx = SSL_CONNECTION_GET_CTX(s); /* Can't do anything on client side */ if (s->server == 0) @@ -615,9 +1019,9 @@ uint16_t tls1_shared_group(SSL *s, int nmatch) unsigned long cid = s->s3.tmp.new_cipher->id; if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) - return TLSEXT_curve_P_256; + return OSSL_TLS_GROUP_ID_secp256r1; if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) - return TLSEXT_curve_P_384; + return OSSL_TLS_GROUP_ID_secp384r1; /* Should never happen */ return 0; } @@ -639,6 +1043,7 @@ uint16_t tls1_shared_group(SSL *s, int nmatch) for (k = 0, i = 0; i < num_pref; i++) { uint16_t id = pref[i]; const TLS_GROUP_INFO *inf; + int minversion, maxversion; if (!tls1_in_list(id, supp, num_supp) || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED)) @@ -646,20 +1051,17 @@ uint16_t tls1_shared_group(SSL *s, int nmatch) inf = tls1_group_id_lookup(ctx, id); if (!ossl_assert(inf != NULL)) return 0; - if (SSL_IS_DTLS(s)) { - if (inf->maxdtls == -1) - continue; - if ((inf->mindtls != 0 && DTLS_VERSION_LT(s->version, inf->mindtls)) - || (inf->maxdtls != 0 - && DTLS_VERSION_GT(s->version, inf->maxdtls))) - continue; - } else { - if (inf->maxtls == -1) - continue; - if ((inf->mintls != 0 && s->version < inf->mintls) - || (inf->maxtls != 0 && s->version > inf->maxtls)) - continue; - } + + minversion = SSL_CONNECTION_IS_DTLS(s) + ? inf->mindtls : inf->mintls; + maxversion = SSL_CONNECTION_IS_DTLS(s) + ? inf->maxdtls : inf->maxtls; + if (maxversion == -1) + continue; + if ((minversion != 0 && ssl_version_cmp(s, s->version, minversion) < 0) + || (maxversion != 0 + && ssl_version_cmp(s, s->version, maxversion) > 0)) + continue; if (nmatch == k) return id; @@ -671,10 +1073,13 @@ uint16_t tls1_shared_group(SSL *s, int nmatch) return 0; } -int tls1_set_groups(uint16_t **pext, size_t *pextlen, +int tls1_set_groups(uint16_t **grpext, size_t *grpextlen, + uint16_t **ksext, size_t *ksextlen, + size_t **tplext, size_t *tplextlen, int *groups, size_t ngroups) { - uint16_t *glist; + uint16_t *glist = NULL, *kslist = NULL; + size_t *tpllist = NULL; size_t i; /* * Bitmap of groups included to detect duplicates: two variables are added @@ -688,10 +1093,12 @@ int tls1_set_groups(uint16_t **pext, size_t *pextlen, ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH); return 0; } - if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL) { - ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); - return 0; - } + if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL) + goto err; + if ((kslist = OPENSSL_malloc(1 * sizeof(*kslist))) == NULL) + goto err; + if ((tpllist = OPENSSL_malloc(1 * sizeof(*tpllist))) == NULL) + goto err; for (i = 0; i < ngroups; i++) { unsigned long idmask; uint16_t id; @@ -705,99 +1112,601 @@ int tls1_set_groups(uint16_t **pext, size_t *pextlen, *dup_list |= idmask; glist[i] = id; } - OPENSSL_free(*pext); - *pext = glist; - *pextlen = ngroups; + OPENSSL_free(*grpext); + OPENSSL_free(*ksext); + OPENSSL_free(*tplext); + *grpext = glist; + *grpextlen = ngroups; + kslist[0] = glist[0]; + *ksext = kslist; + *ksextlen = 1; + tpllist[0] = ngroups; + *tplext = tpllist; + *tplextlen = 1; return 1; err: OPENSSL_free(glist); + OPENSSL_free(kslist); + OPENSSL_free(tpllist); return 0; } -# define GROUPLIST_INCREMENT 40 -# define GROUP_NAME_BUFFER_LENGTH 64 +/* + * Definition of DEFAULT[_XYZ] pseudo group names. + * A pseudo group name is actually a full list of groups, including prefixes + * and or tuple delimiters. It can be hierarchically defined (for potential future use). + * IMPORTANT REMARK: For ease of use, in the built-in lists of groups, unknown groups or + * groups not backed by a provider will always silently be ignored, even without '?' prefix + */ +typedef struct { + const char *list_name; /* The name of this pseudo group */ + const char *group_string; /* The group string of this pseudo group */ +} default_group_string_st; /* (can include '?', '*'. '-', '/' as needed) */ + +/* Built-in pseudo group-names must start with a (D or d) */ +static const char *DEFAULT_GROUPNAME_FIRST_CHARACTER = "D"; + +/* The list of all built-in pseudo-group-name structures */ +static const default_group_string_st default_group_strings[] = { + {DEFAULT_GROUP_NAME, TLS_DEFAULT_GROUP_LIST}, + {SUITE_B_GROUP_NAME, SUITE_B_GROUP_LIST} +}; + +/* + * Some GOST names are not resolved by tls1_group_name2id, + * hence we'll check for those manually + */ +typedef struct { + const char *group_name; + uint16_t groupID; +} name2id_st; +static const name2id_st name2id_arr[] = { + {"GC256A", OSSL_TLS_GROUP_ID_gc256A }, + {"GC256B", OSSL_TLS_GROUP_ID_gc256B }, + {"GC256C", OSSL_TLS_GROUP_ID_gc256C }, + {"GC256D", OSSL_TLS_GROUP_ID_gc256D }, + {"GC512A", OSSL_TLS_GROUP_ID_gc512A }, + {"GC512B", OSSL_TLS_GROUP_ID_gc512B }, + {"GC512C", OSSL_TLS_GROUP_ID_gc512C }, +}; + +/* + * Group list management: + * We establish three lists along with their related size counters: + * 1) List of (unique) groups + * 2) List of number of groups per group-priority-tuple + * 3) List of (unique) key share groups + */ +#define GROUPLIST_INCREMENT 32 /* Memory allocation chunk size (64 Bytes chunks ~= cache line) */ +#define GROUP_NAME_BUFFER_LENGTH 64 /* Max length of a group name */ + +/* + * Preparation of the prefix used to indicate the desire to send a key share, + * the characters used as separators between groups or tuples of groups, the + * character to indicate that an unknown group should be ignored, and the + * character to indicate that a group should be deleted from a list + */ +#ifndef TUPLE_DELIMITER_CHARACTER +/* The prefix characters to indicate group tuple boundaries */ +# define TUPLE_DELIMITER_CHARACTER '/' +#endif +#ifndef GROUP_DELIMITER_CHARACTER +/* The prefix characters to indicate group tuple boundaries */ +# define GROUP_DELIMITER_CHARACTER ':' +#endif +#ifndef IGNORE_UNKNOWN_GROUP_CHARACTER +/* The prefix character to ignore unknown groups */ +# define IGNORE_UNKNOWN_GROUP_CHARACTER '?' +#endif +#ifndef KEY_SHARE_INDICATOR_CHARACTER +/* The prefix character to trigger a key share addition */ +# define KEY_SHARE_INDICATOR_CHARACTER '*' +#endif +#ifndef REMOVE_GROUP_INDICATOR_CHARACTER +/* The prefix character to trigger a key share removal */ +# define REMOVE_GROUP_INDICATOR_CHARACTER '-' +#endif +static const char prefixes[] = {TUPLE_DELIMITER_CHARACTER, + GROUP_DELIMITER_CHARACTER, + IGNORE_UNKNOWN_GROUP_CHARACTER, + KEY_SHARE_INDICATOR_CHARACTER, + REMOVE_GROUP_INDICATOR_CHARACTER, + '\0'}; + +/* + * High-level description of how group strings are analyzed: + * A first call back function (tuple_cb) is used to process group tuples, and a + * second callback function (gid_cb) is used to process the groups inside a tuple. + * Those callback functions are (indirectly) called by CONF_parse_list with + * different separators (nominally ':' or '/'), a variable based on gid_cb_st + * is used to keep track of the parsing results between the various calls + */ + typedef struct { SSL_CTX *ctx; - size_t gidcnt; - size_t gidmax; - uint16_t *gid_arr; + /* Variables to hold the three lists (groups, requested keyshares, tuple structure) */ + size_t gidmax; /* The memory allocation chunk size for the group IDs */ + size_t gidcnt; /* Number of groups */ + uint16_t *gid_arr; /* The IDs of the supported groups (flat list) */ + size_t tplmax; /* The memory allocation chunk size for the tuple counters */ + size_t tplcnt; /* Number of tuples */ + size_t *tuplcnt_arr; /* The number of groups inside a tuple */ + size_t ksidmax; /* The memory allocation chunk size */ + size_t ksidcnt; /* Number of key shares */ + uint16_t *ksid_arr; /* The IDs of the key share groups (flat list) */ + /* Variable to keep state between execution of callback or helper functions */ + size_t tuple_mode; /* Keeps track whether tuple_cb called from 'the top' or from gid_cb */ + int ignore_unknown_default; /* Flag such that unknown groups for DEFAULT[_XYZ] are ignored */ } gid_cb_st; +/* Forward declaration of tuple callback function */ +static int tuple_cb(const char *tuple, int len, void *arg); + +/* + * Extract and process the individual groups (and their prefixes if present) + * present in a tuple. Note: The argument 'elem' is a NON-\0-terminated string + * and must be appended by a \0 if used as \0-terminated string + */ static int gid_cb(const char *elem, int len, void *arg) { gid_cb_st *garg = arg; - size_t i; + size_t i, j, k; uint16_t gid = 0; + int found_group = 0; char etmp[GROUP_NAME_BUFFER_LENGTH]; - - if (elem == NULL) + int retval = 1; /* We assume success */ + char *current_prefix; + int ignore_unknown = 0; + int add_keyshare = 0; + int remove_group = 0; + size_t restored_prefix_index = 0; + char *restored_default_group_string; + int continue_while_loop = 1; + + /* Sanity checks */ + if (garg == NULL || elem == NULL || len <= 0) { + ERR_raise(ERR_LIB_SSL, SSL_R_UNSUPPORTED_CONFIG_VALUE); return 0; + } + + /* Check the possible prefixes (remark: Leading and trailing spaces already cleared) */ + while (continue_while_loop && len > 0 + && ((current_prefix = strchr(prefixes, elem[0])) != NULL + || OPENSSL_strncasecmp(current_prefix = (char *)DEFAULT_GROUPNAME_FIRST_CHARACTER, elem, 1) == 0)) { + + switch (*current_prefix) { + case TUPLE_DELIMITER_CHARACTER: + /* tuple delimiter not allowed here -> syntax error */ + return -1; + break; + case GROUP_DELIMITER_CHARACTER: + return -1; /* Not a valid prefix for a single group name-> syntax error */ + break; + case KEY_SHARE_INDICATOR_CHARACTER: + if (add_keyshare) + return -1; /* Only single key share prefix allowed -> syntax error */ + add_keyshare = 1; + ++elem; + --len; + break; + case REMOVE_GROUP_INDICATOR_CHARACTER: + if (remove_group) + return -1; /* Only single remove group prefix allowed -> syntax error */ + remove_group = 1; + ++elem; + --len; + break; + case IGNORE_UNKNOWN_GROUP_CHARACTER: + if (ignore_unknown) + return -1; /* Only single ? allowed -> syntax error */ + ignore_unknown = 1; + ++elem; + --len; + break; + default: + /* + * Check whether a DEFAULT[_XYZ] 'pseudo group' (= a built-in + * list of groups) should be added + */ + for (i = 0; i < OSSL_NELEM(default_group_strings); i++) { + if ((size_t)len == (strlen(default_group_strings[i].list_name)) + && OPENSSL_strncasecmp(default_group_strings[i].list_name, elem, len) == 0) { + /* + * We're asked to insert an entire list of groups from a + * DEFAULT[_XYZ] 'pseudo group' which we do by + * recursively calling this function (indirectly via + * CONF_parse_list and tuple_cb); essentially, we treat a DEFAULT + * group string like a tuple which is appended to the current tuple + * rather then starting a new tuple. Variable tuple_mode is the flag which + * controls append tuple vs start new tuple. + */ + + if (ignore_unknown || remove_group) + return -1; /* removal or ignore not allowed here -> syntax error */ + + /* + * First, we restore any keyshare prefix in a new zero-terminated string + * (if not already present) + */ + restored_default_group_string = OPENSSL_malloc((1 /* max prefix length */ + + strlen(default_group_strings[i].group_string) + + 1 /* \0 */) * sizeof(char)); + if (restored_default_group_string == NULL) + return 0; + if (add_keyshare + /* Remark: we tolerate a duplicated keyshare indicator here */ + && default_group_strings[i].group_string[0] + != KEY_SHARE_INDICATOR_CHARACTER) + restored_default_group_string[restored_prefix_index++] = + KEY_SHARE_INDICATOR_CHARACTER; + + memcpy(restored_default_group_string + restored_prefix_index, + default_group_strings[i].group_string, + strlen(default_group_strings[i].group_string)); + restored_default_group_string[strlen(default_group_strings[i].group_string) + + restored_prefix_index] = '\0'; + /* We