aboutsummaryrefslogtreecommitdiff
path: root/ssl/t1_lib.c
diff options
context:
space:
mode:
Diffstat (limited to 'ssl/t1_lib.c')
-rw-r--r--ssl/t1_lib.c2311
1 files changed, 1855 insertions, 456 deletions
diff --git a/ssl/t1_lib.c b/ssl/t1_lib.c
index bbb3b514d77f..8d0c2647b79c 100644
--- a/ssl/t1_lib.c
+++ b/ssl/t1_lib.c
@@ -1,5 +1,5 @@
/*
- * Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved.
+ * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
@@ -9,6 +9,7 @@
#include <stdio.h>
#include <stdlib.h>
+#include <ctype.h>
#include <openssl/objects.h>
#include <openssl/evp.h>
#include <openssl/hmac.h>
@@ -23,16 +24,15 @@
#include "internal/nelem.h"
#include "internal/sizes.h"
#include "internal/tlsgroups.h"
-#include "internal/cryptlib.h"
+#include "internal/ssl_unwrap.h"
#include "ssl_local.h"
+#include "quic/quic_local.h"
#include <openssl/ct.h>
-static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey);
-static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu);
+static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pkey);
+static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op, const SIGALG_LOOKUP *lu);
SSL3_ENC_METHOD const TLSv1_enc_data = {
- tls1_enc,
- tls1_mac,
tls1_setup_key_block,
tls1_generate_master_secret,
tls1_change_cipher_state,
@@ -48,8 +48,6 @@ SSL3_ENC_METHOD const TLSv1_enc_data = {
};
SSL3_ENC_METHOD const TLSv1_1_enc_data = {
- tls1_enc,
- tls1_mac,
tls1_setup_key_block,
tls1_generate_master_secret,
tls1_change_cipher_state,
@@ -58,15 +56,13 @@ SSL3_ENC_METHOD const TLSv1_1_enc_data = {
TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
tls1_alert_code,
tls1_export_keying_material,
- SSL_ENC_FLAG_EXPLICIT_IV,
+ 0,
ssl3_set_handshake_header,
tls_close_construct_packet,
ssl3_handshake_write
};
SSL3_ENC_METHOD const TLSv1_2_enc_data = {
- tls1_enc,
- tls1_mac,
tls1_setup_key_block,
tls1_generate_master_secret,
tls1_change_cipher_state,
@@ -75,7 +71,7 @@ SSL3_ENC_METHOD const TLSv1_2_enc_data = {
TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
tls1_alert_code,
tls1_export_keying_material,
- SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
+ SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
| SSL_ENC_FLAG_TLS1_2_CIPHERS,
ssl3_set_handshake_header,
tls_close_construct_packet,
@@ -83,8 +79,6 @@ SSL3_ENC_METHOD const TLSv1_2_enc_data = {
};
SSL3_ENC_METHOD const TLSv1_3_enc_data = {
- tls13_enc,
- tls1_mac,
tls13_setup_key_block,
tls13_generate_master_secret,
tls13_change_cipher_state,
@@ -99,13 +93,13 @@ SSL3_ENC_METHOD const TLSv1_3_enc_data = {
ssl3_handshake_write
};
-long tls1_default_timeout(void)
+OSSL_TIME tls1_default_timeout(void)
{
/*
* 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
* http, the cache would over fill
*/
- return (60 * 60 * 2);
+ return ossl_seconds2time(60 * 60 * 2);
}
int tls1_new(SSL *s)
@@ -120,25 +114,35 @@ int tls1_new(SSL *s)
void tls1_free(SSL *s)
{
- OPENSSL_free(s->ext.session_ticket);
+ SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
+
+ if (sc == NULL)
+ return;
+
+ OPENSSL_free(sc->ext.session_ticket);
ssl3_free(s);
}
int tls1_clear(SSL *s)
{
+ SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
+
+ if (sc == NULL)
+ return 0;
+
if (!ssl3_clear(s))
return 0;
if (s->method->version == TLS_ANY_VERSION)
- s->version = TLS_MAX_VERSION_INTERNAL;
+ sc->version = TLS_MAX_VERSION_INTERNAL;
else
- s->version = s->method->version;
+ sc->version = s->method->version;
return 1;
}
/* Legacy NID to group_id mapping. Only works for groups we know about */
-static struct {
+static const struct {
int nid;
uint16_t group_id;
} nid_to_group[] = {
@@ -172,13 +176,16 @@ static struct {
{NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1},
{EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519},
{EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448},
- {NID_id_tc26_gost_3410_2012_256_paramSetA, 0x0022},
- {NID_id_tc26_gost_3410_2012_256_paramSetB, 0x0023},
- {NID_id_tc26_gost_3410_2012_256_paramSetC, 0x0024},
- {NID_id_tc26_gost_3410_2012_256_paramSetD, 0x0025},
- {NID_id_tc26_gost_3410_2012_512_paramSetA, 0x0026},
- {NID_id_tc26_gost_3410_2012_512_paramSetB, 0x0027},
- {NID_id_tc26_gost_3410_2012_512_paramSetC, 0x0028},
+ {NID_brainpoolP256r1tls13, OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13},
+ {NID_brainpoolP384r1tls13, OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13},
+ {NID_brainpoolP512r1tls13, OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13},
+ {NID_id_tc26_gost_3410_2012_256_paramSetA, OSSL_TLS_GROUP_ID_gc256A},
+ {NID_id_tc26_gost_3410_2012_256_paramSetB, OSSL_TLS_GROUP_ID_gc256B},
+ {NID_id_tc26_gost_3410_2012_256_paramSetC, OSSL_TLS_GROUP_ID_gc256C},
+ {NID_id_tc26_gost_3410_2012_256_paramSetD, OSSL_TLS_GROUP_ID_gc256D},
+ {NID_id_tc26_gost_3410_2012_512_paramSetA, OSSL_TLS_GROUP_ID_gc512A},
+ {NID_id_tc26_gost_3410_2012_512_paramSetB, OSSL_TLS_GROUP_ID_gc512B},
+ {NID_id_tc26_gost_3410_2012_512_paramSetC, OSSL_TLS_GROUP_ID_gc512C},
{NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048},
{NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072},
{NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096},
@@ -192,33 +199,21 @@ static const unsigned char ecformats_default[] = {
TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
};
-/* The default curves */
-static const uint16_t supported_groups_default[] = {
- 29, /* X25519 (29) */
- 23, /* secp256r1 (23) */
- 30, /* X448 (30) */
- 25, /* secp521r1 (25) */
- 24, /* secp384r1 (24) */
- 34, /* GC256A (34) */
- 35, /* GC256B (35) */
- 36, /* GC256C (36) */
- 37, /* GC256D (37) */
- 38, /* GC512A (38) */
- 39, /* GC512B (39) */
- 40, /* GC512C (40) */
- 0x100, /* ffdhe2048 (0x100) */
- 0x101, /* ffdhe3072 (0x101) */
- 0x102, /* ffdhe4096 (0x102) */
- 0x103, /* ffdhe6144 (0x103) */
- 0x104, /* ffdhe8192 (0x104) */
-};
+/* Group list string of the built-in pseudo group DEFAULT */
+#define DEFAULT_GROUP_NAME "DEFAULT"
+#define TLS_DEFAULT_GROUP_LIST \
+ "?*X25519MLKEM768 / ?*X25519:?secp256r1 / ?X448:?secp384r1:?secp521r1 / ?ffdhe2048:?ffdhe3072"
static const uint16_t suiteb_curves[] = {
- TLSEXT_curve_P_256,
- TLSEXT_curve_P_384
+ OSSL_TLS_GROUP_ID_secp256r1,
+ OSSL_TLS_GROUP_ID_secp384r1,
};
-struct provider_group_data_st {
+/* Group list string of the built-in pseudo group DEFAULT_SUITE_B */
+#define SUITE_B_GROUP_NAME "DEFAULT_SUITE_B"
+#define SUITE_B_GROUP_LIST "secp256r1:secp384r1",
+
+struct provider_ctx_data_st {
SSL_CTX *ctx;
OSSL_PROVIDER *provider;
};
@@ -227,9 +222,8 @@ struct provider_group_data_st {
static OSSL_CALLBACK add_provider_groups;
static int add_provider_groups(const OSSL_PARAM params[], void *data)
{
- struct provider_group_data_st *pgd = data;
+ struct provider_ctx_data_st *pgd = data;
SSL_CTX *ctx = pgd->ctx;
- OSSL_PROVIDER *provider = pgd->provider;
const OSSL_PARAM *p;
TLS_GROUP_INFO *ginf = NULL;
EVP_KEYMGMT *keymgmt;
@@ -248,10 +242,8 @@ static int add_provider_groups(const OSSL_PARAM params[], void *data)
(ctx->group_list_max_len
+ TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
* sizeof(TLS_GROUP_INFO));
- if (tmp == NULL) {
- ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
+ if (tmp == NULL)
return 0;
- }
ctx->group_list = tmp;
memset(tmp + ctx->group_list_max_len,
0,
@@ -267,10 +259,8 @@ static int add_provider_groups(const OSSL_PARAM params[], void *data)
goto err;
}
ginf->tlsname = OPENSSL_strdup(p->data);
- if (ginf->tlsname == NULL) {
- ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
+ if (ginf->tlsname == NULL)
goto err;
- }
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
@@ -278,10 +268,8 @@ static int add_provider_groups(const OSSL_PARAM params[], void *data)
goto err;
}
ginf->realname = OPENSSL_strdup(p->data);
- if (ginf->realname == NULL) {
- ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
+ if (ginf->realname == NULL)
goto err;
- }
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
@@ -296,10 +284,8 @@ static int add_provider_groups(const OSSL_PARAM params[], void *data)
goto err;
}
ginf->algorithm = OPENSSL_strdup(p->data);
- if (ginf->algorithm == NULL) {
- ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
+ if (ginf->algorithm == NULL)
goto err;
- }
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
@@ -347,23 +333,9 @@ static int add_provider_groups(const OSSL_PARAM params[], void *data)
ERR_set_mark();
keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
if (keymgmt != NULL) {
- /*
- * We have successfully fetched the algorithm - however if the provider
- * doesn't match this one then we ignore it.
- *
- * Note: We're cheating a little here. Technically if the same algorithm
- * is available from more than one provider then it is undefined which
- * implementation you will get back. Theoretically this could be
- * different every time...we assume here that you'll always get the
- * same one back if you repeat the exact same fetch. Is this a reasonable
- * assumption to make (in which case perhaps we should document this
- * behaviour)?
- */
- if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
- /* We have a match - so we will use this group */
- ctx->group_list_len++;
- ginf = NULL;
- }
+ /* We have successfully fetched the algorithm, we can use the group. */
+ ctx->group_list_len++;
+ ginf = NULL;
EVP_KEYMGMT_free(keymgmt);
}
ERR_pop_to_mark();
@@ -379,7 +351,7 @@ static int add_provider_groups(const OSSL_PARAM params[], void *data)
static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
{
- struct provider_group_data_st pgd;
+ struct provider_ctx_data_st pgd;
pgd.ctx = vctx;
pgd.provider = provider;
@@ -389,36 +361,342 @@ static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
int ssl_load_groups(SSL_CTX *ctx)
{
- size_t i, j, num_deflt_grps = 0;
- uint16_t tmp_supp_groups[OSSL_NELEM(supported_groups_default)];
-
if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
return 0;
- for (i = 0; i < OSSL_NELEM(supported_groups_default); i++) {
- for (j = 0; j < ctx->group_list_len; j++) {
- if (ctx->group_list[j].group_id == supported_groups_default[i]) {
- tmp_supp_groups[num_deflt_grps++] = ctx->group_list[j].group_id;
- break;
+ return SSL_CTX_set1_groups_list(ctx, TLS_DEFAULT_GROUP_LIST);
+}
+
+#define TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE 10
+static OSSL_CALLBACK add_provider_sigalgs;
+static int add_provider_sigalgs(const OSSL_PARAM params[], void *data)
+{
+ struct provider_ctx_data_st *pgd = data;
+ SSL_CTX *ctx = pgd->ctx;
+ OSSL_PROVIDER *provider = pgd->provider;
+ const OSSL_PARAM *p;
+ TLS_SIGALG_INFO *sinf = NULL;
+ EVP_KEYMGMT *keymgmt;
+ const char *keytype;
+ unsigned int code_point = 0;
+ int ret = 0;
+
+ if (ctx->sigalg_list_max_len == ctx->sigalg_list_len) {
+ TLS_SIGALG_INFO *tmp = NULL;
+
+ if (ctx->sigalg_list_max_len == 0)
+ tmp = OPENSSL_malloc(sizeof(TLS_SIGALG_INFO)
+ * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
+ else
+ tmp = OPENSSL_realloc(ctx->sigalg_list,
+ (ctx->sigalg_list_max_len
+ + TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE)
+ * sizeof(TLS_SIGALG_INFO));
+ if (tmp == NULL)
+ return 0;
+ ctx->sigalg_list = tmp;
+ memset(tmp + ctx->sigalg_list_max_len, 0,
+ sizeof(TLS_SIGALG_INFO) * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
+ ctx->sigalg_list_max_len += TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE;
+ }
+
+ sinf = &ctx->sigalg_list[ctx->sigalg_list_len];
+
+ /* First, mandatory parameters */
+ p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_NAME);
+ if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
+ ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
+ goto err;
+ }
+ OPENSSL_free(sinf->sigalg_name);
+ sinf->sigalg_name = OPENSSL_strdup(p->data);
+ if (sinf->sigalg_name == NULL)
+ goto err;
+
+ p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_IANA_NAME);
+ if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
+ ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
+ goto err;
+ }
+ OPENSSL_free(sinf->name);
+ sinf->name = OPENSSL_strdup(p->data);
+ if (sinf->name == NULL)
+ goto err;
+
+ p = OSSL_PARAM_locate_const(params,
+ OSSL_CAPABILITY_TLS_SIGALG_CODE_POINT);
+ if (p == NULL
+ || !OSSL_PARAM_get_uint(p, &code_point)
+ || code_point > UINT16_MAX) {
+ ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
+ goto err;
+ }
+ sinf->code_point = (uint16_t)code_point;
+
+ p = OSSL_PARAM_locate_const(params,
+ OSSL_CAPABILITY_TLS_SIGALG_SECURITY_BITS);
+ if (p == NULL || !OSSL_PARAM_get_uint(p, &sinf->secbits)) {
+ ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
+ goto err;
+ }
+
+ /* Now, optional parameters */
+ p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_OID);
+ if (p == NULL) {
+ sinf->sigalg_oid = NULL;
+ } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
+ goto err;
+ } else {
+ OPENSSL_free(sinf->sigalg_oid);
+ sinf->sigalg_oid = OPENSSL_strdup(p->data);
+ if (sinf->sigalg_oid == NULL)
+ goto err;
+ }
+
+ p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_NAME);
+ if (p == NULL) {
+ sinf->sig_name = NULL;
+ } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
+ goto err;
+ } else {
+ OPENSSL_free(sinf->sig_name);
+ sinf->sig_name = OPENSSL_strdup(p->data);
+ if (sinf->sig_name == NULL)
+ goto err;
+ }
+
+ p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_OID);
+ if (p == NULL) {
+ sinf->sig_oid = NULL;
+ } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
+ goto err;
+ } else {
+ OPENSSL_free(sinf->sig_oid);
+ sinf->sig_oid = OPENSSL_strdup(p->data);
+ if (sinf->sig_oid == NULL)
+ goto err;
+ }
+
+ p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_NAME);
+ if (p == NULL) {
+ sinf->hash_name = NULL;
+ } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
+ goto err;
+ } else {
+ OPENSSL_free(sinf->hash_name);
+ sinf->hash_name = OPENSSL_strdup(p->data);
+ if (sinf->hash_name == NULL)
+ goto err;
+ }
+
+ p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_OID);
+ if (p == NULL) {
+ sinf->hash_oid = NULL;
+ } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
+ goto err;
+ } else {
+ OPENSSL_free(sinf->hash_oid);
+ sinf->hash_oid = OPENSSL_strdup(p->data);
+ if (sinf->hash_oid == NULL)
+ goto err;
+ }
+
+ p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE);
+ if (p == NULL) {
+ sinf->keytype = NULL;
+ } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
+ goto err;
+ } else {
+ OPENSSL_free(sinf->keytype);
+ sinf->keytype = OPENSSL_strdup(p->data);
+ if (sinf->keytype == NULL)
+ goto err;
+ }
+
+ p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE_OID);
+ if (p == NULL) {
+ sinf->keytype_oid = NULL;
+ } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
+ goto err;
+ } else {
+ OPENSSL_free(sinf->keytype_oid);
+ sinf->keytype_oid = OPENSSL_strdup(p->data);
+ if (sinf->keytype_oid == NULL)
+ goto err;
+ }
+
+ /* Optional, not documented prior to 3.5 */
+ sinf->mindtls = sinf->maxdtls = -1;
+ p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_DTLS);
+ if (p != NULL && !OSSL_PARAM_get_int(p, &sinf->mindtls)) {
+ ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
+ goto err;
+ }
+ p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_DTLS);
+ if (p != NULL && !OSSL_PARAM_get_int(p, &sinf->maxdtls)) {
+ ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
+ goto err;
+ }
+ /* DTLS version numbers grow downward */
+ if ((sinf->maxdtls != 0) && (sinf->maxdtls != -1) &&
+ ((sinf->maxdtls > sinf->mindtls))) {
+ ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
+ goto err;
+ }
+ /* No provider sigalgs are supported in DTLS, reset after checking. */
+ sinf->mindtls = sinf->maxdtls = -1;
+
+ /* The remaining parameters below are mandatory again */
+ p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_TLS);
+ if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->mintls)) {
+ ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
+ goto err;
+ }
+ p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_TLS);
+ if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->maxtls)) {
+ ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
+ goto err;
+ }
+ if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
+ ((sinf->maxtls < sinf->mintls))) {
+ ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
+ goto err;
+ }
+ if ((sinf->mintls != 0) && (sinf->mintls != -1) &&
+ ((sinf->mintls > TLS1_3_VERSION)))
+ sinf->mintls = sinf->maxtls = -1;
+ if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
+ ((sinf->maxtls < TLS1_3_VERSION)))
+ sinf->mintls = sinf->maxtls = -1;
+
+ /* Ignore unusable sigalgs */
+ if (sinf->mintls == -1 && sinf->mindtls == -1) {
+ ret = 1;
+ goto err;
+ }
+
+ /*
+ * Now check that the algorithm is actually usable for our property query
+ * string. Regardless of the result we still return success because we have
+ * successfully processed this signature, even though we may decide not to
+ * use it.
