//===- Decl.h - Classes for representing declarations -----------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the Decl subclasses. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_AST_DECL_H #define LLVM_CLANG_AST_DECL_H #include "clang/AST/APValue.h" #include "clang/AST/ASTContextAllocate.h" #include "clang/AST/DeclAccessPair.h" #include "clang/AST/DeclBase.h" #include "clang/AST/DeclarationName.h" #include "clang/AST/ExternalASTSource.h" #include "clang/AST/NestedNameSpecifier.h" #include "clang/AST/Redeclarable.h" #include "clang/AST/Type.h" #include "clang/Basic/AddressSpaces.h" #include "clang/Basic/Diagnostic.h" #include "clang/Basic/IdentifierTable.h" #include "clang/Basic/LLVM.h" #include "clang/Basic/Linkage.h" #include "clang/Basic/OperatorKinds.h" #include "clang/Basic/PartialDiagnostic.h" #include "clang/Basic/PragmaKinds.h" #include "clang/Basic/SourceLocation.h" #include "clang/Basic/Specifiers.h" #include "clang/Basic/Visibility.h" #include "llvm/ADT/APSInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/PointerIntPair.h" #include "llvm/ADT/PointerUnion.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/TrailingObjects.h" #include #include #include #include #include #include namespace clang { class ASTContext; struct ASTTemplateArgumentListInfo; class CompoundStmt; class DependentFunctionTemplateSpecializationInfo; class EnumDecl; class Expr; class FunctionTemplateDecl; class FunctionTemplateSpecializationInfo; class FunctionTypeLoc; class LabelStmt; class MemberSpecializationInfo; class Module; class NamespaceDecl; class ParmVarDecl; class RecordDecl; class Stmt; class StringLiteral; class TagDecl; class TemplateArgumentList; class TemplateArgumentListInfo; class TemplateParameterList; class TypeAliasTemplateDecl; class UnresolvedSetImpl; class VarTemplateDecl; enum class ImplicitParamKind; /// The top declaration context. class TranslationUnitDecl : public Decl, public DeclContext, public Redeclarable { using redeclarable_base = Redeclarable; TranslationUnitDecl *getNextRedeclarationImpl() override { return getNextRedeclaration(); } TranslationUnitDecl *getPreviousDeclImpl() override { return getPreviousDecl(); } TranslationUnitDecl *getMostRecentDeclImpl() override { return getMostRecentDecl(); } ASTContext &Ctx; /// The (most recently entered) anonymous namespace for this /// translation unit, if one has been created. NamespaceDecl *AnonymousNamespace = nullptr; explicit TranslationUnitDecl(ASTContext &ctx); virtual void anchor(); public: using redecl_range = redeclarable_base::redecl_range; using redecl_iterator = redeclarable_base::redecl_iterator; using redeclarable_base::getMostRecentDecl; using redeclarable_base::getPreviousDecl; using redeclarable_base::isFirstDecl; using redeclarable_base::redecls; using redeclarable_base::redecls_begin; using redeclarable_base::redecls_end; ASTContext &getASTContext() const { return Ctx; } NamespaceDecl *getAnonymousNamespace() const { return AnonymousNamespace; } void setAnonymousNamespace(NamespaceDecl *D) { AnonymousNamespace = D; } static TranslationUnitDecl *Create(ASTContext &C); // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == TranslationUnit; } static DeclContext *castToDeclContext(const TranslationUnitDecl *D) { return static_cast(const_cast(D)); } static TranslationUnitDecl *castFromDeclContext(const DeclContext *DC) { return static_cast(const_cast(DC)); } }; /// Represents a `#pragma comment` line. Always a child of /// TranslationUnitDecl. class PragmaCommentDecl final : public Decl, private llvm::TrailingObjects { friend class ASTDeclReader; friend class ASTDeclWriter; friend TrailingObjects; PragmaMSCommentKind CommentKind; PragmaCommentDecl(TranslationUnitDecl *TU, SourceLocation CommentLoc, PragmaMSCommentKind CommentKind) : Decl(PragmaComment, TU, CommentLoc), CommentKind(CommentKind) {} virtual void anchor(); public: static PragmaCommentDecl *Create(const ASTContext &C, TranslationUnitDecl *DC, SourceLocation CommentLoc, PragmaMSCommentKind CommentKind, StringRef Arg); static PragmaCommentDecl *CreateDeserialized(ASTContext &C, unsigned ID, unsigned ArgSize); PragmaMSCommentKind getCommentKind() const { return CommentKind; } StringRef getArg() const { return getTrailingObjects(); } // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == PragmaComment; } }; /// Represents a `#pragma detect_mismatch` line. Always a child of /// TranslationUnitDecl. class PragmaDetectMismatchDecl final : public Decl, private llvm::TrailingObjects { friend class ASTDeclReader; friend class ASTDeclWriter; friend TrailingObjects; size_t ValueStart; PragmaDetectMismatchDecl(TranslationUnitDecl *TU, SourceLocation Loc, size_t ValueStart) : Decl(PragmaDetectMismatch, TU, Loc), ValueStart(ValueStart) {} virtual void anchor(); public: static PragmaDetectMismatchDecl *Create(const ASTContext &C, TranslationUnitDecl *DC, SourceLocation Loc, StringRef Name, StringRef Value); static PragmaDetectMismatchDecl * CreateDeserialized(ASTContext &C, unsigned ID, unsigned NameValueSize); StringRef getName() const { return getTrailingObjects(); } StringRef getValue() const { return getTrailingObjects() + ValueStart; } // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == PragmaDetectMismatch; } }; /// Declaration context for names declared as extern "C" in C++. This /// is neither the semantic nor lexical context for such declarations, but is /// used to check for conflicts with other extern "C" declarations. Example: /// /// \code /// namespace N { extern "C" void f(); } // #1 /// void N::f() {} // #2 /// namespace M { extern "C" void f(); } // #3 /// \endcode /// /// The semantic context of #1 is namespace N and its lexical context is the /// LinkageSpecDecl; the semantic context of #2 is namespace N and its lexical /// context is the TU. However, both declarations are also visible in the /// extern "C" context. /// /// The declaration at #3 finds it is a redeclaration of \c N::f through /// lookup in the extern "C" context. class ExternCContextDecl : public Decl, public DeclContext { explicit ExternCContextDecl(TranslationUnitDecl *TU) : Decl(ExternCContext, TU, SourceLocation()), DeclContext(ExternCContext) {} virtual void anchor(); public: static ExternCContextDecl *Create(const ASTContext &C, TranslationUnitDecl *TU); // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == ExternCContext; } static DeclContext *castToDeclContext(const ExternCContextDecl *D) { return static_cast(const_cast(D)); } static ExternCContextDecl *castFromDeclContext(const DeclContext *DC) { return static_cast(const_cast(DC)); } }; /// This represents a decl that may have a name. Many decls have names such /// as ObjCMethodDecl, but not \@class, etc. /// /// Note that not every NamedDecl is actually named (e.g., a struct might /// be anonymous), and not every name is an identifier. class NamedDecl : public Decl { /// The name of this declaration, which is typically a normal /// identifier but may also be a special kind of name (C++ /// constructor, Objective-C selector, etc.) DeclarationName Name; virtual void anchor(); private: NamedDecl *getUnderlyingDeclImpl() LLVM_READONLY; protected: NamedDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName N) : Decl(DK, DC, L), Name(N) {} public: /// Get the identifier that names this declaration, if there is one. /// /// This will return NULL if this declaration has no name (e.g., for /// an unnamed class) or if the name is a special name (C++ constructor, /// Objective-C selector, etc.). IdentifierInfo *getIdentifier() const { return Name.getAsIdentifierInfo(); } /// Get the name of identifier for this declaration as a StringRef. /// /// This requires that the declaration have a name and that it be a simple /// identifier. StringRef getName() const { assert(Name.isIdentifier() && "Name is not a simple identifier"); return getIdentifier() ? getIdentifier()->getName() : ""; } /// Get a human-readable name for the declaration, even if it is one of the /// special kinds of names (C++ constructor, Objective-C selector, etc). /// /// Creating this name requires expensive string manipulation, so it should /// be called only when performance doesn't matter. For simple declarations, /// getNameAsCString() should suffice. // // FIXME: This function should be renamed to indicate that it is not just an // alternate form of getName(), and clients should move as appropriate. // // FIXME: Deprecated, move clients to getName(). std::string getNameAsString() const { return Name.getAsString(); } /// Pretty-print the unqualified name of this declaration. Can be overloaded /// by derived classes to provide a more user-friendly name when appropriate. virtual void printName(raw_ostream &OS, const PrintingPolicy &Policy) const; /// Calls printName() with the ASTContext printing policy from the decl. void printName(raw_ostream &OS) const; /// Get the actual, stored name of the declaration, which may be a special /// name. /// /// Note that generally in diagnostics, the non-null \p NamedDecl* itself /// should be sent into the diagnostic instead of using the result of /// \p getDeclName(). /// /// A \p DeclarationName in a diagnostic will just be streamed to the output, /// which will directly result in a call to \p DeclarationName::print. /// /// A \p NamedDecl* in a diagnostic will also ultimately result in a call to /// \p DeclarationName::print, but with two customisation points along the /// way (\p getNameForDiagnostic and \p printName). These are used to print /// the template arguments if any, and to provide a user-friendly name for /// some entities (such as unnamed variables and anonymous records). DeclarationName getDeclName() const { return Name; } /// Set the name of this declaration. void setDeclName(DeclarationName N) { Name = N; } /// Returns a human-readable qualified name for this declaration, like /// A::B::i, for i being member of namespace A::B. /// /// If the declaration is not a member of context which can be named (record, /// namespace), it will return the same result as printName(). /// /// Creating this name is expensive, so it should be called only when /// performance doesn't matter. void printQualifiedName(raw_ostream &OS) const; void printQualifiedName(raw_ostream &OS, const PrintingPolicy &Policy) const; /// Print only the nested name specifier part of a fully-qualified name, /// including the '::' at the end. E.g. /// when `printQualifiedName(D)` prints "A::B::i", /// this function prints "A::B::". void printNestedNameSpecifier(raw_ostream &OS) const; void printNestedNameSpecifier(raw_ostream &OS, const PrintingPolicy &Policy) const; // FIXME: Remove string version. std::string getQualifiedNameAsString() const; /// Appends a human-readable name for this declaration into the given stream. /// /// This is the method invoked by Sema when displaying a NamedDecl /// in a diagnostic. It does not necessarily produce the same /// result as printName(); for example, class template /// specializations are printed with their template arguments. virtual void getNameForDiagnostic(raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const; /// Determine whether this declaration, if known to be well-formed within /// its context, will replace the declaration OldD if introduced into scope. /// /// A declaration will replace another declaration if, for example, it is /// a redeclaration of the same variable or function, but not if it is a /// declaration of a different kind (function vs. class) or an overloaded /// function. /// /// \param IsKnownNewer \c true if this declaration is known to be newer /// than \p OldD (for instance, if this declaration is newly-created). bool declarationReplaces(NamedDecl *OldD, bool IsKnownNewer = true) const; /// Determine whether this declaration has linkage. bool hasLinkage() const; using Decl::isModulePrivate; using Decl::setModulePrivate; /// Determine whether this declaration is a C++ class member. bool isCXXClassMember() const { const DeclContext *DC = getDeclContext(); // C++0x [class.mem]p1: // The enumerators of an unscoped enumeration defined in // the class are members of the class. if (isa(DC)) DC = DC->getRedeclContext(); return DC->isRecord(); } /// Determine whether the given declaration is an instance member of /// a C++ class. bool isCXXInstanceMember() const; /// Determine if the declaration obeys the reserved identifier rules of the /// given language. ReservedIdentifierStatus isReserved(const LangOptions &LangOpts) const; /// Determine what kind of linkage this entity has. /// /// This is not the linkage as defined by the standard or the codegen notion /// of linkage. It is just an implementation detail that is used to compute /// those. Linkage getLinkageInternal() const; /// Get the linkage from a semantic point of view. Entities in /// anonymous namespaces are external (in c++98). Linkage getFormalLinkage() const; /// True if this decl has external linkage. bool hasExternalFormalLinkage() const { return isExternalFormalLinkage(getLinkageInternal()); } bool isExternallyVisible() const { return clang::isExternallyVisible(getLinkageInternal()); } /// Determine whether this declaration can be redeclared in a /// different translation unit. bool isExternallyDeclarable() const { return isExternallyVisible() && !getOwningModuleForLinkage(); } /// Determines the visibility of this entity. Visibility getVisibility() const { return getLinkageAndVisibility().getVisibility(); } /// Determines the linkage and visibility of this entity. LinkageInfo getLinkageAndVisibility() const; /// Kinds of explicit visibility. enum ExplicitVisibilityKind { /// Do an LV computation for, ultimately, a type. /// Visibility may be restricted by type visibility settings and /// the visibility of template arguments. VisibilityForType, /// Do an LV computation for, ultimately, a non-type declaration. /// Visibility may be restricted by value visibility settings and /// the visibility of template arguments. VisibilityForValue }; /// If visibility was explicitly specified for this /// declaration, return that visibility. std::optional getExplicitVisibility(ExplicitVisibilityKind kind) const; /// True if the computed linkage is valid. Used for consistency /// checking. Should always return true. bool isLinkageValid() const; /// True if something has required us to compute the linkage /// of this declaration. /// /// Language features which can retroactively change linkage (like a /// typedef name for linkage purposes) may need to consider this, /// but hopefully only in transitory ways during parsing. bool hasLinkageBeenComputed() const { return hasCachedLinkage(); } bool isPlaceholderVar(const LangOptions &LangOpts) const; /// Looks through UsingDecls and ObjCCompatibleAliasDecls for /// the underlying named decl. NamedDecl *getUnderlyingDecl() { // Fast-path the common case. if (this->getKind() != UsingShadow && this->getKind() != ConstructorUsingShadow && this->getKind() != ObjCCompatibleAlias && this->getKind() != NamespaceAlias) return this; return getUnderlyingDeclImpl(); } const NamedDecl *getUnderlyingDecl() const { return const_cast(this)->getUnderlyingDecl(); } NamedDecl *getMostRecentDecl() { return cast(static_cast(this)->getMostRecentDecl()); } const NamedDecl *getMostRecentDecl() const { return const_cast(this)->getMostRecentDecl(); } ObjCStringFormatFamily getObjCFStringFormattingFamily() const; static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K >= firstNamed && K <= lastNamed; } }; inline raw_ostream &operator<<(raw_ostream &OS, const NamedDecl &ND) { ND.printName(OS); return OS; } /// Represents the declaration of a label. Labels also have a /// corresponding LabelStmt, which indicates the position that the label was /// defined at. For normal labels, the location of the decl is the same as the /// location of the statement. For GNU local labels (__label__), the decl /// location is where the __label__ is. class LabelDecl : public NamedDecl { LabelStmt *TheStmt; StringRef MSAsmName; bool MSAsmNameResolved = false; /// For normal labels, this is the same as the main declaration /// label, i.e., the location of the identifier; for GNU local labels, /// this is the location of the __label__ keyword. SourceLocation LocStart; LabelDecl(DeclContext *DC, SourceLocation IdentL, IdentifierInfo *II, LabelStmt *S, SourceLocation StartL) : NamedDecl(Label, DC, IdentL, II), TheStmt(S), LocStart(StartL) {} void anchor() override; public: static LabelDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation IdentL, IdentifierInfo *II); static LabelDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation IdentL, IdentifierInfo *II, SourceLocation GnuLabelL); static LabelDecl *CreateDeserialized(ASTContext &C, unsigned ID); LabelStmt *getStmt() const { return TheStmt; } void setStmt(LabelStmt *T) { TheStmt = T; } bool isGnuLocal() const { return LocStart != getLocation(); } void setLocStart(SourceLocation L) { LocStart = L; } SourceRange getSourceRange() const override LLVM_READONLY { return SourceRange(LocStart, getLocation()); } bool isMSAsmLabel() const { return !MSAsmName.empty(); } bool isResolvedMSAsmLabel() const { return isMSAsmLabel() && MSAsmNameResolved; } void setMSAsmLabel(StringRef Name); StringRef getMSAsmLabel() const { return MSAsmName; } void setMSAsmLabelResolved() { MSAsmNameResolved = true; } // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == Label; } }; /// Represent a C++ namespace. class NamespaceDecl : public NamedDecl, public DeclContext, public Redeclarable { enum Flags : unsigned { F_Inline = 1 << 0, F_Nested = 1 << 1 }; /// The starting location of the source range, pointing /// to either the namespace or the inline