execute the recursive call */ + garg->ignore_unknown_default = 1; /* We ignore unknown groups for DEFAULT_XYZ */ + /* we enforce group mode (= append tuple) for DEFAULT_XYZ group lists */ + garg->tuple_mode = 0; + /* We use the tuple_cb callback to process the pseudo group tuple */ + retval = CONF_parse_list(restored_default_group_string, + TUPLE_DELIMITER_CHARACTER, 1, tuple_cb, garg); + garg->tuple_mode = 1; /* next call to tuple_cb will again start new tuple */ + garg->ignore_unknown_default = 0; /* reset to original value */ + /* We don't need the \0-terminated string anymore */ + OPENSSL_free(restored_default_group_string); + + return retval; + } + } + /* + * If we reached this point, a group name started with a 'd' or 'D', but no request + * for a DEFAULT[_XYZ] 'pseudo group' was detected, hence processing of the group + * name can continue as usual (= the while loop checking prefixes can end) + */ + continue_while_loop = 0; + break; + } + } + + if (len == 0) + return -1; /* Seems we have prefxes without a group name -> syntax error */ + + if (garg->ignore_unknown_default == 1) /* Always ignore unknown groups for DEFAULT[_XYZ] */ + ignore_unknown = 1; + + /* Memory management in case more groups are present compared to initial allocation */ if (garg->gidcnt == garg->gidmax) { uint16_t *tmp = OPENSSL_realloc(garg->gid_arr, (garg->gidmax + GROUPLIST_INCREMENT) * sizeof(*garg->gid_arr)); + if (tmp == NULL) return 0; + garg->gidmax += GROUPLIST_INCREMENT; garg->gid_arr = tmp; } + /* Memory management for key share groups */ + if (garg->ksidcnt == garg->ksidmax) { + uint16_t *tmp = + OPENSSL_realloc(garg->ksid_arr, + (garg->ksidmax + GROUPLIST_INCREMENT) * sizeof(*garg->ksid_arr)); + + if (tmp == NULL) + return 0; + garg->ksidmax += GROUPLIST_INCREMENT; + garg->ksid_arr = tmp; + } + if (len > (int)(sizeof(etmp) - 1)) - return 0; + return -1; /* group name to long -> syntax error */ + + /* + * Prepare addition or removal of a single group by converting + * a group name into its groupID equivalent + */ + + /* Create a \0-terminated string and get the gid for this group if possible */ memcpy(etmp, elem, len); etmp[len] = 0; + /* Get the groupID */ gid = tls1_group_name2id(garg->ctx, etmp); + /* + * Handle the case where no valid groupID was returned + * e.g. for an unknown group, which we'd ignore (only) if relevant prefix was set + */ if (gid == 0) { - ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT, - "group '%s' cannot be set", etmp); + /* Is it one of the GOST groups ? */ + for (i = 0; i < OSSL_NELEM(name2id_arr); i++) { + if (OPENSSL_strcasecmp(etmp, name2id_arr[i].group_name) == 0) { + gid = name2id_arr[i].groupID; + break; + } + } + if (gid == 0) { /* still not found */ + /* Unknown group - ignore if ignore_unknown; trigger error otherwise */ + retval = ignore_unknown; + goto done; + } + } + + /* Make sure that at least one provider is supporting this groupID */ + found_group = 0; + for (j = 0; j < garg->ctx->group_list_len; j++) + if (garg->ctx->group_list[j].group_id == gid) { + found_group = 1; + break; + } + + /* + * No provider supports this group - ignore if + * ignore_unknown; trigger error otherwise + */ + if (found_group == 0) { + retval = ignore_unknown; + goto done; + } + /* Remove group (and keyshare) from anywhere in the list if present, ignore if not present */ + if (remove_group) { + /* Is the current group specified anywhere in the entire list so far? */ + found_group = 0; + for (i = 0; i < garg->gidcnt; i++) + if (garg->gid_arr[i] == gid) { + found_group = 1; + break; + } + /* The group to remove is at position i in the list of (zero indexed) groups */ + if (found_group) { + /* We remove that group from its position (which is at i)... */ + for (j = i; j < (garg->gidcnt - 1); j++) + garg->gid_arr[j] = garg->gid_arr[j + 1]; /* ...shift remaining groups left ... */ + garg->gidcnt--; /* ..and update the book keeping for the number of groups */ + + /* + * We also must update the number of groups either in a previous tuple (which we + * must identify and check whether it becomes empty due to the deletion) or in + * the current tuple, pending where the deleted group resides + */ + k = 0; + for (j = 0; j < garg->tplcnt; j++) { + k += garg->tuplcnt_arr[j]; + /* Remark: i is zero-indexed, k is one-indexed */ + if (k > i) { /* remove from one of the previous tuples */ + garg->tuplcnt_arr[j]--; + break; /* We took care not to have group duplicates, hence we can stop here */ + } + } + if (k <= i) /* remove from current tuple */ + garg->tuplcnt_arr[j]--; + + /* We also remove the group from the list of keyshares (if present) */ + found_group = 0; + for (i = 0; i < garg->ksidcnt; i++) + if (garg->ksid_arr[i] == gid) { + found_group = 1; + break; + } + if (found_group) { + /* Found, hence we remove that keyshare from its position (which is at i)... */ + for (j = i; j < (garg->ksidcnt - 1); j++) + garg->ksid_arr[j] = garg->ksid_arr[j + 1]; /* shift remaining key shares */ + /* ... and update the book keeping */ + garg->ksidcnt--; + } + } + } else { /* Processing addition of a single new group */ + + /* Check for duplicates */ + for (i = 0; i < garg->gidcnt; i++) + if (garg->gid_arr[i] == gid) { + /* Duplicate group anywhere in the list of groups - ignore */ + goto done; + } + + /* Add the current group to the 'flat' list of groups */ + garg->gid_arr[garg->gidcnt++] = gid; + /* and update the book keeping for the number of groups in current tuple */ + garg->tuplcnt_arr[garg->tplcnt]++; + + /* We memorize if needed that we want to add a key share for the current group */ + if (add_keyshare) + garg->ksid_arr[garg->ksidcnt++] = gid; + } + +done: + return retval; +} + +/* Extract and process a tuple of groups */ +static int tuple_cb(const char *tuple, int len, void *arg) +{ + gid_cb_st *garg = arg; + int retval = 1; /* We assume success */ + char *restored_tuple_string; + + /* Sanity checks */ + if (garg == NULL || tuple == NULL || len <= 0) { + ERR_raise(ERR_LIB_SSL, SSL_R_UNSUPPORTED_CONFIG_VALUE); return 0; } - for (i = 0; i < garg->gidcnt; i++) - if (garg->gid_arr[i] == gid) + + /* Memory management for tuples */ + if (garg->tplcnt == garg->tplmax) { + size_t *tmp = + OPENSSL_realloc(garg->tuplcnt_arr, + (garg->tplmax + GROUPLIST_INCREMENT) * sizeof(*garg->tuplcnt_arr)); + + if (tmp == NULL) return 0; - garg->gid_arr[garg->gidcnt++] = gid; - return 1; + garg->tplmax += GROUPLIST_INCREMENT; + garg->tuplcnt_arr = tmp; + } + + /* Convert to \0-terminated string */ + restored_tuple_string = OPENSSL_malloc((len + 1 /* \0 */) * sizeof(char)); + if (restored_tuple_string == NULL) + return 0; + memcpy(restored_tuple_string, tuple, len); + restored_tuple_string[len] = '\0'; + + /* Analyze group list of this tuple */ + retval = CONF_parse_list(restored_tuple_string, GROUP_DELIMITER_CHARACTER, 1, gid_cb, arg); + + /* We don't need the \o-terminated string anymore */ + OPENSSL_free(restored_tuple_string); + + if (garg->tuplcnt_arr[garg->tplcnt] > 0) { /* Some valid groups are present in current tuple... */ + if (garg->tuple_mode) { + /* We 'close' the tuple */ + garg->tplcnt++; + garg->tuplcnt_arr[garg->tplcnt] = 0; /* Next tuple is initialized to be empty */ + garg->tuple_mode = 1; /* next call will start a tuple (unless overridden in gid_cb) */ + } + } + + return retval; } -/* Set groups based on a colon separated list */ -int tls1_set_groups_list(SSL_CTX *ctx, uint16_t **pext, size_t *pextlen, +/* + * Set groups and prepare generation of keyshares based on a string of groupnames, + * names separated by the group or the tuple delimiter, with per-group prefixes to + * (1) add a key share for this group, (2) ignore the group if unkown to the current + * context, (3) delete a previous occurrence of the group in the current tuple. + * + * The list parsing is done in two hierachical steps: The top-level step extracts the + * string of a tuple using tuple_cb, while the next lower step uses gid_cb to + * parse and process the groups inside a tuple + */ +int tls1_set_groups_list(SSL_CTX *ctx, + uint16_t **grpext, size_t *grpextlen, + uint16_t **ksext, size_t *ksextlen, + size_t **tplext, size_t *tplextlen, const char *str) { + size_t i = 0, j; + int ret = 0, parse_ret = 0; gid_cb_st gcb; - uint16_t *tmparr; - int ret = 0; - gcb.gidcnt = 0; + /* Sanity check */ + if (ctx == NULL) { + ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_NULL_PARAMETER); + return 0; + } + + memset(&gcb, 0, sizeof(gcb)); + gcb.tuple_mode = 1; /* We prepare to collect the first tuple */ + gcb.ignore_unknown_default = 0; gcb.gidmax = GROUPLIST_INCREMENT; + gcb.tplmax = GROUPLIST_INCREMENT; + gcb.ksidmax = GROUPLIST_INCREMENT; + gcb.ctx = ctx; + + /* Prepare initial chunks of memory for groups, tuples and keyshares groupIDs */ gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr)); if (gcb.gid_arr == NULL) - return 0; - gcb.ctx = ctx; - if (!CONF_parse_list(str, ':', 1, gid_cb, &gcb)) goto end; - if (pext == NULL) { - ret = 1; + gcb.tuplcnt_arr = OPENSSL_malloc(gcb.tplmax * sizeof(*gcb.tuplcnt_arr)); + if (gcb.tuplcnt_arr == NULL) + goto end; + gcb.tuplcnt_arr[0] = 0; + gcb.ksid_arr = OPENSSL_malloc(gcb.ksidmax * sizeof(*gcb.ksid_arr)); + if (gcb.ksid_arr == NULL) + goto end; + + while (str[0] != '\0' && isspace((unsigned char)*str)) + str++; + if (str[0] == '\0') + goto empty_list; + + /* + * Start the (potentially recursive) tuple processing by calling CONF_parse_list + * with the TUPLE_DELIMITER_CHARACTER (which will call tuple_cb after cleaning spaces) + */ + parse_ret = CONF_parse_list(str, TUPLE_DELIMITER_CHARACTER, 1, tuple_cb, &gcb); + + if (parse_ret == 0) + goto end; + if (parse_ret == -1) { + ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT, + "Syntax error in '%s'", str); goto end; } /* - * gid_cb ensurse there are no duplicates so we can just go ahead and set - * the result + * We check whether a tuple was completly emptied by using "-" prefix + * excessively, in which case we remove the tuple */ - tmparr = OPENSSL_memdup(gcb.gid_arr, gcb.gidcnt * sizeof(*tmparr)); - if (tmparr == NULL) + for (i = j = 0; j < gcb.tplcnt; j++) { + if (gcb.tuplcnt_arr[j] == 0) + continue; + /* If there's a gap, move to first unfilled slot */ + if (j == i) + ++i; + else + gcb.tuplcnt_arr[i++] = gcb.tuplcnt_arr[j]; + } + gcb.tplcnt = i; + + if (gcb.ksidcnt > OPENSSL_CLIENT_MAX_KEY_SHARES) { + ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT, + "To many keyshares requested in '%s' (max = %d)", + str, OPENSSL_CLIENT_MAX_KEY_SHARES); goto end; - OPENSSL_free(*pext); - *pext = tmparr; - *pextlen = gcb.gidcnt; - ret = 1; + } + + /* + * For backward compatibility we let the rest of the code know that a key share + * for the first valid group should be added if no "*" prefix was used anywhere + */ + if (gcb.gidcnt > 0 && gcb.ksidcnt == 0) { + /* + * No key share group prefix character was used, hence we indicate that a single + * key share should be sent and flag that it should come from the supported_groups list + */ + gcb.ksidcnt = 1; + gcb.ksid_arr[0] = 0; + } + + empty_list: + /* + * A call to tls1_set_groups_list with any of the args (other than ctx) set + * to NULL only does a syntax check, hence we're done here and report success + */ + if (grpext == NULL || ksext == NULL || tplext == NULL || + grpextlen == NULL || ksextlen == NULL || tplextlen == NULL) { + ret = 1; + goto end; + } + + /* + * tuple_cb and gid_cb combo ensures there are no duplicates or unknown groups so we + * can just go ahead and set the results (after diposing the existing) + */ + OPENSSL_free(*grpext); + *grpext = gcb.gid_arr; + *grpextlen = gcb.gidcnt; + OPENSSL_free(*ksext); + *ksext = gcb.ksid_arr; + *ksextlen = gcb.ksidcnt; + OPENSSL_free(*tplext); + *tplext = gcb.tuplcnt_arr; + *tplextlen = gcb.tplcnt; + + return 1; + end: OPENSSL_free(gcb.gid_arr); + OPENSSL_free(gcb.tuplcnt_arr); + OPENSSL_free(gcb.ksid_arr); return ret; } /* Check a group id matches preferences */ -int tls1_check_group_id(SSL *s, uint16_t group_id, int check_own_groups) +int tls1_check_group_id(SSL_CONNECTION *s, uint16_t group_id, + int check_own_groups) { const uint16_t *groups; size_t groups_len; @@ -810,10 +1719,10 @@ int tls1_check_group_id(SSL *s, uint16_t group_id, int check_own_groups) unsigned long cid = s->s3.tmp.new_cipher->id; if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) { - if (group_id != TLSEXT_curve_P_256) + if (group_id != OSSL_TLS_GROUP_ID_secp256r1) return 0; } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) { - if (group_id != TLSEXT_curve_P_384) + if (group_id != OSSL_TLS_GROUP_ID_secp384r1) return 0; } else { /* Should never happen */ @@ -849,7 +1758,7 @@ int tls1_check_group_id(SSL *s, uint16_t group_id, int check_own_groups) return tls1_in_list(group_id, groups, groups_len); } -void tls1_get_formatlist(SSL *s, const unsigned char **pformats, +void tls1_get_formatlist(SSL_CONNECTION *s, const unsigned char **pformats, size_t *num_formats) { /* @@ -869,7 +1778,7 @@ void tls1_get_formatlist(SSL *s, const unsigned char **pformats, } /* Check a key is compatible with compression extension */ -static int tls1_check_pkey_comp(SSL *s, EVP_PKEY *pkey) +static int tls1_check_pkey_comp(SSL_CONNECTION *s, EVP_PKEY *pkey) { unsigned char comp_id; size_t i; @@ -886,7 +1795,7 @@ static int tls1_check_pkey_comp(SSL *s, EVP_PKEY *pkey) return 0; if (point_conv == POINT_CONVERSION_UNCOMPRESSED) { comp_id = TLSEXT_ECPOINTFORMAT_uncompressed; - } else if (SSL_IS_TLS13(s)) { + } else if (SSL_CONNECTION_IS_TLS13(s)) { /* * ec_point_formats extension is not used in TLSv1.3 so we ignore * this check. @@ -930,7 +1839,7 @@ static uint16_t tls1_get_group_id(EVP_PKEY *pkey) * Check cert parameters compatible with extensions: currently just checks EC * certificates have compatible curves and compression. */ -static int tls1_check_cert_param(SSL *s, X509 *x, int check_ee_md) +static int tls1_check_cert_param(SSL_CONNECTION *s, X509 *x, int check_ee_md) { uint16_t group_id; EVP_PKEY *pkey; @@ -959,15 +1868,15 @@ static int tls1_check_cert_param(SSL *s, X509 *x, int check_ee_md) size_t i; /* Check to see we have necessary signing algorithm */ - if (group_id == TLSEXT_curve_P_256) + if (group_id == OSSL_TLS_GROUP_ID_secp256r1) check_md = NID_ecdsa_with_SHA256; - else if (group_id == TLSEXT_curve_P_384) + else if (group_id == OSSL_TLS_GROUP_ID_secp384r1) check_md = NID_ecdsa_with_SHA384; else return 0; /* Should never happen */ for (i = 0; i < s->shared_sigalgslen; i++) { if (check_md == s->shared_sigalgs[i]->sigandhash) - return 1;; + return 1; } return 0; } @@ -984,7 +1893,7 @@ static int tls1_check_cert_param(SSL *s, X509 *x, int check_ee_md) * * Returns 0 when the cipher can't be used or 1 when it can. */ -int tls1_check_ec_tmp_key(SSL *s, unsigned long cid) +int tls1_check_ec_tmp_key(SSL_CONNECTION *s, unsigned long cid) { /* If not Suite B just need a shared group */ if (!tls1_suiteb(s)) @@ -994,20 +1903,26 @@ int tls1_check_ec_tmp_key(SSL *s, unsigned long cid) * curves permitted. */ if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) - return tls1_check_group_id(s, TLSEXT_curve_P_256, 1); + return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp256r1, 1); if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) - return tls1_check_group_id(s, TLSEXT_curve_P_384, 1); + return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp384r1, 1); return 0; } /* Default sigalg schemes */ static const uint16_t tls12_sigalgs[] = { + TLSEXT_SIGALG_mldsa65, + TLSEXT_SIGALG_mldsa87, + TLSEXT_SIGALG_mldsa44, TLSEXT_SIGALG_ecdsa_secp256r1_sha256, TLSEXT_SIGALG_ecdsa_secp384r1_sha384, TLSEXT_SIGALG_ecdsa_secp521r1_sha512, TLSEXT_SIGALG_ed25519, TLSEXT_SIGALG_ed448, + TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256, + TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384, + TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512, TLSEXT_SIGALG_rsa_pss_pss_sha256, TLSEXT_SIGALG_rsa_pss_pss_sha384, @@ -1049,104 +1964,191 @@ static const uint16_t suiteb_sigalgs[] = { }; static const SIGALG_LOOKUP sigalg_lookup_tbl[] = { - {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256, + {TLSEXT_SIGALG_ecdsa_secp256r1_sha256_name, + "ECDSA+SHA256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256, NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, - NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1}, - {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384, + NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1, 0, + TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0}, + {TLSEXT_SIGALG_ecdsa_secp384r1_sha384_name, + "ECDSA+SHA384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384, NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, - NID_ecdsa_with_SHA384, NID_secp384r1, 1}, - {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512, + NID_ecdsa_with_SHA384, NID_secp384r1, 1, 0, + TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0}, + {TLSEXT_SIGALG_ecdsa_secp521r1_sha512_name, + "ECDSA+SHA512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512, NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, - NID_ecdsa_with_SHA512, NID_secp521r1, 1}, - {"ed25519", TLSEXT_SIGALG_ed25519, + NID_ecdsa_with_SHA512, NID_secp521r1, 1, 0, + TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0}, + + {TLSEXT_SIGALG_ed25519_name, + NULL, TLSEXT_SIGALG_ed25519, NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519, - NID_undef, NID_undef, 1}, - {"ed448", TLSEXT_SIGALG_ed448, + NID_undef, NID_undef, 1, 0, + TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0}, + {TLSEXT_SIGALG_ed448_name, + NULL, TLSEXT_SIGALG_ed448, NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448, - NID_undef, NID_undef, 1}, - {NULL, TLSEXT_SIGALG_ecdsa_sha224, + NID_undef, NID_undef, 1, 0, + TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0}, + + {TLSEXT_SIGALG_ecdsa_sha224_name, + "ECDSA+SHA224", TLSEXT_SIGALG_ecdsa_sha224, NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, - NID_ecdsa_with_SHA224, NID_undef, 1}, - {NULL, TLSEXT_SIGALG_ecdsa_sha1, + NID_ecdsa_with_SHA224, NID_undef, 1, 0, + TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION}, + {TLSEXT_SIGALG_ecdsa_sha1_name, + "ECDSA+SHA1", TLSEXT_SIGALG_ecdsa_sha1, NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, - NID_ecdsa_with_SHA1, NID_undef, 1}, - {"rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256, + NID_ecdsa_with_SHA1, NID_undef, 1, 0, + TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION}, + + {TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_name, + TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_alias, + TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256, + NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, + NID_ecdsa_with_SHA256, NID_brainpoolP256r1, 1, 0, + TLS1_3_VERSION, 0, -1, -1}, + {TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_name, + TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_alias, + TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384, + NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, + NID_ecdsa_with_SHA384, NID_brainpoolP384r1, 1, 0, + TLS1_3_VERSION, 0, -1, -1}, + {TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_name, + TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_alias, + TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512, + NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, + NID_ecdsa_with_SHA512, NID_brainpoolP512r1, 1, 0, + TLS1_3_VERSION, 0, -1, -1}, + + {TLSEXT_SIGALG_rsa_pss_rsae_sha256_name, + "PSS+SHA256", TLSEXT_SIGALG_rsa_pss_rsae_sha256, NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA, - NID_undef, NID_undef, 1}, - {"rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384, + NID_undef, NID_undef, 1, 0, + TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0}, + {TLSEXT_SIGALG_rsa_pss_rsae_sha384_name, + "PSS+SHA384", TLSEXT_SIGALG_rsa_pss_rsae_sha384, NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA, - NID_undef, NID_undef, 1}, - {"rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512, + NID_undef, NID_undef, 1, 0, + TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0}, + {TLSEXT_SIGALG_rsa_pss_rsae_sha512_name, + "PSS+SHA512", TLSEXT_SIGALG_rsa_pss_rsae_sha512, NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA, - NID_undef, NID_undef, 1}, - {"rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256, + NID_undef, NID_undef, 1, 0, + TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0}, + + {TLSEXT_SIGALG_rsa_pss_pss_sha256_name, + NULL, TLSEXT_SIGALG_rsa_pss_pss_sha256, NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN, - NID_undef, NID_undef, 1}, - {"rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384, + NID_undef, NID_undef, 1, 0, + TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0}, + {TLSEXT_SIGALG_rsa_pss_pss_sha384_name, + NULL, TLSEXT_SIGALG_rsa_pss_pss_sha384, NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN, - NID_undef, NID_undef, 1}, - {"rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512, + NID_undef, NID_undef, 1, 0, + TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0}, + {TLSEXT_SIGALG_rsa_pss_pss_sha512_name, + NULL, TLSEXT_SIGALG_rsa_pss_pss_sha512, NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN, - NID_undef, NID_undef, 1}, - {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256, + NID_undef, NID_undef, 1, 0, + TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0}, + + {TLSEXT_SIGALG_rsa_pkcs1_sha256_name, + "RSA+SHA256", TLSEXT_SIGALG_rsa_pkcs1_sha256, NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, - NID_sha256WithRSAEncryption, NID_undef, 1}, - {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384, + NID_sha256WithRSAEncryption, NID_undef, 1, 0, + TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0}, + {TLSEXT_SIGALG_rsa_pkcs1_sha384_name, + "RSA+SHA384", TLSEXT_SIGALG_rsa_pkcs1_sha384, NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, - NID_sha384WithRSAEncryption, NID_undef, 1}, - {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512, + NID_sha384WithRSAEncryption, NID_undef, 1, 0, + TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0}, + {TLSEXT_SIGALG_rsa_pkcs1_sha512_name, + "RSA+SHA512", TLSEXT_SIGALG_rsa_pkcs1_sha512, NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, - NID_sha512WithRSAEncryption, NID_undef, 1}, - {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224, + NID_sha512WithRSAEncryption, NID_undef, 1, 0, + TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0}, + + {TLSEXT_SIGALG_rsa_pkcs1_sha224_name, + "RSA+SHA224", TLSEXT_SIGALG_rsa_pkcs1_sha224, NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, - NID_sha224WithRSAEncryption, NID_undef, 1}, - {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1, + NID_sha224WithRSAEncryption, NID_undef, 1, 0, + TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION}, + {TLSEXT_SIGALG_rsa_pkcs1_sha1_name, + "RSA+SHA1", TLSEXT_SIGALG_rsa_pkcs1_sha1, NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, - NID_sha1WithRSAEncryption, NID_undef, 1}, - {NULL, TLSEXT_SIGALG_dsa_sha256, + NID_sha1WithRSAEncryption, NID_undef, 1, 0, + TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION}, + + {TLSEXT_SIGALG_dsa_sha256_name, + "DSA+SHA256", TLSEXT_SIGALG_dsa_sha256, NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, - NID_dsa_with_SHA256, NID_undef, 