/*===------------- avx512vlvnniintrin.h - VNNI intrinsics ------------------=== * * * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. * See https://llvm.org/LICENSE.txt for license information. * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception * *===-----------------------------------------------------------------------=== */ #ifndef __IMMINTRIN_H #error "Never use directly; include instead." #endif #ifndef __AVX512VLVNNIINTRIN_H #define __AVX512VLVNNIINTRIN_H /* Define the default attributes for the functions in this file. */ #define __DEFAULT_FN_ATTRS128 \ __attribute__((__always_inline__, __nodebug__, \ __target__("avx512vl,avx512vnni,no-evex512"), \ __min_vector_width__(128))) #define __DEFAULT_FN_ATTRS256 \ __attribute__((__always_inline__, __nodebug__, \ __target__("avx512vl,avx512vnni,no-evex512"), \ __min_vector_width__(256))) /// Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in \a A with /// corresponding signed 8-bit integers in \a B, producing 4 intermediate signed /// 16-bit results. Sum these 4 results with the corresponding 32-bit integer /// in \a S, and store the packed 32-bit results in DST. /// /// This intrinsic corresponds to the VPDPBUSD instructions. /// /// \code{.operation} /// FOR j := 0 to 7 /// tmp1.word := Signed(ZeroExtend16(A.byte[4*j]) * SignExtend16(B.byte[4*j])) /// tmp2.word := Signed(ZeroExtend16(A.byte[4*j+1]) * SignExtend16(B.byte[4*j+1])) /// tmp3.word := Signed(ZeroExtend16(A.byte[4*j+2]) * SignExtend16(B.byte[4*j+2])) /// tmp4.word := Signed(ZeroExtend16(A.byte[4*j+3]) * SignExtend16(B.byte[4*j+3])) /// DST.dword[j] := S.dword[j] + tmp1 + tmp2 + tmp3 + tmp4 /// ENDFOR /// DST[MAX:256] := 0 /// \endcode #define _mm256_dpbusd_epi32(S, A, B) \ ((__m256i)__builtin_ia32_vpdpbusd256((__v8si)(S), (__v8si)(A), (__v8si)(B))) /// Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in \a A with /// corresponding signed 8-bit integers in \a B, producing 4 intermediate signed /// 16-bit results. Sum these 4 results with the corresponding 32-bit integer /// in \a S using signed saturation, and store the packed 32-bit results in DST. /// /// This intrinsic corresponds to the VPDPBUSDS instructions. /// /// \code{.operation} /// FOR j := 0 to 7 /// tmp1.word := Signed(ZeroExtend16(A.byte[4*j]) * SignExtend16(B.byte[4*j])) /// tmp2.word := Signed(ZeroExtend16(A.byte[4*j+1]) * SignExtend16(B.byte[4*j+1])) /// tmp3.word := Signed(ZeroExtend16(A.byte[4*j+2]) * SignExtend16(B.byte[4*j+2])) /// tmp4.word := Signed(ZeroExtend16(A.byte[4*j+3]) * SignExtend16(B.byte[4*j+3])) /// DST.dword[j] := Saturate32(S.dword[j] + tmp1 + tmp2 + tmp3 + tmp4) /// ENDFOR /// DST[MAX:256] := 0 /// \endcode #define _mm256_dpbusds_epi32(S, A, B) \ ((__m256i)__builtin_ia32_vpdpbusds256((__v8si)(S), (__v8si)(A), (__v8si)(B))) /// Multiply groups of 2 adjacent pairs of signed 16-bit integers in \a A with /// corresponding 16-bit integers in \a B, producing 2 intermediate