+ */
+ ret = 1;
+ ERR_set_mark();
+ keytype = (sinf->keytype != NULL
+ ? sinf->keytype
+ : (sinf->sig_name != NULL
+ ? sinf->sig_name
+ : sinf->sigalg_name));
+ keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, keytype, ctx->propq);
+ if (keymgmt != NULL) {
+ /*
+ * We have successfully fetched the algorithm - however if the provider
+ * doesn't match this one then we ignore it.
+ *
+ * Note: We're cheating a little here. Technically if the same algorithm
+ * is available from more than one provider then it is undefined which
+ * implementation you will get back. Theoretically this could be
+ * different every time...we assume here that you'll always get the
+ * same one back if you repeat the exact same fetch. Is this a reasonable
+ * assumption to make (in which case perhaps we should document this
+ * behaviour)?
+ */
+ if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
+ /*
+ * We have a match - so we could use this signature;
+ * Check proper object registration first, though.
+ * Don't care about return value as this may have been
+ * done within providers or previous calls to
+ * add_provider_sigalgs.
+ */
+ OBJ_create(sinf->sigalg_oid, sinf->sigalg_name, NULL);
+ /* sanity check: Without successful registration don't use alg */
+ if ((OBJ_txt2nid(sinf->sigalg_name) == NID_undef) ||
+ (OBJ_nid2obj(OBJ_txt2nid(sinf->sigalg_name)) == NULL)) {
+ ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
+ goto err;
}
+ if (sinf->sig_name != NULL)
+ OBJ_create(sinf->sig_oid, sinf->sig_name, NULL);
+ if (sinf->keytype != NULL)
+ OBJ_create(sinf->keytype_oid, sinf->keytype, NULL);
+ if (sinf->hash_name != NULL)
+ OBJ_create(sinf->hash_oid, sinf->hash_name, NULL);
+ OBJ_add_sigid(OBJ_txt2nid(sinf->sigalg_name),
+ (sinf->hash_name != NULL
+ ? OBJ_txt2nid(sinf->hash_name)
+ : NID_undef),
+ OBJ_txt2nid(keytype));
+ ctx->sigalg_list_len++;
+ sinf = NULL;
}
+ EVP_KEYMGMT_free(keymgmt);
}
+ ERR_pop_to_mark();
+ err:
+ if (sinf != NULL) {
+ OPENSSL_free(sinf->name);
+ sinf->name = NULL;
+ OPENSSL_free(sinf->sigalg_name);
+ sinf->sigalg_name = NULL;
+ OPENSSL_free(sinf->sigalg_oid);
+ sinf->sigalg_oid = NULL;
+ OPENSSL_free(sinf->sig_name);
+ sinf->sig_name = NULL;
+ OPENSSL_free(sinf->sig_oid);
+ sinf->sig_oid = NULL;
+ OPENSSL_free(sinf->hash_name);
+ sinf->hash_name = NULL;
+ OPENSSL_free(sinf->hash_oid);
+ sinf->hash_oid = NULL;
+ OPENSSL_free(sinf->keytype);
+ sinf->keytype = NULL;
+ OPENSSL_free(sinf->keytype_oid);
+ sinf->keytype_oid = NULL;
+ }
+ return ret;
+}
- if (num_deflt_grps == 0)
- return 1;
+static int discover_provider_sigalgs(OSSL_PROVIDER *provider, void *vctx)
+{
+ struct provider_ctx_data_st pgd;
+
+ pgd.ctx = vctx;
+ pgd.provider = provider;
+ OSSL_PROVIDER_get_capabilities(provider, "TLS-SIGALG",
+ add_provider_sigalgs, &pgd);
+ /*
+ * Always OK, even if provider doesn't support the capability:
+ * Reconsider testing retval when legacy sigalgs are also loaded this way.
+ */
+ return 1;
+}
- ctx->ext.supported_groups_default
- = OPENSSL_malloc(sizeof(uint16_t) * num_deflt_grps);
+int ssl_load_sigalgs(SSL_CTX *ctx)
+{
+ size_t i;
+ SSL_CERT_LOOKUP lu;
- if (ctx->ext.supported_groups_default == NULL) {
- ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
+ if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_sigalgs, ctx))
return 0;
+
+ /* now populate ctx->ssl_cert_info */
+ if (ctx->sigalg_list_len > 0) {
+ OPENSSL_free(ctx->ssl_cert_info);
+ ctx->ssl_cert_info = OPENSSL_zalloc(sizeof(lu) * ctx->sigalg_list_len);
+ if (ctx->ssl_cert_info == NULL)
+ return 0;
+ for(i = 0; i < ctx->sigalg_list_len; i++) {
+ ctx->ssl_cert_info[i].nid = OBJ_txt2nid(ctx->sigalg_list[i].sigalg_name);
+ ctx->ssl_cert_info[i].amask = SSL_aANY;
+ }
}
- memcpy(ctx->ext.supported_groups_default,
- tmp_supp_groups,
- num_deflt_grps * sizeof(tmp_supp_groups[0]));
- ctx->ext.supported_groups_default_len = num_deflt_grps;
+ /*
+ * For now, leave it at this: legacy sigalgs stay in their own
+ * data structures until "legacy cleanup" occurs.
+ */
return 1;
}
@@ -428,8 +706,8 @@ static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
size_t i;
for (i = 0; i < ctx->group_list_len; i++) {
- if (strcmp(ctx->group_list[i].tlsname, name) == 0
- || strcmp(ctx->group_list[i].realname, name) == 0)
+ if (OPENSSL_strcasecmp(ctx->group_list[i].tlsname, name) == 0
+ || OPENSSL_strcasecmp(ctx->group_list[i].realname, name) == 0)
return ctx->group_list[i].group_id;
}
@@ -448,6 +726,16 @@ const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
return NULL;
}
+const char *tls1_group_id2name(SSL_CTX *ctx, uint16_t group_id)
+{
+ const TLS_GROUP_INFO *tls_group_info = tls1_group_id_lookup(ctx, group_id);
+
+ if (tls_group_info == NULL)
+ return NULL;
+
+ return tls_group_info->tlsname;
+}
+
int tls1_group_id2nid(uint16_t group_id, int include_unknown)
{
size_t i;
@@ -490,9 +778,11 @@ uint16_t tls1_nid2group_id(int nid)
* Set *pgroups to the supported groups list and *pgroupslen to
* the number of groups supported.
*/
-void tls1_get_supported_groups(SSL *s, const uint16_t **pgroups,
+void tls1_get_supported_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
size_t *pgroupslen)
{
+ SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
+
/* For Suite B mode only include P-256, P-384 */
switch (tls1_suiteb(s)) {
case SSL_CERT_FLAG_SUITEB_128_LOS:
@@ -512,8 +802,8 @@ void tls1_get_supported_groups(SSL *s, const uint16_t **pgroups,
default:
if (s->ext.supportedgroups == NULL) {
- *pgroups = s->ctx->ext.supported_groups_default;
- *pgroupslen = s->ctx->ext.supported_groups_default_len;
+ *pgroups = sctx->ext.supportedgroups;
+ *pgroupslen = sctx->ext.supportedgroups_len;
} else {
*pgroups = s->ext.supportedgroups;
*pgroupslen = s->ext.supportedgroups_len;
@@ -522,11 +812,55 @@ void tls1_get_supported_groups(SSL *s, const uint16_t **pgroups,
}
}
-int tls_valid_group(SSL *s, uint16_t group_id, int minversion, int maxversion,
+/*
+ * Some comments for the function below:
+ * s->ext.supportedgroups == NULL means legacy syntax (no [*,/,-]) from built-in group array.
+ * In this case, we need to send exactly one key share, which MUST be the first (leftmost)
+ * eligible group from the legacy list. Therefore, we provide the entire list of supported
+ * groups in this case.
+ *
+ * A 'flag' to indicate legacy syntax is created by setting the number of key shares to 1,
+ * but the groupID to 0.
+ * The 'flag' is checked right at the beginning in tls_construct_ctos_key_share and either
+ * the "list of requested key share groups" is used, or the "list of supported groups" in
+ * combination with setting add_only_one = 1 is applied.
+ */
+void tls1_get_requested_keyshare_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
+ size_t *pgroupslen)
+{
+ SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
+
+ if (s->ext.supportedgroups == NULL) {
+ *pgroups = sctx->ext.supportedgroups;
+ *pgroupslen = sctx->ext.supportedgroups_len;
+ } else {
+ *pgroups = s->ext.keyshares;
+ *pgroupslen = s->ext.keyshares_len;
+ }
+}
+
+void tls1_get_group_tuples(SSL_CONNECTION *s, const size_t **ptuples,
+ size_t *ptupleslen)
+{
+ SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
+
+ if (s->ext.supportedgroups == NULL) {
+ *ptuples = sctx->ext.tuples;
+ *ptupleslen = sctx->ext.tuples_len;
+ } else {
+ *ptuples = s->ext.tuples;
+ *ptupleslen = s->ext.tuples_len;
+ }
+}
+
+int tls_valid_group(SSL_CONNECTION *s, uint16_t group_id,
+ int minversion, int maxversion,
int isec, int *okfortls13)
{
- const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(s->ctx, group_id);
+ const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
+ group_id);
int ret;
+ int group_minversion, group_maxversion;
if (okfortls13 != NULL)
*okfortls13 = 0;
@@ -534,27 +868,22 @@ int tls_valid_group(SSL *s, uint16_t group_id, int minversion, int maxversion,
if (ginfo == NULL)
return 0;
- if (SSL_IS_DTLS(s)) {
- if (ginfo->mindtls < 0 || ginfo->maxdtls < 0)
- return 0;
- if (ginfo->maxdtls == 0)
- ret = 1;
- else
- ret = DTLS_VERSION_LE(minversion, ginfo->maxdtls);
- if (ginfo->mindtls > 0)
- ret &= DTLS_VERSION_GE(maxversion, ginfo->mindtls);
- } else {
- if (ginfo->mintls < 0 || ginfo->maxtls < 0)
- return 0;
- if (ginfo->maxtls == 0)
- ret = 1;
- else
- ret = (minversion <= ginfo->maxtls);
- if (ginfo->mintls > 0)
- ret &= (maxversion >= ginfo->mintls);
+ group_minversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->mindtls : ginfo->mintls;
+ group_maxversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->maxdtls : ginfo->maxtls;
+
+ if (group_minversion < 0 || group_maxversion < 0)
+ return 0;
+ if (group_maxversion == 0)
+ ret = 1;
+ else
+ ret = (ssl_version_cmp(s, minversion, group_maxversion) <= 0);
+ if (group_minversion > 0)
+ ret &= (ssl_version_cmp(s, maxversion, group_minversion) >= 0);
+
+ if (!SSL_CONNECTION_IS_DTLS(s)) {
if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
- *okfortls13 = (ginfo->maxtls == 0)
- || (ginfo->maxtls >= TLS1_3_VERSION);
+ *okfortls13 = (group_maxversion == 0)
+ || (group_maxversion >= TLS1_3_VERSION);
}
ret &= !isec
|| strcmp(ginfo->algorithm, "EC") == 0
@@ -565,9 +894,10 @@ int tls_valid_group(SSL *s, uint16_t group_id, int minversion, int maxversion,
}
/* See if group is allowed by security callback */
-int tls_group_allowed(SSL *s, uint16_t group, int op)
+int tls_group_allowed(SSL_CONNECTION *s, uint16_t group, int op)
{
- const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(s->ctx, group);
+ const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
+ group);
unsigned char gtmp[2];
if (ginfo == NULL)
@@ -589,6 +919,80 @@ static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
return 0;
}
+typedef struct {
+ TLS_GROUP_INFO *grp;
+ size_t ix;
+} TLS_GROUP_IX;
+
+DEFINE_STACK_OF(TLS_GROUP_IX)
+
+static void free_wrapper(TLS_GROUP_IX *a)
+{
+ OPENSSL_free(a);
+}
+
+static int tls_group_ix_cmp(const TLS_GROUP_IX *const *a,
+ const TLS_GROUP_IX *const *b)
+{
+ int idcmpab = (*a)->grp->group_id < (*b)->grp->group_id;
+ int idcmpba = (*b)->grp->group_id < (*a)->grp->group_id;
+ int ixcmpab = (*a)->ix < (*b)->ix;
+ int ixcmpba = (*b)->ix < (*a)->ix;
+
+ /* Ascending by group id */
+ if (idcmpab != idcmpba)
+ return (idcmpba - idcmpab);
+ /* Ascending by original appearance index */
+ return ixcmpba - ixcmpab;
+}
+
+int tls1_get0_implemented_groups(int min_proto_version, int max_proto_version,
+ TLS_GROUP_INFO *grps, size_t num, long all,
+ STACK_OF(OPENSSL_CSTRING) *out)
+{
+ STACK_OF(TLS_GROUP_IX) *collect = NULL;
+ TLS_GROUP_IX *gix;
+ uint16_t id = 0;
+ int ret = 0;
+ size_t ix;
+
+ if (grps == NULL || out == NULL)
+ return 0;
+ if ((collect = sk_TLS_GROUP_IX_new(tls_group_ix_cmp)) == NULL)
+ return 0;
+ for (ix = 0; ix < num; ++ix, ++grps) {
+ if (grps->mintls > 0 && max_proto_version > 0
+ && grps->mintls > max_proto_version)
+ continue;
+ if (grps->maxtls > 0 && min_proto_version > 0
+ && grps->maxtls < min_proto_version)
+ continue;
+
+ if ((gix = OPENSSL_malloc(sizeof(*gix))) == NULL)
+ goto end;
+ gix->grp = grps;
+ gix->ix = ix;
+ if (sk_TLS_GROUP_IX_push(collect, gix) <= 0)
+ goto end;
+ }
+
+ sk_TLS_GROUP_IX_sort(collect);
+ num = sk_TLS_GROUP_IX_num(collect);
+ for (ix = 0; ix < num; ++ix) {
+ gix = sk_TLS_GROUP_IX_value(collect, ix);
+ if (!all && gix->grp->group_id == id)
+ continue;
+ id = gix->grp->group_id;
+ if (sk_OPENSSL_CSTRING_push(out, gix->grp->tlsname) <= 0)
+ goto end;
+ }
+ ret = 1;
+
+ end:
+ sk_TLS_GROUP_IX_pop_free(collect, free_wrapper);
+ return ret;
+}
+
/*-
* For nmatch >= 0, return the id of the |nmatch|th shared group or 0
* if there is no match.
@@ -596,12 +1000,12 @@ static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
* For nmatch == -2, return the id of the group to use for
* a tmp key, or 0 if there is no match.