keyword. SourceLocation LocStart; /// The ending location of the source range. SourceLocation RBraceLoc; /// A pointer to either the anonymous namespace that lives just inside /// this namespace or to the first namespace in the chain (the latter case /// only when this is not the first in the chain), along with a /// boolean value indicating whether this is an inline namespace. llvm::PointerIntPair AnonOrFirstNamespaceAndFlags; NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, NamespaceDecl *PrevDecl, bool Nested); using redeclarable_base = Redeclarable; NamespaceDecl *getNextRedeclarationImpl() override; NamespaceDecl *getPreviousDeclImpl() override; NamespaceDecl *getMostRecentDeclImpl() override; public: friend class ASTDeclReader; friend class ASTDeclWriter; static NamespaceDecl *Create(ASTContext &C, DeclContext *DC, bool Inline, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, NamespaceDecl *PrevDecl, bool Nested); static NamespaceDecl *CreateDeserialized(ASTContext &C, unsigned ID); using redecl_range = redeclarable_base::redecl_range; using redecl_iterator = redeclarable_base::redecl_iterator; using redeclarable_base::redecls_begin; using redeclarable_base::redecls_end; using redeclarable_base::redecls; using redeclarable_base::getPreviousDecl; using redeclarable_base::getMostRecentDecl; using redeclarable_base::isFirstDecl; /// Returns true if this is an anonymous namespace declaration. /// /// For example: /// \code /// namespace { /// ... /// }; /// \endcode /// q.v. C++ [namespace.unnamed] bool isAnonymousNamespace() const { return !getIdentifier(); } /// Returns true if this is an inline namespace declaration. bool isInline() const { return AnonOrFirstNamespaceAndFlags.getInt() & F_Inline; } /// Set whether this is an inline namespace declaration. void setInline(bool Inline) { unsigned F = AnonOrFirstNamespaceAndFlags.getInt(); if (Inline) AnonOrFirstNamespaceAndFlags.setInt(F | F_Inline); else AnonOrFirstNamespaceAndFlags.setInt(F & ~F_Inline); } /// Returns true if this is a nested namespace declaration. /// \code /// namespace outer::nested { } /// \endcode bool isNested() const { return AnonOrFirstNamespaceAndFlags.getInt() & F_Nested; } /// Set whether this is a nested namespace declaration. void setNested(bool Nested) { unsigned F = AnonOrFirstNamespaceAndFlags.getInt(); if (Nested) AnonOrFirstNamespaceAndFlags.setInt(F | F_Nested); else AnonOrFirstNamespaceAndFlags.setInt(F & ~F_Nested); } /// Returns true if the inline qualifier for \c Name is redundant. bool isRedundantInlineQualifierFor(DeclarationName Name) const { if (!isInline()) return false; auto X = lookup(Name); // We should not perform a lookup within a transparent context, so find a // non-transparent parent context. auto Y = getParent()->getNonTransparentContext()->lookup(Name); return std::distance(X.begin(), X.end()) == std::distance(Y.begin(), Y.end()); } /// Get the original (first) namespace declaration. NamespaceDecl *getOriginalNamespace(); /// Get the original (first) namespace declaration. const NamespaceDecl *getOriginalNamespace() const; /// Return true if this declaration is an original (first) declaration /// of the namespace. This is false for non-original (subsequent) namespace /// declarations and anonymous namespaces. bool isOriginalNamespace() const; /// Retrieve the anonymous namespace nested inside this namespace, /// if any. NamespaceDecl *getAnonymousNamespace() const { return getOriginalNamespace()->AnonOrFirstNamespaceAndFlags.getPointer(); } void setAnonymousNamespace(NamespaceDecl *D) { getOriginalNamespace()->AnonOrFirstNamespaceAndFlags.setPointer(D); } /// Retrieves the canonical declaration of this namespace. NamespaceDecl *getCanonicalDecl() override { return getOriginalNamespace(); } const NamespaceDecl *getCanonicalDecl() const { return getOriginalNamespace(); } SourceRange getSourceRange() const override LLVM_READONLY { return SourceRange(LocStart, RBraceLoc); } SourceLocation getBeginLoc() const LLVM_READONLY { return LocStart; } SourceLocation getRBraceLoc() const { return RBraceLoc; } void setLocStart(SourceLocation L) { LocStart = L; } void setRBraceLoc(SourceLocation L) { RBraceLoc = L; } // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == Namespace; } static DeclContext *castToDeclContext(const NamespaceDecl *D) { return static_cast(const_cast(D)); } static NamespaceDecl *castFromDeclContext(const DeclContext *DC) { return static_cast(const_cast(DC)); } }; class VarDecl; /// Represent the declaration of a variable (in which case it is /// an lvalue) a function (in which case it is a function designator) or /// an enum constant. class ValueDecl : public NamedDecl { QualType DeclType; void anchor() override; protected: ValueDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName N, QualType T) : NamedDecl(DK, DC, L, N), DeclType(T) {} public: QualType getType() const { return DeclType; } void setType(QualType newType) { DeclType = newType; } /// Determine whether this symbol is weakly-imported, /// or declared with the weak or weak-ref attr. bool isWeak() const; /// Whether this variable is the implicit variable for a lambda init-capture. /// Only VarDecl can be init captures, but both VarDecl and BindingDecl /// can be captured. bool isInitCapture() const; // If this is a VarDecl, or a BindindDecl with an // associated decomposed VarDecl, return that VarDecl. VarDecl *getPotentiallyDecomposedVarDecl(); const VarDecl *getPotentiallyDecomposedVarDecl() const { return const_cast(this)->getPotentiallyDecomposedVarDecl(); } // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K >= firstValue && K <= lastValue; } }; /// A struct with extended info about a syntactic /// name qualifier, to be used for the case of out-of-line declarations. struct QualifierInfo { NestedNameSpecifierLoc QualifierLoc; /// The number of "outer" template parameter lists. /// The count includes all of the template parameter lists that were matched /// against the template-ids occurring into the NNS and possibly (in the /// case of an explicit specialization) a final "template <>". unsigned NumTemplParamLists = 0; /// A new-allocated array of size NumTemplParamLists, /// containing pointers to the "outer" template parameter lists. /// It includes all of the template parameter lists that were matched /// against the template-ids occurring into the NNS and possibly (in the /// case of an explicit specialization) a final "template <>". TemplateParameterList** TemplParamLists = nullptr; QualifierInfo() = default; QualifierInfo(const QualifierInfo &) = delete; QualifierInfo& operator=(const QualifierInfo &) = delete; /// Sets info about "outer" template parameter lists. void setTemplateParameterListsInfo(ASTContext &Context, ArrayRef TPLists); }; /// Represents a ValueDecl that came out of a declarator. /// Contains type source information through TypeSourceInfo. class DeclaratorDecl : public ValueDecl { // A struct representing a TInfo, a trailing requires-clause and a syntactic // qualifier, to be used for the (uncommon) case of out-of-line declarations // and constrained function decls. struct ExtInfo : public QualifierInfo { TypeSourceInfo *TInfo; Expr *TrailingRequiresClause = nullptr; }; llvm::PointerUnion DeclInfo; /// The start of the source range for this declaration, /// ignoring outer template declarations. SourceLocation InnerLocStart; bool hasExtInfo() const { return DeclInfo.is(); } ExtInfo *getExtInfo() { return DeclInfo.get(); } const ExtInfo *getExtInfo() const { return DeclInfo.get(); } protected: DeclaratorDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName N, QualType T, TypeSourceInfo *TInfo, SourceLocation StartL) : ValueDecl(DK, DC, L, N, T), DeclInfo(TInfo), InnerLocStart(StartL) {} public: friend class ASTDeclReader; friend class ASTDeclWriter; TypeSourceInfo *getTypeSourceInfo() const { return hasExtInfo() ? getExtInfo()->TInfo : DeclInfo.get(); } void setTypeSourceInfo(TypeSourceInfo *TI) { if (hasExtInfo()) getExtInfo()->TInfo = TI; else DeclInfo = TI; } /// Return start of source range ignoring outer template declarations. SourceLocation getInnerLocStart() const { return InnerLocStart; } void setInnerLocStart(SourceLocation L) { InnerLocStart = L; } /// Return start of source range taking into account any outer template /// declarations. SourceLocation getOuterLocStart() const; SourceRange getSourceRange() const override LLVM_READONLY; SourceLocation getBeginLoc() const LLVM_READONLY { return getOuterLocStart(); } /// Retrieve the nested-name-specifier that qualifies the name of this /// declaration, if it was present in the source. NestedNameSpecifier *getQualifier() const { return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier() : nullptr; } /// Retrieve the nested-name-specifier (with source-location /// information) that qualifies the name of this declaration, if it was /// present in the source. NestedNameSpecifierLoc getQualifierLoc() const { return hasExtInfo() ? getExtInfo()->QualifierLoc : NestedNameSpecifierLoc(); } void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc); /// \brief Get the constraint-expression introduced by the trailing /// requires-clause in the function/member declaration, or null if no /// requires-clause was provided. Expr *getTrailingRequiresClause() { return hasExtInfo() ? getExtInfo()->TrailingRequiresClause : nullptr; } const Expr *getTrailingRequiresClause() const { return hasExtInfo() ? getExtInfo()->TrailingRequiresClause : nullptr; } void setTrailingRequiresClause(Expr *TrailingRequiresClause); unsigned getNumTemplateParameterLists() const { return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0; } TemplateParameterList *getTemplateParameterList(unsigned index) const { assert(index < getNumTemplateParameterLists()); return getExtInfo()->TemplParamLists[index]; } void setTemplateParameterListsInfo(ASTContext &Context, ArrayRef TPLists); SourceLocation getTypeSpecStartLoc() const; SourceLocation getTypeSpecEndLoc() const; // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K >= firstDeclarator && K <= lastDeclarator; } }; /// Structure used to store a statement, the constant value to /// which it was evaluated (if any), and whether or not the statement /// is an integral constant expression (if known). struct EvaluatedStmt { /// Whether this statement was already evaluated. bool WasEvaluated : 1; /// Whether this statement is being evaluated. bool IsEvaluating : 1; /// Whether this variable is known to have constant initialization. This is /// currently only computed in C++, for static / thread storage duration /// variables that might have constant initialization and for variables that /// are usable in constant expressions. bool HasConstantInitialization : 1; /// Whether this variable is known to have constant destruction. That is, /// whether running the destructor on the initial value is a side-effect /// (and doesn't inspect any state that might have changed during program /// execution). This is currently only computed if the destructor is /// non-trivial. bool HasConstantDestruction : 1; /// In C++98, whether the initializer is an ICE. This affects whether the /// variable is usable in constant expressions. bool HasICEInit : 1; bool CheckedForICEInit : 1; LazyDeclStmtPtr Value; APValue Evaluated; EvaluatedStmt() : WasEvaluated(false), IsEvaluating(false), HasConstantInitialization(false), HasConstantDestruction(false), HasICEInit(false), CheckedForICEInit(false) {} }; /// Represents a variable declaration or definition. class VarDecl : public DeclaratorDecl, public Redeclarable { public: /// Initialization styles. enum InitializationStyle { /// C-style initialization with assignment CInit, /// Call-style initialization (C++98) CallInit, /// Direct list-initialization (C++11) ListInit, /// Parenthesized list-initialization (C++20) ParenListInit }; /// Kinds of thread-local storage. enum TLSKind { /// Not a TLS variable. TLS_None, /// TLS with a known-constant initializer. TLS_Static, /// TLS with a dynamic initializer. TLS_Dynamic }; /// Return the string used to specify the storage class \p SC. /// /// It is illegal to call this function with SC == None. static const char *getStorageClassSpecifierString(StorageClass SC); protected: // A pointer union of Stmt * and EvaluatedStmt *. When an EvaluatedStmt, we // have allocated the auxiliary struct of information there. // // TODO: It is a bit unfortunate to use a PointerUnion inside the VarDecl for // this as *many* VarDecls are ParmVarDecls that don't have default // arguments. We could save some space by moving this pointer union to be // allocated in trailing space when necessary. using InitType = llvm::PointerUnion; /// The initializer for this variable or, for a ParmVarDecl, the /// C++ default argument. mutable InitType Init; private: friend class ASTDeclReader; friend class ASTNodeImporter; friend class StmtIteratorBase; class VarDeclBitfields { friend class ASTDeclReader; friend class VarDecl; LLVM_PREFERRED_TYPE(StorageClass) unsigned SClass : 3; LLVM_PREFERRED_TYPE(ThreadStorageClassSpecifier) unsigned TSCSpec : 2; LLVM_PREFERRED_TYPE(InitializationStyle) unsigned InitStyle : 2; /// Whether this variable is an ARC pseudo-__strong variable; see /// isARCPseudoStrong() for details. LLVM_PREFERRED_TYPE(bool) unsigned ARCPseudoStrong : 1; }; enum { NumVarDeclBits = 8 }; protected: enum { NumParameterIndexBits = 8 }; enum DefaultArgKind { DAK_None, DAK_Unparsed, DAK_Uninstantiated, DAK_Normal }; enum { NumScopeDepthOrObjCQualsBits = 7 }; class ParmVarDeclBitfields { friend class ASTDeclReader; friend class ParmVarDecl; LLVM_PREFERRED_TYPE(VarDeclBitfields) unsigned : NumVarDeclBits; /// Whether this parameter inherits a default argument from a /// prior declaration. LLVM_PREFERRED_TYPE(bool) unsigned HasInheritedDefaultArg : 1; /// Describes the kind of default argument for this parameter. By default /// this is none. If this is normal, then the default argument is stored in /// the \c VarDecl initializer expression unless we were unable to parse /// (even an invalid) expression for the default argument. LLVM_PREFERRED_TYPE(DefaultArgKind) unsigned DefaultArgKind : 2; /// Whether this parameter undergoes K&R argument promotion. LLVM_PREFERRED_TYPE(bool) unsigned IsKNRPromoted : 1; /// Whether this parameter is an ObjC method parameter or not. LLVM_PREFERRED_TYPE(bool) unsigned IsObjCMethodParam : 1; /// If IsObjCMethodParam, a Decl::ObjCDeclQualifier. /// Otherwise, the number of function parameter scopes enclosing /// the function parameter scope in which this parameter was /// declared. unsigned ScopeDepthOrObjCQuals : NumScopeDepthOrObjCQualsBits; /// The number of parameters preceding this parameter in the /// function parameter scope in which it was declared. unsigned ParameterIndex : NumParameterIndexBits; }; class NonParmVarDeclBitfields { friend class ASTDeclReader; friend class ImplicitParamDecl; friend class VarDecl; LLVM_PREFERRED_TYPE(VarDeclBitfields) unsigned : NumVarDeclBits; // FIXME: We need something similar to CXXRecordDecl::DefinitionData. /// Whether this variable is a definition which was demoted due to /// module merge. LLVM_PREFERRED_TYPE(bool) unsigned IsThisDeclarationADemotedDefinition : 1; /// Whether this variable is the exception variable in a C++ catch /// or an Objective-C @catch statement. LLVM_PREFERRED_TYPE(bool) unsigned ExceptionVar : 1; /// Whether this local variable could be allocated in the return /// slot of its function, enabling the named return value optimization /// (NRVO). LLVM_PREFERRED_TYPE(bool) unsigned NRVOVariable : 1; /// Whether this variable is the for-range-declaration in a C++0x /// for-range statement. LLVM_PREFERRED_TYPE(bool) unsigned CXXForRangeDecl : 1; /// Whether this variable is the for-in loop declaration in Objective-C. LLVM_PREFERRED_TYPE(bool) unsigned ObjCForDecl : 1; /// Whether this variable is (C++1z) inline. LLVM_PREFERRED_TYPE(bool) unsigned IsInline : 1; /// Whether this variable has (C++1z) inline explicitly specified. LLVM_PREFERRED_TYPE(bool) unsigned IsInlineSpecified : 1; /// Whether this variable is (C++0x) constexpr. LLVM_PREFERRED_TYPE(bool) unsigned IsConstexpr : 1; /// Whether this variable is the implicit variable for a lambda /// init-capture. LLVM_PREFERRED_TYPE(bool) unsigned IsInitCapture : 1; /// Whether this local extern variable's previous declaration was /// declared in the same block scope. This controls whether we should merge /// the type of this declaration with its previous declaration. LLVM_PREFERRED_TYPE(bool) unsigned PreviousDeclInSameBlockScope : 1; /// Defines kind of the ImplicitParamDecl: 'this', 'self', 'vtt', '_cmd' or /// something else. LLVM_PREFERRED_TYPE(ImplicitParamKind) unsigned ImplicitParamKind : 3; LLVM_PREFERRED_TYPE(bool) unsigned EscapingByref : 1; }; union { unsigned AllBits; VarDeclBitfields VarDeclBits; ParmVarDeclBitfields ParmVarDeclBits; NonParmVarDeclBitfields NonParmVarDeclBits; }; VarDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, const IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass SC); using redeclarable_base = Redeclarable; VarDecl *getNextRedeclarationImpl() override { return getNextRedeclaration(); } VarDecl *getPreviousDeclImpl() override { return getPreviousDecl(); } VarDecl *getMostRecentDeclImpl() override { return getMostRecentDecl(); } public: using redecl_range = redeclarable_base::redecl_range; using redecl_iterator = redeclarable_base::redecl_iterator; using redeclarable_base::redecls_begin; using redeclarable_base::redecls_end; using redeclarable_base::redecls; using redeclarable_base::getPreviousDecl; using redeclarable_base::getMostRecentDecl; using