1}, - {NULL, TLSEXT_SIGALG_dsa_sha384, + NID_dsa_with_SHA256, NID_undef, 1, 0, + TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION}, + {TLSEXT_SIGALG_dsa_sha384_name, + "DSA+SHA384", TLSEXT_SIGALG_dsa_sha384, NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, - NID_undef, NID_undef, 1}, - {NULL, TLSEXT_SIGALG_dsa_sha512, + NID_undef, NID_undef, 1, 0, + TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION}, + {TLSEXT_SIGALG_dsa_sha512_name, + "DSA+SHA512", TLSEXT_SIGALG_dsa_sha512, NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, - NID_undef, NID_undef, 1}, - {NULL, TLSEXT_SIGALG_dsa_sha224, + NID_undef, NID_undef, 1, 0, + TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION}, + {TLSEXT_SIGALG_dsa_sha224_name, + "DSA+SHA224", TLSEXT_SIGALG_dsa_sha224, NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, - NID_undef, NID_undef, 1}, - {NULL, TLSEXT_SIGALG_dsa_sha1, + NID_undef, NID_undef, 1, 0, + TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION}, + {TLSEXT_SIGALG_dsa_sha1_name, + "DSA+SHA1", TLSEXT_SIGALG_dsa_sha1, NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, - NID_dsaWithSHA1, NID_undef, 1}, + NID_dsaWithSHA1, NID_undef, 1, 0, + TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION}, + #ifndef OPENSSL_NO_GOST - {NULL, TLSEXT_SIGALG_gostr34102012_256_intrinsic, + {TLSEXT_SIGALG_gostr34102012_256_intrinsic_alias, /* RFC9189 */ + TLSEXT_SIGALG_gostr34102012_256_intrinsic_name, + TLSEXT_SIGALG_gostr34102012_256_intrinsic, NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX, NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256, - NID_undef, NID_undef, 1}, - {NULL, TLSEXT_SIGALG_gostr34102012_512_intrinsic, + NID_undef, NID_undef, 1, 0, + TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION}, + {TLSEXT_SIGALG_gostr34102012_256_intrinsic_alias, /* RFC9189 */ + TLSEXT_SIGALG_gostr34102012_256_intrinsic_name, + TLSEXT_SIGALG_gostr34102012_512_intrinsic, NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX, NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512, - NID_undef, NID_undef, 1}, - {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256, + NID_undef, NID_undef, 1, 0, + TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION}, + + {TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256_name, + NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256, NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX, NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256, - NID_undef, NID_undef, 1}, - {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512, + NID_undef, NID_undef, 1, 0, + TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION}, + {TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512_name, + NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512, NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX, NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512, - NID_undef, NID_undef, 1}, - {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411, + NID_undef, NID_undef, 1, 0, + TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION}, + {TLSEXT_SIGALG_gostr34102001_gostr3411_name, + NULL, TLSEXT_SIGALG_gostr34102001_gostr3411, NID_id_GostR3411_94, SSL_MD_GOST94_IDX, NID_id_GostR3410_2001, SSL_PKEY_GOST01, - NID_undef, NID_undef, 1} + NID_undef, NID_undef, 1, 0, + TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION}, #endif }; /* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */ static const SIGALG_LOOKUP legacy_rsa_sigalg = { - "rsa_pkcs1_md5_sha1", 0, + "rsa_pkcs1_md5_sha1", NULL, 0, NID_md5_sha1, SSL_MD_MD5_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, - NID_undef, NID_undef, 1 + NID_undef, NID_undef, 1, 0, + TLS1_VERSION, TLS1_2_VERSION, DTLS1_VERSION, DTLS1_2_VERSION }; /* @@ -1165,19 +2167,33 @@ static const uint16_t tls_default_sigalg[] = { 0, /* SSL_PKEY_ED448 */ }; -int ssl_setup_sig_algs(SSL_CTX *ctx) +int ssl_setup_sigalgs(SSL_CTX *ctx) { - size_t i; + size_t i, cache_idx, sigalgs_len, enabled; const SIGALG_LOOKUP *lu; - SIGALG_LOOKUP *cache - = OPENSSL_malloc(sizeof(*lu) * OSSL_NELEM(sigalg_lookup_tbl)); + SIGALG_LOOKUP *cache = NULL; + uint16_t *tls12_sigalgs_list = NULL; EVP_PKEY *tmpkey = EVP_PKEY_new(); + int istls; int ret = 0; + if (ctx == NULL) + goto err; + + istls = !SSL_CTX_IS_DTLS(ctx); + + sigalgs_len = OSSL_NELEM(sigalg_lookup_tbl) + ctx->sigalg_list_len; + + cache = OPENSSL_zalloc(sizeof(const SIGALG_LOOKUP) * sigalgs_len); if (cache == NULL || tmpkey == NULL) goto err; + tls12_sigalgs_list = OPENSSL_zalloc(sizeof(uint16_t) * sigalgs_len); + if (tls12_sigalgs_list == NULL) + goto err; + ERR_set_mark(); + /* First fill cache and tls12_sigalgs list from legacy algorithm list */ for (i = 0, lu = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) { EVP_PKEY_CTX *pctx; @@ -1194,53 +2210,183 @@ int ssl_setup_sig_algs(SSL_CTX *ctx) */ if (lu->hash != NID_undef && ctx->ssl_digest_methods[lu->hash_idx] == NULL) { - cache[i].enabled = 0; + cache[i].available = 0; continue; } if (!EVP_PKEY_set_type(tmpkey, lu->sig)) { - cache[i].enabled = 0; + cache[i].available = 0; continue; } pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq); /* If unable to create pctx we assume the sig algorithm is unavailable */ if (pctx == NULL) - cache[i].enabled = 0; + cache[i].available = 0; EVP_PKEY_CTX_free(pctx); } + + /* Now complete cache and tls12_sigalgs list with provider sig information */ + cache_idx = OSSL_NELEM(sigalg_lookup_tbl); + for (i = 0; i < ctx->sigalg_list_len; i++) { + TLS_SIGALG_INFO si = ctx->sigalg_list[i]; + cache[cache_idx].name = si.name; + cache[cache_idx].name12 = si.sigalg_name; + cache[cache_idx].sigalg = si.code_point; + tls12_sigalgs_list[cache_idx] = si.code_point; + cache[cache_idx].hash = si.hash_name?OBJ_txt2nid(si.hash_name):NID_undef; + cache[cache_idx].hash_idx = ssl_get_md_idx(cache[cache_idx].hash); + cache[cache_idx].sig = OBJ_txt2nid(si.sigalg_name); + cache[cache_idx].sig_idx = i + SSL_PKEY_NUM; + cache[cache_idx].sigandhash = OBJ_txt2nid(si.sigalg_name); + cache[cache_idx].curve = NID_undef; + cache[cache_idx].mintls = TLS1_3_VERSION; + cache[cache_idx].maxtls = TLS1_3_VERSION; + cache[cache_idx].mindtls = -1; + cache[cache_idx].maxdtls = -1; + /* Compatibility with TLS 1.3 is checked on load */ + cache[cache_idx].available = istls; + cache[cache_idx].advertise = 0; + cache_idx++; + } ERR_pop_to_mark(); + + enabled = 0; + for (i = 0; i < OSSL_NELEM(tls12_sigalgs); ++i) { + SIGALG_LOOKUP *ent = cache; + size_t j; + + for (j = 0; j < sigalgs_len; ent++, j++) { + if (ent->sigalg != tls12_sigalgs[i]) + continue; + /* Dedup by marking cache entry as default enabled. */ + if (ent->available && !ent->advertise) { + ent->advertise = 1; + tls12_sigalgs_list[enabled++] = tls12_sigalgs[i]; + } + break; + } + } + + /* Append any provider sigalgs not yet handled */ + for (i = OSSL_NELEM(sigalg_lookup_tbl); i < sigalgs_len; ++i) { + SIGALG_LOOKUP *ent = &cache[i]; + + if (ent->available && !ent->advertise) + tls12_sigalgs_list[enabled++] = ent->sigalg; + } + ctx->sigalg_lookup_cache = cache; + ctx->sigalg_lookup_cache_len = sigalgs_len; + ctx->tls12_sigalgs = tls12_sigalgs_list; + ctx->tls12_sigalgs_len = enabled; cache = NULL; + tls12_sigalgs_list = NULL; ret = 1; err: OPENSSL_free(cache); + OPENSSL_free(tls12_sigalgs_list); EVP_PKEY_free(tmpkey); return ret; } +#define SIGLEN_BUF_INCREMENT 100 + +char *SSL_get1_builtin_sigalgs(OSSL_LIB_CTX *libctx) +{ + size_t i, maxretlen = SIGLEN_BUF_INCREMENT; + const SIGALG_LOOKUP *lu; + EVP_PKEY *tmpkey = EVP_PKEY_new(); + char *retval = OPENSSL_malloc(maxretlen); + + if (retval == NULL) + return NULL; + + /* ensure retval string is NUL terminated */ + retval[0] = (char)0; + + for (i = 0, lu = sigalg_lookup_tbl; + i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) { + EVP_PKEY_CTX *pctx; + int enabled = 1; + + ERR_set_mark(); + /* Check hash is available in some provider. */ + if (lu->hash != NID_undef) { + EVP_MD *hash = EVP_MD_fetch(libctx, OBJ_nid2ln(lu->hash), NULL); + + /* If unable to create we assume the hash algorithm is unavailable */ + if (hash == NULL) { + enabled = 0; + ERR_pop_to_mark(); + continue; + } + EVP_MD_free(hash); + } + + if (!EVP_PKEY_set_type(tmpkey, lu->sig)) { + enabled = 0; + ERR_pop_to_mark(); + continue; + } + pctx = EVP_PKEY_CTX_new_from_pkey(libctx, tmpkey, NULL); + /* If unable to create pctx we assume the sig algorithm is unavailable */ + if (pctx == NULL) + enabled = 0; + ERR_pop_to_mark(); + EVP_PKEY_CTX_free(pctx); + + if (enabled) { + const char *sa = lu->name; + + if (sa != NULL) { + if (strlen(sa) + strlen(retval) + 1 >= maxretlen) { + char *tmp; + + maxretlen += SIGLEN_BUF_INCREMENT; + tmp = OPENSSL_realloc(retval, maxretlen); + if (tmp == NULL) { + OPENSSL_free(retval); + return NULL; + } + retval = tmp; + } + if (strlen(retval) > 0) + OPENSSL_strlcat(retval, ":", maxretlen); + OPENSSL_strlcat(retval, sa, maxretlen); + } else { + /* lu->name must not be NULL */ + ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR); + } + } + } + + EVP_PKEY_free(tmpkey); + return retval; +} + /* Lookup TLS signature algorithm */ -static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL *s, uint16_t sigalg) +static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL_CTX *ctx, + uint16_t sigalg) { size_t i; - const SIGALG_LOOKUP *lu; + const SIGALG_LOOKUP *lu = ctx->sigalg_lookup_cache; - for (i = 0, lu = s->ctx->sigalg_lookup_cache; - /* cache should have the same number of elements as sigalg_lookup_tbl */ - i < OSSL_NELEM(sigalg_lookup_tbl); - lu++, i++) { + for (i = 0; i < ctx->sigalg_lookup_cache_len; lu++, i++) { if (lu->sigalg == sigalg) { - if (!lu->enabled) + if (!lu->available) return NULL; return lu; } } return NULL; } + /* Lookup hash: return 0 if invalid or not enabled */ int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd) { const EVP_MD *md; + if (lu == NULL) return 0; /* lu->hash == NID_undef means no associated digest */ @@ -1273,6 +2419,8 @@ static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey, return 0; if (!tls1_lookup_md(ctx, lu, &md) || md == NULL) return 0; + if (EVP_MD_get_size(md) <= 0) + return 0; if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md)) return 0; return 1; @@ -1285,15 +2433,17 @@ static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey, * certificate type from |s| will be used. * Returns the signature algorithm to use, or NULL on error. */ -static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL *s, int idx) +static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL_CONNECTION *s, + int idx) { if (idx == -1) { if (s->server) { size_t i; /* Work out index corresponding to ciphersuite */ - for (i = 0; i < SSL_PKEY_NUM; i++) { - const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(i); + for (i = 0; i < s->ssl_pkey_num; i++) { + const SSL_CERT_LOOKUP *clu + = ssl_cert_lookup_by_idx(i, SSL_CONNECTION_GET_CTX(s)); if (clu == NULL) continue; @@ -1338,12 +2488,15 @@ static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL *s, int idx) } if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg)) return NULL; + if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) { - const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, tls_default_sigalg[idx]); + const SIGALG_LOOKUP *lu = + tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), + tls_default_sigalg[idx]); if (lu == NULL) return NULL; - if (!tls1_lookup_md(s->ctx, lu, NULL)) + if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, NULL)) return NULL; if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu)) return NULL; @@ -1354,12 +2507,12 @@ static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL *s, int idx) return &legacy_rsa_sigalg; } /* Set peer sigalg based key type */ -int tls1_set_peer_legacy_sigalg(SSL *s, const EVP_PKEY *pkey) +int tls1_set_peer_legacy_sigalg(SSL_CONNECTION *s, const EVP_PKEY *pkey) { size_t idx; const SIGALG_LOOKUP *lu; - if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL) + if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL) return 0; lu = tls1_get_legacy_sigalg(s, idx); if (lu == NULL) @@ -1368,7 +2521,7 @@ int tls1_set_peer_legacy_sigalg(SSL *s, const EVP_PKEY *pkey) return 1; } -size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs) +size_t tls12_get_psigalgs(SSL_CONNECTION *s, int sent, const uint16_t **psigs) { /* * If Suite B mode use Suite B sigalgs only, ignore any other @@ -1399,8 +2552,8 @@ size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs) *psigs = s->cert->conf_sigalgs; return s->cert->conf_sigalgslen; } else { - *psigs = tls12_sigalgs; - return OSSL_NELEM(tls12_sigalgs); + *psigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs; + return SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len; } } @@ -1408,7 +2561,7 @@ size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs) * Called by servers only. Checks that we have a sig alg that supports the * specified EC curve. */ -int tls_check_sigalg_curve(const SSL *s, int curve) +int tls_check_sigalg_curve(const SSL_CONNECTION *s, int curve) { const uint16_t *sigs; size_t siglen, i; @@ -1417,12 +2570,13 @@ int tls_check_sigalg_curve(const SSL *s, int curve) sigs = s->cert->conf_sigalgs; siglen = s->cert->conf_sigalgslen; } else { - sigs = tls12_sigalgs; - siglen = OSSL_NELEM(tls12_sigalgs); + sigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs; + siglen = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len; } for (i = 0; i < siglen; i++) { - const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, sigs[i]); + const SIGALG_LOOKUP *lu = + tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), sigs[i]); if (lu == NULL) continue; @@ -1452,6 +2606,8 @@ static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu) /* Security bits: half digest bits */ secbits = EVP_MD_get_size(md) * 4; + if (secbits <= 0) + return 0; /* * SHA1 and MD5 are known to be broken. Reduce security bits so that * they're no longer accepted at security level 1. The real values don't @@ -1475,15 +2631,60 @@ static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu) else if (lu->sigalg == TLSEXT_SIGALG_ed448) secbits = 224; } + /* + * For provider-based sigalgs we have secbits information available + * in the (provider-loaded) sigalg_list structure + */ + if ((secbits == 0) && (lu->sig_idx >= SSL_PKEY_NUM) + && ((lu->sig_idx - SSL_PKEY_NUM) < (int)ctx->sigalg_list_len)) { + secbits = ctx->sigalg_list[lu->sig_idx - SSL_PKEY_NUM].secbits; + } return secbits; } +static int tls_sigalg_compat(SSL_CONNECTION *sc, const SIGALG_LOOKUP *lu) +{ + int minversion, maxversion; + int minproto, maxproto; + + if (!lu->available) + return 0; + + if (SSL_CONNECTION_IS_DTLS(sc)) { + if (sc->ssl.method->version == DTLS_ANY_VERSION) { + minproto = sc->min_proto_version; + maxproto = sc->max_proto_version; + } else { + maxproto = minproto = sc->version; + } + minversion = lu->mindtls; + maxversion = lu->maxdtls; + } else { + if (sc->ssl.method->version == TLS_ANY_VERSION) { + minproto = sc->min_proto_version; + maxproto = sc->max_proto_version; + } else { + maxproto = minproto = sc->version; + } + minversion = lu->mintls; + maxversion = lu->maxtls; + } + if (minversion == -1 || maxversion == -1 + || (minversion != 0 && maxproto != 0 + && ssl_version_cmp(sc, minversion, maxproto) > 0) + || (maxversion != 0 && minproto != 0 + && ssl_version_cmp(sc, maxversion, minproto) < 0) + || !tls12_sigalg_allowed(sc, SSL_SECOP_SIGALG_SUPPORTED, lu)) + return 0; + return 1; +} + /* * Check signature algorithm is consistent with sent supported signature * algorithms and if so set relevant digest and signature scheme in * s. */ -int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey) +int tls12_check_peer_sigalg(SSL_CONNECTION *s, uint16_t sig, EVP_PKEY *pkey) { const uint16_t *sent_sigs; const EVP_MD *md = NULL; @@ -1494,10 +2695,8 @@ int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey) int secbits = 0; pkeyid = EVP_PKEY_get_id(pkey); - /* Should never happen */ - if (pkeyid == -1) - return -1; - if (SSL_IS_TLS13(s)) { + + if (SSL_CONNECTION_IS_TLS13(s)) { /* Disallow DSA for TLS 1.3 */ if (pkeyid == EVP_PKEY_DSA) { SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE); @@ -1507,20 +2706,39 @@ int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey) if (pkeyid == EVP_PKEY_RSA) pkeyid = EVP_PKEY_RSA_PSS; } - lu = tls1_lookup_sigalg(s, sig); + + /* Is this code point available and compatible with the protocol */ + lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), sig); + if (lu == NULL || !tls_sigalg_compat(s, lu)) { + SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE); + return 0; + } + + /* if this sigalg is loaded, set so far unknown pkeyid to its sig NID */ + if (pkeyid == EVP_PKEY_KEYMGMT) + pkeyid = lu->sig; + + /* Should never happen */ + if (pkeyid == -1) { + SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE); + return -1; + } + /* * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type * is consistent with signature: RSA keys can be used for RSA-PSS */ - if (lu == NULL - || (SSL_IS_TLS13(s) && (lu->hash == NID_sha1 || lu->hash == NID_sha224)) + if ((SSL_CONNECTION_IS_TLS13(s) + && (lu->hash == NID_sha1 || lu->hash == NID_sha224)) || (pkeyid != lu->sig && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) { SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE); return 0; } /* Check the sigalg is consistent with the key OID */ - if (!ssl_cert_lookup_by_nid(EVP_PKEY_get_id(pkey), &cidx) + if (!ssl_cert_lookup_by_nid( + (pkeyid == EVP_PKEY_RSA_PSS) ? EVP_PKEY_get_id(pkey) : pkeyid, + &cidx, SSL_CONNECTION_GET_CTX(s)) || lu->sig_idx != (int)cidx) { SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE); return 0; @@ -1536,7 +2754,7 @@ int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey) } /* For TLS 1.3 or Suite B check curve matches signature algorithm */ - if (SSL_IS_TLS13(s) || tls1_suiteb(s)) { + if (SSL_CONNECTION_IS_TLS13(s) || tls1_suiteb(s)) { int curve = ssl_get_EC_curve_nid(pkey); if (lu->curve != NID_undef && curve != lu->curve) { @@ -1544,7 +2762,7 @@ int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey) return 0; } } - if (!SSL_IS_TLS13(s)) { + if (!SSL_CONNECTION_IS_TLS13(s)) { /* Check curve matches extensions */ if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) { SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE); @@ -1577,7 +2795,7 @@ int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey) SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE); return 0; } - if (!tls1_lookup_md(s->ctx, lu, &md)) { + if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, &md)) { SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST); return 0; } @@ -1587,7 +2805,7 @@ int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey) */ sigalgstr[0] = (sig >> 8) & 0xff; sigalgstr[1] = sig & 0xff; - secbits = sigalg_security_bits(s->ctx, lu); + secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu); if (secbits == 0 || !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits, md != NULL ? EVP_MD_get_type(md) : NID_undef, @@ -1602,17 +2820,27 @@ int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey) int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid) { - if (s->s3.tmp.peer_sigalg == NULL) + const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); + + if (sc == NULL) return 0; - *pnid = s->s3.tmp.peer_sigalg->sig; + + if (sc->s3.tmp.peer_sigalg == NULL) + return 0; + *pnid = sc->s3.tmp.peer_sigalg->sig; return 1; } int SSL_get_signature_type_nid(const SSL *s, int *pnid) { - if (s->s3.tmp.sigalg == NULL) + const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); + + if (sc == NULL) + return 0; + + if (sc->s3.tmp.sigalg == NULL) return 0; - *pnid = s->s3.tmp.sigalg->sig; + *pnid = sc->s3.tmp.sigalg->sig; return 1; } @@ -1626,7 +2854,7 @@ int SSL_get_signature_type_nid(const SSL *s, int *pnid) * * Call ssl_cipher_disabled() to check that it's enabled or not. */ -int ssl_set_client_disabled(SSL *s) +int ssl_set_client_disabled(SSL_CONNECTION *s) { s->s3.tmp.mask_a = 0; s->s3.tmp.mask_k = 0; @@ -1659,42 +2887,53 @@ int ssl_set_client_disabled(SSL *s) * * Returns 1 when it's disabled, 0 when enabled. */ -int ssl_cipher_disabled(const SSL *s, const SSL_CIPHER *c, int op, int ecdhe) +int ssl_cipher_disabled(const SSL_CONNECTION *s, const SSL_CIPHER *c, + int op, int ecdhe) { + int minversion = SSL_CONNECTION_IS_DTLS(s) ? c->min_dtls : c->min_tls; + int maxversion = SSL_CONNECTION_IS_DTLS(s) ? c->max_dtls : c->max_tls; + if (c->algorithm_mkey & s->s3.tmp.mask_k || c->algorithm_auth & s->s3.tmp.mask_a) return 1; if (s->s3.tmp.max_ver == 0) return 1; - if (!SSL_IS_DTLS(s)) { - int min_tls = c->min_tls; - /* - * For historical reasons we will allow ECHDE to be selected by a server - * in SSLv3 if we are a client - */ - if (min_tls == TLS1_VERSION && ecdhe - && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0) - min_tls = SSL3_VERSION; - - if ((min_tls > s->s3.tmp.max_ver) || (c->max_tls < s->s3.tmp.min_ver)) + if (SSL_IS_QUIC_INT_HANDSHAKE(s)) + /* For QUIC, only allow these ciphersuites. */ + switch (SSL_CIPHER_get_id(c)) { + case TLS1_3_CK_AES_128_GCM_SHA256: + case TLS1_3_CK_AES_256_GCM_SHA384: + case TLS1_3_CK_CHACHA20_POLY1305_SHA256: + break; + default: return 1; - } - if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3.tmp.max_ver) - || DTLS_VERSION_LT(c->max_dtls, s->s3.tmp.min_ver))) + } + + /* + * For historical reasons we will allow ECHDE to be selected by a server + * in SSLv3 if we are a client + */ + if (minversion == TLS1_VERSION + && ecdhe + && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0) + minversion = SSL3_VERSION; + + if (ssl_version_cmp(s, minversion, s->s3.tmp.max_ver) > 0 + || ssl_version_cmp(s, maxversion, s->s3.tmp.min_ver) < 0) return 1; return !ssl_security(s, op, c->strength_bits, 0, (void *)c); } -int tls_use_ticket(SSL *s) +int tls_use_ticket(SSL_CONNECTION *s) { if ((s->options & SSL_OP_NO_TICKET)) return 0; return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL); } -int tls1_set_server_sigalgs(SSL *s) +int tls1_set_server_sigalgs(SSL_CONNECTION *s) { size_t i; @@ -1702,9 +2941,14 @@ int tls1_set_server_sigalgs(SSL *s) OPENSSL_free(s->shared_sigalgs); s->shared_sigalgs = NULL; s->shared_sigalgslen = 0; + /* Clear certificate validity flags */ - for (i = 0; i < SSL_PKEY_NUM; i++) - s->s3.tmp.valid_flags[i] = 0; + if (s->s3.tmp.valid_flags) + memset(s->s3.tmp.valid_flags, 0, s->ssl_pkey_num * sizeof(uint32_t)); + else + s->s3.tmp.valid_flags = OPENSSL_zalloc(s->ssl_pkey_num * sizeof(uint32_t)); + if (s->s3.tmp.valid_flags == NULL) + return 0; /* * If peer sent no signature algorithms check to see if we support * the default algorithm for each certificate type @@ -1714,7 +2958,7 @@ int tls1_set_server_sigalgs(SSL *s) const uint16_t *sent_sigs; size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs); - for (i = 0; i < SSL_PKEY_NUM; i++) { + for (i = 0; i < s->ssl_pkey_num; i++) { const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i); size_t j; @@ -1751,7 +2995,8 @@ int tls1_set_server_sigalgs(SSL *s) * ret: (output) on return, if a ticket was decrypted, then this is set to * point to the resulting session. */ -SSL_TICKET_STATUS tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello, +SSL_TICKET_STATUS