*/
-uint16_t tls1_shared_group(SSL *s, int nmatch)
+uint16_t tls1_shared_group(SSL_CONNECTION *s, int nmatch)
{
const uint16_t *pref, *supp;
size_t num_pref, num_supp, i;
int k;
- SSL_CTX *ctx = s->ctx;
+ SSL_CTX *ctx = SSL_CONNECTION_GET_CTX(s);
/* Can't do anything on client side */
if (s->server == 0)
@@ -615,9 +1019,9 @@ uint16_t tls1_shared_group(SSL *s, int nmatch)
unsigned long cid = s->s3.tmp.new_cipher->id;
if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
- return TLSEXT_curve_P_256;
+ return OSSL_TLS_GROUP_ID_secp256r1;
if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
- return TLSEXT_curve_P_384;
+ return OSSL_TLS_GROUP_ID_secp384r1;
/* Should never happen */
return 0;
}
@@ -639,6 +1043,7 @@ uint16_t tls1_shared_group(SSL *s, int nmatch)
for (k = 0, i = 0; i < num_pref; i++) {
uint16_t id = pref[i];
const TLS_GROUP_INFO *inf;
+ int minversion, maxversion;
if (!tls1_in_list(id, supp, num_supp)
|| !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
@@ -646,20 +1051,17 @@ uint16_t tls1_shared_group(SSL *s, int nmatch)
inf = tls1_group_id_lookup(ctx, id);
if (!ossl_assert(inf != NULL))
return 0;
- if (SSL_IS_DTLS(s)) {
- if (inf->maxdtls == -1)
- continue;
- if ((inf->mindtls != 0 && DTLS_VERSION_LT(s->version, inf->mindtls))
- || (inf->maxdtls != 0
- && DTLS_VERSION_GT(s->version, inf->maxdtls)))
- continue;
- } else {
- if (inf->maxtls == -1)
- continue;
- if ((inf->mintls != 0 && s->version < inf->mintls)
- || (inf->maxtls != 0 && s->version > inf->maxtls))
- continue;
- }
+
+ minversion = SSL_CONNECTION_IS_DTLS(s)
+ ? inf->mindtls : inf->mintls;
+ maxversion = SSL_CONNECTION_IS_DTLS(s)
+ ? inf->maxdtls : inf->maxtls;
+ if (maxversion == -1)
+ continue;
+ if ((minversion != 0 && ssl_version_cmp(s, s->version, minversion) < 0)
+ || (maxversion != 0
+ && ssl_version_cmp(s, s->version, maxversion) > 0))
+ continue;
if (nmatch == k)
return id;
@@ -671,10 +1073,13 @@ uint16_t tls1_shared_group(SSL *s, int nmatch)
return 0;
}
-int tls1_set_groups(uint16_t **pext, size_t *pextlen,
+int tls1_set_groups(uint16_t **grpext, size_t *grpextlen,
+ uint16_t **ksext, size_t *ksextlen,
+ size_t **tplext, size_t *tplextlen,
int *groups, size_t ngroups)
{
- uint16_t *glist;
+ uint16_t *glist = NULL, *kslist = NULL;
+ size_t *tpllist = NULL;
size_t i;
/*
* Bitmap of groups included to detect duplicates: two variables are added
@@ -688,10 +1093,12 @@ int tls1_set_groups(uint16_t **pext, size_t *pextlen,
ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
return 0;
}
- if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL) {
- ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
- return 0;
- }
+ if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL)
+ goto err;
+ if ((kslist = OPENSSL_malloc(1 * sizeof(*kslist))) == NULL)
+ goto err;
+ if ((tpllist = OPENSSL_malloc(1 * sizeof(*tpllist))) == NULL)
+ goto err;
for (i = 0; i < ngroups; i++) {
unsigned long idmask;
uint16_t id;
@@ -705,99 +1112,601 @@ int tls1_set_groups(uint16_t **pext, size_t *pextlen,
*dup_list |= idmask;
glist[i] = id;
}
- OPENSSL_free(*pext);
- *pext = glist;
- *pextlen = ngroups;
+ OPENSSL_free(*grpext);
+ OPENSSL_free(*ksext);
+ OPENSSL_free(*tplext);
+ *grpext = glist;
+ *grpextlen = ngroups;
+ kslist[0] = glist[0];
+ *ksext = kslist;
+ *ksextlen = 1;
+ tpllist[0] = ngroups;
+ *tplext = tpllist;
+ *tplextlen = 1;
return 1;
err:
OPENSSL_free(glist);
+ OPENSSL_free(kslist);
+ OPENSSL_free(tpllist);
return 0;
}
-# define GROUPLIST_INCREMENT 40
-# define GROUP_NAME_BUFFER_LENGTH 64
+/*
+ * Definition of DEFAULT[_XYZ] pseudo group names.
+ * A pseudo group name is actually a full list of groups, including prefixes
+ * and or tuple delimiters. It can be hierarchically defined (for potential future use).
+ * IMPORTANT REMARK: For ease of use, in the built-in lists of groups, unknown groups or
+ * groups not backed by a provider will always silently be ignored, even without '?' prefix
+ */
+typedef struct {
+ const char *list_name; /* The name of this pseudo group */
+ const char *group_string; /* The group string of this pseudo group */
+} default_group_string_st; /* (can include '?', '*'. '-', '/' as needed) */
+
+/* Built-in pseudo group-names must start with a (D or d) */
+static const char *DEFAULT_GROUPNAME_FIRST_CHARACTER = "D";
+
+/* The list of all built-in pseudo-group-name structures */
+static const default_group_string_st default_group_strings[] = {
+ {DEFAULT_GROUP_NAME, TLS_DEFAULT_GROUP_LIST},
+ {SUITE_B_GROUP_NAME, SUITE_B_GROUP_LIST}
+};
+
+/*
+ * Some GOST names are not resolved by tls1_group_name2id,
+ * hence we'll check for those manually
+ */
+typedef struct {
+ const char *group_name;
+ uint16_t groupID;
+} name2id_st;
+static const name2id_st name2id_arr[] = {
+ {"GC256A", OSSL_TLS_GROUP_ID_gc256A },
+ {"GC256B", OSSL_TLS_GROUP_ID_gc256B },
+ {"GC256C", OSSL_TLS_GROUP_ID_gc256C },
+ {"GC256D", OSSL_TLS_GROUP_ID_gc256D },
+ {"GC512A", OSSL_TLS_GROUP_ID_gc512A },
+ {"GC512B", OSSL_TLS_GROUP_ID_gc512B },
+ {"GC512C", OSSL_TLS_GROUP_ID_gc512C },
+};
+
+/*
+ * Group list management:
+ * We establish three lists along with their related size counters:
+ * 1) List of (unique) groups
+ * 2) List of number of groups per group-priority-tuple
+ * 3) List of (unique) key share groups
+ */
+#define GROUPLIST_INCREMENT 32 /* Memory allocation chunk size (64 Bytes chunks ~= cache line) */
+#define GROUP_NAME_BUFFER_LENGTH 64 /* Max length of a group name */
+
+/*
+ * Preparation of the prefix used to indicate the desire to send a key share,
+ * the characters used as separators between groups or tuples of groups, the
+ * character to indicate that an unknown group should be ignored, and the
+ * character to indicate that a group should be deleted from a list
+ */
+#ifndef TUPLE_DELIMITER_CHARACTER
+/* The prefix characters to indicate group tuple boundaries */
+# define TUPLE_DELIMITER_CHARACTER '/'
+#endif
+#ifndef GROUP_DELIMITER_CHARACTER
+/* The prefix characters to indicate group tuple boundaries */
+# define GROUP_DELIMITER_CHARACTER ':'
+#endif
+#ifndef IGNORE_UNKNOWN_GROUP_CHARACTER
+/* The prefix character to ignore unknown groups */
+# define IGNORE_UNKNOWN_GROUP_CHARACTER '?'
+#endif
+#ifndef KEY_SHARE_INDICATOR_CHARACTER
+/* The prefix character to trigger a key share addition */
+# define KEY_SHARE_INDICATOR_CHARACTER '*'
+#endif
+#ifndef REMOVE_GROUP_INDICATOR_CHARACTER
+/* The prefix character to trigger a key share removal */
+# define REMOVE_GROUP_INDICATOR_CHARACTER '-'
+#endif
+static const char prefixes[] = {TUPLE_DELIMITER_CHARACTER,
+ GROUP_DELIMITER_CHARACTER,
+ IGNORE_UNKNOWN_GROUP_CHARACTER,
+ KEY_SHARE_INDICATOR_CHARACTER,
+ REMOVE_GROUP_INDICATOR_CHARACTER,
+ '\0'};
+
+/*
+ * High-level description of how group strings are analyzed:
+ * A first call back function (tuple_cb) is used to process group tuples, and a
+ * second callback function (gid_cb) is used to process the groups inside a tuple.
+ * Those callback functions are (indirectly) called by CONF_parse_list with
+ * different separators (nominally ':' or '/'), a variable based on gid_cb_st
+ * is used to keep track of the parsing results between the various calls
+ */
+
typedef struct {
SSL_CTX *ctx;
- size_t gidcnt;
- size_t gidmax;
- uint16_t *gid_arr;
+ /* Variables to hold the three lists (groups, requested keyshares, tuple structure) */
+ size_t gidmax; /* The memory allocation chunk size for the group IDs */
+ size_t gidcnt; /* Number of groups */
+ uint16_t *gid_arr; /* The IDs of the supported groups (flat list) */
+ size_t tplmax; /* The memory allocation chunk size for the tuple counters */
+ size_t tplcnt; /* Number of tuples */
+ size_t *tuplcnt_arr; /* The number of groups inside a tuple */
+ size_t ksidmax; /* The memory allocation chunk size */
+ size_t ksidcnt; /* Number of key shares */
+ uint16_t *ksid_arr; /* The IDs of the key share groups (flat list) */
+ /* Variable to keep state between execution of callback or helper functions */
+ size_t tuple_mode; /* Keeps track whether tuple_cb called from 'the top' or from gid_cb */
+ int ignore_unknown_default; /* Flag such that unknown groups for DEFAULT[_XYZ] are ignored */
} gid_cb_st;
+/* Forward declaration of tuple callback function */
+static int tuple_cb(const char *tuple, int len, void *arg);
+
+/*
+ * Extract and process the individual groups (and their prefixes if present)
+ * present in a tuple. Note: The argument 'elem' is a NON-\0-terminated string
+ * and must be appended by a \0 if used as \0-terminated string
+ */
static int gid_cb(const char *elem, int len, void *arg)
{
gid_cb_st *garg = arg;
- size_t i;
+ size_t i, j, k;
uint16_t gid = 0;
+ int found_group = 0;
char etmp[GROUP_NAME_BUFFER_LENGTH];
-
- if (elem == NULL)
+ int retval = 1; /* We assume success */
+ char *current_prefix;
+ int ignore_unknown = 0;
+ int add_keyshare = 0;
+ int remove_group = 0;
+ size_t restored_prefix_index = 0;
+ char *restored_default_group_string;
+ int continue_while_loop = 1;
+
+ /* Sanity checks */
+ if (garg == NULL || elem == NULL || len <= 0) {
+ ERR_raise(ERR_LIB_SSL, SSL_R_UNSUPPORTED_CONFIG_VALUE);
return 0;
+ }
+
+ /* Check the possible prefixes (remark: Leading and trailing spaces already cleared) */
+ while (continue_while_loop && len > 0
+ && ((current_prefix = strchr(prefixes, elem[0])) != NULL
+ || OPENSSL_strncasecmp(current_prefix = (char *)DEFAULT_GROUPNAME_FIRST_CHARACTER, elem, 1) == 0)) {
+
+ switch (*current_prefix) {
+ case TUPLE_DELIMITER_CHARACTER:
+ /* tuple delimiter not allowed here -> syntax error */
+ return -1;
+ break;
+ case GROUP_DELIMITER_CHARACTER:
+ return -1; /* Not a valid prefix for a single group name-> syntax error */
+ break;
+ case KEY_SHARE_INDICATOR_CHARACTER:
+ if (add_keyshare)
+ return -1; /* Only single key share prefix allowed -> syntax error */
+ add_keyshare = 1;
+ ++elem;
+ --len;
+ break;
+ case REMOVE_GROUP_INDICATOR_CHARACTER:
+ if (remove_group)
+ return -1; /* Only single remove group prefix allowed -> syntax error */
+ remove_group = 1;
+ ++elem;
+ --len;
+ break;
+ case IGNORE_UNKNOWN_GROUP_CHARACTER:
+ if (ignore_unknown)
+ return -1; /* Only single ? allowed -> syntax error */
+ ignore_unknown = 1;
+ ++elem;
+ --len;
+ break;
+ default:
+ /*
+ * Check whether a DEFAULT[_XYZ] 'pseudo group' (= a built-in
+ * list of groups) should be added
+ */
+ for (i = 0; i < OSSL_NELEM(default_group_strings); i++) {
+ if ((size_t)len == (strlen(default_group_strings[i].list_name))
+ && OPENSSL_strncasecmp(default_group_strings[i].list_name, elem, len) == 0) {
+ /*
+ * We're asked to insert an entire list of groups from a
+ * DEFAULT[_XYZ] 'pseudo group' which we do by
+ * recursively calling this function (indirectly via
+ * CONF_parse_list and tuple_cb); essentially, we treat a DEFAULT
+ * group string like a tuple which is appended to the current tuple
+ * rather then starting a new tuple. Variable tuple_mode is the flag which
+ * controls append tuple vs start new tuple.