redeclarable_base::isFirstDecl; static VarDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, const IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S); static VarDecl *CreateDeserialized(ASTContext &C, unsigned ID); SourceRange getSourceRange() const override LLVM_READONLY; /// Returns the storage class as written in the source. For the /// computed linkage of symbol, see getLinkage. StorageClass getStorageClass() const { return (StorageClass) VarDeclBits.SClass; } void setStorageClass(StorageClass SC); void setTSCSpec(ThreadStorageClassSpecifier TSC) { VarDeclBits.TSCSpec = TSC; assert(VarDeclBits.TSCSpec == TSC && "truncation"); } ThreadStorageClassSpecifier getTSCSpec() const { return static_cast(VarDeclBits.TSCSpec); } TLSKind getTLSKind() const; /// Returns true if a variable with function scope is a non-static local /// variable. bool hasLocalStorage() const { if (getStorageClass() == SC_None) { // OpenCL v1.2 s6.5.3: The __constant or constant address space name is // used to describe variables allocated in global memory and which are // accessed inside a kernel(s) as read-only variables. As such, variables // in constant address space cannot have local storage. if (getType().getAddressSpace() == LangAS::opencl_constant) return false; // Second check is for C++11 [dcl.stc]p4. return !isFileVarDecl() && getTSCSpec() == TSCS_unspecified; } // Global Named Register (GNU extension) if (getStorageClass() == SC_Register && !isLocalVarDeclOrParm()) return false; // Return true for: Auto, Register. // Return false for: Extern, Static, PrivateExtern, OpenCLWorkGroupLocal. return getStorageClass() >= SC_Auto; } /// Returns true if a variable with function scope is a static local /// variable. bool isStaticLocal() const { return (getStorageClass() == SC_Static || // C++11 [dcl.stc]p4 (getStorageClass() == SC_None && getTSCSpec() == TSCS_thread_local)) && !isFileVarDecl(); } /// Returns true if a variable has extern or __private_extern__ /// storage. bool hasExternalStorage() const { return getStorageClass() == SC_Extern || getStorageClass() == SC_PrivateExtern; } /// Returns true for all variables that do not have local storage. /// /// This includes all global variables as well as static variables declared /// within a function. bool hasGlobalStorage() const { return !hasLocalStorage(); } /// Get the storage duration of this variable, per C++ [basic.stc]. StorageDuration getStorageDuration() const { return hasLocalStorage() ? SD_Automatic : getTSCSpec() ? SD_Thread : SD_Static; } /// Compute the language linkage. LanguageLinkage getLanguageLinkage() const; /// Determines whether this variable is a variable with external, C linkage. bool isExternC() const; /// Determines whether this variable's context is, or is nested within, /// a C++ extern "C" linkage spec. bool isInExternCContext() const; /// Determines whether this variable's context is, or is nested within, /// a C++ extern "C++" linkage spec. bool isInExternCXXContext() const; /// Returns true for local variable declarations other than parameters. /// Note that this includes static variables inside of functions. It also /// includes variables inside blocks. /// /// void foo() { int x; static int y; extern int z; } bool isLocalVarDecl() const { if (getKind() != Decl::Var && getKind() != Decl::Decomposition) return false; if (const DeclContext *DC = getLexicalDeclContext()) return DC->getRedeclContext()->isFunctionOrMethod(); return false; } /// Similar to isLocalVarDecl but also includes parameters. bool isLocalVarDeclOrParm() const { return isLocalVarDecl() || getKind() == Decl::ParmVar; } /// Similar to isLocalVarDecl, but excludes variables declared in blocks. bool isFunctionOrMethodVarDecl() const { if (getKind() != Decl::Var && getKind() != Decl::Decomposition) return false; const DeclContext *DC = getLexicalDeclContext()->getRedeclContext(); return DC->isFunctionOrMethod() && DC->getDeclKind() != Decl::Block; } /// Determines whether this is a static data member. /// /// This will only be true in C++, and applies to, e.g., the /// variable 'x' in: /// \code /// struct S { /// static int x; /// }; /// \endcode bool isStaticDataMember() const { // If it wasn't static, it would be a FieldDecl. return getKind() != Decl::ParmVar && getDeclContext()->isRecord(); } VarDecl *getCanonicalDecl() override; const VarDecl *getCanonicalDecl() const { return const_cast(this)->getCanonicalDecl(); } enum DefinitionKind { /// This declaration is only a declaration. DeclarationOnly, /// This declaration is a tentative definition. TentativeDefinition, /// This declaration is definitely a definition. Definition }; /// Check whether this declaration is a definition. If this could be /// a tentative definition (in C), don't check whether there's an overriding /// definition. DefinitionKind isThisDeclarationADefinition(ASTContext &) const; DefinitionKind isThisDeclarationADefinition() const { return isThisDeclarationADefinition(getASTContext()); } /// Check whether this variable is defined in this translation unit. DefinitionKind hasDefinition(ASTContext &) const; DefinitionKind hasDefinition() const { return hasDefinition(getASTContext()); } /// Get the tentative definition that acts as the real definition in a TU. /// Returns null if there is a proper definition available. VarDecl *getActingDefinition(); const VarDecl *getActingDefinition() const { return const_cast(this)->getActingDefinition(); } /// Get the real (not just tentative) definition for this declaration. VarDecl *getDefinition(ASTContext &); const VarDecl *getDefinition(ASTContext &C) const { return const_cast(this)->getDefinition(C); } VarDecl *getDefinition() { return getDefinition(getASTContext()); } const VarDecl *getDefinition() const { return const_cast(this)->getDefinition(); } /// Determine whether this is or was instantiated from an out-of-line /// definition of a static data member. bool isOutOfLine() const override; /// Returns true for file scoped variable declaration. bool isFileVarDecl() const { Kind K = getKind(); if (K == ParmVar || K == ImplicitParam) return false; if (getLexicalDeclContext()->getRedeclContext()->isFileContext()) return true; if (isStaticDataMember()) return true; return false; } /// Get the initializer for this variable, no matter which /// declaration it is attached to. const Expr *getAnyInitializer() const { const VarDecl *D; return getAnyInitializer(D); } /// Get the initializer for this variable, no matter which /// declaration it is attached to. Also get that declaration. const Expr *getAnyInitializer(const VarDecl *&D) const; bool hasInit() const; const Expr *getInit() const { return const_cast(this)->getInit(); } Expr *getInit(); /// Retrieve the address of the initializer expression. Stmt **getInitAddress(); void setInit(Expr *I); /// Get the initializing declaration of this variable, if any. This is /// usually the definition, except that for a static data member it can be /// the in-class declaration. VarDecl *getInitializingDeclaration(); const VarDecl *getInitializingDeclaration() const { return const_cast(this)->getInitializingDeclaration(); } /// Determine whether this variable's value might be usable in a /// constant expression, according to the relevant language standard. /// This only checks properties of the declaration, and does not check /// whether the initializer is in fact a constant expression. /// /// This corresponds to C++20 [expr.const]p3's notion of a /// "potentially-constant" variable. bool mightBeUsableInConstantExpressions(const ASTContext &C) const; /// Determine whether this variable's value can be used in a /// constant expression, according to the relevant language standard, /// including checking whether it was initialized by a constant expression. bool isUsableInConstantExpressions(const ASTContext &C) const; EvaluatedStmt *ensureEvaluatedStmt() const; EvaluatedStmt *getEvaluatedStmt() const; /// Attempt to evaluate the value of the initializer attached to this /// declaration, and produce notes explaining why it cannot be evaluated. /// Returns a pointer to the value if evaluation succeeded, 0 otherwise. APValue *evaluateValue() const; private: APValue *evaluateValueImpl(SmallVectorImpl &Notes, bool IsConstantInitialization) const; public: /// Return the already-evaluated value of this variable's /// initializer, or NULL if the value is not yet known. Returns pointer /// to untyped APValue if the value could not be evaluated. APValue *getEvaluatedValue() const; /// Evaluate the destruction of this variable to determine if it constitutes /// constant destruction. /// /// \pre hasConstantInitialization() /// \return \c true if this variable has constant destruction, \c false if /// not. bool evaluateDestruction(SmallVectorImpl &Notes) const; /// Determine whether this variable has constant initialization. /// /// This is only set in two cases: when the language semantics require /// constant initialization (globals in C and some globals in C++), and when /// the variable is usable in constant expressions (constexpr, const int, and /// reference variables in C++). bool hasConstantInitialization() const; /// Determine whether the initializer of this variable is an integer constant /// expression. For use in C++98, where this affects whether the variable is /// usable in constant expressions. bool hasICEInitializer(const ASTContext &Context) const; /// Evaluate the initializer of this variable to determine whether it's a /// constant initializer. Should only be called once, after completing the /// definition of the variable. bool checkForConstantInitialization( SmallVectorImpl &Notes) const; void setInitStyle(InitializationStyle Style) { VarDeclBits.InitStyle = Style; } /// The style of initialization for this declaration. /// /// C-style initialization is "int x = 1;". Call-style initialization is /// a C++98 direct-initializer, e.g. "int x(1);". The Init expression will be /// the expression inside the parens or a "ClassType(a,b,c)" class constructor /// expression for class types. List-style initialization is C++11 syntax, /// e.g. "int x{1};". Clients can distinguish between different forms of /// initialization by checking this value. In particular, "int x = {1};" is /// C-style, "int x({1})" is call-style, and "int x{1};" is list-style; the /// Init expression in all three cases is an InitListExpr. InitializationStyle getInitStyle() const { return static_cast(VarDeclBits.InitStyle); } /// Whether the initializer is a direct-initializer (list or call). bool isDirectInit() const { return getInitStyle() != CInit; } /// If this definition should pretend to be a declaration. bool isThisDeclarationADemotedDefinition() const { return isa(this) ? false : NonParmVarDeclBits.IsThisDeclarationADemotedDefinition; } /// This is a definition which should be demoted to a declaration. /// /// In some cases (mostly module merging) we can end up with two visible /// definitions one of which needs to be demoted to a declaration to keep /// the AST invariants. void demoteThisDefinitionToDeclaration() { assert(isThisDeclarationADefinition() && "Not a definition!"); assert(!isa(this) && "Cannot demote ParmVarDecls!"); NonParmVarDeclBits.IsThisDeclarationADemotedDefinition = 1; } /// Determine whether this variable is the exception variable in a /// C++ catch statememt or an Objective-C \@catch statement. bool isExceptionVariable() const { return isa(this) ? false : NonParmVarDeclBits.ExceptionVar; } void setExceptionVariable(bool EV) { assert(!isa(this)); NonParmVarDeclBits.ExceptionVar = EV; } /// Determine whether this local variable can be used with the named /// return value optimization (NRVO). /// /// The named return value optimization (NRVO) works by marking certain /// non-volatile local variables of class type as NRVO objects. These /// locals can be allocated within the return slot of their containing /// function, in which case there is no need to copy the object to the /// return slot when returning from the function. Within the function body, /// each return that returns the NRVO object will have this variable as its /// NRVO candidate. bool isNRVOVariable() const { return isa(this) ? false : NonParmVarDeclBits.NRVOVariable; } void setNRVOVariable(bool NRVO) { assert(!isa(this)); NonParmVarDeclBits.NRVOVariable = NRVO; } /// Determine whether this variable is the for-range-declaration in /// a C++0x for-range statement. bool isCXXForRangeDecl() const { return isa(this) ? false : NonParmVarDeclBits.CXXForRangeDecl; } void setCXXForRangeDecl(bool FRD) { assert(!isa(this)); NonParmVarDeclBits.CXXForRangeDecl = FRD; } /// Determine whether this variable is a for-loop declaration for a /// for-in statement in Objective-C. bool isObjCForDecl() const { return NonParmVarDeclBits.ObjCForDecl; } void setObjCForDecl(bool FRD) { NonParmVarDeclBits.ObjCForDecl = FRD; } /// Determine whether this variable is an ARC pseudo-__strong variable. A /// pseudo-__strong variable has a __strong-qualified type but does not /// actually retain the object written into it. Generally such variables are /// also 'const' for safety. There are 3 cases where this will be set, 1) if /// the variable is annotated with the objc_externally_retained attribute, 2) /// if its 'self' in a non-init method, or 3) if its the variable in an for-in /// loop. bool isARCPseudoStrong() const { return VarDeclBits.ARCPseudoStrong; } void setARCPseudoStrong(bool PS) { VarDeclBits.ARCPseudoStrong = PS; } /// Whether this variable is (C++1z) inline. bool isInline() const { return isa(this) ? false : NonParmVarDeclBits.IsInline; } bool isInlineSpecified() const { return isa(this) ? false : NonParmVarDeclBits.IsInlineSpecified; } void setInlineSpecified() { assert(!isa(this)); NonParmVarDeclBits.IsInline = true; NonParmVarDeclBits.IsInlineSpecified = true; } void setImplicitlyInline() { assert(!isa(this)); NonParmVarDeclBits.IsInline = true; } /// Whether this variable is (C++11) constexpr. bool isConstexpr() const { return isa(this) ? false : NonParmVarDeclBits.IsConstexpr; } void setConstexpr(bool IC) { assert(!isa(this)); NonParmVarDeclBits.IsConstexpr = IC; } /// Whether this variable is the implicit variable for a lambda init-capture. bool isInitCapture() const { return isa(this) ? false : NonParmVarDeclBits.IsInitCapture; } void setInitCapture(bool IC) { assert(!isa(this)); NonParmVarDeclBits.IsInitCapture = IC; } /// Determine whether this variable is actually a function parameter pack or /// init-capture pack. bool isParameterPack() const; /// Whether this local extern variable declaration's previous declaration /// was declared in the same block scope. Only correct in C++. bool isPreviousDeclInSameBlockScope() const { return isa(this) ? false : NonParmVarDeclBits.PreviousDeclInSameBlockScope; } void setPreviousDeclInSameBlockScope(bool Same) { assert(!isa(this)); NonParmVarDeclBits.PreviousDeclInSameBlockScope = Same; } /// Indicates the capture is a __block variable that is captured by a block /// that can potentially escape (a block for which BlockDecl::doesNotEscape /// returns false). bool isEscapingByref() const; /// Indicates the capture is a __block variable that is never captured by an /// escaping block. bool isNonEscapingByref() const; void setEscapingByref() { NonParmVarDeclBits.EscapingByref = true; } /// Determines if this variable's alignment is dependent. bool hasDependentAlignment() const; /// Retrieve the variable declaration from which this variable could /// be instantiated, if it is an instantiation (rather than a non-template). VarDecl *getTemplateInstantiationPattern() const; /// If this variable is an instantiated static data member of a /// class template specialization, returns the templated static data member /// from which it was instantiated. VarDecl *getInstantiatedFromStaticDataMember() const; /// If this variable is an instantiation of a variable template or a /// static data member of a class template, determine what kind of /// template specialization or instantiation this is. TemplateSpecializationKind getTemplateSpecializationKind() const; /// Get the template specialization kind of this variable for the purposes of /// template instantiation. This differs from getTemplateSpecializationKind() /// for an instantiation of a class-scope explicit specialization. TemplateSpecializationKind getTemplateSpecializationKindForInstantiation() const; /// If this variable is an instantiation of a variable template or a /// static data member of a class template, determine its point of /// instantiation. SourceLocation getPointOfInstantiation() const; /// If this variable is an instantiation of a static data member of a /// class template specialization, retrieves the member specialization /// information. MemberSpecializationInfo *getMemberSpecializationInfo() const; /// For a static data member that was instantiated from a static /// data member of a class template, set the template specialiation kind. void setTemplateSpecializationKind(TemplateSpecializationKind TSK, SourceLocation PointOfInstantiation = SourceLocation()); /// Specify that this variable is an instantiation of the /// static data member VD. void setInstantiationOfStaticDataMember(VarDecl *VD, TemplateSpecializationKind TSK); /// Retrieves the variable template that is described by this /// variable declaration. /// /// Every variable template is represented as a VarTemplateDecl and a /// VarDecl. The former contains template properties (such as /// the template parameter lists) while the latter contains the /// actual description of the template's /// contents. VarTemplateDecl::getTemplatedDecl() retrieves the /// VarDecl that from a VarTemplateDecl, while /// getDescribedVarTemplate() retrieves the VarTemplateDecl from /// a VarDecl. VarTemplateDecl *getDescribedVarTemplate() const; void setDescribedVarTemplate(VarTemplateDecl *Template); // Is this variable known to have a definition somewhere in the complete // program? This may be true even if the declaration has internal linkage and // has no definition within this source file. bool isKnownToBeDefined() const; /// Is destruction of this variable entirely suppressed? If so, the variable /// need not have a usable destructor at all. bool isNoDestroy(const ASTContext &) const; /// Would the destruction of this variable have any effect, and if so, what /// kind? QualType::DestructionKind needsDestruction(const ASTContext &Ctx) const; /// Whether this variable has a flexible array member initialized with one /// or more elements. This can only be called for declarations where /// hasInit() is true. /// /// (The standard doesn't allow initializing flexible array members; this is /// a gcc/msvc extension.) bool hasFlexibleArrayInit(const ASTContext &Ctx) const; /// If hasFlexibleArrayInit is true, compute the number of additional bytes /// necessary to store those elements. Otherwise, returns zero. /// /// This can only be called for declarations where hasInit() is true. CharUnits getFlexibleArrayInitChars(const ASTContext &Ctx) const; // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K >= firstVar && K <= lastVar; } }; /// Defines the kind of the implicit parameter: is this an implicit parameter /// with pointer to 'this', 'self', '_cmd', virtual table pointers, captured /// context or something else. enum class ImplicitParamKind { /// Parameter for Objective-C 'self' argument ObjCSelf, /// Parameter for Objective-C '_cmd' argument ObjCCmd, /// Parameter for C++ 'this' argument CXXThis, /// Parameter for C++ virtual table pointers CXXVTT, /// Parameter for captured context CapturedContext, /// Parameter for Thread private variable ThreadPrivateVar, /// Other implicit parameter Other, }; class ImplicitParamDecl : public VarDecl { void anchor() override; public: /// Create implicit parameter. static ImplicitParamDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, ImplicitParamKind ParamKind); static ImplicitParamDecl *Create(ASTContext &C, QualType T, ImplicitParamKind ParamKind); static ImplicitParamDecl *CreateDeserialized(ASTContext &C, unsigned ID); ImplicitParamDecl(ASTContext &C, DeclContext *DC, SourceLocation IdLoc, IdentifierInfo *Id, QualType Type, ImplicitParamKind ParamKind) : VarDecl(ImplicitParam, C, DC, IdLoc, IdLoc, Id, Type, /*TInfo=*/nullptr, SC_None) { NonParmVarDeclBits.ImplicitParamKind = llvm::to_underlying(ParamKind); setImplicit(); } ImplicitParamDecl(ASTContext &C, QualType Type, ImplicitParamKind ParamKind) : VarDecl(ImplicitParam, C, /*DC=*/nullptr, SourceLocation(), SourceLocation(), /*Id=*/nullptr, Type, /*TInfo=*/nullptr, SC_None) { NonParmVarDeclBits.ImplicitParamKind = llvm::to_underlying(ParamKind); setImplicit(); } /// Returns the implicit parameter kind. ImplicitParamKind getParameterKind() const { return static_cast(NonParmVarDeclBits.ImplicitParamKind); } // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == ImplicitParam; } }; /// Represents a parameter to a function. class ParmVarDecl : public VarDecl { public: enum { MaxFunctionScopeDepth = 255 }; enum { MaxFunctionScopeIndex = 255 }; protected: ParmVarDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S, Expr *DefArg) : VarDecl(DK, C, DC, StartLoc, IdLoc, Id, T, TInfo, S) { assert(ParmVarDeclBits.HasInheritedDefaultArg == false); assert(ParmVarDeclBits.DefaultArgKind == DAK_None); assert(ParmVarDeclBits.IsKNRPromoted == false); assert(ParmVarDeclBits.IsObjCMethodParam == false); setDefaultArg(DefArg); } public: static ParmVarDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S, Expr *DefArg); static ParmVarDecl *CreateDeserialized(ASTContext &C, unsigned ID); SourceRange getSourceRange() const override LLVM_READONLY; void setObjCMethodScopeInfo(unsigned parameterIndex) { ParmVarDeclBits.IsObjCMethodParam = true; setParameterIndex(parameterIndex); } void setScopeInfo(unsigned scopeDepth, unsigned parameterIndex) { assert(!ParmVarDeclBits.IsObjCMethodParam); ParmVarDeclBits.ScopeDepthOrObjCQuals = scopeDepth; assert(ParmVarDeclBits.ScopeDepthOrObjCQuals == scopeDepth && "truncation!"); setParameterIndex(parameterIndex); } bool isObjCMethodParameter() const { return ParmVarDeclBits.IsObjCMethodParam; } /// Determines whether this parameter is destroyed in the callee function. bool isDestroyedInCallee() const; unsigned getFunctionScopeDepth() const { if (ParmVarDeclBits.IsObjCMethodParam) return 0; return ParmVarDeclBits.ScopeDepthOrObjCQuals; } static constexpr unsigned getMaxFunctionScopeDepth() { return (1u << NumScopeDepthOrObjCQualsBits) - 1; } /// Returns the index of this parameter in its prototype or method scope. unsigned getFunctionScopeIndex() const { return getParameterIndex(); } ObjCDeclQualifier getObjCDeclQualifier() const { if (!ParmVarDeclBits.IsObjCMethodParam) return OBJC_TQ_None; return ObjCDeclQualifier(ParmVarDeclBits.ScopeDepthOrObjCQuals); } void setObjCDeclQualifier(ObjCDeclQualifier QTVal) { assert(ParmVarDeclBits.IsObjCMethodParam); ParmVarDeclBits.ScopeDepthOrObjCQuals = QTVal; } /// True if the value passed to this parameter must undergo /// K&R-style default argument promotion: /// /// C99 6.5.2.2. /// If the expression that denotes the called function has a type /// that does not include a prototype, the integer promotions are /// performed on each argument, and arguments that have type float /// are promoted to double. bool isKNRPromoted() const { return ParmVarDeclBits.IsKNRPromoted; } void setKNRPromoted(bool promoted) { ParmVarDeclBits.IsKNRPromoted = promoted; } bool isExplicitObjectParameter() const { return ExplicitObjectParameterIntroducerLoc.isValid(); } void setExplicitObjectParameterLoc(SourceLocation Loc) { ExplicitObjectParameterIntroducerLoc = Loc; } SourceLocation getExplicitObjectParamThisLoc() const { return ExplicitObjectParameterIntroducerLoc; } Expr *getDefaultArg(); const Expr *getDefaultArg() const { return const_cast(this)->getDefaultArg(); } void setDefaultArg(Expr *defarg); /// Retrieve the source range that covers the entire default /// argument. SourceRange getDefaultArgRange() const; void setUninstantiatedDefaultArg(Expr *arg); Expr *getUninstantiatedDefaultArg(); const Expr *getUninstantiatedDefaultArg() const { return const_cast(this)->getUninstantiatedDefaultArg(); } /// Determines whether this parameter has a default argument, /// either parsed or not. bool hasDefaultArg() const; /// Determines whether this parameter has a default argument that has not /// yet been parsed. This will occur during the processing of a C++ class /// whose member functions have default arguments, e.g., /// @code /// class X { /// public: /// void f(int x = 17); // x has an unparsed default argument now /// }; // x has a regular default argument now /// @endcode bool hasUnparsedDefaultArg() const { return ParmVarDeclBits.DefaultArgKind == DAK_Unparsed; } bool hasUninstantiatedDefaultArg() const { return ParmVarDeclBits.DefaultArgKind == DAK_Uninstantiated; } /// Specify that this parameter has an unparsed default argument. /// The argument will be replaced with a real default argument via /// setDefaultArg when the class definition enclosing the function /// declaration that owns this default argument is completed. void setUnparsedDefaultArg() { ParmVarDeclBits.DefaultArgKind = DAK_Unparsed; } bool hasInheritedDefaultArg() const { return ParmVarDeclBits.HasInheritedDefaultArg; } void setHasInheritedDefaultArg(bool I = true) { ParmVarDeclBits.HasInheritedDefaultArg = I; } QualType getOriginalType() const; /// Sets the function declaration that owns this /// ParmVarDecl. Since ParmVarDecls are often created before the /// FunctionDecls that own them, this routine is required to update /// the DeclContext appropriately. void setOwningFunction(DeclContext *FD) { setDeclContext(FD); } // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == ParmVar; } private: friend class ASTDeclReader; enum { ParameterIndexSentinel = (1 << NumParameterIndexBits) - 1 }; SourceLocation ExplicitObjectParameterIntroducerLoc; void setParameterIndex(unsigned parameterIndex) { if (parameterIndex >= ParameterIndexSentinel) { setParameterIndexLarge(parameterIndex); return; } ParmVarDeclBits.ParameterIndex = parameterIndex; assert(ParmVarDeclBits.ParameterIndex == parameterIndex && "truncation!"); } unsigned getParameterIndex() const { unsigned d = ParmVarDeclBits.ParameterIndex; return d == ParameterIndexSentinel ? getParameterIndexLarge() : d; } void setParameterIndexLarge(unsigned parameterIndex); unsigned getParameterIndexLarge() const; }; enum class MultiVersionKind { None, Target, CPUSpecific, CPUDispatch, TargetClones, TargetVersion }; /// Represents a function declaration or definition. /// /// Since a given function can be declared several times in a program, /// there may be several FunctionDecls that correspond to that /// function. Only one of those FunctionDecls will be found when /// traversing the list of declarations in the context of the /// FunctionDecl (e.g., the translation unit); this FunctionDecl /// contains all of the information known about the function. Other, /// previous declarations of the function are available via the /// getPreviousDecl() chain. class FunctionDecl : public DeclaratorDecl, public DeclContext, public Redeclarable { // This class stores some data in DeclContext::FunctionDeclBits // to save some space. Use the provided accessors to access it. public: /// The kind of templated function a FunctionDecl can be. enum TemplatedKind { // Not templated. TK_NonTemplate, // The pattern in a function template declaration. TK_FunctionTemplate, // A non-template function that is an instantiation or explicit // specialization of a member of a templated class. TK_MemberSpecialization, // An instantiation or explicit specialization of a function template. // Note: this might have been instantiated from a templated class if it // is a class-scope explicit specialization. TK_FunctionTemplateSpecialization, // A function template specialization that hasn't yet been resolved to a // particular specialized function template. TK_DependentFunctionTemplateSpecialization, // A non-template function which is in a dependent scope. TK_DependentNonTemplate }; /// Stashed information about a defaulted function definition whose body has /// not yet been lazily generated. class DefaultedFunctionInfo final : llvm::TrailingObjects { friend TrailingObjects; unsigned NumLookups; public: static DefaultedFunctionInfo *Create(ASTContext &Context, ArrayRef Lookups); /// Get the unqualified lookup results that should be used in this /// defaulted function definition. ArrayRef getUnqualifiedLookups() const { return {getTrailingObjects(), NumLookups}; } }; private: /// A new[]'d array of pointers to VarDecls for the formal /// parameters of this function. This is null if a prototype or if there are /// no formals. ParmVarDecl **ParamInfo = nullptr; /// The active member of this union is determined by /// FunctionDeclBits.HasDefaultedFunctionInfo. union { /// The body of the function. LazyDeclStmtPtr Body; /// Information about a future defaulted function definition. DefaultedFunctionInfo *DefaultedInfo; }; unsigned ODRHash; /// End part of this FunctionDecl's source range. /// /// We could compute the full range in getSourceRange(). However, when we're /// dealing with a function definition deserialized from a PCH/AST file, /// we can only compute the full range once the function body has been /// de-serialized, so it's far better to have the (sometimes-redundant) /// EndRangeLoc. SourceLocation EndRangeLoc; SourceLocation DefaultKWLoc; /// The template or declaration that this declaration /// describes or was instantiated from, respectively. /// /// For non-templates this value will be NULL, unless this declaration was /// declared directly inside of a function template, in which case it will /// have a pointer to a FunctionDecl, stored in the NamedDecl. For function /// declarations that describe a function template, this will be a pointer to /// a FunctionTemplateDecl, stored in the NamedDecl. For member functions of /// class template specializations, this will be a MemberSpecializationInfo /// pointer containing information about the specialization. /// For function template specializations, this will be a /// FunctionTemplateSpecializationInfo, which contains information about /// the template being specialized and the template arguments involved in /// that specialization. llvm::PointerUnion TemplateOrSpecialization; /// Provides source/type location info for the declaration name embedded in /// the DeclaratorDecl base class. DeclarationNameLoc DNLoc; /// Specify that this function declaration is actually a function /// template specialization. /// /// \param C the ASTContext. /// /// \param Template the function template that this function template /// specialization specializes. /// /// \param TemplateArgs the template arguments that produced this /// function template specialization from the template. /// /// \param InsertPos If non-NULL, the position in the function template /// specialization set where the function template specialization data will /// be inserted. /// /// \param TSK the kind of template specialization this is. /// /// \param TemplateArgsAsWritten location info of template arguments. /// /// \param PointOfInstantiation point at which the function template /// specialization was first instantiated. void setFunctionTemplateSpecialization(ASTContext &C, FunctionTemplateDecl *Template, const TemplateArgumentList *TemplateArgs, void *InsertPos, TemplateSpecializationKind TSK, const TemplateArgumentListInfo *TemplateArgsAsWritten, SourceLocation PointOfInstantiation); /// Specify that this record is an instantiation of the /// member function FD. void setInstantiationOfMemberFunction(ASTContext &C, FunctionDecl *FD, TemplateSpecializationKind TSK); void setParams(ASTContext &C, ArrayRef NewParamInfo); // This is unfortunately needed because ASTDeclWriter::VisitFunctionDecl // need to access this bit but we want to avoid making ASTDeclWriter // a friend of FunctionDeclBitfields just for this. bool isDeletedBit() const { return FunctionDeclBits.IsDeleted; } /// Whether an ODRHash has been stored. bool hasODRHash() const { return FunctionDeclBits.HasODRHash; } /// State that an ODRHash has been stored. void setHasODRHash(bool B = true) { FunctionDeclBits.HasODRHash = B; } protected: FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, StorageClass S, bool UsesFPIntrin, bool isInlineSpecified, ConstexprSpecKind ConstexprKind, Expr *TrailingRequiresClause = nullptr); using redeclarable_base = Redeclarable; FunctionDecl *getNextRedeclarationImpl() override { return getNextRedeclaration(); } FunctionDecl *getPreviousDeclImpl() override { return getPreviousDecl(); } FunctionDecl *getMostRecentDeclImpl() override { return getMostRecentDecl(); } public: friend class ASTDeclReader; friend class ASTDeclWriter; using redecl_range = redeclarable_base::redecl_range; using redecl_iterator = redeclarable_base::redecl_iterator; using redeclarable_base::redecls_begin; using redeclarable_base::redecls_end; using redeclarable_base::redecls; using redeclarable_base::getPreviousDecl; using redeclarable_base::getMostRecentDecl; using redeclarable_base::isFirstDecl; static FunctionDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation NLoc, DeclarationName N, QualType T, TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin = false, bool isInlineSpecified = false, bool hasWrittenPrototype = true, ConstexprSpecKind ConstexprKind = ConstexprSpecKind::Unspecified, Expr *TrailingRequiresClause = nullptr) { DeclarationNameInfo NameInfo(N, NLoc); return FunctionDecl::Create(C, DC, StartLoc, NameInfo, T, TInfo, SC, UsesFPIntrin, isInlineSpecified, hasWrittenPrototype, ConstexprKind, TrailingRequiresClause); } static FunctionDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin, bool isInlineSpecified, bool hasWrittenPrototype, ConstexprSpecKind ConstexprKind, Expr *TrailingRequiresClause); static FunctionDecl *CreateDeserialized(ASTContext &C, unsigned ID); DeclarationNameInfo getNameInfo() const { return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc); } void getNameForDiagnostic(raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const override; void setRangeEnd(SourceLocation E) { EndRangeLoc = E; } /// Returns the location of the ellipsis of a variadic function. SourceLocation getEllipsisLoc() const { const auto *FPT = getType()->getAs(); if (FPT && FPT->isVariadic()) return FPT->getEllipsisLoc(); return SourceLocation(); } SourceRange getSourceRange() const override LLVM_READONLY; // Function definitions. // // A function declaration may be: // - a non defining declaration, // - a definition. A function may be defined because: // - it has a body, or will have it in the case of late parsing. // - it has an uninstantiated body. The body does not exist because the // function is not used yet, but the declaration is considered a // definition and does not allow other definition of this function. // - it does not have a user specified body, but it does not allow // redefinition, because it is deleted/defaulted or is defined through // some other mechanism (alias, ifunc). /// Returns true if the function has a body. /// /// The function body might be in any of the (re-)declarations of this /// function. The variant that accepts a FunctionDecl pointer will set that /// function