tls_get_ticket_from_client(SSL_CONNECTION *s, + CLIENTHELLO_MSG *hello, SSL_SESSION **ret) { size_t size; @@ -1801,8 +3046,10 @@ SSL_TICKET_STATUS tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello, * psess: (output) on return, if a ticket was decrypted, then this is set to * point to the resulting session. */ -SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick, - size_t eticklen, const unsigned char *sess_id, +SSL_TICKET_STATUS tls_decrypt_ticket(SSL_CONNECTION *s, + const unsigned char *etick, + size_t eticklen, + const unsigned char *sess_id, size_t sesslen, SSL_SESSION **psess) { SSL_SESSION *sess = NULL; @@ -1815,6 +3062,7 @@ SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick, SSL_HMAC *hctx = NULL; EVP_CIPHER_CTX *ctx = NULL; SSL_CTX *tctx = s->session_ctx; + SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s); if (eticklen == 0) { /* @@ -1824,7 +3072,7 @@ SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick, ret = SSL_TICKET_EMPTY; goto end; } - if (!SSL_IS_TLS13(s) && s->ext.session_secret_cb) { + if (!SSL_CONNECTION_IS_TLS13(s) && s->ext.session_secret_cb) { /* * Indicate that the ticket couldn't be decrypted rather than * generating the session from ticket now, trigger @@ -1862,7 +3110,8 @@ SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick, int rv = 0; if (tctx->ext.ticket_key_evp_cb != NULL) - rv = tctx->ext.ticket_key_evp_cb(s, nctick, + rv = tctx->ext.ticket_key_evp_cb(SSL_CONNECTION_GET_USER_SSL(s), + nctick, nctick + TLSEXT_KEYNAME_LENGTH, ctx, ssl_hmac_get0_EVP_MAC_CTX(hctx), @@ -1870,7 +3119,7 @@ SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick, #ifndef OPENSSL_NO_DEPRECATED_3_0 else if (tctx->ext.ticket_key_cb != NULL) /* if 0 is returned, write an empty ticket */ - rv = tctx->ext.ticket_key_cb(s, nctick, + rv = tctx->ext.ticket_key_cb(SSL_CONNECTION_GET_USER_SSL(s), nctick, nctick + TLSEXT_KEYNAME_LENGTH, ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0); #endif @@ -1894,8 +3143,8 @@ SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick, goto end; } - aes256cbc = EVP_CIPHER_fetch(s->ctx->libctx, "AES-256-CBC", - s->ctx->propq); + aes256cbc = EVP_CIPHER_fetch(sctx->libctx, "AES-256-CBC", + sctx->propq); if (aes256cbc == NULL || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key, sizeof(tctx->ext.secure->tick_hmac_key), @@ -1908,7 +3157,7 @@ SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick, goto end; } EVP_CIPHER_free(aes256cbc); - if (SSL_IS_TLS13(s)) + if (SSL_CONNECTION_IS_TLS13(s)) renew_ticket = 1; } /* @@ -1963,7 +3212,7 @@ SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick, slen += declen; p = sdec; - sess = d2i_SSL_SESSION(NULL, &p, slen); + sess = d2i_SSL_SESSION_ex(NULL, &p, slen, sctx->libctx, sctx->propq); slen -= p - sdec; OPENSSL_free(sdec); if (sess) { @@ -2015,7 +3264,8 @@ SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick, if (keyname_len > TLSEXT_KEYNAME_LENGTH) keyname_len = TLSEXT_KEYNAME_LENGTH; - retcb = s->session_ctx->decrypt_ticket_cb(s, sess, etick, keyname_len, + retcb = s->session_ctx->decrypt_ticket_cb(SSL_CONNECTION_GET_SSL(s), + sess, etick, keyname_len, ret, s->session_ctx->ticket_cb_data); switch (retcb) { @@ -2053,7 +3303,7 @@ SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick, } } - if (s->ext.session_secret_cb == NULL || SSL_IS_TLS13(s)) { + if (s->ext.session_secret_cb == NULL || SSL_CONNECTION_IS_TLS13(s)) { switch (ret) { case SSL_TICKET_NO_DECRYPT: case SSL_TICKET_SUCCESS_RENEW: @@ -2068,38 +3318,40 @@ SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick, } /* Check to see if a signature algorithm is allowed */ -static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu) +static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op, + const SIGALG_LOOKUP *lu) { unsigned char sigalgstr[2]; int secbits; - if (lu == NULL || !lu->enabled) + if (lu == NULL || !lu->available) return 0; /* DSA is not allowed in TLS 1.3 */ - if (SSL_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA) + if (SSL_CONNECTION_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA) return 0; /* * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3 * spec */ - if (!s->server && !SSL_IS_DTLS(s) && s->s3.tmp.min_ver >= TLS1_3_VERSION + if (!s->server && !SSL_CONNECTION_IS_DTLS(s) + && s->s3.tmp.min_ver >= TLS1_3_VERSION && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX || lu->hash_idx == SSL_MD_MD5_IDX || lu->hash_idx == SSL_MD_SHA224_IDX)) return 0; /* See if public key algorithm allowed */ - if (ssl_cert_is_disabled(s->ctx, lu->sig_idx)) + if (ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), lu->sig_idx)) return 0; if (lu->sig == NID_id_GostR3410_2012_256 || lu->sig == NID_id_GostR3410_2012_512 || lu->sig == NID_id_GostR3410_2001) { /* We never allow GOST sig algs on the server with TLSv1.3 */ - if (s->server && SSL_IS_TLS13(s)) + if (s->server && SSL_CONNECTION_IS_TLS13(s)) return 0; if (!s->server - && s->method->version == TLS_ANY_VERSION + && SSL_CONNECTION_GET_SSL(s)->method->version == TLS_ANY_VERSION && s->s3.tmp.max_ver >= TLS1_3_VERSION) { int i, num; STACK_OF(SSL_CIPHER) *sk; @@ -2113,7 +3365,7 @@ static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu) if (s->s3.tmp.min_ver >= TLS1_3_VERSION) return 0; - sk = SSL_get_ciphers(s); + sk = SSL_get_ciphers(SSL_CONNECTION_GET_SSL(s)); num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0; for (i = 0; i < num; i++) { const SSL_CIPHER *c; @@ -2132,7 +3384,7 @@ static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu) } /* Finally see if security callback allows it */ - secbits = sigalg_security_bits(s->ctx, lu); + secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu); sigalgstr[0] = (lu->sigalg >> 8) & 0xff; sigalgstr[1] = lu->sigalg & 0xff; return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr); @@ -2144,7 +3396,7 @@ static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu) * disabled. */ -void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op) +void ssl_set_sig_mask(uint32_t *pmask_a, SSL_CONNECTION *s, int op) { const uint16_t *sigalgs; size_t i, sigalgslen; @@ -2155,13 +3407,15 @@ void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op) */ sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs); for (i = 0; i < sigalgslen; i++, sigalgs++) { - const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *sigalgs); + const SIGALG_LOOKUP *lu = + tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *sigalgs); const SSL_CERT_LOOKUP *clu; if (lu == NULL) continue; - clu = ssl_cert_lookup_by_idx(lu->sig_idx); + clu = ssl_cert_lookup_by_idx(lu->sig_idx, + SSL_CONNECTION_GET_CTX(s)); if (clu == NULL) continue; @@ -2173,17 +3427,17 @@ void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op) *pmask_a |= disabled_mask; } -int tls12_copy_sigalgs(SSL *s, WPACKET *pkt, +int tls12_copy_sigalgs(SSL_CONNECTION *s, WPACKET *pkt, const uint16_t *psig, size_t psiglen) { size_t i; int rv = 0; for (i = 0; i < psiglen; i++, psig++) { - const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *psig); + const SIGALG_LOOKUP *lu = + tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *psig); - if (lu == NULL - || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu)) + if (lu == NULL || !tls_sigalg_compat(s, lu)) continue; if (!WPACKET_put_bytes_u16(pkt, *psig)) return 0; @@ -2191,7 +3445,7 @@ int tls12_copy_sigalgs(SSL *s, WPACKET *pkt, * If TLS 1.3 must have at least one valid TLS 1.3 message * signing algorithm: i.e. neither RSA nor SHA1/SHA224 */ - if (rv == 0 && (!SSL_IS_TLS13(s) + if (rv == 0 && (!SSL_CONNECTION_IS_TLS13(s) || (lu->sig != EVP_PKEY_RSA && lu->hash != NID_sha1 && lu->hash != NID_sha224))) @@ -2203,14 +3457,16 @@ int tls12_copy_sigalgs(SSL *s, WPACKET *pkt, } /* Given preference and allowed sigalgs set shared sigalgs */ -static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig, +static size_t tls12_shared_sigalgs(SSL_CONNECTION *s, + const SIGALG_LOOKUP **shsig, const uint16_t *pref, size_t preflen, const uint16_t *allow, size_t allowlen) { const uint16_t *ptmp, *atmp; size_t i, j, nmatch = 0; for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) { - const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *ptmp); + const SIGALG_LOOKUP *lu = + tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *ptmp); /* Skip disabled hashes or signature algorithms */ if (lu == NULL @@ -2229,7 +3485,7 @@ static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig, } /* Set shared signature algorithms for SSL structures */ -static int tls1_set_shared_sigalgs(SSL *s) +static int tls1_set_shared_sigalgs(SSL_CONNECTION *s) { const uint16_t *pref, *allow, *conf; size_t preflen, allowlen, conflen; @@ -2263,10 +3519,8 @@ static int tls1_set_shared_sigalgs(SSL *s) } nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen); if (nmatch) { - if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL) { - ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); + if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL) return 0; - } nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen); } else { salgs = NULL; @@ -2290,10 +3544,8 @@ int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen) size >>= 1; - if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL) { - ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); + if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL) return 0; - } for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++) buf[i] = stmp; @@ -2309,7 +3561,7 @@ int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen) return 1; } -int tls1_save_sigalgs(SSL *s, PACKET *pkt, int cert) +int tls1_save_sigalgs(SSL_CONNECTION *s, PACKET *pkt, int cert) { /* Extension ignored for inappropriate versions */ if (!SSL_USE_SIGALGS(s)) @@ -2329,7 +3581,7 @@ int tls1_save_sigalgs(SSL *s, PACKET *pkt, int cert) /* Set preferred digest for each key type */ -int tls1_process_sigalgs(SSL *s) +int tls1_process_sigalgs(SSL_CONNECTION *s) { size_t i; uint32_t *pvalid = s->s3.tmp.valid_flags; @@ -2337,7 +3589,7 @@ int tls1_process_sigalgs(SSL *s) if (!tls1_set_shared_sigalgs(s)) return 0; - for (i = 0; i < SSL_PKEY_NUM; i++) + for (i = 0; i < s->ssl_pkey_num; i++) pvalid[i] = 0; for (i = 0; i < s->shared_sigalgslen; i++) { @@ -2345,10 +3597,11 @@ int tls1_process_sigalgs(SSL *s) int idx = sigptr->sig_idx; /* Ignore PKCS1 based sig algs in TLSv1.3 */ - if (SSL_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA) + if (SSL_CONNECTION_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA) continue; /* If not disabled indicate we can explicitly sign */ - if (pvalid[idx] == 0 && !ssl_cert_is_disabled(s->ctx, idx)) + if (pvalid[idx] == 0 + && !ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), idx)) pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN; } return 1; @@ -2358,8 +3611,16 @@ int SSL_get_sigalgs(SSL *s, int idx, int *psign, int *phash, int *psignhash, unsigned char *rsig, unsigned char *rhash) { - uint16_t *psig = s->s3.tmp.peer_sigalgs; - size_t numsigalgs = s->s3.tmp.peer_sigalgslen; + uint16_t *psig; + size_t numsigalgs; + SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); + + if (sc == NULL) + return 0; + + psig = sc->s3.tmp.peer_sigalgs; + numsigalgs = sc->s3.tmp.peer_sigalgslen; + if (psig == NULL || numsigalgs > INT_MAX) return 0; if (idx >= 0) { @@ -2372,7 +3633,7 @@ int SSL_get_sigalgs(SSL *s, int idx, *rhash = (unsigned char)((*psig >> 8) & 0xff); if (rsig != NULL) *rsig = (unsigned char)(*psig & 0xff); - lu = tls1_lookup_sigalg(s, *psig); + lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(sc), *psig); if (psign != NULL) *psign = lu != NULL ? lu->sig : NID_undef; if (phash != NULL) @@ -2388,12 +3649,17 @@ int SSL_get_shared_sigalgs(SSL *s, int idx, unsigned char *rsig, unsigned char *rhash) { const SIGALG_LOOKUP *shsigalgs; - if (s->shared_sigalgs == NULL + SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); + + if (sc == NULL) + return 0; + + if (sc->shared_sigalgs == NULL || idx < 0 - || idx >= (int)s->shared_sigalgslen - || s->shared_sigalgslen > INT_MAX) + || idx >= (int)sc->shared_sigalgslen + || sc->shared_sigalgslen > INT_MAX) return 0; - shsigalgs = s->shared_sigalgs[idx]; + shsigalgs = sc->shared_sigalgs[idx]; if (phash != NULL) *phash = shsigalgs->hash; if (psign != NULL) @@ -2404,7 +3670,7 @@ int SSL_get_shared_sigalgs(SSL *s, int idx, *rsig = (unsigned char)(shsigalgs->sigalg & 0xff); if (rhash != NULL) *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff); - return (int)s->shared_sigalgslen; + return (int)sc->shared_sigalgslen; } /* Maximum possible number of unique entries in sigalgs array */ @@ -2414,17 +3680,19 @@ typedef struct { size_t sigalgcnt; /* TLSEXT_SIGALG_XXX values */ uint16_t sigalgs[TLS_MAX_SIGALGCNT]; + SSL_CTX *ctx; } sig_cb_st; static void get_sigorhash(int *psig, int *phash, const char *str) { - if (strcmp(str, "RSA") == 0) { + if (OPENSSL_strcasecmp(str, "RSA") == 0) { *psig = EVP_PKEY_RSA; - } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) { + } else if (OPENSSL_strcasecmp(str, "RSA-PSS") == 0 + || OPENSSL_strcasecmp(str, "PSS") == 0) { *psig = EVP_PKEY_RSA_PSS; - } else if (strcmp(str, "DSA") == 0) { + } else if (OPENSSL_strcasecmp(str, "DSA") == 0) { *psig = EVP_PKEY_DSA; - } else if (strcmp(str, "ECDSA") == 0) { + } else if (OPENSSL_strcasecmp(str, "ECDSA") == 0) { *psig = EVP_PKEY_EC; } else { *phash = OBJ_sn2nid(str); @@ -2438,12 +3706,20 @@ static void get_sigorhash(int *psig, int *phash, const char *str) static int sig_cb(const char *elem, int len, void *arg) { sig_cb_st *sarg = arg; - size_t i; + size_t i = 0; const SIGALG_LOOKUP *s; char etmp[TLS_MAX_SIGSTRING_LEN], *p; + const char *iana, *alias; int sig_alg = NID_undef, hash_alg = NID_undef; + int ignore_unknown = 0; + if (elem == NULL) return 0; + if (elem[0] == '?') { + ignore_unknown = 1; + ++elem; + --len; + } if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT) return 0; if (len > (int)(sizeof(etmp) - 1)) @@ -2461,15 +3737,33 @@ static int sig_cb(const char *elem, int len, void *arg) * in the table. */ if (p == NULL) { - for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl); - i++, s++) { - if (s->name != NULL && strcmp(etmp, s->name) == 0) { - sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg; - break; + if (sarg->ctx != NULL) { + for (i = 0; i < sarg->ctx->sigalg_lookup_cache_len; i++) { + iana = sarg->ctx->sigalg_lookup_cache[i].name; + alias = sarg->ctx->sigalg_lookup_cache[i].name12; + if ((alias != NULL && OPENSSL_strcasecmp(etmp, alias) == 0) + || OPENSSL_strcasecmp(etmp, iana) == 0) { + /* Ignore known, but unavailable sigalgs. */ + if (!sarg->ctx->sigalg_lookup_cache[i].available) + return 1; + sarg->sigalgs[sarg->sigalgcnt++] = + sarg->ctx->sigalg_lookup_cache[i].sigalg; + goto found; + } + } + } else { + /* Syntax checks use the built-in sigalgs */ + for (i = 0, s = sigalg_lookup_tbl; + i < OSSL_NELEM(sigalg_lookup_tbl); i++, s++) { + iana = s->name; + alias = s->name12; + if ((alias != NULL && OPENSSL_strcasecmp(etmp, alias) == 0) + || OPENSSL_strcasecmp(etmp, iana) == 0) { + sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg; + goto found; + } } } - if (i == OSSL_NELEM(sigalg_lookup_tbl)) - return 0; } else { *p = 0; p++; @@ -2477,24 +3771,38 @@ static int sig_cb(const char *elem, int len, void *arg) return 0; get_sigorhash(&sig_alg, &hash_alg, etmp); get_sigorhash(&sig_alg, &hash_alg, p); - if (sig_alg == NID_undef || hash_alg == NID_undef) - return 0; - for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl); - i++, s++) { - if (s->hash == hash_alg && s->sig == sig_alg) { - sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg; - break; + if (sig_alg != NID_undef && hash_alg != NID_undef) { + if (sarg->ctx != NULL) { + for (i = 0; i < sarg->ctx->sigalg_lookup_cache_len; i++) { + s = &sarg->ctx->sigalg_lookup_cache[i]; + if (s->hash == hash_alg && s->sig == sig_alg) { + /* Ignore known, but unavailable sigalgs. */ + if (!sarg->ctx->sigalg_lookup_cache[i].available) + return 1; + sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg; + goto found; + } + } + } else { + for (i = 0; i < OSSL_NELEM(sigalg_lookup_tbl); i++) { + s = &sigalg_lookup_tbl[i]; + if (s->hash == hash_alg && s->sig == sig_alg) { + sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg; + goto found; + } + } } } - if (i == OSSL_NELEM(sigalg_lookup_tbl)) - return 0; } + /* Ignore unknown algorithms if ignore_unknown */ + return ignore_unknown; - /* Reject duplicates */ + found: + /* Ignore duplicates */ for (i = 0; i < sarg->sigalgcnt - 1; i++) { if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) { sarg->sigalgcnt--; - return 0; + return 1; } } return 1; @@ -2504,12 +3812,20 @@ static int sig_cb(const char *elem, int len, void *arg) * Set supported signature algorithms based on a colon separated list of the * form sig+hash e.g. RSA+SHA512:DSA+SHA512 */ -int tls1_set_sigalgs_list(CERT *c, const char *str, int client) +int tls1_set_sigalgs_list(SSL_CTX *ctx, CERT *c, const char *str, int client) { sig_cb_st sig; sig.sigalgcnt = 0; + + if (ctx != NULL) + sig.ctx = ctx; if (!CONF_parse_list(str, ':', 1, sig_cb, &sig)) return 0; + if (sig.sigalgcnt == 0) { + ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT, + "No valid signature algorithms in '%s'", str); + return 0; + } if (c == NULL) return 1; return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client); @@ -2520,10 +3836,8 @@ int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen, { uint16_t *sigalgs; - if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL) { - ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); + if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL) return 0; - } memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs)); if (client) { @@ -2546,10 +3860,8 @@ int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client) if (salglen & 1) return 0; - if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL) { - ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); + if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL) return 0; - } for (i = 0, sptr = sigalgs; i < salglen; i += 2) { size_t j; const SIGALG_LOOKUP *curr; @@ -2585,19 +3897,30 @@ int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client) return 0; } -static int tls1_check_sig_alg(SSL *s, X509 *x, int default_nid) +static int tls1_check_sig_alg(SSL_CONNECTION *s, X509 *x, int default_nid) { int sig_nid, use_pc_sigalgs = 0; size_t i; const SIGALG_LOOKUP *sigalg; size_t sigalgslen; - if (default_nid == -1) + + /*- + * RFC 8446, section 4.2.3: + * + * The signatures on certificates that are self-signed or certificates + * that are trust anchors are not validated, since they begin a + * certification path (see [RFC5280], Section 3.2). A certificate that + * begins a certification path MAY use a signature algorithm that is not + * advertised as being supported in the "signature_algorithms" + * extension. + */ + if (default_nid == -1 || X509_self_signed(x, 0)) return 1; sig_nid = X509_get_signature_nid(x); if (default_nid) return sig_nid == default_nid ? 1 : 0; - if (SSL_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) { + if (SSL_CONNECTION_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) { /* * If we're in TLSv1.3 then we only get here if we're checking the * chain. If the peer has specified peer_cert_sigalgs then we use them @@ -2609,10 +3932,33 @@ static int tls1_check_sig_alg(SSL *s, X509 *x, int default_nid) sigalgslen = s->shared_sigalgslen; } for (i = 0; i < sigalgslen; i++) { + int mdnid, pknid; + sigalg = use_pc_sigalgs - ? tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i]) + ? tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), + s->s3.tmp.peer_cert_sigalgs[i]) : s->shared_sigalgs[i]; - if (sigalg != NULL && sig_nid == sigalg->sigandhash) + if (sigalg == NULL) + continue; + if (sig_nid == sigalg->sigandhash) + return 1; + if (sigalg->sig != EVP_PKEY_RSA_PSS) + continue; + /* + * Accept RSA PKCS#1 signatures in certificates when the signature + * algorithms include RSA-PSS with a matching digest algorithm. + * + * When a TLS 1.3 peer inadvertently omits the legacy RSA PKCS#1 code + * points, and we're doing strict checking of the certificate chain (in + * a cert_cb via SSL_check_chain()) we may then reject RSA signed + * certificates in the chain, but the TLS requirement on PSS should not + * extend to certificates. Though the peer can in fact list the legacy + * sigalgs for just this purpose, it is not likely that a better chain + * signed with RSA-PSS is available. + */ + if (!OBJ_find_sigid_algs(sig_nid, &mdnid, &pknid)) + continue; + if (pknid == EVP_PKEY_RSA && mdnid == sigalg->hash) return 1; } return 0; @@ -2647,8 +3993,8 @@ static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x) (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \ | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE) -int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain, - int idx) +int tls1_check_chain(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pk, + STACK_OF(X509) *chain, int idx) { int i; int rv = 0; @@ -2657,9 +4003,16 @@ int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain, CERT *c = s->cert; uint32_t *pvalid; unsigned int suiteb_flags = tls1_suiteb(s); - /* idx == -1 means checking server chains */ + + /* + * Meaning of idx: + * idx == -1 means SSL_check_chain() invocation + * idx == -2 means checking client certificate chains + * idx >= 0 means checking SSL_PKEY index + * + * For RPK, where there may be no cert, we ignore -1 + */ if (idx != -1) { - /* idx == -2 means checking client certificate chains */ if (idx == -2) { cpk = c->key; idx = (int)(cpk - c->pkeys); @@ -2670,16 +4023,23 @@ int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain, pk = cpk->privatekey; chain = cpk->chain; strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT; + if (tls12_rpk_and_privkey(s, idx)) { + if (EVP_PKEY_is_a(pk, "EC") && !tls1_check_pkey_comp(s, pk)) + return 0; + *pvalid = rv = CERT_PKEY_RPK; + return rv; + } /* If no cert or key, forget it */ - if (!x || !pk) + if (x == NULL || pk == NULL) goto end; } else { size_t certidx; - if (!x || !pk) + if (x == NULL || pk == NULL) return 0; - if (ssl_cert_lookup_by_pkey(pk, &certidx) == NULL) + if (ssl_cert_lookup_by_pkey(pk, &certidx, + SSL_CONNECTION_GET_CTX(s)) == NULL) return 0; idx = certidx; pvalid = s->s3.tmp.valid_flags + idx; @@ -2706,9 +4066,11 @@ int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain, * Check all signature algorithms are consistent with signature * algorithms extension if TLS 1.2 or later and strict mode. */ - if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) { + if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION + && strict_mode) { int default_nid; int rsign = 0; + if (s->s3.tmp.peer_cert_sigalgs != NULL || s->s3.tmp.peer_sigalgs != NULL) { default_nid = 0; @@ -2758,7 +4120,8 @@ int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain, size_t j; const uint16_t *p = c->conf_sigalgs; for (j = 0; j < c->conf_sigalgslen; j++, p++) { - const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *p); + const SIGALG_LOOKUP *lu = + tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *p); if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign) break; @@ -2771,7 +4134,7 @@ int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain, } } /* Check signature algorithm of each cert in chain */ - if (SSL_IS_TLS13(s)) { + if (SSL_CONNECTION_IS_TLS13(s)) { /* * We only get here if the application has called SSL_check_chain(), * so check_flags is always set. @@ -2872,7 +4235,7 @@ int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain, end: - if (TLS1_get_version(s) >= TLS1_2_VERSION) + if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION) rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN); else rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN; @@ -2894,7 +4257,7 @@ int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain, } /* Set validity of certificates in an SSL structure */ -void tls1_set_cert_validity(SSL *s) +void tls1_set_cert_validity(SSL_CONNECTION *s) { tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA); tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN); @@ -2910,10 +4273,15 @@ void tls1_set_cert_validity(SSL *s) /* User level utility function to check a chain is suitable */ int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain) { - return tls1_check_chain(s, x, pk, chain, -1); + SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); + + if (sc == NULL) + return 0; + + return tls1_check_chain(sc, x, pk, chain, -1); } -EVP_PKEY *ssl_get_auto_dh(SSL *s) +EVP_PKEY *ssl_get_auto_dh(SSL_CONNECTION *s) { EVP_PKEY *dhp = NULL; BIGNUM *p; @@ -2921,6 +4289,7 @@ EVP_PKEY *ssl_get_auto_dh(SSL *s) EVP_PKEY_CTX *pctx = NULL; OSSL_PARAM_BLD *tmpl = NULL; OSSL_PARAM *params = NULL; + SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s); if (s->cert->dh_tmp_auto != 2) { if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) { @@ -2936,7 +4305,8 @@ EVP_PKEY *ssl_get_auto_dh(SSL *s) } /* Do not pick a prime that is too weak for the current security level */ - sec_level_bits = ssl_get_security_level_bits(s, NULL, NULL); + sec_level_bits = ssl_get_security_level_bits(SSL_CONNECTION_GET_SSL(s), + NULL, NULL); if (dh_secbits < sec_level_bits) dh_secbits = sec_level_bits; @@ -2953,7 +4323,7 @@ EVP_PKEY *ssl_get_auto_dh(SSL *s) if (p == NULL) goto err; - pctx = EVP_PKEY_CTX_new_from_name(s->ctx->libctx, "DH", s->ctx->propq); + pctx = EVP_PKEY_CTX_new_from_name(sctx->libctx, "DH", sctx->propq); if (pctx == NULL || EVP_PKEY_fromdata_init(pctx) != 1) goto err; @@ -2977,10 +4347,12 @@ err: return dhp; } -static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op) +static int ssl_security_cert_key(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x, + int op) { int secbits = -1; EVP_PKEY *pkey = X509_get0_pubkey(x); + if (pkey) { /* * If no parameters this will return -1 and fail using the default @@ -2990,16 +4362,18 @@ static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op) */ secbits = EVP_PKEY_get_security_bits(pkey); } - if (s) + if (s != NULL) return ssl_security(s, op, secbits, 0, x); else return ssl_ctx_security(ctx, op, secbits, 0, x); } -static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op) +static int ssl_security_cert_sig(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x, + int op) { /* Lookup signature algorithm digest */ int secbits, nid, pknid; + /* Don't check signature if self signed */ if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0) return 1; @@ -3008,13 +4382,14 @@ static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op) /* If digest NID not defined use signature NID */ if (nid == NID_undef) nid = pknid; - if (s) + if (s != NULL) return ssl_security(s, op, secbits, nid, x); else return ssl_ctx_security(ctx, op, secbits, nid, x); } -int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee) +int ssl_security_cert(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x, int vfy, + int is_ee) { if (vfy) vfy = SSL_SECOP_PEER; @@ -3036,9 +4411,11 @@ int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee) * one to the peer. Return values: 1 if ok otherwise error code to use */ -int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy) +int ssl_security_cert_chain(SSL_CONNECTION *s, STACK_OF(X509) *sk, + X509 *x, int vfy) { int rv, start_idx, i; + if (x == NULL) { x = sk_X509_value(sk, 0); if (x == NULL) @@ -3065,10 +4442,12 @@ int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy) * with the signature algorithm "lu" and return index of certificate. */ -static int tls12_get_cert_sigalg_idx(const SSL *s, const SIGALG_LOOKUP *lu) +static int tls12_get_cert_sigalg_idx(const SSL_CONNECTION *s, + const SIGALG_LOOKUP *lu) { int sig_idx = lu->sig_idx; - const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx); + const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx, + SSL_CONNECTION_GET_CTX(s)); /* If not recognised or not supported by cipher mask it is not suitable */ if (clu == NULL @@ -3077,6 +4456,10 @@ static int tls12_get_cert_sigalg_idx(const SSL *s, const SIGALG_LOOKUP *lu) && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0)) return -1; + /* If doing RPK, the CERT_PKEY won't be "valid" */ + if (tls12_rpk_and_privkey(s, sig_idx)) + return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_RPK ? sig_idx : -1; + return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1; } @@ -3086,13 +4469,14 @@ static int tls12_get_cert_sigalg_idx(const SSL *s, const SIGALG_LOOKUP *lu) * the key. * Returns true if the cert is usable and false otherwise. */ -static int check_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x, - EVP_PKEY *pkey) +static int check_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, + X509 *x, EVP_PKEY *pkey) { const SIGALG_LOOKUP *lu; int mdnid, pknid, supported; size_t i; const char *mdname = NULL; + SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s); /* * If the given EVP_PKEY cannot support signing with this digest, @@ -3100,9 +4484,9 @@ static int check_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x, */ if (sig->hash != NID_undef) mdname = OBJ_nid2sn(sig->hash); - supported = EVP_PKEY_digestsign_supports_digest(pkey, s->ctx->libctx, + supported = EVP_PKEY_digestsign_supports_digest(pkey, sctx->libctx, mdname, - s->ctx->propq); + sctx->propq); if (supported <= 0) return 0; @@ -3114,7 +4498,8 @@ static int check_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x, if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL)) return 0; for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) { - lu = tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i]); + lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), + s->s3.tmp.peer_cert_sigalgs[i]); if (lu == NULL) continue; @@ -3144,7 +4529,7 @@ static int check_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x, * the signature_algorithm_cert restrictions sent by the peer (if any). * Returns false if no usable certificate is found. */ -static int has_usable_cert(SSL *s, const SIGALG_LOOKUP *sig, int idx) +static int has_usable_cert(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, int idx) { /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */ if (idx == -1) @@ -3160,12 +4545,12 @@ static int has_usable_cert(SSL *s, const SIGALG_LOOKUP *sig, int idx) * Returns true if the supplied cert |x| and key |pkey| is usable with the * specified signature scheme |sig|, or false otherwise. */ -static int is_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x, +static int is_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, X509 *x, EVP_PKEY *pkey) { size_t idx; - if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL) + if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL) return 0; /* Check the key is consistent with the sig alg */ @@ -3180,25 +4565,28 @@ static int is_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x, * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our * available certs/keys to find one that works. */ -static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey) +static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x, + EVP_PKEY *pkey) { const SIGALG_LOOKUP *lu = NULL; size_t i; int curve = -1; EVP_PKEY *tmppkey; + SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s); /* Look for a shared sigalgs matching possible certificates */ for (i = 0; i < s->shared_sigalgslen; i++) { - lu = s->shared_sigalgs[i]; - /* Skip SHA1, SHA224, DSA and RSA if not PSS */ + lu = s->shared_sigalgs[i]; if (lu->hash == NID_sha1 || lu->hash == NID_sha224 || lu->sig == EVP_PKEY_DSA - || lu->sig == EVP_PKEY_RSA) + || lu->sig == EVP_PKEY_RSA + || !tls_sigalg_compat(s, lu)) continue; + /* Check that we have a cert, and signature_algorithms_cert */ - if (!tls1_lookup_md(s->ctx, lu, NULL)) + if (!tls1_lookup_md(sctx, lu, NULL)) continue; if ((pkey == NULL && !has_usable_cert(s, lu, -1)) || (pkey != NULL && !is_cert_usable(s, lu, x, pkey))) @@ -3214,7 +4602,7 @@ static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey) continue; } else if (lu->sig == EVP_PKEY_RSA_PSS) { /* validate that key is large enough for the signature algorithm */ - if (!rsa_pss_check_min_key_size(s->ctx, tmppkey, lu)) + if (!rsa_pss_check_min_key_size(sctx, tmppkey, lu)) continue; } break; @@ -3237,7 +4625,7 @@ static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey) * a fatal error: we will either try another certificate or not present one * to the server. In this case no error is set. */ -int tls_choose_sigalg(SSL *s, int fatalerrs) +int tls_choose_sigalg(SSL_CONNECTION *s, int fatalerrs) { const SIGALG_LOOKUP *lu = NULL; int sig_idx = -1; @@ -3245,7 +4633,7 @@ int tls_choose_sigalg(SSL *s, int fatalerrs) s->s3.tmp.cert = NULL; s->s3.tmp.sigalg = NULL; - if (SSL_IS_TLS13(s)) { + if (SSL_CONNECTION_IS_TLS13(s)) { lu = find_sig_alg(s, NULL, NULL); if (lu == NULL) { if (!fatalerrs) @@ -3265,6 +4653,7 @@ int tls_choose_sigalg(SSL *s, int fatalerrs) size_t i; if (s->s3.tmp.peer_sigalgs != NULL) { int curve = -1; + SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s); /* For Suite B need to match signature algorithm to curve */ if (tls1_suiteb(s)) @@ -3276,8 +4665,10 @@ int tls_choose_sigalg(SSL *s, int fatalerrs) * cert type */ for (i = 0; i < s->shared_sigalgslen; i++) { + /* Check the sigalg version bounds */ lu = s->shared_sigalgs[i]; - + if (!tls_sigalg_compat(s, lu)) + continue; if (s->server) { if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1) continue; @@ -3295,7 +4686,7 @@ int tls_choose_sigalg(SSL *s, int fatalerrs) /* validate that key is large enough for the signature algorithm */ EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey; - if (!rsa_pss_check_min_key_size(s->ctx, pkey, lu)) + if (!rsa_pss_check_min_key_size(sctx, pkey, lu)) continue; } if (curve == -1 || lu->curve == curve) @@ -3307,7 +4698,9 @@ int tls_choose_sigalg(SSL *s, int fatalerrs) * in supported_algorithms extension, so when we have GOST-based ciphersuite, * we have to assume GOST support. */ - if (i == s->shared_sigalgslen && s->s3.tmp.new_cipher->algorithm_auth & (SSL_aGOST01 | SSL_aGOST12)) { + if (i == s->shared_sigalgslen + && (s->s3.tmp.new_cipher->algorithm_auth + & (SSL_aGOST01 | SSL_aGOST12)) != 0) { if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) { if (!fatalerrs) return 1; @@ -3389,13 +4782,19 @@ int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode) int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode) { + SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl); + + if (sc == NULL + || (IS_QUIC(ssl) && mode != TLSEXT_max_fragment_length_DISABLED)) + return 0; + if (mode != TLSEXT_max_fragment_length_DISABLED && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) { ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH); return 0; } - ssl->ext.max_fragment_len_mode = mode; + sc->ext.max_fragment_len_mode = mode; return 1; } |