+ */
+
+ if (ignore_unknown || remove_group)
+ return -1; /* removal or ignore not allowed here -> syntax error */
+
+ /*
+ * First, we restore any keyshare prefix in a new zero-terminated string
+ * (if not already present)
+ */
+ restored_default_group_string = OPENSSL_malloc((1 /* max prefix length */ +
+ strlen(default_group_strings[i].group_string) +
+ 1 /* \0 */) * sizeof(char));
+ if (restored_default_group_string == NULL)
+ return 0;
+ if (add_keyshare
+ /* Remark: we tolerate a duplicated keyshare indicator here */
+ && default_group_strings[i].group_string[0]
+ != KEY_SHARE_INDICATOR_CHARACTER)
+ restored_default_group_string[restored_prefix_index++] =
+ KEY_SHARE_INDICATOR_CHARACTER;
+
+ memcpy(restored_default_group_string + restored_prefix_index,
+ default_group_strings[i].group_string,
+ strlen(default_group_strings[i].group_string));
+ restored_default_group_string[strlen(default_group_strings[i].group_string) +
+ restored_prefix_index] = '\0';
+ /* We execute the recursive call */
+ garg->ignore_unknown_default = 1; /* We ignore unknown groups for DEFAULT_XYZ */
+ /* we enforce group mode (= append tuple) for DEFAULT_XYZ group lists */
+ garg->tuple_mode = 0;
+ /* We use the tuple_cb callback to process the pseudo group tuple */
+ retval = CONF_parse_list(restored_default_group_string,
+ TUPLE_DELIMITER_CHARACTER, 1, tuple_cb, garg);
+ garg->tuple_mode = 1; /* next call to tuple_cb will again start new tuple */
+ garg->ignore_unknown_default = 0; /* reset to original value */
+ /* We don't need the \0-terminated string anymore */
+ OPENSSL_free(restored_default_group_string);
+
+ return retval;
+ }
+ }
+ /*
+ * If we reached this point, a group name started with a 'd' or 'D', but no request
+ * for a DEFAULT[_XYZ] 'pseudo group' was detected, hence processing of the group
+ * name can continue as usual (= the while loop checking prefixes can end)
+ */
+ continue_while_loop = 0;
+ break;
+ }
+ }
+
+ if (len == 0)
+ return -1; /* Seems we have prefxes without a group name -> syntax error */
+
+ if (garg->ignore_unknown_default == 1) /* Always ignore unknown groups for DEFAULT[_XYZ] */
+ ignore_unknown = 1;
+
+ /* Memory management in case more groups are present compared to initial allocation */
if (garg->gidcnt == garg->gidmax) {
uint16_t *tmp =
OPENSSL_realloc(garg->gid_arr,
(garg->gidmax + GROUPLIST_INCREMENT) * sizeof(*garg->gid_arr));
+
if (tmp == NULL)
return 0;
+
garg->gidmax += GROUPLIST_INCREMENT;
garg->gid_arr = tmp;
}
+ /* Memory management for key share groups */
+ if (garg->ksidcnt == garg->ksidmax) {
+ uint16_t *tmp =
+ OPENSSL_realloc(garg->ksid_arr,
+ (garg->ksidmax + GROUPLIST_INCREMENT) * sizeof(*garg->ksid_arr));
+
+ if (tmp == NULL)
+ return 0;
+ garg->ksidmax += GROUPLIST_INCREMENT;
+ garg->ksid_arr = tmp;
+ }
+
if (len > (int)(sizeof(etmp) - 1))
- return 0;
+ return -1; /* group name to long -> syntax error */
+
+ /*
+ * Prepare addition or removal of a single group by converting
+ * a group name into its groupID equivalent
+ */
+
+ /* Create a \0-terminated string and get the gid for this group if possible */
memcpy(etmp, elem, len);
etmp[len] = 0;
+ /* Get the groupID */
gid = tls1_group_name2id(garg->ctx, etmp);
+ /*
+ * Handle the case where no valid groupID was returned
+ * e.g. for an unknown group, which we'd ignore (only) if relevant prefix was set
+ */
if (gid == 0) {
- ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
- "group '%s' cannot be set", etmp);
+ /* Is it one of the GOST groups ? */
+ for (i = 0; i < OSSL_NELEM(name2id_arr); i++) {
+ if (OPENSSL_strcasecmp(etmp, name2id_arr[i].group_name) == 0) {
+ gid = name2id_arr[i].groupID;
+ break;
+ }
+ }
+ if (gid == 0) { /* still not found */
+ /* Unknown group - ignore if ignore_unknown; trigger error otherwise */
+ retval = ignore_unknown;
+ goto done;
+ }
+ }
+
+ /* Make sure that at least one provider is supporting this groupID */
+ found_group = 0;
+ for (j = 0; j < garg->ctx->group_list_len; j++)
+ if (garg->ctx->group_list[j].group_id == gid) {
+ found_group = 1;
+ break;
+ }
+
+ /*
+ * No provider supports this group - ignore if
+ * ignore_unknown; trigger error otherwise
+ */
+ if (found_group == 0) {
+ retval = ignore_unknown;
+ goto done;
+ }
+ /* Remove group (and keyshare) from anywhere in the list if present, ignore if not present */
+ if (remove_group) {
+ /* Is the current group specified anywhere in the entire list so far? */
+ found_group = 0;
+ for (i = 0; i < garg->gidcnt; i++)
+ if (garg->gid_arr[i] == gid) {
+ found_group = 1;
+ break;
+ }
+ /* The group to remove is at position i in the list of (zero indexed) groups */
+ if (found_group) {
+ /* We remove that group from its position (which is at i)... */
+ for (j = i; j < (garg->gidcnt - 1); j++)
+ garg->gid_arr[j] = garg->gid_arr[j + 1]; /* ...shift remaining groups left ... */
+ garg->gidcnt--; /* ..and update the book keeping for the number of groups */
+
+ /*
+ * We also must update the number of groups either in a previous tuple (which we
+ * must identify and check whether it becomes empty due to the deletion) or in
+ * the current tuple, pending where the deleted group resides
+ */
+ k = 0;
+ for (j = 0; j < garg->tplcnt; j++) {
+ k += garg->tuplcnt_arr[j];
+ /* Remark: i is zero-indexed, k is one-indexed */
+ if (k > i) { /* remove from one of the previous tuples */
+ garg->tuplcnt_arr[j]--;
+ break; /* We took care not to have group duplicates, hence we can stop here */
+ }
+ }
+ if (k <= i) /* remove from current tuple */
+ garg->tuplcnt_arr[j]--;
+
+ /* We also remove the group from the list of keyshares (if present) */
+ found_group = 0;
+ for (i = 0; i < garg->ksidcnt; i++)
+ if (garg->ksid_arr[i] == gid) {
+ found_group = 1;
+ break;
+ }
+ if (found_group) {
+ /* Found, hence we remove that keyshare from its position (which is at i)... */
+ for (j = i; j < (garg->ksidcnt - 1); j++)
+ garg->ksid_arr[j] = garg->ksid_arr[j + 1]; /* shift remaining key shares */
+ /* ... and update the book keeping */
+ garg->ksidcnt--;
+ }
+ }
+ } else { /* Processing addition of a single new group */
+
+ /* Check for duplicates */
+ for (i = 0; i < garg->gidcnt; i++)
+ if (garg->gid_arr[i] == gid) {
+ /* Duplicate group anywhere in the list of groups - ignore */
+ goto done;
+ }
+
+ /* Add the current group to the 'flat' list of groups */
+ garg->gid_arr[garg->gidcnt++] = gid;
+ /* and update the book keeping for the number of groups in current tuple */
+ garg->tuplcnt_arr[garg->tplcnt]++;
+
+ /* We memorize if needed that we want to add a key share for the current group */
+ if (add_keyshare)
+ garg->ksid_arr[garg->ksidcnt++] = gid;
+ }
+
+done:
+ return retval;
+}
+
+/* Extract and process a tuple of groups */
+static int tuple_cb(const char *tuple, int len, void *arg)
+{
+ gid_cb_st *garg = arg;
+ int retval = 1; /* We assume success */
+ char *restored_tuple_string;
+
+ /* Sanity checks */
+ if (garg == NULL || tuple == NULL || len <= 0) {
+ ERR_raise(ERR_LIB_SSL, SSL_R_UNSUPPORTED_CONFIG_VALUE);
return 0;
}
- for (i = 0; i < garg->gidcnt; i++)
- if (garg->gid_arr[i] == gid)
+
+ /* Memory management for tuples */
+ if (garg->tplcnt == garg->tplmax) {
+ size_t *tmp =
+ OPENSSL_realloc(garg->tuplcnt_arr,
+ (garg->tplmax + GROUPLIST_INCREMENT) * sizeof(*garg->tuplcnt_arr));
+
+ if (tmp == NULL)
return 0;
- garg->gid_arr[garg->gidcnt++] = gid;
- return 1;
+ garg->tplmax += GROUPLIST_INCREMENT;
+ garg->tuplcnt_arr = tmp;
+ }
+
+ /* Convert to \0-terminated string */
+ restored_tuple_string = OPENSSL_malloc((len + 1 /* \0 */) * sizeof(char));
+ if (restored_tuple_string == NULL)
+ return 0;
+ memcpy(restored_tuple_string, tuple, len);
+ restored_tuple_string[len] = '\0';
+
+ /* Analyze group list of this tuple */
+ retval = CONF_parse_list(restored_tuple_string, GROUP_DELIMITER_CHARACTER, 1, gid_cb, arg);
+
+ /* We don't need the \o-terminated string anymore */
+ OPENSSL_free(restored_tuple_string);
+
+ if (garg->tuplcnt_arr[garg->tplcnt] > 0) { /* Some valid groups are present in current tuple... */
+ if (garg->tuple_mode) {
+ /* We 'close' the tuple */
+ garg->tplcnt++;
+ garg->tuplcnt_arr[garg->tplcnt] = 0; /* Next tuple is initialized to be empty */
+ garg->tuple_mode = 1; /* next call will start a tuple (unless overridden in gid_cb) */
+ }
+ }
+
+ return retval;
}
-/* Set groups based on a colon separated list */
-int tls1_set_groups_list(SSL_CTX *ctx, uint16_t **pext, size_t *pextlen,
+/*
+ * Set groups and prepare generation of keyshares based on a string of groupnames,
+ * names separated by the group or the tuple delimiter, with per-group prefixes to
+ * (1) add a key share for this group, (2) ignore the group if unkown to the current
+ * context, (3) delete a previous occurrence of the group in the current tuple.
+ *
+ * The list parsing is done in two hierachical steps: The top-level step extracts the
+ * string of a tuple using tuple_cb, while the next lower step uses gid_cb to
+ * parse and process the groups inside a tuple
+ */
+int tls1_set_groups_list(SSL_CTX *ctx,
+ uint16_t **grpext, size_t *grpextlen,
+ uint16_t **ksext, size_t *ksextlen,
+ size_t **tplext, size_t *tplextlen,
const char *str)
{
+ size_t i = 0, j;
+ int ret = 0, parse_ret = 0;
gid_cb_st gcb;
- uint16_t *tmparr;
- int ret = 0;
- gcb.gidcnt = 0;
+ /* Sanity check */
+ if (ctx == NULL) {
+ ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_NULL_PARAMETER);
+ return 0;
+ }
+
+ memset(&gcb, 0, sizeof(gcb));
+ gcb.tuple_mode = 1; /* We prepare to collect the first tuple */
+ gcb.ignore_unknown_default = 0;
gcb.gidmax = GROUPLIST_INCREMENT;
+ gcb.tplmax = GROUPLIST_INCREMENT;
+ gcb.ksidmax = GROUPLIST_INCREMENT;
+ gcb.ctx = ctx;
+
+ /* Prepare initial chunks of memory for groups, tuples and keyshares groupIDs */
gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr));
if (gcb.gid_arr == NULL)
- return 0;
- gcb.ctx = ctx;
- if (!CONF_parse_list(str, ':', 1, gid_cb, &gcb))
goto end;
- if (pext == NULL) {
- ret = 1;
+ gcb.tuplcnt_arr = OPENSSL_malloc(gcb.tplmax * sizeof(*gcb.tuplcnt_arr));
+ if (gcb.tuplcnt_arr == NULL)
+ goto end;
+ gcb.tuplcnt_arr[0] = 0;
+ gcb.ksid_arr = OPENSSL_malloc(gcb.ksidmax * sizeof(*gcb.ksid_arr));
+ if (gcb.ksid_arr == NULL)
+ goto end;
+
+ while (str[0] != '\0' && isspace((unsigned char)*str))
+ str++;
+ if (str[0] == '\0')
+ goto empty_list;
+
+ /*
+ * Start the (potentially recursive) tuple processing by calling CONF_parse_list
+ * with the TUPLE_DELIMITER_CHARACTER (which will call tuple_cb after cleaning spaces)
+ */
+ parse_ret = CONF_parse_list(str, TUPLE_DELIMITER_CHARACTER, 1, tuple_cb, &gcb);
+
+ if (parse_ret == 0)
+ goto end;
+ if (parse_ret == -1) {
+ ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
+ "Syntax error in '%s'", str);
goto end;
}
/*
- * gid_cb ensurse there are no duplicates so we can just go ahead and set
- * the result
+ * We check whether a tuple was completly emptied by using "-" prefix
+ * excessively, in which case we remove the tuple
*/
- tmparr = OPENSSL_memdup(gcb.gid_arr, gcb.gidcnt * sizeof(*tmparr));
- if (tmparr == NULL)
+ for (i = j = 0; j < gcb.tplcnt; j++) {
+ if (gcb.tuplcnt_arr[j] == 0)
+ continue;
+ /* If there's a gap, move to first unfilled slot */
+ if (j == i)
+ ++i;
+ else
+ gcb.tuplcnt_arr[i++] = gcb.tuplcnt_arr[j];
+ }
+ gcb.tplcnt = i;
+
+ if (gcb.ksidcnt > OPENSSL_CLIENT_MAX_KEY_SHARES) {
+ ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
+ "To many keyshares requested in '%s' (max = %d)",
+ str, OPENSSL_CLIENT_MAX_KEY_SHARES);
goto end;
- OPENSSL_free(*pext);
- *pext = tmparr;
- *pextlen = gcb.gidcnt;
- ret = 1;
+ }
+
+ /*
+ * For backward compatibility we let the rest of the code know that a key share
+ * for the first valid group should be added if no "*" prefix was used anywhere
+ */
+ if (gcb.gidcnt > 0 && gcb.ksidcnt == 0) {
+ /*
+ * No key share group prefix character was used, hence we indicate that a single
+ * key share should be sent and flag that it should come from the supported_groups list
+ */
+ gcb.ksidcnt = 1;
+ gcb.ksid_arr[0] = 0;
+ }
+
+ empty_list:
+ /*
+ * A call to tls1_set_groups_list with any of the args (other than ctx) set
+ * to NULL only does a syntax check, hence we're done here and report success
+ */
+ if (grpext == NULL || ksext == NULL || tplext == NULL ||
+ grpextlen == NULL || ksextlen == NULL || tplextlen == NULL) {
+ ret = 1;
+ goto end;
+ }
+
+ /*
+ * tuple_cb and gid_cb combo ensures there are no duplicates or unknown groups so we
+ * can just go ahead and set the results (after diposing the existing)
+ */
+ OPENSSL_free(*grpext);
+ *grpext = gcb.gid_arr;
+ *grpextlen = gcb.gidcnt;
+ OPENSSL_free(*ksext);
+ *ksext = gcb.ksid_arr;
+ *ksextlen = gcb.ksidcnt;
+ OPENSSL_free(*tplext);
+ *tplext = gcb.tuplcnt_arr;
+ *tplextlen = gcb.tplcnt;
+
+ return 1;
+
end:
OPENSSL_free(gcb.gid_arr);
+ OPENSSL_free(gcb.tuplcnt_arr);
+ OPENSSL_free(gcb.ksid_arr);
return ret;
}
/* Check a group id matches preferences */
-int tls1_check_group_id(SSL *s, uint16_t group_id, int check_own_groups)
+int tls1_check_group_id(SSL_CONNECTION *s, uint16_t group_id,
+ int check_own_groups)
{
const uint16_t *groups;
size_t groups_len;
@@ -810,10 +1719,10 @@ int tls1_check_group_id(SSL *s, uint16_t group_id, int check_own_groups)
unsigned long cid = s->s3.tmp.new_cipher->id;
if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
- if (group_id != TLSEXT_curve_P_256)
+ if (group_id != OSSL_TLS_GROUP_ID_secp256r1)
return 0;
} else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
- if (group_id != TLSEXT_curve_P_384)
+ if (group_id != OSSL_TLS_GROUP_ID_secp384r1)
return 0;
} else {
/* Should never happen */
@@ -849,7 +1758,7 @@ int tls1_check_group_id(SSL *s, uint16_t group_id, int check_own_groups)
return tls1_in_list(group_id, groups, groups_len);
}
-void tls1_get_formatlist(SSL *s, const unsigned char **pformats,
+void tls1_get_formatlist(SSL_CONNECTION *s, const unsigned char **pformats,
size_t *num_formats)
{
/*
@@ -869,7 +1778,7 @@ void tls1_get_formatlist(SSL *s, const unsigned char **pformats,
}
/* Check a key is compatible with compression extension */
-static int tls1_check_pkey_comp(SSL *s, EVP_PKEY *pkey)
+static int tls1_check_pkey_comp(SSL_CONNECTION *s, EVP_PKEY *pkey)
{
unsigned char comp_id;
size_t i;
@@ -886,7 +1795,7 @@ static int tls1_check_pkey_comp(SSL *s, EVP_PKEY *pkey)
return 0;
if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
- } else if (SSL_IS_TLS13(s)) {
+ } else if (SSL_CONNECTION_IS_TLS13(s)) {
/*
* ec_point_formats extension is not used in TLSv1.3 so we ignore
* this check.
@@ -930,7 +1839,7 @@ static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
* Check cert parameters compatible with extensions: currently just checks EC
* certificates have compatible curves and compression.
*/
-static int tls1_check_cert_param(SSL *s, X509 *x, int check_ee_md)
+static int tls1_check_cert_param(SSL_CONNECTION *s, X509 *x, int check_ee_md)
{
uint16_t group_id;
EVP_PKEY *pkey;
@@ -959,15 +1868,15 @@ static int tls1_check_cert_param(SSL *s, X509 *x, int check_ee_md)
size_t i;
/* Check to see we have necessary signing algorithm */
- if (group_id == TLSEXT_curve_P_256)
+ if (group_id == OSSL_TLS_GROUP_ID_secp256r1)
check_md = NID_ecdsa_with_SHA256;
- else if (group_id == TLSEXT_curve_P_384)
+ else if (group_id == OSSL_TLS_GROUP_ID_secp384r1)
check_md = NID_ecdsa_with_SHA384;
else
return 0; /* Should never happen */
for (i = 0; i < s->shared_sigalgslen; i++) {
if (check_md == s->shared_sigalgs[i]->sigandhash)
- return 1;;
+ return 1;
}
return 0;
}
@@ -984,7 +1893,7 @@ static int tls1_check_cert_param(SSL *s, X509 *x, int check_ee_md)
*
* Returns 0 when the cipher can't be used or 1 when it can.
*/
-int tls1_check_ec_tmp_key(SSL *s, unsigned long cid)
+int tls1_check_ec_tmp_key(SSL_CONNECTION *s, unsigned long cid)
{
/* If not Suite B just need a shared group */
if (!tls1_suiteb(s))
@@ -994,20 +1903,26 @@ int tls1_check_ec_tmp_key(SSL *s, unsigned long cid)
* curves permitted.