declaration to the actual declaration containing the body (if /// there is one). bool hasBody(const FunctionDecl *&Definition) const; bool hasBody() const override { const FunctionDecl* Definition; return hasBody(Definition); } /// Returns whether the function has a trivial body that does not require any /// specific codegen. bool hasTrivialBody() const; /// Returns true if the function has a definition that does not need to be /// instantiated. /// /// The variant that accepts a FunctionDecl pointer will set that function /// declaration to the declaration that is a definition (if there is one). /// /// \param CheckForPendingFriendDefinition If \c true, also check for friend /// declarations that were instantiated from function definitions. /// Such a declaration behaves as if it is a definition for the /// purpose of redefinition checking, but isn't actually a "real" /// definition until its body is instantiated. bool isDefined(const FunctionDecl *&Definition, bool CheckForPendingFriendDefinition = false) const; bool isDefined() const { const FunctionDecl* Definition; return isDefined(Definition); } /// Get the definition for this declaration. FunctionDecl *getDefinition() { const FunctionDecl *Definition; if (isDefined(Definition)) return const_cast(Definition); return nullptr; } const FunctionDecl *getDefinition() const { return const_cast(this)->getDefinition(); } /// Retrieve the body (definition) of the function. The function body might be /// in any of the (re-)declarations of this function. The variant that accepts /// a FunctionDecl pointer will set that function declaration to the actual /// declaration containing the body (if there is one). /// NOTE: For checking if there is a body, use hasBody() instead, to avoid /// unnecessary AST de-serialization of the body. Stmt *getBody(const FunctionDecl *&Definition) const; Stmt *getBody() const override { const FunctionDecl* Definition; return getBody(Definition); } /// Returns whether this specific declaration of the function is also a /// definition that does not contain uninstantiated body. /// /// This does not determine whether the function has been defined (e.g., in a /// previous definition); for that information, use isDefined. /// /// Note: the function declaration does not become a definition until the /// parser reaches the definition, if called before, this function will return /// `false`. bool isThisDeclarationADefinition() const { return isDeletedAsWritten() || isDefaulted() || doesThisDeclarationHaveABody() || hasSkippedBody() || willHaveBody() || hasDefiningAttr(); } /// Determine whether this specific declaration of the function is a friend /// declaration that was instantiated from a function definition. Such /// declarations behave like definitions in some contexts. bool isThisDeclarationInstantiatedFromAFriendDefinition() const; /// Returns whether this specific declaration of the function has a body. bool doesThisDeclarationHaveABody() const { return (!FunctionDeclBits.HasDefaultedFunctionInfo && Body) || isLateTemplateParsed(); } void setBody(Stmt *B); void setLazyBody(uint64_t Offset) { FunctionDeclBits.HasDefaultedFunctionInfo = false; Body = LazyDeclStmtPtr(Offset); } void setDefaultedFunctionInfo(DefaultedFunctionInfo *Info); DefaultedFunctionInfo *getDefaultedFunctionInfo() const; /// Whether this function is variadic. bool isVariadic() const; /// Whether this function is marked as virtual explicitly. bool isVirtualAsWritten() const { return FunctionDeclBits.IsVirtualAsWritten; } /// State that this function is marked as virtual explicitly. void setVirtualAsWritten(bool V) { FunctionDeclBits.IsVirtualAsWritten = V; } /// Whether this virtual function is pure, i.e. makes the containing class /// abstract. bool isPure() const { return FunctionDeclBits.IsPure; } void setPure(bool P = true); /// Whether this templated function will be late parsed. bool isLateTemplateParsed() const { return FunctionDeclBits.IsLateTemplateParsed; } /// State that this templated function will be late parsed. void setLateTemplateParsed(bool ILT = true) { FunctionDeclBits.IsLateTemplateParsed = ILT; } /// Whether this function is "trivial" in some specialized C++ senses. /// Can only be true for default constructors, copy constructors, /// copy assignment operators, and destructors. Not meaningful until /// the class has been fully built by Sema. bool isTrivial() const { return FunctionDeclBits.IsTrivial; } void setTrivial(bool IT) { FunctionDeclBits.IsTrivial = IT; } bool isTrivialForCall() const { return FunctionDeclBits.IsTrivialForCall; } void setTrivialForCall(bool IT) { FunctionDeclBits.IsTrivialForCall = IT; } /// Whether this function is defaulted. Valid for e.g. /// special member functions, defaulted comparisions (not methods!). bool isDefaulted() const { return FunctionDeclBits.IsDefaulted; } void setDefaulted(bool D = true) { FunctionDeclBits.IsDefaulted = D; } /// Whether this function is explicitly defaulted. bool isExplicitlyDefaulted() const { return FunctionDeclBits.IsExplicitlyDefaulted; } /// State that this function is explicitly defaulted. void setExplicitlyDefaulted(bool ED = true) { FunctionDeclBits.IsExplicitlyDefaulted = ED; } SourceLocation getDefaultLoc() const { return isExplicitlyDefaulted() ? DefaultKWLoc : SourceLocation(); } void setDefaultLoc(SourceLocation NewLoc) { assert((NewLoc.isInvalid() || isExplicitlyDefaulted()) && "Can't set default loc is function isn't explicitly defaulted"); DefaultKWLoc = NewLoc; } /// True if this method is user-declared and was not /// deleted or defaulted on its first declaration. bool isUserProvided() const { auto *DeclAsWritten = this; if (FunctionDecl *Pattern = getTemplateInstantiationPattern()) DeclAsWritten = Pattern; return !(DeclAsWritten->isDeleted() || DeclAsWritten->getCanonicalDecl()->isDefaulted()); } bool isIneligibleOrNotSelected() const { return FunctionDeclBits.IsIneligibleOrNotSelected; } void setIneligibleOrNotSelected(bool II) { FunctionDeclBits.IsIneligibleOrNotSelected = II; } /// Whether falling off this function implicitly returns null/zero. /// If a more specific implicit return value is required, front-ends /// should synthesize the appropriate return statements. bool hasImplicitReturnZero() const { return FunctionDeclBits.HasImplicitReturnZero; } /// State that falling off this function implicitly returns null/zero. /// If a more specific implicit return value is required, front-ends /// should synthesize the appropriate return statements. void setHasImplicitReturnZero(bool IRZ) { FunctionDeclBits.HasImplicitReturnZero = IRZ; } /// Whether this function has a prototype, either because one /// was explicitly written or because it was "inherited" by merging /// a declaration without a prototype with a declaration that has a /// prototype. bool hasPrototype() const { return hasWrittenPrototype() || hasInheritedPrototype(); } /// Whether this function has a written prototype. bool hasWrittenPrototype() const { return FunctionDeclBits.HasWrittenPrototype; } /// State that this function has a written prototype. void setHasWrittenPrototype(bool P = true) { FunctionDeclBits.HasWrittenPrototype = P; } /// Whether this function inherited its prototype from a /// previous declaration. bool hasInheritedPrototype() const { return FunctionDeclBits.HasInheritedPrototype; } /// State that this function inherited its prototype from a /// previous declaration. void setHasInheritedPrototype(bool P = true) { FunctionDeclBits.HasInheritedPrototype = P; } /// Whether this is a (C++11) constexpr function or constexpr constructor. bool isConstexpr() const { return getConstexprKind() != ConstexprSpecKind::Unspecified; } void setConstexprKind(ConstexprSpecKind CSK) { FunctionDeclBits.ConstexprKind = static_cast(CSK); } ConstexprSpecKind getConstexprKind() const { return static_cast(FunctionDeclBits.ConstexprKind); } bool isConstexprSpecified() const { return getConstexprKind() == ConstexprSpecKind::Constexpr; } bool isConsteval() const { return getConstexprKind() == ConstexprSpecKind::Consteval; } void setBodyContainsImmediateEscalatingExpressions(bool Set) { FunctionDeclBits.BodyContainsImmediateEscalatingExpression = Set; } bool BodyContainsImmediateEscalatingExpressions() const { return FunctionDeclBits.BodyContainsImmediateEscalatingExpression; } bool isImmediateEscalating() const; // The function is a C++ immediate function. // This can be either a consteval function, or an immediate escalating // function containing an immediate escalating expression. bool isImmediateFunction() const; /// Whether the instantiation of this function is pending. /// This bit is set when the decision to instantiate this function is made /// and unset if and when the function body is created. That leaves out /// cases where instantiation did not happen because the template definition /// was not seen in this TU. This bit remains set in those cases, under the /// assumption that the instantiation will happen in some other TU. bool instantiationIsPending() const { return FunctionDeclBits.InstantiationIsPending; } /// State that the instantiation of this function is pending. /// (see instantiationIsPending) void setInstantiationIsPending(bool IC) { FunctionDeclBits.InstantiationIsPending = IC; } /// Indicates the function uses __try. bool usesSEHTry() const { return FunctionDeclBits.UsesSEHTry; } void setUsesSEHTry(bool UST) { FunctionDeclBits.UsesSEHTry = UST; } /// Whether this function has been deleted. /// /// A function that is "deleted" (via the C++0x "= delete" syntax) /// acts like a normal function, except that it cannot actually be /// called or have its address taken. Deleted functions are /// typically used in C++ overload resolution to attract arguments /// whose type or lvalue/rvalue-ness would permit the use of a /// different overload that would behave incorrectly. For example, /// one might use deleted functions to ban implicit conversion from /// a floating-point number to an Integer type: /// /// @code /// struct Integer { /// Integer(long); // construct from a long /// Integer(double) = delete; // no construction from float or double /// Integer(long double) = delete; // no construction from long double /// }; /// @endcode // If a function is deleted, its first declaration must be. bool isDeleted() const { return getCanonicalDecl()->FunctionDeclBits.IsDeleted; } bool isDeletedAsWritten() const { return FunctionDeclBits.IsDeleted && !isDefaulted(); } void setDeletedAsWritten(bool D = true) { FunctionDeclBits.IsDeleted = D; } /// Determines whether this function is "main", which is the /// entry point into an executable program. bool isMain() const; /// Determines whether this function is a MSVCRT user defined entry /// point. bool isMSVCRTEntryPoint() const; /// Determines whether this operator new or delete is one /// of the reserved global placement operators: /// void *operator new(size_t, void *); /// void *operator new[](size_t, void *); /// void operator delete(void *, void *); /// void operator delete[](void *, void *); /// These functions have special behavior under [new.delete.placement]: /// These functions are reserved, a C++ program may not define /// functions that displace the versions in the Standard C++ library. /// The provisions of [basic.stc.dynamic] do not apply to these /// reserved placement forms of operator new and operator delete. /// /// This function must be an allocation or deallocation function. bool isReservedGlobalPlacementOperator() const; /// Determines whether this function is one of the replaceable /// global allocation functions: /// void *operator new(size_t); /// void *operator new(size_t, const std::nothrow_t &) noexcept; /// void *operator new[](size_t); /// void *operator new[](size_t, const std::nothrow_t &) noexcept; /// void operator delete(void *) noexcept; /// void operator delete(void *, std::size_t) noexcept; [C++1y] /// void operator delete(void *, const std::nothrow_t &) noexcept; /// void operator delete[](void *) noexcept; /// void operator delete[](void *, std::size_t) noexcept; [C++1y] /// void operator delete[](void *, const std::nothrow_t &) noexcept; /// These functions have special behavior under C++1y [expr.new]: /// An implementation is allowed to omit a call to a replaceable global /// allocation function. [...] /// /// If this function is an aligned allocation/deallocation function, return /// the parameter number of the requested alignment through AlignmentParam. /// /// If this function is an allocation/deallocation function that takes /// the `std::nothrow_t` tag, return true through IsNothrow, bool isReplaceableGlobalAllocationFunction( std::optional *AlignmentParam = nullptr, bool *IsNothrow = nullptr) const; /// Determine if this function provides an inline implementation of a builtin. bool isInlineBuiltinDeclaration() const; /// Determine whether this is a destroying operator delete. bool isDestroyingOperatorDelete() const; /// Compute the language linkage. LanguageLinkage getLanguageLinkage() const; /// Determines whether this function is a function with /// external, C linkage. bool isExternC() const; /// Determines whether this function's context is, or is nested within, /// a C++ extern "C" linkage spec. bool isInExternCContext() const; /// Determines whether this function's context is, or is nested within, /// a C++ extern "C++" linkage spec. bool isInExternCXXContext() const; /// Determines whether this is a global function. bool isGlobal() const; /// Determines whether this function is known to be 'noreturn', through /// an attribute on its declaration or its type. bool isNoReturn() const; /// True if the function was a definition but its body was skipped. bool hasSkippedBody() const { return FunctionDeclBits.HasSkippedBody; } void setHasSkippedBody(bool Skipped = true) { FunctionDeclBits.HasSkippedBody = Skipped; } /// True if this function will eventually have a body, once it's fully parsed. bool willHaveBody() const { return FunctionDeclBits.WillHaveBody; } void setWillHaveBody(bool V = true) { FunctionDeclBits.WillHaveBody = V; } /// True if this function is considered a multiversioned function. bool isMultiVersion() const { return getCanonicalDecl()->FunctionDeclBits.IsMultiVersion; } /// Sets the multiversion state for this declaration and all of its /// redeclarations. void setIsMultiVersion(bool V = true) { getCanonicalDecl()->FunctionDeclBits.IsMultiVersion = V; } // Sets that this is a constrained friend where the constraint refers to an // enclosing template. void setFriendConstraintRefersToEnclosingTemplate(bool V = true) { getCanonicalDecl() ->FunctionDeclBits.FriendConstraintRefersToEnclosingTemplate = V; } // Indicates this function is a constrained friend, where the constraint // refers to an enclosing template for hte purposes of [temp.friend]p9. bool FriendConstraintRefersToEnclosingTemplate() const { return getCanonicalDecl() ->FunctionDeclBits.FriendConstraintRefersToEnclosingTemplate; } /// Determine whether a function is a friend function that cannot be /// redeclared outside of its class, per C++ [temp.friend]p9. bool isMemberLikeConstrainedFriend() const; /// Gets the kind of multiversioning attribute this declaration has. Note that /// this can return a value even if the function is not multiversion, such as /// the case of 'target'. MultiVersionKind getMultiVersionKind() const; /// True if this function is a multiversioned dispatch function as a part of /// the cpu_specific/cpu_dispatch functionality. bool isCPUDispatchMultiVersion() const; /// True if this function is a multiversioned processor specific function as a /// part of the cpu_specific/cpu_dispatch functionality. bool isCPUSpecificMultiVersion() const; /// True if this function is a multiversioned dispatch function as a part of /// the target functionality. bool isTargetMultiVersion() const; /// True if this function is a multiversioned dispatch function as a part of /// the target-clones functionality. bool isTargetClonesMultiVersion() const; /// \brief Get the associated-constraints of this function declaration. /// Currently, this will either be a vector of size 1 containing the /// trailing-requires-clause or an empty vector. /// /// Use this instead of getTrailingRequiresClause for concepts APIs that /// accept an ArrayRef of constraint expressions. void getAssociatedConstraints(SmallVectorImpl &AC) const { if (auto *TRC = getTrailingRequiresClause()) AC.push_back(TRC); } void setPreviousDeclaration(FunctionDecl * PrevDecl); FunctionDecl *getCanonicalDecl() override; const FunctionDecl *getCanonicalDecl() const { return const_cast(this)->getCanonicalDecl(); } unsigned getBuiltinID(bool ConsiderWrapperFunctions = false) const; // ArrayRef interface to parameters. ArrayRef parameters() const { return {ParamInfo, getNumParams()}; } MutableArrayRef parameters() { return {ParamInfo, getNumParams()}; } // Iterator access to formal parameters. using param_iterator = MutableArrayRef::iterator; using param_const_iterator = ArrayRef::const_iterator; bool param_empty() const { return parameters().empty(); } param_iterator param_begin() { return parameters().begin(); } param_iterator param_end() { return parameters().end(); } param_const_iterator param_begin() const { return parameters().begin(); } param_const_iterator param_end() const { return parameters().end(); } size_t param_size() const { return parameters().size(); } /// Return the number of parameters this function must have based on its /// FunctionType. This is the length of the ParamInfo array after it has been /// created. unsigned getNumParams() const; const ParmVarDecl *getParamDecl(unsigned i) const { assert(i < getNumParams() && "Illegal