signed 32-bit /// results. Sum these 2 results with the corresponding 32-bit integer in \a S, /// and store the packed 32-bit results in DST. /// /// This intrinsic corresponds to the VPDPWSSD instructions. /// /// \code{.operation} /// FOR j := 0 to 7 /// tmp1.dword := SignExtend32(A.word[2*j]) * SignExtend32(B.word[2*j]) /// tmp2.dword := SignExtend32(A.word[2*j+1]) * SignExtend32(B.word[2*j+1]) /// DST.dword[j] := S.dword[j] + tmp1 + tmp2 /// ENDFOR /// DST[MAX:256] := 0 /// \endcode #define _mm256_dpwssd_epi32(S, A, B) \ ((__m256i)__builtin_ia32_vpdpwssd256((__v8si)(S), (__v8si)(A), (__v8si)(B))) /// Multiply groups of 2 adjacent pairs of signed 16-bit integers in \a A with /// corresponding 16-bit integers in \a B, producing 2 intermediate signed 32-bit /// results. Sum these 2 results with the corresponding 32-bit integer in \a S /// using signed saturation, and store the packed 32-bit results in DST. /// /// This intrinsic corresponds to the VPDPWSSDS instructions. /// /// \code{.operation} /// FOR j := 0 to 7 /// tmp1.dword := SignExtend32(A.word[2*j]) * SignExtend32(B.word[2*j]) /// tmp2.dword := SignExtend32(A.word[2*j+1]) * SignExtend32(B.word[2*j+1]) /// DST.dword[j] := Saturate32(S.dword[j] + tmp1 + tmp2) /// ENDFOR /// DST[MAX:256] := 0 /// \endcode #define _mm256_dpwssds_epi32(S, A, B) \ ((__m256i)__builtin_ia32_vpdpwssds256((__v8si)(S), (__v8si)(A), (__v8si)(B))) /// Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in \a A with /// corresponding signed 8-bit integers in \a B, producing 4 intermediate signed /// 16-bit results. Sum these 4 results with the corresponding 32-bit integer /// in \a S, and store the packed 32-bit results in DST. /// /// This intrinsic corresponds to the VPDPBUSD instructions. /// /// \code{.operation} /// FOR j := 0 to 3 /// tmp1.word := Signed(ZeroExtend16(A.byte[4*j]) * SignExtend16(B.byte[4*j])) /// tmp2.word := Signed(ZeroExtend16(A.byte[4*j+1]) * SignExtend16(B.byte[4*j+1])) /// tmp3.word := Signed(ZeroExtend16(A.byte[4*j+2]) * SignExtend16(B.byte[4*j+2])) /// tmp4.word := Signed(ZeroExtend16(A.byte[4*j+3]) * SignExtend16(B.byte[4*j+3])) /// DST.dword[j] := S.dword[j] + tmp1 + tmp2 + tmp3 + tmp4 /// ENDFOR /// DST[MAX:128] := 0 /// \endcode #define _mm_dpbusd_epi32(S, A, B) \ ((__m128i)__builtin_ia32_vpdpbusd128((__v4si)(S), (__v4si)(A), (__v4si)(B))) /// Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in \a A with /// corresponding signed 8-bit integers in \a B, producing 4 intermediate signed /// 16-bit results. Sum these 4 results with the corresponding 32-bit integer /// in \a S using signed saturation, and store the packed 32-bit results in DST. /// /// This intrinsic corresponds to the VPDPBUSDS instructions. /// /// \code{.operation} /// FOR j := 0 to 3 /// tmp1.word := Signed(ZeroExtend16(A.byte[4*j]) * SignExtend16(B.byte[4*j])) /// tmp2.word := Signed(ZeroExtend16(A.byte[4*j+1]) * SignExtend16(B.byte[4*j+1])) /// tmp3.word := Signed(ZeroExtend16(A.byte[4*j+2]) * SignExtend16(B.byte[4*j+2])) /// tmp4.word := Signed(ZeroExtend16(A.byte[4*j+3]) * SignExtend16(B.byte[4*j+3])) /// DST.dword[j] := Saturate32(S.dword[j] + tmp1 + tmp2 + tmp3 + tmp4) /// ENDFOR /// DST[MAX:128] := 0 /// \endcode #define _mm_dpbusds_epi32(S, A, B) \ ((__m128i)__builtin_ia32_vpdpbusds128((__v4si)(S), (__v4si)(A), (__v4si)(B))) /// Multiply groups of 2 adjacent pairs of signed 16-bit integers in \a A with /// corresponding 16-bit integers in \a B, producing 2 intermediate signed 32-bit /// results. Sum these 2 results with the corresponding 32-bit integer in \a S, /// and store the packed 32-bit results in DST. /// /// This intrinsic corresponds to the VPDPWSSD instructions. /// /// \code{.operation} /// FOR j := 0 to 3 /// tmp1.dword := SignExtend32(A.word[2*j]) * SignExtend32(B.word[2*j]) /// tmp2.dword := SignExtend32(A.word[2*j+1]) * SignExtend32(B.word[2*j+1]) /// DST.dword[j] := S.dword[j] + tmp1 + tmp2 /// ENDFOR /// DST[MAX:128] := 0 /// \endcode #define _mm_dpwssd_epi32(S, A, B) \ ((__m128i)__builtin_ia32_vpdpwssd128((__v4si)(S), (__v4si)(A), (__v4si)(B))) /// Multiply groups of 2 adjacent pairs of signed 16-bit integers in \a A with /// corresponding 16-bit integers in \a B, producing 2 intermediate signed 32-bit /// results. Sum these 2 results with the corresponding 32-bit integer in \a S /// using signed saturation, and store the packed 32-bit results in DST. /// /// This intrinsic corresponds to the VPDPWSSDS instructions. /// /// \code{.operation} /// FOR j := 0 to 3 /// tmp1.dword := SignExtend32(A.word[2*j]) * SignExtend32(B.word[2*j]) /// tmp2.dword := SignExtend32(A.word[2*j+1]) * SignExtend32(B.word[2*j+1]) /// DST.dword[j] := Saturate32(S.dword[j] + tmp1 + tmp2) /// ENDFOR /// DST[MAX:128] := 0 /// \endcode #define _mm_dpwssds_epi32(S, A, B) \ ((__m128i)__builtin_ia32_vpdpwssds128((__v4si)(S), (__v4si)(A), (__v4si)(B))) static __inline__ __m256i __DEFAULT_FN_ATTRS256 _mm256_mask_dpbusd_epi32(__m256i __S, __mmask8 __U, __m256i __A, __m256i __B) { return (__m256i)__builtin_ia32_selectd_256(__U, (__v8si)_mm256_dpbusd_epi32(__S, __A, __B), (__v8si)__S); } static __inline__ __m256i __DEFAULT_FN_ATTRS256 _mm256_maskz_dpbusd_epi32(__mmask8 __U, __m256i __S, __m256i __A, __m256i __B) { return (__m256i)__builtin_ia32_selectd_256(__U, (__v8si)_mm256_dpbusd_epi32(__S, __A, __B), (__v8si)_mm256_setzero_si256()); } static __inline__ __m256i __DEFAULT_FN_ATTRS256 _mm256_mask_dpbusds_epi32(__m256i __S, __mmask8 __U, __m256i __A, __m256i __B) { return (__m256i)__builtin_ia32_selectd_256(__U, (__v8si)_mm256_dpbusds_epi32(__S, __A, __B), (__v8si)__S); } static __inline__ __m256i __DEFAULT_FN_ATTRS256 _mm256_maskz_dpbusds_epi32(__mmask8 __U, __m256i __S, __m256i __A, __m256i __B) { return (__m256i)__builtin_ia32_selectd_256(__U, (__v8si)_mm256_dpbusds_epi32(__S, __A, __B), (__v8si)_mm256_setzero_si256()); } static __inline__ __m256i __DEFAULT_FN_ATTRS256 _mm256_mask_dpwssd_epi32(__m256i __S, __mmask8 __U, __m256i __A, __m256i __B) { return (__m256i)__builtin_ia32_selectd_256(__U, (__v8si)_mm256_dpwssd_epi32(__S, __A, __B), (__v8si)__S); } static __inline__ __m256i __DEFAULT_FN_ATTRS256 _mm256_maskz_dpwssd_epi32(__mmask8 __U, __m256i __S, __m256i __A, __m256i __B) { return (__m256i)__builtin_ia32_selectd_256(__U, (__v8si)_mm256_dpwssd_epi32(__S, __A, __B), (__v8si)_mm256_setzero_si256()); } static __inline__ __m256i __DEFAULT_FN_ATTRS256 _mm256_mask_dpwssds_epi32(__m256i __S, __mmask8 __U, __m256i __A, __m256i __B) { return (__m256i)__builtin_ia32_selectd_256(__U, (__v8si)_mm256_dpwssds_epi32(__S, __A, __B), (__v8si)__S); } static __inline__ __m256i __DEFAULT_FN_ATTRS256 _mm256_maskz_dpwssds_epi32(__mmask8 __U, __m256i __S, __m256i __A, __m256i __B) { return (__m256i)__builtin_ia32_selectd_256(__U, (__v8si)_mm256_dpwssds_epi32(__S, __A, __B), (__v8si)_mm256_setzero_si256()); } static __inline__ __m128i __DEFAULT_FN_ATTRS128 _mm_mask_dpbusd_epi32(__m128i __S, __mmask8 __U, __m128i __A, __m128i __B) { return (__m128i)__builtin_ia32_selectd_128(__U, (__v4si)_mm_dpbusd_epi32(__S, __A, __B), (__v4si)__S); } static __inline__ __m128i __DEFAULT_FN_ATTRS128 _mm_maskz_dpbusd_epi32(__mmask8 __U, __m128i __S, __m128i __A, __m128i __B) { return (__m128i)__builtin_ia32_selectd_128(__U, (__v4si)_mm_dpbusd_epi32(__S, __A, __B), (__v4si)_mm_setzero_si128()); } static __inline__ __m128i __DEFAULT_FN_ATTRS128 _mm_mask_dpbusds_epi32(__m128i __S, __mmask8 __U, __m128i __A, __m128i __B) { return (__m128i)__builtin_ia32_selectd_128(__U, (__v4si)_mm_dpbusds_epi32(__S, __A, __B), (__v4si)__S); } static __inline__ __m128i __DEFAULT_FN_ATTRS128 _mm_maskz_dpbusds_epi32(__mmask8 __U, __m128i __S, __m128i __A, __m128i __B) { return (__m128i)__builtin_ia32_selectd_128(__U, (__v4si)_mm_dpbusds_epi32(__S, __A, __B), (__v4si)_mm_setzero_si128()); } static __inline__ __m128i __DEFAULT_FN_ATTRS128 _mm_mask_dpwssd_epi32(__m128i __S, __mmask8 __U, __m128i __A, __m128i __B) { return (__m128i)__builtin_ia32_selectd_128(__U, (__v4si)_mm_dpwssd_epi32(__S, __A, __B), (__v4si)__S); } static __inline__ __m128i __DEFAULT_FN_ATTRS128 _mm_maskz_dpwssd_epi32(__mmask8 __U, __m128i __S, __m128i __A, __m128i __B) { return (__m128i)__builtin_ia32_selectd_128(__U, (__v4si)_mm_dpwssd_epi32(__S, __A, __B), (__v4si)_mm_setzero_si128()); } static __inline__ __m128i __DEFAULT_FN_ATTRS128 _mm_mask_dpwssds_epi32(__m128i __S, __mmask8 __U, __m128i __A, __m128i __B) { return (__m128i)__builtin_ia32_selectd_128(__U, (__v4si)_mm_dpwssds_epi32(__S, __A, __B), (__v4si)__S); } static __inline__ __m128i __DEFAULT_FN_ATTRS128 _mm_maskz_dpwssds_epi32(__mmask8 __U, __m128i __S, __m128i __A, __m128i __B) { return (__m128i)__builtin_ia32_selectd_128(__U, (__v4si)_mm_dpwssds_epi32(__S, __A, __B), (__v4si)_mm_setzero_si128()); } #undef __DEFAULT_FN_ATTRS128 #undef __DEFAULT_FN_ATTRS256 #endif