*/
if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
- return tls1_check_group_id(s, TLSEXT_curve_P_256, 1);
+ return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp256r1, 1);
if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
- return tls1_check_group_id(s, TLSEXT_curve_P_384, 1);
+ return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp384r1, 1);
return 0;
}
/* Default sigalg schemes */
static const uint16_t tls12_sigalgs[] = {
+ TLSEXT_SIGALG_mldsa65,
+ TLSEXT_SIGALG_mldsa87,
+ TLSEXT_SIGALG_mldsa44,
TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
TLSEXT_SIGALG_ed25519,
TLSEXT_SIGALG_ed448,
+ TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
+ TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
+ TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
TLSEXT_SIGALG_rsa_pss_pss_sha256,
TLSEXT_SIGALG_rsa_pss_pss_sha384,
@@ -1049,104 +1964,191 @@ static const uint16_t suiteb_sigalgs[] = {
};
static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
- {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
+ {TLSEXT_SIGALG_ecdsa_secp256r1_sha256_name,
+ "ECDSA+SHA256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
- NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1},
- {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
+ NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1, 0,
+ TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
+ {TLSEXT_SIGALG_ecdsa_secp384r1_sha384_name,
+ "ECDSA+SHA384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
- NID_ecdsa_with_SHA384, NID_secp384r1, 1},
- {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
+ NID_ecdsa_with_SHA384, NID_secp384r1, 1, 0,
+ TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
+ {TLSEXT_SIGALG_ecdsa_secp521r1_sha512_name,
+ "ECDSA+SHA512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
- NID_ecdsa_with_SHA512, NID_secp521r1, 1},
- {"ed25519", TLSEXT_SIGALG_ed25519,
+ NID_ecdsa_with_SHA512, NID_secp521r1, 1, 0,
+ TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
+
+ {TLSEXT_SIGALG_ed25519_name,
+ NULL, TLSEXT_SIGALG_ed25519,
NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
- NID_undef, NID_undef, 1},
- {"ed448", TLSEXT_SIGALG_ed448,
+ NID_undef, NID_undef, 1, 0,
+ TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
+ {TLSEXT_SIGALG_ed448_name,
+ NULL, TLSEXT_SIGALG_ed448,
NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
- NID_undef, NID_undef, 1},
- {NULL, TLSEXT_SIGALG_ecdsa_sha224,
+ NID_undef, NID_undef, 1, 0,
+ TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
+
+ {TLSEXT_SIGALG_ecdsa_sha224_name,
+ "ECDSA+SHA224", TLSEXT_SIGALG_ecdsa_sha224,
NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
- NID_ecdsa_with_SHA224, NID_undef, 1},
- {NULL, TLSEXT_SIGALG_ecdsa_sha1,
+ NID_ecdsa_with_SHA224, NID_undef, 1, 0,
+ TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
+ {TLSEXT_SIGALG_ecdsa_sha1_name,
+ "ECDSA+SHA1", TLSEXT_SIGALG_ecdsa_sha1,
NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
- NID_ecdsa_with_SHA1, NID_undef, 1},
- {"rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
+ NID_ecdsa_with_SHA1, NID_undef, 1, 0,
+ TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
+
+ {TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_name,
+ TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_alias,
+ TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
+ NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
+ NID_ecdsa_with_SHA256, NID_brainpoolP256r1, 1, 0,
+ TLS1_3_VERSION, 0, -1, -1},
+ {TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_name,
+ TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_alias,
+ TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
+ NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
+ NID_ecdsa_with_SHA384, NID_brainpoolP384r1, 1, 0,
+ TLS1_3_VERSION, 0, -1, -1},
+ {TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_name,
+ TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_alias,
+ TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
+ NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
+ NID_ecdsa_with_SHA512, NID_brainpoolP512r1, 1, 0,
+ TLS1_3_VERSION, 0, -1, -1},
+
+ {TLSEXT_SIGALG_rsa_pss_rsae_sha256_name,
+ "PSS+SHA256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
- NID_undef, NID_undef, 1},
- {"rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
+ NID_undef, NID_undef, 1, 0,
+ TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
+ {TLSEXT_SIGALG_rsa_pss_rsae_sha384_name,
+ "PSS+SHA384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
- NID_undef, NID_undef, 1},
- {"rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
+ NID_undef, NID_undef, 1, 0,
+ TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
+ {TLSEXT_SIGALG_rsa_pss_rsae_sha512_name,
+ "PSS+SHA512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
- NID_undef, NID_undef, 1},
- {"rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256,
+ NID_undef, NID_undef, 1, 0,
+ TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
+
+ {TLSEXT_SIGALG_rsa_pss_pss_sha256_name,
+ NULL, TLSEXT_SIGALG_rsa_pss_pss_sha256,
NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
- NID_undef, NID_undef, 1},
- {"rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384,
+ NID_undef, NID_undef, 1, 0,
+ TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
+ {TLSEXT_SIGALG_rsa_pss_pss_sha384_name,
+ NULL, TLSEXT_SIGALG_rsa_pss_pss_sha384,
NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
- NID_undef, NID_undef, 1},
- {"rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512,
+ NID_undef, NID_undef, 1, 0,
+ TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
+ {TLSEXT_SIGALG_rsa_pss_pss_sha512_name,
+ NULL, TLSEXT_SIGALG_rsa_pss_pss_sha512,
NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
- NID_undef, NID_undef, 1},
- {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
+ NID_undef, NID_undef, 1, 0,
+ TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
+
+ {TLSEXT_SIGALG_rsa_pkcs1_sha256_name,
+ "RSA+SHA256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
- NID_sha256WithRSAEncryption, NID_undef, 1},
- {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
+ NID_sha256WithRSAEncryption, NID_undef, 1, 0,
+ TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
+ {TLSEXT_SIGALG_rsa_pkcs1_sha384_name,
+ "RSA+SHA384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
- NID_sha384WithRSAEncryption, NID_undef, 1},
- {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
+ NID_sha384WithRSAEncryption, NID_undef, 1, 0,
+ TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
+ {TLSEXT_SIGALG_rsa_pkcs1_sha512_name,
+ "RSA+SHA512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
- NID_sha512WithRSAEncryption, NID_undef, 1},
- {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
+ NID_sha512WithRSAEncryption, NID_undef, 1, 0,
+ TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
+
+ {TLSEXT_SIGALG_rsa_pkcs1_sha224_name,
+ "RSA+SHA224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
- NID_sha224WithRSAEncryption, NID_undef, 1},
- {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
+ NID_sha224WithRSAEncryption, NID_undef, 1, 0,
+ TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
+ {TLSEXT_SIGALG_rsa_pkcs1_sha1_name,
+ "RSA+SHA1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
- NID_sha1WithRSAEncryption, NID_undef, 1},
- {NULL, TLSEXT_SIGALG_dsa_sha256,
+ NID_sha1WithRSAEncryption, NID_undef, 1, 0,
+ TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
+
+ {TLSEXT_SIGALG_dsa_sha256_name,
+ "DSA+SHA256", TLSEXT_SIGALG_dsa_sha256,
NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
- NID_dsa_with_SHA256, NID_undef, 1},
- {NULL, TLSEXT_SIGALG_dsa_sha384,
+ NID_dsa_with_SHA256, NID_undef, 1, 0,
+ TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
+ {TLSEXT_SIGALG_dsa_sha384_name,
+ "DSA+SHA384", TLSEXT_SIGALG_dsa_sha384,
NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
- NID_undef, NID_undef, 1},
- {NULL, TLSEXT_SIGALG_dsa_sha512,
+ NID_undef, NID_undef, 1, 0,
+ TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
+ {TLSEXT_SIGALG_dsa_sha512_name,
+ "DSA+SHA512", TLSEXT_SIGALG_dsa_sha512,
NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
- NID_undef, NID_undef, 1},
- {NULL, TLSEXT_SIGALG_dsa_sha224,
+ NID_undef, NID_undef, 1, 0,
+ TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
+ {TLSEXT_SIGALG_dsa_sha224_name,
+ "DSA+SHA224", TLSEXT_SIGALG_dsa_sha224,
NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
- NID_undef, NID_undef, 1},
- {NULL, TLSEXT_SIGALG_dsa_sha1,
+ NID_undef, NID_undef, 1, 0,
+ TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
+ {TLSEXT_SIGALG_dsa_sha1_name,
+ "DSA+SHA1", TLSEXT_SIGALG_dsa_sha1,
NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
- NID_dsaWithSHA1, NID_undef, 1},
+ NID_dsaWithSHA1, NID_undef, 1, 0,
+ TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
+
#ifndef OPENSSL_NO_GOST
- {NULL, TLSEXT_SIGALG_gostr34102012_256_intrinsic,
+ {TLSEXT_SIGALG_gostr34102012_256_intrinsic_alias, /* RFC9189 */
+ TLSEXT_SIGALG_gostr34102012_256_intrinsic_name,
+ TLSEXT_SIGALG_gostr34102012_256_intrinsic,
NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
- NID_undef, NID_undef, 1},
- {NULL, TLSEXT_SIGALG_gostr34102012_512_intrinsic,
+ NID_undef, NID_undef, 1, 0,
+ TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
+ {TLSEXT_SIGALG_gostr34102012_256_intrinsic_alias, /* RFC9189 */
+ TLSEXT_SIGALG_gostr34102012_256_intrinsic_name,
+ TLSEXT_SIGALG_gostr34102012_512_intrinsic,
NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
- NID_undef, NID_undef, 1},
- {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
+ NID_undef, NID_undef, 1, 0,
+ TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
+
+ {TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256_name,
+ NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
- NID_undef, NID_undef, 1},
- {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
+ NID_undef, NID_undef, 1, 0,
+ TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
+ {TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512_name,
+ NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
- NID_undef, NID_undef, 1},
- {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
+ NID_undef, NID_undef, 1, 0,
+ TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
+ {TLSEXT_SIGALG_gostr34102001_gostr3411_name,
+ NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
NID_id_GostR3410_2001, SSL_PKEY_GOST01,
- NID_undef, NID_undef, 1}
+ NID_undef, NID_undef, 1, 0,
+ TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
#endif
};
/* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
static const SIGALG_LOOKUP legacy_rsa_sigalg = {
- "rsa_pkcs1_md5_sha1", 0,
+ "rsa_pkcs1_md5_sha1", NULL, 0,
NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
EVP_PKEY_RSA, SSL_PKEY_RSA,
- NID_undef, NID_undef, 1
+ NID_undef, NID_undef, 1, 0,
+ TLS1_VERSION, TLS1_2_VERSION, DTLS1_VERSION, DTLS1_2_VERSION
};
/*
@@ -1165,19 +2167,33 @@ static const uint16_t tls_default_sigalg[] = {
0, /* SSL_PKEY_ED448 */
};
-int ssl_setup_sig_algs(SSL_CTX *ctx)
+int ssl_setup_sigalgs(SSL_CTX *ctx)
{
- size_t i;
+ size_t i, cache_idx, sigalgs_len, enabled;
const SIGALG_LOOKUP *lu;
- SIGALG_LOOKUP *cache
- = OPENSSL_malloc(sizeof(*lu) * OSSL_NELEM(sigalg_lookup_tbl));
+ SIGALG_LOOKUP *cache = NULL;
+ uint16_t *tls12_sigalgs_list = NULL;
EVP_PKEY *tmpkey = EVP_PKEY_new();
+ int istls;
int ret = 0;
+ if (ctx == NULL)
+ goto err;
+
+ istls = !SSL_CTX_IS_DTLS(ctx);
+
+ sigalgs_len = OSSL_NELEM(sigalg_lookup_tbl) + ctx->sigalg_list_len;
+
+ cache = OPENSSL_zalloc(sizeof(const SIGALG_LOOKUP) * sigalgs_len);
if (cache == NULL || tmpkey == NULL)
goto err;
+ tls12_sigalgs_list = OPENSSL_zalloc(sizeof(uint16_t) * sigalgs_len);
+ if (tls12_sigalgs_list == NULL)
+ goto err;
+
ERR_set_mark();
+ /* First fill cache and tls12_sigalgs list from legacy algorithm list */
for (i = 0, lu = sigalg_lookup_tbl;
i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
EVP_PKEY_CTX *pctx;
@@ -1194,53 +2210,183 @@ int ssl_setup_sig_algs(SSL_CTX *ctx)
*/
if (lu->hash != NID_undef
&& ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
- cache[i].enabled = 0;
+ cache[i].available = 0;
continue;
}
if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
- cache[i].enabled = 0;
+ cache[i].available = 0;
continue;
}
pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
/* If unable to create pctx we assume the sig algorithm is unavailable */
if (pctx == NULL)
- cache[i].enabled = 0;
+ cache[i].available = 0;
EVP_PKEY_CTX_free(pctx);
}
+
+ /* Now complete cache and tls12_sigalgs list with provider sig information */
+ cache_idx = OSSL_NELEM(sigalg_lookup_tbl);
+ for (i = 0; i < ctx->sigalg_list_len; i++) {
+ TLS_SIGALG_INFO si = ctx->sigalg_list[i];
+ cache[cache_idx].name = si.name;
+ cache[cache_idx].name12 = si.sigalg_name;
+ cache[cache_idx].sigalg = si.code_point;
+ tls12_sigalgs_list[cache_idx] = si.code_point;
+ cache[cache_idx].hash = si.hash_name?OBJ_txt2nid(si.hash_name):NID_undef;
+ cache[cache_idx].hash_idx = ssl_get_md_idx(cache[cache_idx].hash);
+ cache[cache_idx].sig = OBJ_txt2nid(si.sigalg_name);
+ cache[cache_idx].sig_idx = i + SSL_PKEY_NUM;
+ cache[cache_idx].sigandhash = OBJ_txt2nid(si.sigalg_name);
+ cache[cache_idx].curve = NID_undef;
+ cache[cache_idx].mintls = TLS1_3_VERSION;
+ cache[cache_idx].maxtls = TLS1_3_VERSION;
+ cache[cache_idx].mindtls = -1;
+ cache[cache_idx].maxdtls = -1;
+ /* Compatibility with TLS 1.3 is checked on load */
+ cache[cache_idx].available = istls;
+ cache[cache_idx].advertise = 0;
+ cache_idx++;
+ }
ERR_pop_to_mark();
+
+ enabled = 0;
+ for (i = 0; i < OSSL_NELEM(tls12_sigalgs); ++i) {
+ SIGALG_LOOKUP *ent = cache;
+ size_t j;
+
+ for (j = 0; j < sigalgs_len; ent++, j++) {
+ if (ent->sigalg != tls12_sigalgs[i])
+ continue;
+ /* Dedup by marking cache entry as default enabled. */
+ if (ent->available && !ent->advertise) {
+ ent->advertise = 1;
+ tls12_sigalgs_list[enabled++] = tls12_sigalgs[i];
+ }
+ break;
+ }
+ }
+
+ /* Append any provider sigalgs not yet handled */
+ for (i = OSSL_NELEM(sigalg_lookup_tbl); i < sigalgs_len; ++i) {
+ SIGALG_LOOKUP *ent = &cache[i];
+
+ if (ent->available && !ent->advertise)
+ tls12_sigalgs_list[enabled++] = ent->sigalg;
+ }
+
ctx->sigalg_lookup_cache = cache;
+ ctx->sigalg_lookup_cache_len = sigalgs_len;
+ ctx->tls12_sigalgs = tls12_sigalgs_list;
+ ctx->tls12_sigalgs_len = enabled;
cache = NULL;
+ tls12_sigalgs_list = NULL;
ret = 1;
err:
OPENSSL_free(cache);
+ OPENSSL_free(tls12_sigalgs_list);
EVP_PKEY_free(tmpkey);
return ret;
}
+#define SIGLEN_BUF_INCREMENT 100
+
+char *SSL_get1_builtin_sigalgs(OSSL_LIB_CTX *libctx)
+{
+ size_t i, maxretlen = SIGLEN_BUF_INCREMENT;
+ const SIGALG_LOOKUP *lu;
+ EVP_PKEY *tmpkey = EVP_PKEY_new();
+ char *retval = OPENSSL_malloc(maxretlen);
+
+ if (retval == NULL)
+ return NULL;
+
+ /* ensure retval string is NUL terminated */
+ retval[0] = (char)0;
+
+ for (i = 0, lu = sigalg_lookup_tbl;
+ i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
+ EVP_PKEY_CTX *pctx;
+ int enabled = 1;
+
+ ERR_set_mark();
+ /* Check hash is available in some provider. */
+ if (lu->hash != NID_undef) {
+ EVP_MD *hash = EVP_MD_fetch(libctx, OBJ_nid2ln(lu->hash), NULL);
+
+ /* If unable to create we assume the hash algorithm is unavailable */
+ if (hash == NULL) {
+ enabled = 0;
+ ERR_pop_to_mark();
+ continue;
+ }
+ EVP_MD_free(hash);
+ }
+
+ if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
+ enabled = 0;
+ ERR_pop_to_mark();
+ continue;
+ }
+ pctx = EVP_PKEY_CTX_new_from_pkey(libctx, tmpkey, NULL);
+ /* If unable to create pctx we assume the sig algorithm is unavailable */
+ if (pctx == NULL)
+ enabled = 0;
+ ERR_pop_to_mark();
+ EVP_PKEY_CTX_free(pctx);
+
+ if (enabled) {
+ const char *sa = lu->name;
+
+ if (sa != NULL) {
+ if (strlen(sa) + strlen(retval) + 1 >= maxretlen) {
+ char *tmp;
+
+ maxretlen += SIGLEN_BUF_INCREMENT;
+ tmp = OPENSSL_realloc(retval, maxretlen);
+ if (tmp == NULL) {
+ OPENSSL_free(retval);
+ return NULL;
+ }
+ retval = tmp;
+ }
+ if (strlen(retval) > 0)
+ OPENSSL_strlcat(retval, ":", maxretlen);
+ OPENSSL_strlcat(retval, sa, maxretlen);
+ } else {
+ /* lu->name must not be NULL */
+ ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
+ }
+ }
+ }
+
+ EVP_PKEY_free(tmpkey);
+ return retval;
+}
+
/* Lookup TLS signature algorithm */
-static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL *s, uint16_t sigalg)
+static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL_CTX *ctx,
+ uint16_t sigalg)
{
size_t i;
- const SIGALG_LOOKUP *lu;
+ const SIGALG_LOOKUP *lu = ctx->sigalg_lookup_cache;
- for (i = 0, lu = s->ctx->sigalg_lookup_cache;
- /* cache should have the same number of elements as sigalg_lookup_tbl */
- i < OSSL_NELEM(sigalg_lookup_tbl);
- lu++, i++) {
+ for (i = 0; i < ctx->sigalg_lookup_cache_len; lu++, i++) {
if (lu->sigalg == sigalg) {
- if (!lu->enabled)
+ if (!lu->available)
return NULL;
return lu;
}
}
return NULL;
}
+
/* Lookup hash: return 0 if invalid or not enabled */
int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
{
const EVP_MD *md;
+
if (lu == NULL)
return 0;
/* lu->hash == NID_undef means no associated digest */
@@ -1273,6 +2419,8 @@ static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
return 0;
if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
return 0;
+ if (EVP_MD_get_size(md) <= 0)
+ return 0;
if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
return 0;
return 1;
@@ -1285,15 +2433,17 @@ static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
* certificate type from |s| will be used.
* Returns the signature algorithm to use, or NULL on error.