param #"); return ParamInfo[i]; } ParmVarDecl *getParamDecl(unsigned i) { assert(i < getNumParams() && "Illegal param #"); return ParamInfo[i]; } void setParams(ArrayRef NewParamInfo) { setParams(getASTContext(), NewParamInfo); } /// Returns the minimum number of arguments needed to call this function. This /// may be fewer than the number of function parameters, if some of the /// parameters have default arguments (in C++). unsigned getMinRequiredArguments() const; /// Returns the minimum number of non-object arguments needed to call this /// function. This produces the same value as getMinRequiredArguments except /// it does not count the explicit object argument, if any. unsigned getMinRequiredExplicitArguments() const; bool hasCXXExplicitFunctionObjectParameter() const; unsigned getNumNonObjectParams() const; const ParmVarDecl *getNonObjectParameter(unsigned I) const { return getParamDecl(hasCXXExplicitFunctionObjectParameter() ? I + 1 : I); } ParmVarDecl *getNonObjectParameter(unsigned I) { return getParamDecl(hasCXXExplicitFunctionObjectParameter() ? I + 1 : I); } /// Determine whether this function has a single parameter, or multiple /// parameters where all but the first have default arguments. /// /// This notion is used in the definition of copy/move constructors and /// initializer list constructors. Note that, unlike getMinRequiredArguments, /// parameter packs are not treated specially here. bool hasOneParamOrDefaultArgs() const; /// Find the source location information for how the type of this function /// was written. May be absent (for example if the function was declared via /// a typedef) and may contain a different type from that of the function /// (for example if the function type was adjusted by an attribute). FunctionTypeLoc getFunctionTypeLoc() const; QualType getReturnType() const { return getType()->castAs()->getReturnType(); } /// Attempt to compute an informative source range covering the /// function return type. This may omit qualifiers and other information with /// limited representation in the AST. SourceRange getReturnTypeSourceRange() const; /// Attempt to compute an informative source range covering the /// function parameters, including the ellipsis of a variadic function. /// The source range excludes the parentheses, and is invalid if there are /// no parameters and no ellipsis. SourceRange getParametersSourceRange() const; /// Get the declared return type, which may differ from the actual return /// type if the return type is deduced. QualType getDeclaredReturnType() const { auto *TSI = getTypeSourceInfo(); QualType T = TSI ? TSI->getType() : getType(); return T->castAs()->getReturnType(); } /// Gets the ExceptionSpecificationType as declared. ExceptionSpecificationType getExceptionSpecType() const { auto *TSI = getTypeSourceInfo(); QualType T = TSI ? TSI->getType() : getType(); const auto *FPT = T->getAs(); return FPT ? FPT->getExceptionSpecType() : EST_None; } /// Attempt to compute an informative source range covering the /// function exception specification, if any. SourceRange getExceptionSpecSourceRange() const; /// Determine the type of an expression that calls this function. QualType getCallResultType() const { return getType()->castAs()->getCallResultType( getASTContext()); } /// Returns the storage class as written in the source. For the /// computed linkage of symbol, see getLinkage. StorageClass getStorageClass() const { return static_cast(FunctionDeclBits.SClass); } /// Sets the storage class as written in the source. void setStorageClass(StorageClass SClass) { FunctionDeclBits.SClass = SClass; } /// Determine whether the "inline" keyword was specified for this /// function. bool isInlineSpecified() const { return FunctionDeclBits.IsInlineSpecified; } /// Set whether the "inline" keyword was specified for this function. void setInlineSpecified(bool I) { FunctionDeclBits.IsInlineSpecified = I; FunctionDeclBits.IsInline = I; } /// Determine whether the function was declared in source context /// that requires constrained FP intrinsics bool UsesFPIntrin() const { return FunctionDeclBits.UsesFPIntrin; } /// Set whether the function was declared in source context /// that requires constrained FP intrinsics void setUsesFPIntrin(bool I) { FunctionDeclBits.UsesFPIntrin = I; } /// Flag that this function is implicitly inline. void setImplicitlyInline(bool I = true) { FunctionDeclBits.IsInline = I; } /// Determine whether this function should be inlined, because it is /// either marked "inline" or "constexpr" or is a member function of a class /// that was defined in the class body. bool isInlined() const { return FunctionDeclBits.IsInline; } bool isInlineDefinitionExternallyVisible() const; bool isMSExternInline() const; bool doesDeclarationForceExternallyVisibleDefinition() const; bool isStatic() const { return getStorageClass() == SC_Static; } /// Whether this function declaration represents an C++ overloaded /// operator, e.g., "operator+". bool isOverloadedOperator() const { return getOverloadedOperator() != OO_None; } OverloadedOperatorKind getOverloadedOperator() const; const IdentifierInfo *getLiteralIdentifier() const; /// If this function is an instantiation of a member function /// of a class template specialization, retrieves the function from /// which it was instantiated. /// /// This routine will return non-NULL for (non-templated) member /// functions of class templates and for instantiations of function /// templates. For example, given: /// /// \code /// template /// struct X { /// void f(T); /// }; /// \endcode /// /// The declaration for X::f is a (non-templated) FunctionDecl /// whose parent is the class template specialization X. For /// this declaration, getInstantiatedFromFunction() will return /// the FunctionDecl X::A. When a complete definition of /// X::A is required, it will be instantiated from the /// declaration returned by getInstantiatedFromMemberFunction(). FunctionDecl *getInstantiatedFromMemberFunction() const; /// What kind of templated function this is. TemplatedKind getTemplatedKind() const; /// If this function is an instantiation of a member function of a /// class template specialization, retrieves the member specialization /// information. MemberSpecializationInfo *getMemberSpecializationInfo() const; /// Specify that this record is an instantiation of the /// member function FD. void setInstantiationOfMemberFunction(FunctionDecl *FD, TemplateSpecializationKind TSK) { setInstantiationOfMemberFunction(getASTContext(), FD, TSK); } /// Specify that this function declaration was instantiated from a /// FunctionDecl FD. This is only used if this is a function declaration /// declared locally inside of a function template. void setInstantiatedFromDecl(FunctionDecl *FD); FunctionDecl *getInstantiatedFromDecl() const; /// Retrieves the function template that is described by this /// function declaration. /// /// Every function template is represented as a FunctionTemplateDecl /// and a FunctionDecl (or something derived from FunctionDecl). The /// former contains template properties (such as the template /// parameter lists) while the latter contains the actual /// description of the template's /// contents. FunctionTemplateDecl::getTemplatedDecl() retrieves the /// FunctionDecl that describes the function template, /// getDescribedFunctionTemplate() retrieves the /// FunctionTemplateDecl from a FunctionDecl. FunctionTemplateDecl *getDescribedFunctionTemplate() const; void setDescribedFunctionTemplate(FunctionTemplateDecl *Template); /// Determine whether this function is a function template /// specialization. bool isFunctionTemplateSpecialization() const; /// If this function is actually a function template specialization, /// retrieve information about this function template specialization. /// Otherwise, returns NULL. FunctionTemplateSpecializationInfo *getTemplateSpecializationInfo() const; /// Determines whether this function is a function template /// specialization or a member of a class template specialization that can /// be implicitly instantiated. bool isImplicitlyInstantiable() const; /// Determines if the given function was instantiated from a /// function template. bool isTemplateInstantiation() const; /// Retrieve the function declaration from which this function could /// be instantiated, if it is an instantiation (rather than a non-template /// or a specialization, for example). /// /// If \p ForDefinition is \c false, explicit specializations will be treated /// as if they were implicit instantiations. This will then find the pattern /// corresponding to non-definition portions of the declaration, such as /// default arguments and the exception specification. FunctionDecl * getTemplateInstantiationPattern(bool ForDefinition = true) const; /// Retrieve the primary template that this function template /// specialization either specializes or was instantiated from. /// /// If this function declaration is not a function template specialization, /// returns NULL. FunctionTemplateDecl *getPrimaryTemplate() const; /// Retrieve the template arguments used to produce this function /// template specialization from the primary template. /// /// If this function declaration is not a function template specialization, /// returns NULL. const TemplateArgumentList *getTemplateSpecializationArgs() const; /// Retrieve the template argument list as written in the sources, /// if any. /// /// If this function declaration is not a function template specialization /// or if it had no explicit template argument list, returns NULL. /// Note that it an explicit template argument list may be written empty, /// e.g., template<> void foo<>(char* s); const ASTTemplateArgumentListInfo* getTemplateSpecializationArgsAsWritten() const; /// Specify that this function declaration is actually a function /// template specialization. /// /// \param Template the function template that this function template /// specialization specializes. /// /// \param TemplateArgs the template arguments that produced this /// function template specialization from the template. /// /// \param InsertPos If non-NULL, the position in the function template /// specialization set where the function template specialization data will /// be inserted. /// /// \param TSK the kind of template specialization this is. /// /// \param TemplateArgsAsWritten location info of template arguments. /// /// \param PointOfInstantiation point at which the function template /// specialization was first instantiated. void setFunctionTemplateSpecialization(FunctionTemplateDecl *Template, const TemplateArgumentList *TemplateArgs, void *InsertPos, TemplateSpecializationKind TSK = TSK_ImplicitInstantiation, const TemplateArgumentListInfo *TemplateArgsAsWritten = nullptr, SourceLocation PointOfInstantiation = SourceLocation()) { setFunctionTemplateSpecialization(getASTContext(), Template, TemplateArgs, InsertPos, TSK, TemplateArgsAsWritten, PointOfInstantiation); } /// Specifies that this function declaration is actually a /// dependent function template specialization. void setDependentTemplateSpecialization( ASTContext &Context, const UnresolvedSetImpl &Templates, const TemplateArgumentListInfo *TemplateArgs); DependentFunctionTemplateSpecializationInfo * getDependentSpecializationInfo() const; /// Determine what kind of template instantiation this function /// represents. TemplateSpecializationKind getTemplateSpecializationKind() const; /// Determine the kind of template specialization this function represents /// for the purpose of template instantiation. TemplateSpecializationKind getTemplateSpecializationKindForInstantiation() const; /// Determine what kind of template instantiation this function /// represents. void setTemplateSpecializationKind(TemplateSpecializationKind TSK, SourceLocation PointOfInstantiation = SourceLocation()); /// Retrieve the (first) point of instantiation of a function template /// specialization or a member of a class template specialization. /// /// \returns the first point of instantiation, if this function was /// instantiated from a template; otherwise, returns an invalid source /// location. SourceLocation getPointOfInstantiation() const; /// Determine whether this is or was instantiated from an out-of-line /// definition of a member function. bool isOutOfLine() const override; /// Identify a memory copying or setting function. /// If the given function is a memory copy or setting function, returns /// the corresponding Builtin ID. If the function is not a memory function, /// returns 0. unsigned getMemoryFunctionKind() const; /// Returns ODRHash of the function. This value is calculated and /// stored on first call, then the stored value returned on the other calls. unsigned getODRHash(); /// Returns cached ODRHash of the function. This must have been previously /// computed and stored. unsigned getODRHash() const; // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K >= firstFunction && K <= lastFunction; } static DeclContext *castToDeclContext(const FunctionDecl *D) { return static_cast(const_cast(D)); } static FunctionDecl *castFromDeclContext(const DeclContext *DC) { return static_cast(const_cast(DC)); } }; /// Represents a member of a struct/union/class. class FieldDecl : public DeclaratorDecl, public Mergeable { /// The kinds of value we can store in StorageKind. /// /// Note that this is compatible with InClassInitStyle except for /// ISK_CapturedVLAType. enum InitStorageKind { /// If the pointer is null, there's nothing special. Otherwise, /// this is a bitfield and the pointer is the Expr* storing the /// bit-width. ISK_NoInit = (unsigned) ICIS_NoInit, /// The pointer is an (optional due to delayed parsing) Expr* /// holding the copy-initializer. ISK_InClassCopyInit = (unsigned) ICIS_CopyInit, /// The pointer is an (optional due to delayed parsing) Expr* /// holding the list-initializer. ISK_InClassListInit = (unsigned) ICIS_ListInit, /// The pointer is a VariableArrayType* that's been captured; /// the enclosing context is a lambda or captured statement. ISK_CapturedVLAType, }; LLVM_PREFERRED_TYPE(bool) unsigned BitField : 1; LLVM_PREFERRED_TYPE(bool) unsigned Mutable : 1; LLVM_PREFERRED_TYPE(InitStorageKind) unsigned StorageKind : 2; mutable unsigned CachedFieldIndex : 28; /// If this is a bitfield with a default member initializer, this /// structure is used to represent the two expressions. struct InitAndBitWidthStorage { LazyDeclStmtPtr Init; Expr *BitWidth; }; /// Storage for either the bit-width, the in-class initializer, or /// both (via InitAndBitWidth), or the captured variable length array bound. /// /// If the storage kind is ISK_InClassCopyInit or /// ISK_InClassListInit, but the initializer is null, then this /// field has an in-class initializer that has not yet been parsed /// and attached. // FIXME: Tail-allocate this to reduce the size of FieldDecl in the // overwhelmingly common case that we have none of these things. union { // Active member if ISK is not ISK_CapturedVLAType and BitField is false. LazyDeclStmtPtr Init; // Active member if ISK is ISK_NoInit and BitField is true. Expr *BitWidth; // Active member if ISK is ISK_InClass*Init and BitField is true. InitAndBitWidthStorage *InitAndBitWidth; // Active member if ISK is ISK_CapturedVLAType. const VariableArrayType *CapturedVLAType; }; protected: FieldDecl(Kind DK, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, Expr *BW, bool Mutable, InClassInitStyle InitStyle) : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc), BitField(false), Mutable(Mutable), StorageKind((InitStorageKind)InitStyle), CachedFieldIndex(0), Init() { if (BW) setBitWidth(BW); } public: friend class ASTDeclReader; friend class ASTDeclWriter; static FieldDecl *Create(const ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, Expr *BW, bool Mutable, InClassInitStyle InitStyle); static FieldDecl *CreateDeserialized(ASTContext &C, unsigned ID); /// Returns the index of this field within its record, /// as appropriate for passing to ASTRecordLayout::getFieldOffset. unsigned getFieldIndex() const; /// Determines whether this field is mutable (C++ only). bool isMutable() const { return Mutable; } /// Determines whether this field is a bitfield. bool isBitField() const { return BitField; } /// Determines whether this is an unnamed bitfield. bool isUnnamedBitfield() const { return isBitField() && !getDeclName(); } /// Determines whether this field is a /// representative for an anonymous struct or union. Such fields are /// unnamed and are implicitly generated by the implementation to /// store the data for the anonymous union or struct. bool isAnonymousStructOrUnion() const; /// Returns the expression that represents the bit width, if this field /// is a bit field. For non-bitfields, this returns \c nullptr. Expr *getBitWidth() const { if (!BitField) return nullptr; return hasInClassInitializer() ? InitAndBitWidth->BitWidth : BitWidth; } /// Computes the bit width of this field, if this is a bit field. /// May not be called on non-bitfields. unsigned getBitWidthValue(const ASTContext &Ctx) const; /// Set the bit-field width for this member. // Note: used by some clients (i.e., do not remove it). void setBitWidth(Expr *Width) { assert(!hasCapturedVLAType() && !BitField && "bit width or captured type already set"); assert(Width && "no bit width specified"); if (hasInClassInitializer()) InitAndBitWidth = new (getASTContext()) InitAndBitWidthStorage{Init, Width}; else BitWidth = Width; BitField = true; } /// Remove the bit-field width from this member. // Note: used by some clients (i.e., do not remove it). void removeBitWidth() { assert(isBitField() && "no bitfield width to