*/
-static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL *s, int idx)
+static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL_CONNECTION *s,
+ int idx)
{
if (idx == -1) {
if (s->server) {
size_t i;
/* Work out index corresponding to ciphersuite */
- for (i = 0; i < SSL_PKEY_NUM; i++) {
- const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(i);
+ for (i = 0; i < s->ssl_pkey_num; i++) {
+ const SSL_CERT_LOOKUP *clu
+ = ssl_cert_lookup_by_idx(i, SSL_CONNECTION_GET_CTX(s));
if (clu == NULL)
continue;
@@ -1338,12 +2488,15 @@ static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL *s, int idx)
}
if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
return NULL;
+
if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
- const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, tls_default_sigalg[idx]);
+ const SIGALG_LOOKUP *lu =
+ tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
+ tls_default_sigalg[idx]);
if (lu == NULL)
return NULL;
- if (!tls1_lookup_md(s->ctx, lu, NULL))
+ if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, NULL))
return NULL;
if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
return NULL;
@@ -1354,12 +2507,12 @@ static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL *s, int idx)
return &legacy_rsa_sigalg;
}
/* Set peer sigalg based key type */
-int tls1_set_peer_legacy_sigalg(SSL *s, const EVP_PKEY *pkey)
+int tls1_set_peer_legacy_sigalg(SSL_CONNECTION *s, const EVP_PKEY *pkey)
{
size_t idx;
const SIGALG_LOOKUP *lu;
- if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
+ if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
return 0;
lu = tls1_get_legacy_sigalg(s, idx);
if (lu == NULL)
@@ -1368,7 +2521,7 @@ int tls1_set_peer_legacy_sigalg(SSL *s, const EVP_PKEY *pkey)
return 1;
}
-size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs)
+size_t tls12_get_psigalgs(SSL_CONNECTION *s, int sent, const uint16_t **psigs)
{
/*
* If Suite B mode use Suite B sigalgs only, ignore any other
@@ -1399,8 +2552,8 @@ size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs)
*psigs = s->cert->conf_sigalgs;
return s->cert->conf_sigalgslen;
} else {
- *psigs = tls12_sigalgs;
- return OSSL_NELEM(tls12_sigalgs);
+ *psigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
+ return SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
}
}
@@ -1408,7 +2561,7 @@ size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs)
* Called by servers only. Checks that we have a sig alg that supports the
* specified EC curve.
*/
-int tls_check_sigalg_curve(const SSL *s, int curve)
+int tls_check_sigalg_curve(const SSL_CONNECTION *s, int curve)
{
const uint16_t *sigs;
size_t siglen, i;
@@ -1417,12 +2570,13 @@ int tls_check_sigalg_curve(const SSL *s, int curve)
sigs = s->cert->conf_sigalgs;
siglen = s->cert->conf_sigalgslen;
} else {
- sigs = tls12_sigalgs;
- siglen = OSSL_NELEM(tls12_sigalgs);
+ sigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
+ siglen = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
}
for (i = 0; i < siglen; i++) {
- const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, sigs[i]);
+ const SIGALG_LOOKUP *lu =
+ tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), sigs[i]);
if (lu == NULL)
continue;
@@ -1452,6 +2606,8 @@ static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
/* Security bits: half digest bits */
secbits = EVP_MD_get_size(md) * 4;
+ if (secbits <= 0)
+ return 0;
/*
* SHA1 and MD5 are known to be broken. Reduce security bits so that
* they're no longer accepted at security level 1. The real values don't
@@ -1475,15 +2631,60 @@ static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
else if (lu->sigalg == TLSEXT_SIGALG_ed448)
secbits = 224;
}
+ /*
+ * For provider-based sigalgs we have secbits information available
+ * in the (provider-loaded) sigalg_list structure
+ */
+ if ((secbits == 0) && (lu->sig_idx >= SSL_PKEY_NUM)
+ && ((lu->sig_idx - SSL_PKEY_NUM) < (int)ctx->sigalg_list_len)) {
+ secbits = ctx->sigalg_list[lu->sig_idx - SSL_PKEY_NUM].secbits;
+ }
return secbits;
}
+static int tls_sigalg_compat(SSL_CONNECTION *sc, const SIGALG_LOOKUP *lu)
+{
+ int minversion, maxversion;
+ int minproto, maxproto;
+
+ if (!lu->available)
+ return 0;
+
+ if (SSL_CONNECTION_IS_DTLS(sc)) {
+ if (sc->ssl.method->version == DTLS_ANY_VERSION) {
+ minproto = sc->min_proto_version;
+ maxproto = sc->max_proto_version;
+ } else {
+ maxproto = minproto = sc->version;
+ }
+ minversion = lu->mindtls;
+ maxversion = lu->maxdtls;
+ } else {
+ if (sc->ssl.method->version == TLS_ANY_VERSION) {
+ minproto = sc->min_proto_version;
+ maxproto = sc->max_proto_version;
+ } else {
+ maxproto = minproto = sc->version;
+ }
+ minversion = lu->mintls;
+ maxversion = lu->maxtls;
+ }
+ if (minversion == -1 || maxversion == -1
+ || (minversion != 0 && maxproto != 0
+ && ssl_version_cmp(sc, minversion, maxproto) > 0)
+ || (maxversion != 0 && minproto != 0
+ && ssl_version_cmp(sc, maxversion, minproto) < 0)
+ || !tls12_sigalg_allowed(sc, SSL_SECOP_SIGALG_SUPPORTED, lu))
+ return 0;
+ return 1;
+}
+
/*
* Check signature algorithm is consistent with sent supported signature
* algorithms and if so set relevant digest and signature scheme in
* s.
*/
-int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey)
+int tls12_check_peer_sigalg(SSL_CONNECTION *s, uint16_t sig, EVP_PKEY *pkey)
{
const uint16_t *sent_sigs;
const EVP_MD *md = NULL;
@@ -1494,10 +2695,8 @@ int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey)
int secbits = 0;
pkeyid = EVP_PKEY_get_id(pkey);
- /* Should never happen */
- if (pkeyid == -1)
- return -1;
- if (SSL_IS_TLS13(s)) {
+
+ if (SSL_CONNECTION_IS_TLS13(s)) {
/* Disallow DSA for TLS 1.3 */
if (pkeyid == EVP_PKEY_DSA) {
SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
@@ -1507,20 +2706,39 @@ int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey)
if (pkeyid == EVP_PKEY_RSA)
pkeyid = EVP_PKEY_RSA_PSS;
}
- lu = tls1_lookup_sigalg(s, sig);
+
+ /* Is this code point available and compatible with the protocol */
+ lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), sig);
+ if (lu == NULL || !tls_sigalg_compat(s, lu)) {
+ SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
+ return 0;
+ }
+
+ /* if this sigalg is loaded, set so far unknown pkeyid to its sig NID */
+ if (pkeyid == EVP_PKEY_KEYMGMT)
+ pkeyid = lu->sig;
+
+ /* Should never happen */
+ if (pkeyid == -1) {
+ SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
+ return -1;
+ }
+
/*
* Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
* is consistent with signature: RSA keys can be used for RSA-PSS
*/
- if (lu == NULL
- || (SSL_IS_TLS13(s) && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
+ if ((SSL_CONNECTION_IS_TLS13(s)
+ && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
|| (pkeyid != lu->sig
&& (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
return 0;
}
/* Check the sigalg is consistent with the key OID */
- if (!ssl_cert_lookup_by_nid(EVP_PKEY_get_id(pkey), &cidx)
+ if (!ssl_cert_lookup_by_nid(
+ (pkeyid == EVP_PKEY_RSA_PSS) ? EVP_PKEY_get_id(pkey) : pkeyid,
+ &cidx, SSL_CONNECTION_GET_CTX(s))
|| lu->sig_idx != (int)cidx) {
SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
return 0;
@@ -1536,7 +2754,7 @@ int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey)
}
/* For TLS 1.3 or Suite B check curve matches signature algorithm */
- if (SSL_IS_TLS13(s) || tls1_suiteb(s)) {
+ if (SSL_CONNECTION_IS_TLS13(s) || tls1_suiteb(s)) {
int curve = ssl_get_EC_curve_nid(pkey);
if (lu->curve != NID_undef && curve != lu->curve) {
@@ -1544,7 +2762,7 @@ int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey)
return 0;
}
}
- if (!SSL_IS_TLS13(s)) {
+ if (!SSL_CONNECTION_IS_TLS13(s)) {
/* Check curve matches extensions */
if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
@@ -1577,7 +2795,7 @@ int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey)
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
return 0;
}
- if (!tls1_lookup_md(s->ctx, lu, &md)) {
+ if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, &md)) {
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
return 0;
}
@@ -1587,7 +2805,7 @@ int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey)
*/
sigalgstr[0] = (sig >> 8) & 0xff;
sigalgstr[1] = sig & 0xff;
- secbits = sigalg_security_bits(s->ctx, lu);
+ secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
if (secbits == 0 ||
!ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
md != NULL ? EVP_MD_get_type(md) : NID_undef,
@@ -1602,17 +2820,27 @@ int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey)
int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
{
- if (s->s3.tmp.peer_sigalg == NULL)
+ const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
+
+ if (sc == NULL)
return 0;
- *pnid = s->s3.tmp.peer_sigalg->sig;
+
+ if (sc->s3.tmp.peer_sigalg == NULL)
+ return 0;
+ *pnid = sc->s3.tmp.peer_sigalg->sig;
return 1;
}
int SSL_get_signature_type_nid(const SSL *s, int *pnid)
{
- if (s->s3.tmp.sigalg == NULL)
+ const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
+
+ if (sc == NULL)
+ return 0;
+
+ if (sc->s3.tmp.sigalg == NULL)
return 0;
- *pnid = s->s3.tmp.sigalg->sig;
+ *pnid = sc->s3.tmp.sigalg->sig;
return 1;
}
@@ -1626,7 +2854,7 @@ int SSL_get_signature_type_nid(const SSL *s, int *pnid)
*
* Call ssl_cipher_disabled() to check that it's enabled or not.
*/
-int ssl_set_client_disabled(SSL *s)
+int ssl_set_client_disabled(SSL_CONNECTION *s)
{
s->s3.tmp.mask_a = 0;
s->s3.tmp.mask_k = 0;
@@ -1659,42 +2887,53 @@ int ssl_set_client_disabled(SSL *s)
*
* Returns 1 when it's disabled, 0 when enabled.
*/
-int ssl_cipher_disabled(const SSL *s, const SSL_CIPHER *c, int op, int ecdhe)
+int ssl_cipher_disabled(const SSL_CONNECTION *s, const SSL_CIPHER *c,
+ int op, int ecdhe)
{
+ int minversion = SSL_CONNECTION_IS_DTLS(s) ? c->min_dtls : c->min_tls;
+ int maxversion = SSL_CONNECTION_IS_DTLS(s) ? c->max_dtls : c->max_tls;
+
if (c->algorithm_mkey & s->s3.tmp.mask_k
|| c->algorithm_auth & s->s3.tmp.mask_a)
return 1;
if (s->s3.tmp.max_ver == 0)
return 1;
- if (!SSL_IS_DTLS(s)) {
- int min_tls = c->min_tls;
- /*
- * For historical reasons we will allow ECHDE to be selected by a server
- * in SSLv3 if we are a client
- */
- if (min_tls == TLS1_VERSION && ecdhe
- && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
- min_tls = SSL3_VERSION;
-
- if ((min_tls > s->s3.tmp.max_ver) || (c->max_tls < s->s3.tmp.min_ver))
+ if (SSL_IS_QUIC_INT_HANDSHAKE(s))
+ /* For QUIC, only allow these ciphersuites. */
+ switch (SSL_CIPHER_get_id(c)) {
+ case TLS1_3_CK_AES_128_GCM_SHA256:
+ case TLS1_3_CK_AES_256_GCM_SHA384:
+ case TLS1_3_CK_CHACHA20_POLY1305_SHA256:
+ break;
+ default:
return 1;
- }
- if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3.tmp.max_ver)
- || DTLS_VERSION_LT(c->max_dtls, s->s3.tmp.min_ver)))
+ }
+
+ /*
+ * For historical reasons we will allow ECHDE to be selected by a server
+ * in SSLv3 if we are a client
+ */
+ if (minversion == TLS1_VERSION
+ && ecdhe
+ && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
+ minversion = SSL3_VERSION;
+
+ if (ssl_version_cmp(s, minversion, s->s3.tmp.max_ver) > 0
+ || ssl_version_cmp(s, maxversion, s->s3.tmp.min_ver) < 0)
return 1;
return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
}
-int tls_use_ticket(SSL *s)
+int tls_use_ticket(SSL_CONNECTION *s)
{
if ((s->options & SSL_OP_NO_TICKET))
return 0;
return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
}
-int tls1_set_server_sigalgs(SSL *s)
+int tls1_set_server_sigalgs(SSL_CONNECTION *s)
{
size_t i;
@@ -1702,9 +2941,14 @@ int tls1_set_server_sigalgs(SSL *s)
OPENSSL_free(s->shared_sigalgs);
s->shared_sigalgs = NULL;
s->shared_sigalgslen = 0;
+
/* Clear certificate validity flags */
- for (i = 0; i < SSL_PKEY_NUM; i++)
- s->s3.tmp.valid_flags[i] = 0;
+ if (s->s3.tmp.valid_flags)
+ memset(s->s3.tmp.valid_flags, 0, s->ssl_pkey_num * sizeof(uint32_t));
+ else
+ s->s3.tmp.valid_flags = OPENSSL_zalloc(s->ssl_pkey_num * sizeof(uint32_t));
+ if (s->s3.tmp.valid_flags == NULL)
+ return 0;
/*
* If peer sent no signature algorithms check to see if we support
* the default algorithm for each certificate type
@@ -1714,7 +2958,7 @@ int tls1_set_server_sigalgs(SSL *s)
const uint16_t *sent_sigs;
size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
- for (i = 0; i < SSL_PKEY_NUM; i++) {
+ for (i = 0; i < s->ssl_pkey_num; i++) {
const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
size_t j;
@@ -1751,7 +2995,8 @@ int tls1_set_server_sigalgs(SSL *s)
* ret: (output) on return, if a ticket was decrypted, then this is set to
* point to the resulting session.
*/
-SSL_TICKET_STATUS tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello,
+SSL_TICKET_STATUS tls_get_ticket_from_client(SSL_CONNECTION *s,
+ CLIENTHELLO_MSG *hello,
SSL_SESSION **ret)
{
size_t size;
@@ -1801,8 +3046,10 @@ SSL_TICKET_STATUS tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello,
* psess: (output) on return, if a ticket was decrypted, then this is set to
* point to the resulting session.
*/
-SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick,
- size_t eticklen, const unsigned char *sess_id,
+SSL_TICKET_STATUS tls_decrypt_ticket(SSL_CONNECTION *s,
+ const unsigned char *etick,
+ size_t eticklen,
+ const unsigned char *sess_id,
size_t sesslen, SSL_SESSION **psess)
{
SSL_SESSION *sess = NULL;
@@ -1815,6 +3062,7 @@ SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick,
SSL_HMAC *hctx = NULL;
EVP_CIPHER_CTX *ctx = NULL;
SSL_CTX *tctx = s->session_ctx;
+ SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
if (eticklen == 0) {
/*
@@ -1824,7 +3072,7 @@ SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick,
ret = SSL_TICKET_EMPTY;
goto end;
}
- if (!SSL_IS_TLS13(s) && s->ext.session_secret_cb) {
+ if (!SSL_CONNECTION_IS_TLS13(s) && s->ext.session_secret_cb) {
/*
* Indicate that the ticket couldn't be decrypted rather than
* generating the session from ticket now, trigger
@@ -1862,7 +3110,8 @@ SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick,
int rv = 0;
if (tctx->ext.ticket_key_evp_cb != NULL)
- rv = tctx->ext.ticket_key_evp_cb(s, nctick,
+ rv = tctx->ext.ticket_key_evp_cb(SSL_CONNECTION_GET_USER_SSL(s),
+ nctick,
nctick + TLSEXT_KEYNAME_LENGTH,
ctx,
ssl_hmac_get0_EVP_MAC_CTX(hctx),
@@ -1870,7 +3119,7 @@ SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick,
#ifndef OPENSSL_NO_DEPRECATED_3_0
else if (tctx->ext.ticket_key_cb != NULL)
/* if 0 is returned, write an empty ticket */
- rv = tctx->ext.ticket_key_cb(s, nctick,
+ rv = tctx->ext.ticket_key_cb(SSL_CONNECTION_GET_USER_SSL(s), nctick,
nctick + TLSEXT_KEYNAME_LENGTH,
ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
#endif
@@ -1894,8 +3143,8 @@ SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick,
goto end;
}
- aes256cbc = EVP_CIPHER_fetch(s->ctx->libctx, "AES-256-CBC",
- s->ctx->propq);
+ aes256cbc = EVP_CIPHER_fetch(sctx->libctx, "AES-256-CBC",
+ sctx->propq);
if (aes256cbc == NULL
|| ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
sizeof(tctx->ext.secure->tick_hmac_key),
@@ -1908,7 +3157,7 @@ SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick,
goto end;
}
EVP_CIPHER_free(aes256cbc);
- if (SSL_IS_TLS13(s))
+ if (SSL_CONNECTION_IS_TLS13(s))
renew_ticket = 1;
}
/*
@@ -1963,7 +3212,7 @@ SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick,
slen += declen;
p = sdec;
- sess = d2i_SSL_SESSION(NULL, &p, slen);
+ sess = d2i_SSL_SESSION_ex(NULL, &p, slen, sctx->libctx, sctx->propq);
slen -= p - sdec;
OPENSSL_free(sdec);
if (sess) {
@@ -2015,7 +3264,8 @@ SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick,
if (keyname_len > TLSEXT_KEYNAME_LENGTH)
keyname_len = TLSEXT_KEYNAME_LENGTH;
- retcb = s->session_ctx->decrypt_ticket_cb(s, sess, etick, keyname_len,
+ retcb = s->session_ctx->decrypt_ticket_cb(SSL_CONNECTION_GET_SSL(s),
+ sess, etick, keyname_len,
ret,
s->session_ctx->ticket_cb_data);
switch (retcb) {
@@ -2053,7 +3303,7 @@ SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick,
}
}
- if (s->ext.session_secret_cb == NULL || SSL_IS_TLS13(s)) {
+ if (s->ext.session_secret_cb == NULL || SSL_CONNECTION_IS_TLS13(s)) {
switch (ret) {
case SSL_TICKET_NO_DECRYPT:
case SSL_TICKET_SUCCESS_RENEW:
@@ -2068,38 +3318,40 @@ SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick,
}
/* Check to see if a signature algorithm is allowed */
-static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu)
+static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op,
+ const SIGALG_LOOKUP *lu)
{
unsigned char sigalgstr[2];
int secbits;
- if (lu == NULL || !lu->enabled)
+ if (lu == NULL || !lu->available)
return 0;
/* DSA is not allowed in TLS 1.3 */
- if (SSL_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
+ if (SSL_CONNECTION_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
return 0;
/*
* At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
* spec
*/
- if (!s->server && !SSL_IS_DTLS(s) && s->s3.tmp.min_ver >= TLS1_3_VERSION
+ if (!s->server && !SSL_CONNECTION_IS_DTLS(s)
+ && s->s3.tmp.min_ver >= TLS1_3_VERSION
&& (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
|| lu->hash_idx == SSL_MD_MD5_IDX
|| lu->hash_idx == SSL_MD_SHA224_IDX))
return 0;
/* See if public key algorithm allowed */
- if (ssl_cert_is_disabled(s->ctx, lu->sig_idx))
+ if (ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), lu->sig_idx))
return 0;
if (lu->sig == NID_id_GostR3410_2012_256
|| lu->sig == NID_id_GostR3410_2012_512
|| lu->sig == NID_id_GostR3410_2001) {
/* We never allow GOST sig algs on the server with TLSv1.3 */
- if (s->server && SSL_IS_TLS13(s))
+ if (s->server && SSL_CONNECTION_IS_TLS13(s))
return 0;
if (!s->server
- && s->method->version == TLS_ANY_VERSION
+ && SSL_CONNECTION_GET_SSL(s)->method->version == TLS_ANY_VERSION
&& s->s3.tmp.max_ver >= TLS1_3_VERSION) {
int i, num;
STACK_OF(SSL_CIPHER) *sk;
@@ -2113,7 +3365,7 @@ static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu)
if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
return 0;
- sk = SSL_get_ciphers(s);
+ sk = SSL_get_ciphers(SSL_CONNECTION_GET_SSL(s));
num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
for (i = 0; i < num; i++) {
const SSL_CIPHER *c;
@@ -2132,7 +3384,7 @@ static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu)
}
/* Finally see if security callback allows it */
- secbits = sigalg_security_bits(s->ctx, lu);
+ secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
sigalgstr[1] = lu->sigalg & 0xff;
return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
@@ -2144,7 +3396,7 @@ static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu)
* disabled.
*/
-void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op)
+void ssl_set_sig_mask(uint32_t *pmask_a, SSL_CONNECTION *s, int op)
{
const uint16_t *sigalgs;
size_t i, sigalgslen;
@@ -2155,13 +3407,15 @@ void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op)
*/
sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
for (i = 0; i < sigalgslen; i++, sigalgs++) {
- const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *sigalgs);
+ const SIGALG_LOOKUP *lu =
+ tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *sigalgs);
const SSL_CERT_LOOKUP *clu;
if (lu == NULL)
continue;
- clu = ssl_cert_lookup_by_idx(lu->sig_idx);
+ clu = ssl_cert_lookup_by_idx(lu->sig_idx,
+ SSL_CONNECTION_GET_CTX(s));
if (clu == NULL)
continue;
@@ -2173,17 +3427,17 @@ void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op)
*pmask_a |= disabled_mask;
}
-int tls12_copy_sigalgs(SSL *s, WPACKET *pkt,
+int tls12_copy_sigalgs(SSL_CONNECTION *s, WPACKET *pkt,
const uint16_t *psig, size_t psiglen)
{
size_t i;
int rv = 0;
for (i = 0; i < psiglen; i++, psig++) {
- const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *psig);
+ const SIGALG_LOOKUP *lu =
+ tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *psig);
- if (lu == NULL
- || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
+ if (lu == NULL || !tls_sigalg_compat(s, lu))
continue;
if (!WPACKET_put_bytes_u16(pkt, *psig))
return 0;
@@ -2191,7 +3445,7 @@ int tls12_copy_sigalgs(SSL *s, WPACKET *pkt,
* If TLS 1.3 must have at least one valid TLS 1.3 message
* signing algorithm: i.e. neither RSA nor SHA1/SHA224
*/
- if (rv == 0 && (!SSL_IS_TLS13(s)
+ if (rv == 0 && (!SSL_CONNECTION_IS_TLS13(s)
|| (lu->sig != EVP_PKEY_RSA
&& lu->hash != NID_sha1
&& lu->hash != NID_sha224)))
@@ -2203,14 +3457,16 @@ int tls12_copy_sigalgs(SSL *s, WPACKET *pkt,
}
/* Given preference and allowed sigalgs set shared sigalgs */
-static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig,
+static size_t tls12_shared_sigalgs(SSL_CONNECTION *s,
+ const SIGALG_LOOKUP **shsig,
const uint16_t *pref, size_t preflen,
const uint16_t *allow, size_t allowlen)
{
const uint16_t *ptmp, *atmp;
size_t i, j, nmatch = 0;
for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
- const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *ptmp);
+ const SIGALG_LOOKUP *lu =
+ tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *ptmp);
/* Skip disabled hashes or signature algorithms */
if (lu == NULL
@@ -2229,7 +3485,7 @@ static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig,
}
/* Set shared signature algorithms for SSL structures */
-static int tls1_set_shared_sigalgs(SSL *s)
+static int tls1_set_shared_sigalgs(SSL_CONNECTION *s)
{
const uint16_t *pref, *allow, *conf;
size_t preflen, allowlen, conflen;
@@ -2263,10 +3519,8 @@ static int tls1_set_shared_sigalgs(SSL *s)
}
nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
if (nmatch) {
- if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL) {
- ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
+ if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL)
return 0;
- }
nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
} else {
salgs = NULL;
@@ -2290,10 +3544,8 @@ int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
size >>= 1;
- if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL) {
- ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
+ if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL)
return 0;
- }
for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
buf[i] = stmp;
@@ -2309,7 +3561,7 @@ int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
return 1;
}
-int tls1_save_sigalgs(SSL *s, PACKET *pkt, int cert)
+int tls1_save_sigalgs(SSL_CONNECTION *s, PACKET *pkt, int cert)
{
/* Extension ignored for inappropriate versions */
if (!SSL_USE_SIGALGS(s))
@@ -2329,7 +3581,7 @@ int tls1_save_sigalgs(SSL *s, PACKET *pkt, int cert)
/* Set preferred digest for each key type */
-int tls1_process_sigalgs(SSL *s)
+int tls1_process_sigalgs(SSL_CONNECTION *s)
{
size_t i;
uint32_t *pvalid = s->s3.tmp.valid_flags;
@@ -2337,7 +3589,7 @@ int tls1_process_sigalgs(SSL *s)
if (!tls1_set_shared_sigalgs(s))
return 0;
- for (i = 0; i < SSL_PKEY_NUM; i++)
+ for (i = 0; i < s->ssl_pkey_num; i++)
pvalid[i] = 0;
for (i = 0; i < s->shared_sigalgslen; i++) {
@@ -2345,10 +3597,11 @@ int tls1_process_sigalgs(SSL *s)
int idx = sigptr->sig_idx;
/* Ignore PKCS1 based sig algs in TLSv1.3 */
- if (SSL_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
+ if (SSL_CONNECTION_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
continue;
/* If not disabled indicate we can explicitly sign */
- if (pvalid[idx] == 0 && !ssl_cert_is_disabled(s->ctx, idx))
+ if (pvalid[idx] == 0
+ && !ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), idx))
pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
}
return 1;
@@ -2358,8 +3611,16 @@ int SSL_get_sigalgs(SSL *s, int idx,
int *psign, int *phash, int *psignhash,
unsigned char *rsig, unsigned char *rhash)
{
- uint16_t *psig = s->s3.tmp.peer_sigalgs;
- size_t numsigalgs = s->s3.tmp.peer_sigalgslen;
+ uint16_t *psig;
+ size_t numsigalgs;
+ SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
+
+ if (sc == NULL)
+ return 0;
+
+ psig = sc->s3.tmp.peer_sigalgs;
+ numsigalgs = sc->s3.tmp.peer_sigalgslen;
+
if (psig == NULL || numsigalgs > INT_MAX)
return 0;
if (idx >= 0) {
@@ -2372,7 +3633,7 @@ int SSL_get_sigalgs(SSL *s, int idx,
*rhash = (unsigned char)((*psig >> 8) & 0xff);
if (rsig != NULL)
*rsig = (unsigned char)(*psig & 0xff);
- lu = tls1_lookup_sigalg(s, *psig);
+ lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(sc), *psig);
if (psign != NULL)
*psign = lu != NULL ? lu->sig : NID_undef;
if (phash != NULL)
@@ -2388,12 +3649,17 @@ int SSL_get_shared_sigalgs(SSL *s, int idx,
unsigned char *rsig, unsigned char *rhash)
{
const SIGALG_LOOKUP *shsigalgs;
- if (s->shared_sigalgs == NULL
+ SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
+
+ if (sc == NULL)
+ return 0;
+
+ if (sc->shared_sigalgs == NULL
|| idx < 0
- || idx >= (int)s->shared_sigalgslen
- || s->shared_sigalgslen > INT_MAX)
+ || idx >= (int)sc->shared_sigalgslen
+ || sc->shared_sigalgslen > INT_MAX)
return 0;
- shsigalgs = s->shared_sigalgs[idx];
+ shsigalgs = sc->shared_sigalgs[idx];
if (phash != NULL)
*phash = shsigalgs->hash;
if (psign != NULL)
@@ -2404,7 +3670,7 @@ int SSL_get_shared_sigalgs(SSL *s, int idx,
*rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
if (rhash != NULL)
*rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
- return (int)s->shared_sigalgslen;
+ return (int)sc->shared_sigalgslen;
}
/* Maximum possible number of unique entries in sigalgs array */
@@ -2414,17 +3680,19 @@ typedef struct {
size_t sigalgcnt;
/* TLSEXT_SIGALG_XXX values */
uint16_t sigalgs[TLS_MAX_SIGALGCNT];
+ SSL_CTX *ctx;
} sig_cb_st;
static void get_sigorhash(int *psig, int *phash, const char *str)
{
- if (strcmp(str, "RSA") == 0) {
+ if (OPENSSL_strcasecmp(str, "RSA") == 0) {
*psig = EVP_PKEY_RSA;
- } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
+ } else if (OPENSSL_strcasecmp(str, "RSA-PSS") == 0
+ || OPENSSL_strcasecmp(str, "PSS") == 0) {
*psig = EVP_PKEY_RSA_PSS;
- } else if (strcmp(str, "DSA") == 0) {
+ } else if (OPENSSL_strcasecmp(str, "DSA") == 0) {
*psig = EVP_PKEY_DSA;
- } else if (strcmp(str, "ECDSA") == 0) {
+ } else if (OPENSSL_strcasecmp(str, "ECDSA") == 0) {
*psig = EVP_PKEY_EC;
} else {
*phash = OBJ_sn2nid(str);
@@ -2438,12 +3706,20 @@ static void get_sigorhash(int *psig, int *phash, const char *str)
static int sig_cb(const char *elem, int len, void *arg)
{
sig_cb_st *sarg = arg;
- size_t i;
+ size_t i = 0;
const SIGALG_LOOKUP *s;
char etmp[TLS_MAX_SIGSTRING_LEN], *p;
+ const char *iana, *alias;
int sig_alg = NID_undef, hash_alg = NID_undef;
+ int ignore_unknown = 0;
+
if (elem == NULL)
return 0;
+ if (elem[0] == '?') {
+ ignore_unknown = 1;
+ ++elem;
+ --len;
+ }
if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
return 0;
if (len > (int)(sizeof(etmp) - 1))
@@ -2461,15 +3737,33 @@ static int sig_cb(const char *elem, int len, void *arg)
* in the table.
*/
if (p == NULL) {
- for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
- i++, s++) {
- if (s->name != NULL && strcmp(etmp, s->name) == 0) {
- sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
- break;
+ if (sarg->ctx != NULL) {
+ for (i = 0; i < sarg->ctx->sigalg_lookup_cache_len; i++) {
+ iana = sarg->ctx->sigalg_lookup_cache[i].name;
+ alias = sarg->ctx->sigalg_lookup_cache[i].name12;
+ if ((alias != NULL && OPENSSL_strcasecmp(etmp, alias) == 0)
+ || OPENSSL_strcasecmp(etmp, iana) == 0) {
+ /* Ignore known, but unavailable sigalgs. */
+ if (!sarg->ctx->sigalg_lookup_cache[i].available)
+ return 1;
+ sarg->sigalgs[sarg->sigalgcnt++] =
+ sarg->ctx->sigalg_lookup_cache[i].sigalg;
+ goto found;
+ }
+ }
+ } else {
+ /* Syntax checks use the built-in sigalgs */
+ for (i = 0, s = sigalg_lookup_tbl;
+ i < OSSL_NELEM(sigalg_lookup_tbl); i++, s++) {
+ iana = s->name;
+ alias = s->name12;
+ if ((alias != NULL && OPENSSL_strcasecmp(etmp, alias) == 0)
+ || OPENSSL_strcasecmp(etmp, iana) == 0) {
+ sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
+ goto found;
+ }
}
}
- if (i == OSSL_NELEM(sigalg_lookup_tbl))
- return 0;
} else {
*p = 0;
p++;
@@ -2477,24 +3771,38 @@ static int sig_cb(const char *elem, int len, void *arg)
return 0;
get_sigorhash(&sig_alg, &hash_alg, etmp);
get_sigorhash(&sig_alg, &hash_alg, p);
- if (sig_alg == NID_undef || hash_alg == NID_undef)
- return 0;
- for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
- i++, s++) {
- if (s->hash == hash_alg && s->sig == sig_alg) {
- sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
- break;
+ if (sig_alg != NID_undef && hash_alg != NID_undef) {
+ if (sarg->ctx != NULL) {
+ for (i = 0; i < sarg->ctx->sigalg_lookup_cache_len; i++) {
+ s = &sarg->ctx->sigalg_lookup_cache[i];
+ if (s->hash == hash_alg && s->sig == sig_alg) {
+ /* Ignore known, but unavailable sigalgs. */
+ if (!sarg->ctx->sigalg_lookup_cache[i].available)
+ return 1;
+ sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
+ goto found;
+ }
+ }
+ } else {
+ for (i = 0; i < OSSL_NELEM(sigalg_lookup_tbl); i++) {
+ s = &sigalg_lookup_tbl[i];
+ if (s->hash == hash_alg && s->sig == sig_alg) {
+ sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
+ goto found;
+ }
+ }
}
}
- if (i == OSSL_NELEM(sigalg_lookup_tbl))
- return 0;
}
+ /* Ignore unknown algorithms if ignore_unknown */
+ return ignore_unknown;
- /* Reject duplicates */
+ found:
+ /* Ignore duplicates */
for (i = 0; i < sarg->sigalgcnt - 1; i++) {
if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
sarg->sigalgcnt--;
- return 0;
+ return 1;
}
}
return 1;
@@ -2504,12 +3812,20 @@ static int sig_cb(const char *elem, int len, void *arg)
* Set supported signature algorithms based on a colon separated list of the
* form sig+hash e.g. RSA+SHA512:DSA+SHA512
*/
-int tls1_set_sigalgs_list(CERT *c, const char *str, int client)
+int tls1_set_sigalgs_list(SSL_CTX *ctx, CERT *c, const char *str, int client)
{
sig_cb_st sig;
sig.sigalgcnt = 0;
+
+ if (ctx != NULL)
+ sig.ctx = ctx;
if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
return 0;
+ if (sig.sigalgcnt == 0) {
+ ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
+ "No valid signature algorithms in '%s'", str);
+ return 0;
+ }
if (c == NULL)
return 1;
return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
@@ -2520,10 +3836,8 @@ int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
{
uint16_t *sigalgs;
- if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL) {
- ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
+ if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL)
return 0;
- }
memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
if (client) {
@@ -2546,10 +3860,8 @@ int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
if (salglen & 1)
return 0;
- if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL) {
- ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
+ if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL)
return 0;
- }
for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
size_t j;
const SIGALG_LOOKUP *curr;
@@ -2585,19 +3897,30 @@ int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
return 0;
}
-static int tls1_check_sig_alg(SSL *s, X509 *x, int default_nid)
+static int tls1_check_sig_alg(SSL_CONNECTION *s, X509 *x, int default_nid)
{
int sig_nid, use_pc_sigalgs = 0;
size_t i;
const SIGALG_LOOKUP *sigalg;
size_t sigalgslen;
- if (default_nid == -1)
+
+ /*-
+ * RFC 8446, section 4.2.3:
+ *
+ * The signatures on certificates that are self-signed or certificates
+ * that are trust anchors are not validated, since they begin a
+ * certification path (see [RFC5280], Section 3.2). A certificate that
+ * begins a certification path MAY use a signature algorithm that is not
+ * advertised as being supported in the "signature_algorithms"
+ * extension.