remove"); if (hasInClassInitializer()) { // Read the old initializer before we change the active union member. auto ExistingInit = InitAndBitWidth->Init; Init = ExistingInit; } BitField = false; } /// Is this a zero-length bit-field? Such bit-fields aren't really bit-fields /// at all and instead act as a separator between contiguous runs of other /// bit-fields. bool isZeroLengthBitField(const ASTContext &Ctx) const; /// Determine if this field is a subobject of zero size, that is, either a /// zero-length bit-field or a field of empty class type with the /// [[no_unique_address]] attribute. bool isZeroSize(const ASTContext &Ctx) const; /// Determine if this field is of potentially-overlapping class type, that /// is, subobject with the [[no_unique_address]] attribute bool isPotentiallyOverlapping() const; /// Get the kind of (C++11) default member initializer that this field has. InClassInitStyle getInClassInitStyle() const { return (StorageKind == ISK_CapturedVLAType ? ICIS_NoInit : (InClassInitStyle)StorageKind); } /// Determine whether this member has a C++11 default member initializer. bool hasInClassInitializer() const { return getInClassInitStyle() != ICIS_NoInit; } /// Determine whether getInClassInitializer() would return a non-null pointer /// without deserializing the initializer. bool hasNonNullInClassInitializer() const { return hasInClassInitializer() && (BitField ? InitAndBitWidth->Init : Init); } /// Get the C++11 default member initializer for this member, or null if one /// has not been set. If a valid declaration has a default member initializer, /// but this returns null, then we have not parsed and attached it yet. Expr *getInClassInitializer() const; /// Set the C++11 in-class initializer for this member. void setInClassInitializer(Expr *NewInit); private: void setLazyInClassInitializer(LazyDeclStmtPtr NewInit); public: /// Remove the C++11 in-class initializer from this member. void removeInClassInitializer() { assert(hasInClassInitializer() && "no initializer to remove"); StorageKind = ISK_NoInit; if (BitField) { // Read the bit width before we change the active union member. Expr *ExistingBitWidth = InitAndBitWidth->BitWidth; BitWidth = ExistingBitWidth; } } /// Determine whether this member captures the variable length array /// type. bool hasCapturedVLAType() const { return StorageKind == ISK_CapturedVLAType; } /// Get the captured variable length array type. const VariableArrayType *getCapturedVLAType() const { return hasCapturedVLAType() ? CapturedVLAType : nullptr; } /// Set the captured variable length array type for this field. void setCapturedVLAType(const VariableArrayType *VLAType); /// Returns the parent of this field declaration, which /// is the struct in which this field is defined. /// /// Returns null if this is not a normal class/struct field declaration, e.g. /// ObjCAtDefsFieldDecl, ObjCIvarDecl. const RecordDecl *getParent() const { return dyn_cast(getDeclContext()); } RecordDecl *getParent() { return dyn_cast(getDeclContext()); } SourceRange getSourceRange() const override LLVM_READONLY; /// Retrieves the canonical declaration of this field. FieldDecl *getCanonicalDecl() override { return getFirstDecl(); } const FieldDecl *getCanonicalDecl() const { return getFirstDecl(); } // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K >= firstField && K <= lastField; } void printName(raw_ostream &OS, const PrintingPolicy &Policy) const override; }; /// An instance of this object exists for each enum constant /// that is defined. For example, in "enum X {a,b}", each of a/b are /// EnumConstantDecl's, X is an instance of EnumDecl, and the type of a/b is a /// TagType for the X EnumDecl. class EnumConstantDecl : public ValueDecl, public Mergeable { Stmt *Init; // an integer constant expression llvm::APSInt Val; // The value. protected: EnumConstantDecl(DeclContext *DC, SourceLocation L, IdentifierInfo *Id, QualType T, Expr *E, const llvm::APSInt &V) : ValueDecl(EnumConstant, DC, L, Id, T), Init((Stmt*)E), Val(V) {} public: friend class StmtIteratorBase; static EnumConstantDecl *Create(ASTContext &C, EnumDecl *DC, SourceLocation L, IdentifierInfo *Id, QualType T, Expr *E, const llvm::APSInt &V); static EnumConstantDecl *CreateDeserialized(ASTContext &C, unsigned ID); const Expr *getInitExpr() const { return (const Expr*) Init; } Expr *getInitExpr() { return (Expr*) Init; } const llvm::APSInt &getInitVal() const { return Val; } void setInitExpr(Expr *E) { Init = (Stmt*) E; } void setInitVal(const llvm::APSInt &V) { Val = V; } SourceRange getSourceRange() const override LLVM_READONLY; /// Retrieves the canonical declaration of this enumerator. EnumConstantDecl *getCanonicalDecl() override { return getFirstDecl(); } const EnumConstantDecl *getCanonicalDecl() const { return getFirstDecl(); } // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == EnumConstant; } }; /// Represents a field injected from an anonymous union/struct into the parent /// scope. These are always implicit. class IndirectFieldDecl : public ValueDecl, public Mergeable { NamedDecl **Chaining; unsigned ChainingSize; IndirectFieldDecl(ASTContext &C, DeclContext *DC, SourceLocation L, DeclarationName N, QualType T, MutableArrayRef CH); void anchor() override; public: friend class ASTDeclReader; static IndirectFieldDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L, IdentifierInfo *Id, QualType T, llvm::MutableArrayRef CH); static IndirectFieldDecl *CreateDeserialized(ASTContext &C, unsigned ID); using chain_iterator = ArrayRef::const_iterator; ArrayRef chain() const { return llvm::ArrayRef(Chaining, ChainingSize); } chain_iterator chain_begin() const { return chain().begin(); } chain_iterator chain_end() const { return chain().end(); } unsigned getChainingSize() const { return ChainingSize; } FieldDecl *getAnonField() const { assert(chain().size() >= 2); return cast(chain().back()); } VarDecl *getVarDecl() const { assert(chain().size() >= 2); return dyn_cast(chain().front()); } IndirectFieldDecl *getCanonicalDecl() override { return getFirstDecl(); } const IndirectFieldDecl *getCanonicalDecl() const { return getFirstDecl(); } // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == IndirectField; } }; /// Represents a declaration of a type. class TypeDecl : public NamedDecl { friend class ASTContext; /// This indicates the Type object that represents /// this TypeDecl. It is a cache maintained by /// ASTContext::getTypedefType, ASTContext::getTagDeclType, and /// ASTContext::getTemplateTypeParmType, and TemplateTypeParmDecl. mutable const Type *TypeForDecl = nullptr; /// The start of the source range for this declaration. SourceLocation LocStart; void anchor() override; protected: TypeDecl(Kind DK, DeclContext *DC, SourceLocation L, IdentifierInfo *Id, SourceLocation StartL = SourceLocation()) : NamedDecl(DK, DC, L, Id), LocStart(StartL) {} public: // Low-level accessor. If you just want the type defined by this node, // check out ASTContext::getTypeDeclType or one of // ASTContext::getTypedefType, ASTContext::getRecordType, etc. if you // already know the specific kind of node this is. const Type *getTypeForDecl() const { return TypeForDecl; } void setTypeForDecl(const Type *TD) { TypeForDecl = TD; } SourceLocation getBeginLoc() const LLVM_READONLY { return LocStart; } void setLocStart(SourceLocation L) { LocStart = L; } SourceRange getSourceRange() const override LLVM_READONLY { if (LocStart.isValid()) return SourceRange(LocStart, getLocation()); else return SourceRange(getLocation()); } // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K >= firstType && K <= lastType; } }; /// Base class for declarations which introduce a typedef-name. class TypedefNameDecl : public TypeDecl, public Redeclarable { struct alignas(8) ModedTInfo { TypeSourceInfo *first; QualType second; }; /// If int part is 0, we have not computed IsTransparentTag. /// Otherwise, IsTransparentTag is (getInt() >> 1). mutable llvm::PointerIntPair< llvm::PointerUnion, 2> MaybeModedTInfo; void anchor() override; protected: TypedefNameDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo) : TypeDecl(DK, DC, IdLoc, Id, StartLoc), redeclarable_base(C), MaybeModedTInfo(TInfo, 0) {} using redeclarable_base = Redeclarable; TypedefNameDecl *getNextRedeclarationImpl() override { return getNextRedeclaration(); } TypedefNameDecl *getPreviousDeclImpl() override { return getPreviousDecl(); } TypedefNameDecl *getMostRecentDeclImpl() override { return getMostRecentDecl(); } public: using redecl_range = redeclarable_base::redecl_range; using redecl_iterator = redeclarable_base::redecl_iterator; using redeclarable_base::redecls_begin; using redeclarable_base::redecls_end; using redeclarable_base::redecls; using redeclarable_base::getPreviousDecl; using redeclarable_base::getMostRecentDecl; using redeclarable_base::isFirstDecl; bool isModed() const { return MaybeModedTInfo.getPointer().is(); } TypeSourceInfo *getTypeSourceInfo() const { return isModed() ? MaybeModedTInfo.getPointer().get()->first : MaybeModedTInfo.getPointer().get(); } QualType getUnderlyingType() const { return isModed() ? MaybeModedTInfo.getPointer().get()->second : MaybeModedTInfo.getPointer() .get() ->getType(); } void setTypeSourceInfo(TypeSourceInfo *newType) { MaybeModedTInfo.setPointer(newType); } void setModedTypeSourceInfo(TypeSourceInfo *unmodedTSI, QualType modedTy) { MaybeModedTInfo.setPointer(new (getASTContext(), 8) ModedTInfo({unmodedTSI, modedTy})); } /// Retrieves the canonical declaration of this typedef-name. TypedefNameDecl *getCanonicalDecl() override { return getFirstDecl(); } const TypedefNameDecl *getCanonicalDecl() const { return getFirstDecl(); } /// Retrieves the tag declaration for which this is the typedef name for /// linkage purposes, if any. /// /// \param AnyRedecl Look for the tag declaration in any redeclaration of /// this typedef declaration. TagDecl *getAnonDeclWithTypedefName(bool AnyRedecl = false) const; /// Determines if this typedef shares a name and spelling location with its /// underlying tag type, as is the case with the NS_ENUM macro. bool isTransparentTag() const { if (MaybeModedTInfo.getInt()) return MaybeModedTInfo.getInt() & 0x2; return isTransparentTagSlow(); } // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K >= firstTypedefName && K <= lastTypedefName; } private: bool isTransparentTagSlow() const; }; /// Represents the declaration of a typedef-name via the 'typedef' /// type specifier. class TypedefDecl : public TypedefNameDecl { TypedefDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo) : TypedefNameDecl(Typedef, C, DC, StartLoc, IdLoc, Id, TInfo) {} public: static TypedefDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo); static TypedefDecl *CreateDeserialized(ASTContext &C, unsigned ID); SourceRange getSourceRange() const override LLVM_READONLY; // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == Typedef; } }; /// Represents the declaration of a typedef-name via a C++11 /// alias-declaration. class TypeAliasDecl : public TypedefNameDecl { /// The template for which this is the pattern, if any. TypeAliasTemplateDecl *Template; TypeAliasDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo) : TypedefNameDecl(TypeAlias, C, DC, StartLoc, IdLoc, Id, TInfo), Template(nullptr) {} public: static TypeAliasDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo); static TypeAliasDecl *CreateDeserialized(ASTContext &C, unsigned ID); SourceRange getSourceRange() const override LLVM_READONLY; TypeAliasTemplateDecl *getDescribedAliasTemplate() const { return Template; } void setDescribedAliasTemplate(TypeAliasTemplateDecl *TAT) { Template = TAT; } // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == TypeAlias; } }; /// Represents the declaration of a struct/union/class/enum. class TagDecl : public TypeDecl, public DeclContext, public Redeclarable { // This class stores some data in DeclContext::TagDeclBits // to save some space. Use the provided accessors to access it. public: // This is really ugly. using TagKind = TagTypeKind; private: SourceRange BraceRange; // A struct representing syntactic qualifier info, // to be used for the (uncommon) case of out-of-line declarations. using ExtInfo = QualifierInfo; /// If the (out-of-line) tag declaration name /// is qualified, it points to the qualifier info (nns and range); /// otherwise, if the tag declaration is anonymous and it is part of /// a typedef or alias, it points to the TypedefNameDecl (used for mangling); /// otherwise, if the tag declaration is anonymous and it is used as a /// declaration specifier for variables, it points to the first VarDecl (used /// for mangling); /// otherwise, it is a null (TypedefNameDecl) pointer. llvm::PointerUnion TypedefNameDeclOrQualifier; bool hasExtInfo() const { return TypedefNameDeclOrQualifier.is(); } ExtInfo *getExtInfo() { return TypedefNameDeclOrQualifier.get(); } const ExtInfo *getExtInfo() const { return TypedefNameDeclOrQualifier.get(); } protected: TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC, SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl, SourceLocation StartL); using redeclarable_base = Redeclarable; TagDecl *getNextRedeclarationImpl() override { return getNextRedeclaration(); } TagDecl *getPreviousDeclImpl() override { return getPreviousDecl(); } TagDecl *getMostRecentDeclImpl() override { return getMostRecentDecl(); } /// Completes the definition of this tag declaration. /// /// This is a helper function for derived classes. void completeDefinition(); /// True if this decl is currently being defined. void setBeingDefined(bool V = true) { TagDeclBits.IsBeingDefined = V; } /// Indicates whether it is possible for declarations of this kind /// to have an out-of-date definition. /// /// This option is only enabled when modules are enabled. void setMayHaveOutOfDateDef(bool V = true) { TagDeclBits.MayHaveOutOfDateDef = V; } public: friend class ASTDeclReader; friend class ASTDeclWriter; using redecl_range = redeclarable_base::redecl_range; using redecl_iterator = redeclarable_base::redecl_iterator; using redeclarable_base::redecls_begin; using redeclarable_base::redecls_end; using redeclarable_base::redecls; using redeclarable_base::getPreviousDecl; using redeclarable_base::getMostRecentDecl; using redeclarable_base::isFirstDecl; SourceRange getBraceRange() const { return BraceRange; } void setBraceRange(SourceRange R) { BraceRange = R; } /// Return SourceLocation representing start of source /// range ignoring outer template declarations. SourceLocation getInnerLocStart() const { return getBeginLoc(); } /// Return SourceLocation representing start of source /// range taking into account any outer template declarations. SourceLocation getOuterLocStart() const; SourceRange getSourceRange() const override LLVM_READONLY; TagDecl *getCanonicalDecl() override; const TagDecl *getCanonicalDecl() const { return const_cast(this)->getCanonicalDecl(); } /// Return true if this declaration is a completion definition of the type. /// Provided for consistency. bool isThisDeclarationADefinition() const { return isCompleteDefinition(); } /// Return true if this decl has its body fully specified. bool isCompleteDefinition() const { return TagDeclBits.IsCompleteDefinition; } /// True if this decl has its body fully specified. void setCompleteDefinition(bool V = true) { TagDeclBits.IsCompleteDefinition = V; } /// Return true if this complete decl is /// required to be complete for some existing use. bool isCompleteDefinitionRequired() const { return TagDeclBits.IsCompleteDefinitionRequired; } /// True if this complete decl is /// required to be complete for some existing use. void setCompleteDefinitionRequired(bool V = true) { TagDeclBits.IsCompleteDefinitionRequired = V; } /// Return true if this decl is currently being defined. bool isBeingDefined() const { return TagDeclBits.IsBeingDefined; } /// True if this tag declaration is "embedded" (i.e., defined or declared /// for the very first time) in the syntax of a declarator. bool isEmbeddedInDeclarator() const { return TagDeclBits.IsEmbeddedInDeclarator; } /// True if this tag declaration is "embedded" (i.e., defined or declared /// for the very first time) in the syntax of a declarator. void setEmbeddedInDeclarator(bool isInDeclarator) { TagDeclBits.IsEmbeddedInDeclarator = isInDeclarator; } /// True if this tag is free standing, e.g. "struct foo;". bool isFreeStanding() const { return TagDeclBits.IsFreeStanding; } /// True if this tag is free standing, e.g. "struct foo;". void setFreeStanding(bool isFreeStanding = true) { TagDeclBits.IsFreeStanding = isFreeStanding; } /// Indicates whether it is possible for declarations of this kind /// to have an out-of-date definition. /// /// This option is only enabled when modules are enabled. bool mayHaveOutOfDateDef() const { return TagDeclBits.MayHaveOutOfDateDef; } /// Whether this declaration declares a type that is /// dependent, i.e., a type that somehow depends on template /// parameters. bool isDependentType() const { return isDependentContext(); } /// Whether this declaration was a definition in some module but was forced /// to be a declaration. /// /// Useful for clients checking if a module has a definition of a specific /// symbol and not interested in the final AST with deduplicated definitions. bool isThisDeclarationADemotedDefinition() const { return TagDeclBits.IsThisDeclarationADemotedDefinition; } /// Mark a definition as a declaration and maintain information it _was_ /// a definition. void demoteThisDefinitionToDeclaration() { assert(isCompleteDefinition() && "Should demote definitions only, not forward declarations"); setCompleteDefinition(false); TagDeclBits.IsThisDeclarationADemotedDefinition = true; } /// Starts the definition of this tag declaration. /// /// This method should be invoked at the beginning of the definition /// of this tag declaration. It will set the tag type into a state /// where it is in the process of being defined. void startDefinition(); /// Returns the TagDecl that actually defines this /// struct/union/class/enum. When determining whether or not a /// struct/union/class/enum has a definition, one should use this /// method as opposed to 'isDefinition'. 