+ */
+ if (default_nid == -1 || X509_self_signed(x, 0))
return 1;
sig_nid = X509_get_signature_nid(x);
if (default_nid)
return sig_nid == default_nid ? 1 : 0;
- if (SSL_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
+ if (SSL_CONNECTION_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
/*
* If we're in TLSv1.3 then we only get here if we're checking the
* chain. If the peer has specified peer_cert_sigalgs then we use them
@@ -2609,10 +3932,33 @@ static int tls1_check_sig_alg(SSL *s, X509 *x, int default_nid)
sigalgslen = s->shared_sigalgslen;
}
for (i = 0; i < sigalgslen; i++) {
+ int mdnid, pknid;
+
sigalg = use_pc_sigalgs
- ? tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i])
+ ? tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
+ s->s3.tmp.peer_cert_sigalgs[i])
: s->shared_sigalgs[i];
- if (sigalg != NULL && sig_nid == sigalg->sigandhash)
+ if (sigalg == NULL)
+ continue;
+ if (sig_nid == sigalg->sigandhash)
+ return 1;
+ if (sigalg->sig != EVP_PKEY_RSA_PSS)
+ continue;
+ /*
+ * Accept RSA PKCS#1 signatures in certificates when the signature
+ * algorithms include RSA-PSS with a matching digest algorithm.
+ *
+ * When a TLS 1.3 peer inadvertently omits the legacy RSA PKCS#1 code
+ * points, and we're doing strict checking of the certificate chain (in
+ * a cert_cb via SSL_check_chain()) we may then reject RSA signed
+ * certificates in the chain, but the TLS requirement on PSS should not
+ * extend to certificates. Though the peer can in fact list the legacy
+ * sigalgs for just this purpose, it is not likely that a better chain
+ * signed with RSA-PSS is available.
+ */
+ if (!OBJ_find_sigid_algs(sig_nid, &mdnid, &pknid))
+ continue;
+ if (pknid == EVP_PKEY_RSA && mdnid == sigalg->hash)
return 1;
}
return 0;
@@ -2647,8 +3993,8 @@ static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
(CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
| CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
-int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
- int idx)
+int tls1_check_chain(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pk,
+ STACK_OF(X509) *chain, int idx)
{
int i;
int rv = 0;
@@ -2657,9 +4003,16 @@ int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
CERT *c = s->cert;
uint32_t *pvalid;
unsigned int suiteb_flags = tls1_suiteb(s);
- /* idx == -1 means checking server chains */
+
+ /*
+ * Meaning of idx:
+ * idx == -1 means SSL_check_chain() invocation
+ * idx == -2 means checking client certificate chains
+ * idx >= 0 means checking SSL_PKEY index
+ *
+ * For RPK, where there may be no cert, we ignore -1
+ */
if (idx != -1) {
- /* idx == -2 means checking client certificate chains */
if (idx == -2) {
cpk = c->key;
idx = (int)(cpk - c->pkeys);
@@ -2670,16 +4023,23 @@ int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
pk = cpk->privatekey;
chain = cpk->chain;
strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
+ if (tls12_rpk_and_privkey(s, idx)) {
+ if (EVP_PKEY_is_a(pk, "EC") && !tls1_check_pkey_comp(s, pk))
+ return 0;
+ *pvalid = rv = CERT_PKEY_RPK;
+ return rv;
+ }
/* If no cert or key, forget it */
- if (!x || !pk)
+ if (x == NULL || pk == NULL)
goto end;
} else {
size_t certidx;
- if (!x || !pk)
+ if (x == NULL || pk == NULL)
return 0;
- if (ssl_cert_lookup_by_pkey(pk, &certidx) == NULL)
+ if (ssl_cert_lookup_by_pkey(pk, &certidx,
+ SSL_CONNECTION_GET_CTX(s)) == NULL)
return 0;
idx = certidx;
pvalid = s->s3.tmp.valid_flags + idx;
@@ -2706,9 +4066,11 @@ int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
* Check all signature algorithms are consistent with signature
* algorithms extension if TLS 1.2 or later and strict mode.
*/
- if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) {
+ if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION
+ && strict_mode) {
int default_nid;
int rsign = 0;
+
if (s->s3.tmp.peer_cert_sigalgs != NULL
|| s->s3.tmp.peer_sigalgs != NULL) {
default_nid = 0;
@@ -2758,7 +4120,8 @@ int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
size_t j;
const uint16_t *p = c->conf_sigalgs;
for (j = 0; j < c->conf_sigalgslen; j++, p++) {
- const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *p);
+ const SIGALG_LOOKUP *lu =
+ tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *p);
if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
break;
@@ -2771,7 +4134,7 @@ int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
}
}
/* Check signature algorithm of each cert in chain */
- if (SSL_IS_TLS13(s)) {
+ if (SSL_CONNECTION_IS_TLS13(s)) {
/*
* We only get here if the application has called SSL_check_chain(),
* so check_flags is always set.
@@ -2872,7 +4235,7 @@ int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
end:
- if (TLS1_get_version(s) >= TLS1_2_VERSION)
+ if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION)
rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
else
rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
@@ -2894,7 +4257,7 @@ int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
}
/* Set validity of certificates in an SSL structure */
-void tls1_set_cert_validity(SSL *s)
+void tls1_set_cert_validity(SSL_CONNECTION *s)
{
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
@@ -2910,10 +4273,15 @@ void tls1_set_cert_validity(SSL *s)
/* User level utility function to check a chain is suitable */
int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
{
- return tls1_check_chain(s, x, pk, chain, -1);
+ SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
+
+ if (sc == NULL)
+ return 0;
+
+ return tls1_check_chain(sc, x, pk, chain, -1);
}
-EVP_PKEY *ssl_get_auto_dh(SSL *s)
+EVP_PKEY *ssl_get_auto_dh(SSL_CONNECTION *s)
{
EVP_PKEY *dhp = NULL;
BIGNUM *p;
@@ -2921,6 +4289,7 @@ EVP_PKEY *ssl_get_auto_dh(SSL *s)
EVP_PKEY_CTX *pctx = NULL;
OSSL_PARAM_BLD *tmpl = NULL;
OSSL_PARAM *params = NULL;
+ SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
if (s->cert->dh_tmp_auto != 2) {
if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
@@ -2936,7 +4305,8 @@ EVP_PKEY *ssl_get_auto_dh(SSL *s)
}
/* Do not pick a prime that is too weak for the current security level */
- sec_level_bits = ssl_get_security_level_bits(s, NULL, NULL);
+ sec_level_bits = ssl_get_security_level_bits(SSL_CONNECTION_GET_SSL(s),
+ NULL, NULL);
if (dh_secbits < sec_level_bits)
dh_secbits = sec_level_bits;
@@ -2953,7 +4323,7 @@ EVP_PKEY *ssl_get_auto_dh(SSL *s)
if (p == NULL)
goto err;
- pctx = EVP_PKEY_CTX_new_from_name(s->ctx->libctx, "DH", s->ctx->propq);
+ pctx = EVP_PKEY_CTX_new_from_name(sctx->libctx, "DH", sctx->propq);
if (pctx == NULL
|| EVP_PKEY_fromdata_init(pctx) != 1)
goto err;
@@ -2977,10 +4347,12 @@ err:
return dhp;
}
-static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op)
+static int ssl_security_cert_key(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
+ int op)
{
int secbits = -1;
EVP_PKEY *pkey = X509_get0_pubkey(x);
+
if (pkey) {
/*
* If no parameters this will return -1 and fail using the default
@@ -2990,16 +4362,18 @@ static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op)
*/
secbits = EVP_PKEY_get_security_bits(pkey);
}
- if (s)
+ if (s != NULL)
return ssl_security(s, op, secbits, 0, x);
else
return ssl_ctx_security(ctx, op, secbits, 0, x);
}
-static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op)
+static int ssl_security_cert_sig(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
+ int op)
{
/* Lookup signature algorithm digest */
int secbits, nid, pknid;
+
/* Don't check signature if self signed */
if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
return 1;
@@ -3008,13 +4382,14 @@ static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op)
/* If digest NID not defined use signature NID */
if (nid == NID_undef)
nid = pknid;
- if (s)
+ if (s != NULL)
return ssl_security(s, op, secbits, nid, x);
else
return ssl_ctx_security(ctx, op, secbits, nid, x);
}
-int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee)
+int ssl_security_cert(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x, int vfy,
+ int is_ee)
{
if (vfy)
vfy = SSL_SECOP_PEER;
@@ -3036,9 +4411,11 @@ int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee)
* one to the peer. Return values: 1 if ok otherwise error code to use
*/
-int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy)
+int ssl_security_cert_chain(SSL_CONNECTION *s, STACK_OF(X509) *sk,
+ X509 *x, int vfy)
{
int rv, start_idx, i;
+
if (x == NULL) {
x = sk_X509_value(sk, 0);
if (x == NULL)
@@ -3065,10 +4442,12 @@ int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy)
* with the signature algorithm "lu" and return index of certificate.
*/
-static int tls12_get_cert_sigalg_idx(const SSL *s, const SIGALG_LOOKUP *lu)
+static int tls12_get_cert_sigalg_idx(const SSL_CONNECTION *s,
+ const SIGALG_LOOKUP *lu)
{
int sig_idx = lu->sig_idx;
- const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx);
+ const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx,
+ SSL_CONNECTION_GET_CTX(s));
/* If not recognised or not supported by cipher mask it is not suitable */
if (clu == NULL
@@ -3077,6 +4456,10 @@ static int tls12_get_cert_sigalg_idx(const SSL *s, const SIGALG_LOOKUP *lu)
&& (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
return -1;
+ /* If doing RPK, the CERT_PKEY won't be "valid" */
+ if (tls12_rpk_and_privkey(s, sig_idx))
+ return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_RPK ? sig_idx : -1;
+
return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
}
@@ -3086,13 +4469,14 @@ static int tls12_get_cert_sigalg_idx(const SSL *s, const SIGALG_LOOKUP *lu)
* the key.
* Returns true if the cert is usable and false otherwise.
*/
-static int check_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
- EVP_PKEY *pkey)
+static int check_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig,
+ X509 *x, EVP_PKEY *pkey)
{
const SIGALG_LOOKUP *lu;
int mdnid, pknid, supported;
size_t i;
const char *mdname = NULL;
+ SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
/*
* If the given EVP_PKEY cannot support signing with this digest,
@@ -3100,9 +4484,9 @@ static int check_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
*/
if (sig->hash != NID_undef)
mdname = OBJ_nid2sn(sig->hash);
- supported = EVP_PKEY_digestsign_supports_digest(pkey, s->ctx->libctx,
+ supported = EVP_PKEY_digestsign_supports_digest(pkey, sctx->libctx,
mdname,
- s->ctx->propq);
+ sctx->propq);
if (supported <= 0)
return 0;
@@ -3114,7 +4498,8 @@ static int check_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
return 0;
for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
- lu = tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i]);
+ lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
+ s->s3.tmp.peer_cert_sigalgs[i]);
if (lu == NULL)
continue;
@@ -3144,7 +4529,7 @@ static int check_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
* the signature_algorithm_cert restrictions sent by the peer (if any).
* Returns false if no usable certificate is found.
*/
-static int has_usable_cert(SSL *s, const SIGALG_LOOKUP *sig, int idx)
+static int has_usable_cert(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, int idx)
{
/* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
if (idx == -1)
@@ -3160,12 +4545,12 @@ static int has_usable_cert(SSL *s, const SIGALG_LOOKUP *sig, int idx)
* Returns true if the supplied cert |x| and key |pkey| is usable with the
* specified signature scheme |sig|, or false otherwise.
*/
-static int is_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
+static int is_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, X509 *x,
EVP_PKEY *pkey)
{
size_t idx;
- if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
+ if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
return 0;
/* Check the key is consistent with the sig alg */
@@ -3180,25 +4565,28 @@ static int is_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
* |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
* available certs/keys to find one that works.
*/
-static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey)
+static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x,
+ EVP_PKEY *pkey)
{
const SIGALG_LOOKUP *lu = NULL;
size_t i;
int curve = -1;
EVP_PKEY *tmppkey;
+ SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
/* Look for a shared sigalgs matching possible certificates */
for (i = 0; i < s->shared_sigalgslen; i++) {
- lu = s->shared_sigalgs[i];
-
/* Skip SHA1, SHA224, DSA and RSA if not PSS */
+ lu = s->shared_sigalgs[i];
if (lu->hash == NID_sha1
|| lu->hash == NID_sha224
|| lu->sig == EVP_PKEY_DSA
- || lu->sig == EVP_PKEY_RSA)
+ || lu->sig == EVP_PKEY_RSA
+ || !tls_sigalg_compat(s, lu))
continue;
+
/* Check that we have a cert, and signature_algorithms_cert */
- if (!tls1_lookup_md(s->ctx, lu, NULL))
+ if (!tls1_lookup_md(sctx, lu, NULL))
continue;
if ((pkey == NULL && !has_usable_cert(s, lu, -1))
|| (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
@@ -3214,7 +4602,7 @@ static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey)
continue;
} else if (lu->sig == EVP_PKEY_RSA_PSS) {
/* validate that key is large enough for the signature algorithm */
- if (!rsa_pss_check_min_key_size(s->ctx, tmppkey, lu))
+ if (!rsa_pss_check_min_key_size(sctx, tmppkey, lu))
continue;
}
break;
@@ -3237,7 +4625,7 @@ static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey)
* a fatal error: we will either try another certificate or not present one
* to the server. In this case no error is set.
*/
-int tls_choose_sigalg(SSL *s, int fatalerrs)
+int tls_choose_sigalg(SSL_CONNECTION *s, int fatalerrs)
{
const SIGALG_LOOKUP *lu = NULL;
int sig_idx = -1;
@@ -3245,7 +4633,7 @@ int tls_choose_sigalg(SSL *s, int fatalerrs)
s->s3.tmp.cert = NULL;
s->s3.tmp.sigalg = NULL;
- if (SSL_IS_TLS13(s)) {
+ if (SSL_CONNECTION_IS_TLS13(s)) {
lu = find_sig_alg(s, NULL, NULL);
if (lu == NULL) {
if (!fatalerrs)
@@ -3265,6 +4653,7 @@ int tls_choose_sigalg(SSL *s, int fatalerrs)
size_t i;
if (s->s3.tmp.peer_sigalgs != NULL) {
int curve = -1;
+ SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
/* For Suite B need to match signature algorithm to curve */
if (tls1_suiteb(s))
@@ -3276,8 +4665,10 @@ int tls_choose_sigalg(SSL *s, int fatalerrs)
* cert type
*/
for (i = 0; i < s->shared_sigalgslen; i++) {
+ /* Check the sigalg version bounds */
lu = s->shared_sigalgs[i];
-
+ if (!tls_sigalg_compat(s, lu))
+ continue;
if (s->server) {
if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
continue;
@@ -3295,7 +4686,7 @@ int tls_choose_sigalg(SSL *s, int fatalerrs)
/* validate that key is large enough for the signature algorithm */
EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
- if (!rsa_pss_check_min_key_size(s->ctx, pkey, lu))
+ if (!rsa_pss_check_min_key_size(sctx, pkey, lu))
continue;
}
if (curve == -1 || lu->curve == curve)
@@ -3307,7 +4698,9 @@ int tls_choose_sigalg(SSL *s, int fatalerrs)
* in supported_algorithms extension, so when we have GOST-based ciphersuite,
* we have to assume GOST support.
*/
- if (i == s->shared_sigalgslen && s->s3.tmp.new_cipher->algorithm_auth & (SSL_aGOST01 | SSL_aGOST12)) {
+ if (i == s->shared_sigalgslen
+ && (s->s3.tmp.new_cipher->algorithm_auth
+ & (SSL_aGOST01 | SSL_aGOST12)) != 0) {
if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
if (!fatalerrs)
return 1;
@@ -3389,13 +4782,19 @@ int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
{
+ SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl);
+
+ if (sc == NULL
+ || (IS_QUIC(ssl) && mode != TLSEXT_max_fragment_length_DISABLED))
+ return 0;
+
if (mode != TLSEXT_max_fragment_length_DISABLED
&& !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
return 0;
}
- ssl->ext.max_fragment_len_mode = mode;
+ sc->ext.max_fragment_len_mode = mode;
return 1;
}