'isDefinition' indicates /// whether or not a specific TagDecl is defining declaration, not /// whether or not the struct/union/class/enum type is defined. /// This method returns NULL if there is no TagDecl that defines /// the struct/union/class/enum. TagDecl *getDefinition() const; StringRef getKindName() const { return TypeWithKeyword::getTagTypeKindName(getTagKind()); } TagKind getTagKind() const { return static_cast(TagDeclBits.TagDeclKind); } void setTagKind(TagKind TK) { TagDeclBits.TagDeclKind = llvm::to_underlying(TK); } bool isStruct() const { return getTagKind() == TagTypeKind::Struct; } bool isInterface() const { return getTagKind() == TagTypeKind::Interface; } bool isClass() const { return getTagKind() == TagTypeKind::Class; } bool isUnion() const { return getTagKind() == TagTypeKind::Union; } bool isEnum() const { return getTagKind() == TagTypeKind::Enum; } /// Is this tag type named, either directly or via being defined in /// a typedef of this type? /// /// C++11 [basic.link]p8: /// A type is said to have linkage if and only if: /// - it is a class or enumeration type that is named (or has a /// name for linkage purposes) and the name has linkage; ... /// C++11 [dcl.typedef]p9: /// If the typedef declaration defines an unnamed class (or enum), /// the first typedef-name declared by the declaration to be that /// class type (or enum type) is used to denote the class type (or /// enum type) for linkage purposes only. /// /// C does not have an analogous rule, but the same concept is /// nonetheless useful in some places. bool hasNameForLinkage() const { return (getDeclName() || getTypedefNameForAnonDecl()); } TypedefNameDecl *getTypedefNameForAnonDecl() const { return hasExtInfo() ? nullptr : TypedefNameDeclOrQualifier.get(); } void setTypedefNameForAnonDecl(TypedefNameDecl *TDD); /// Retrieve the nested-name-specifier that qualifies the name of this /// declaration, if it was present in the source. NestedNameSpecifier *getQualifier() const { return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier() : nullptr; } /// Retrieve the nested-name-specifier (with source-location /// information) that qualifies the name of this declaration, if it was /// present in the source. NestedNameSpecifierLoc getQualifierLoc() const { return hasExtInfo() ? getExtInfo()->QualifierLoc : NestedNameSpecifierLoc(); } void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc); unsigned getNumTemplateParameterLists() const { return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0; } TemplateParameterList *getTemplateParameterList(unsigned i) const { assert(i < getNumTemplateParameterLists()); return getExtInfo()->TemplParamLists[i]; } using TypeDecl::printName; void printName(raw_ostream &OS, const PrintingPolicy &Policy) const override; void setTemplateParameterListsInfo(ASTContext &Context, ArrayRef TPLists); // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K >= firstTag && K <= lastTag; } static DeclContext *castToDeclContext(const TagDecl *D) { return static_cast(const_cast(D)); } static TagDecl *castFromDeclContext(const DeclContext *DC) { return static_cast(const_cast(DC)); } }; /// Represents an enum. In C++11, enums can be forward-declared /// with a fixed underlying type, and in C we allow them to be forward-declared /// with no underlying type as an extension. class EnumDecl : public TagDecl { // This class stores some data in DeclContext::EnumDeclBits // to save some space. Use the provided accessors to access it. /// This represent the integer type that the enum corresponds /// to for code generation purposes. Note that the enumerator constants may /// have a different type than this does. /// /// If the underlying integer type was explicitly stated in the source /// code, this is a TypeSourceInfo* for that type. Otherwise this type /// was automatically deduced somehow, and this is a Type*. /// /// Normally if IsFixed(), this would contain a TypeSourceInfo*, but in /// some cases it won't. /// /// The underlying type of an enumeration never has any qualifiers, so /// we can get away with just storing a raw Type*, and thus save an /// extra pointer when TypeSourceInfo is needed. llvm::PointerUnion IntegerType; /// The integer type that values of this type should /// promote to. In C, enumerators are generally of an integer type /// directly, but gcc-style large enumerators (and all enumerators /// in C++) are of the enum type instead. QualType PromotionType; /// If this enumeration is an instantiation of a member enumeration /// of a class template specialization, this is the member specialization /// information. MemberSpecializationInfo *SpecializationInfo = nullptr; /// Store the ODRHash after first calculation. /// The corresponding flag HasODRHash is in EnumDeclBits /// and can be accessed with the provided accessors. unsigned ODRHash; EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl, bool Scoped, bool ScopedUsingClassTag, bool Fixed); void anchor() override; void setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED, TemplateSpecializationKind TSK); /// Sets the width in bits required to store all the /// non-negative enumerators of this enum. void setNumPositiveBits(unsigned Num) { EnumDeclBits.NumPositiveBits = Num; assert(EnumDeclBits.NumPositiveBits == Num && "can't store this bitcount"); } /// Returns the width in bits required to store all the /// negative enumerators of this enum. (see getNumNegativeBits) void setNumNegativeBits(unsigned Num) { EnumDeclBits.NumNegativeBits = Num; } public: /// True if this tag declaration is a scoped enumeration. Only /// possible in C++11 mode. void setScoped(bool Scoped = true) { EnumDeclBits.IsScoped = Scoped; } /// If this tag declaration is a scoped enum, /// then this is true if the scoped enum was declared using the class /// tag, false if it was declared with the struct tag. No meaning is /// associated if this tag declaration is not a scoped enum. void setScopedUsingClassTag(bool ScopedUCT = true) { EnumDeclBits.IsScopedUsingClassTag = ScopedUCT; } /// True if this is an Objective-C, C++11, or /// Microsoft-style enumeration with a fixed underlying type. void setFixed(bool Fixed = true) { EnumDeclBits.IsFixed = Fixed; } private: /// True if a valid hash is stored in ODRHash. bool hasODRHash() const { return EnumDeclBits.HasODRHash; } void setHasODRHash(bool Hash = true) { EnumDeclBits.HasODRHash = Hash; } public: friend class ASTDeclReader; EnumDecl *getCanonicalDecl() override { return cast(TagDecl::getCanonicalDecl()); } const EnumDecl *getCanonicalDecl() const { return const_cast(this)->getCanonicalDecl(); } EnumDecl *getPreviousDecl() { return cast_or_null( static_cast(this)->getPreviousDecl()); } const EnumDecl *getPreviousDecl() const { return const_cast(this)->getPreviousDecl(); } EnumDecl *getMostRecentDecl() { return cast(static_cast(this)->getMostRecentDecl()); } const EnumDecl *getMostRecentDecl() const { return const_cast(this)->getMostRecentDecl(); } EnumDecl *getDefinition() const { return cast_or_null(TagDecl::getDefinition()); } static EnumDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl, bool IsScoped, bool IsScopedUsingClassTag, bool IsFixed); static EnumDecl *CreateDeserialized(ASTContext &C, unsigned ID); /// Overrides to provide correct range when there's an enum-base specifier /// with forward declarations. SourceRange getSourceRange() const override LLVM_READONLY; /// When created, the EnumDecl corresponds to a /// forward-declared enum. This method is used to mark the /// declaration as being defined; its enumerators have already been /// added (via DeclContext::addDecl). NewType is the new underlying /// type of the enumeration type. void completeDefinition(QualType NewType, QualType PromotionType, unsigned NumPositiveBits, unsigned NumNegativeBits); // Iterates through the enumerators of this enumeration. using enumerator_iterator = specific_decl_iterator; using enumerator_range = llvm::iterator_range>; enumerator_range enumerators() const { return enumerator_range(enumerator_begin(), enumerator_end()); } enumerator_iterator enumerator_begin() const { const EnumDecl *E = getDefinition(); if (!E) E = this; return enumerator_iterator(E->decls_begin()); } enumerator_iterator enumerator_end() const { const EnumDecl *E = getDefinition(); if (!E) E = this; return enumerator_iterator(E->decls_end()); } /// Return the integer type that enumerators should promote to. QualType getPromotionType() const { return PromotionType; } /// Set the promotion type. void setPromotionType(QualType T) { PromotionType = T; } /// Return the integer type this enum decl corresponds to. /// This returns a null QualType for an enum forward definition with no fixed /// underlying type. QualType getIntegerType() const { if (!IntegerType) return QualType(); if (const Type *T = IntegerType.dyn_cast()) return QualType(T, 0); return IntegerType.get()->getType().getUnqualifiedType(); } /// Set the underlying integer type. void setIntegerType(QualType T) { IntegerType = T.getTypePtrOrNull(); } /// Set the underlying integer type source info. void setIntegerTypeSourceInfo(TypeSourceInfo *TInfo) { IntegerType = TInfo; } /// Return the type source info for the underlying integer type, /// if no type source info exists, return 0. TypeSourceInfo *getIntegerTypeSourceInfo() const { return IntegerType.dyn_cast(); } /// Retrieve the source range that covers the underlying type if /// specified. SourceRange getIntegerTypeRange() const LLVM_READONLY; /// Returns the width in bits required to store all the /// non-negative enumerators of this enum. unsigned getNumPositiveBits() const { return EnumDeclBits.NumPositiveBits; } /// Returns the width in bits required to store all the /// negative enumerators of this enum. These widths include /// the rightmost leading 1; that is: /// /// MOST NEGATIVE ENUMERATOR PATTERN NUM NEGATIVE BITS /// ------------------------ ------- ----------------- /// -1 1111111 1 /// -10 1110110 5 /// -101 1001011 8 unsigned getNumNegativeBits() const { return EnumDeclBits.NumNegativeBits; } /// Calculates the [Min,Max) values the enum can store based on the /// NumPositiveBits and NumNegativeBits. This matters for enums that do not /// have a fixed underlying type. void getValueRange(llvm::APInt &Max, llvm::APInt &Min) const; /// Returns true if this is a C++11 scoped enumeration. bool isScoped() const { return EnumDeclBits.IsScoped; } /// Returns true if this is a C++11 scoped enumeration. bool isScopedUsingClassTag() const { return EnumDeclBits.IsScopedUsingClassTag; } /// Returns true if this is an Objective-C, C++11, or /// Microsoft-style enumeration with a fixed underlying type. bool isFixed() const { return EnumDeclBits.IsFixed; } unsigned getODRHash(); /// Returns true if this can be considered a complete type. bool isComplete() const { // IntegerType is set for fixed type enums and non-fixed but implicitly // int-sized Microsoft enums. return isCompleteDefinition() || IntegerType; } /// Returns true if this enum is either annotated with /// enum_extensibility(closed) or isn't annotated with enum_extensibility. bool isClosed() const; /// Returns true if this enum is annotated with flag_enum and isn't annotated /// with enum_extensibility(open). bool isClosedFlag() const; /// Returns true if this enum is annotated with neither flag_enum nor /// enum_extensibility(open). bool isClosedNonFlag() const; /// Retrieve the enum definition from which this enumeration could /// be instantiated, if it is an instantiation (rather than a non-template). EnumDecl *getTemplateInstantiationPattern() const; /// Returns the enumeration (declared within the template) /// from which this enumeration type was instantiated, or NULL if /// this enumeration was not instantiated from any template. EnumDecl *getInstantiatedFromMemberEnum() const; /// If this enumeration is a member of a specialization of a /// templated class, determine what kind of template specialization /// or instantiation this is. TemplateSpecializationKind getTemplateSpecializationKind() const; /// For an enumeration member that was instantiated from a member /// enumeration of a templated class, set the template specialiation kind. void setTemplateSpecializationKind(TemplateSpecializationKind TSK, SourceLocation PointOfInstantiation = SourceLocation()); /// If this enumeration is an instantiation of a member enumeration of /// a class template specialization, retrieves the member specialization /// information. MemberSpecializationInfo *getMemberSpecializationInfo() const { return SpecializationInfo; } /// Specify that this enumeration is an instantiation of the /// member enumeration ED. void setInstantiationOfMemberEnum(EnumDecl *ED, TemplateSpecializationKind TSK) { setInstantiationOfMemberEnum(getASTContext(), ED, TSK); } static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == Enum; } }; /// Enum that represents the different ways arguments are passed to and /// returned from function calls. This takes into account the target-specific /// and version-specific rules along with the rules determined by the /// language. enum class RecordArgPassingKind { /// The argument of this type can be passed directly in registers. CanPassInRegs, /// The argument of this type cannot be passed directly in registers. /// Records containing this type as a subobject are not forced to be passed /// indirectly. This value is used only in C++. This value is required by /// C++ because, in uncommon situations, it is possible for a class to have /// only trivial copy/move constructors even when one of its subobjects has /// a non-trivial copy/move constructor (if e.g. the corresponding copy/move /// constructor in the derived class is deleted). CannotPassInRegs, /// The argument of this type cannot be passed directly in registers. /// Records containing this type as a subobject are forced to be passed /// indirectly. CanNeverPassInRegs }; /// Represents a struct/union/class. For example: /// struct X; // Forward declaration, no "body". /// union Y { int A, B; }; // Has body with members A and B (FieldDecls). /// This decl will be marked invalid if *any* members are invalid. class RecordDecl : public TagDecl { // This class stores some data in DeclContext::RecordDeclBits // to save some space. Use the provided accessors to access it. public: friend class DeclContext; friend class ASTDeclReader; protected: RecordDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, RecordDecl *PrevDecl); public: static RecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, RecordDecl* PrevDecl = nullptr); static RecordDecl *CreateDeserialized(const ASTContext &C, unsigned ID); RecordDecl *getPreviousDecl() { return cast_or_null( static_cast(this)->getPreviousDecl()); } const RecordDecl *getPreviousDecl() const { return const_cast(this)->getPreviousDecl(); } RecordDecl *getMostRecentDecl() { return cast(static_cast(this)->getMostRecentDecl()); } const RecordDecl *getMostRecentDecl() const { return const_cast(this)->getMostRecentDecl(); } bool hasFlexibleArrayMember() const { return RecordDeclBits.HasFlexibleArrayMember; } void setHasFlexibleArrayMember(bool V) { RecordDeclBits.HasFlexibleArrayMember = V; } /// Whether this is an anonymous struct or union. To be an anonymous /// struct or union, it must have been declared without a name and /// there must be no objects of this type declared, e.g., /// @code /// union { int i; float f; }; /// @endcode /// is an anonymous union but neither of the following are: /// @code /// union X { int i; float f; }; /// union { int i; float f; } obj; /// @endcode bool isAnonymousStructOrUnion() const { return RecordDeclBits.AnonymousStructOrUnion; } void setAnonymousStructOrUnion(bool Anon) { RecordDeclBits.AnonymousStructOrUnion = Anon; } bool hasObjectMember() const { return RecordDeclBits.HasObjectMember; } void setHasObjectMember(bool val) { RecordDeclBits.HasObjectMember = val; } bool hasVolatileMember() const { return RecordDeclBits.HasVolatileMember; } void setHasVolatileMember(bool val) { RecordDeclBits.HasVolatileMember = val; } bool hasLoadedFieldsFromExternalStorage() const { return RecordDeclBits.LoadedFieldsFromExternalStorage; } void setHasLoadedFieldsFromExternalStorage(bool val) const { RecordDeclBits.LoadedFieldsFromExternalStorage = val; } /// Functions to query basic properties of non-trivial C structs. bool isNonTrivialToPrimitiveDefaultInitialize() const { return RecordDeclBits.NonTrivialToPrimitiveDefaultInitialize; } void setNonTrivialToPrimitiveDefaultInitialize(bool V) { RecordDeclBits.NonTrivialToPrimitiveDefaultInitialize = V; } bool isNonTrivialToPrimitiveCopy() const { return RecordDeclBits.NonTrivialToPrimitiveCopy; } void setNonTrivialToPrimitiveCopy(bool V) { RecordDeclBits.NonTrivialToPrimitiveCopy = V; } bool isNonTrivialToPrimitiveDestroy() const { return RecordDeclBits.NonTrivialToPrimitiveDestroy; } void setNonTrivialToPrimitiveDestroy(bool V) { RecordDeclBits.NonTrivialToPrimitiveDestroy = V; } bool hasNonTrivialToPrimitiveDefaultInitializeCUnion() const { return RecordDeclBits.HasNonTrivialToPrimitiveDefaultInitializeCUnion; } void setHasNonTrivialToPrimitiveDefaultInitializeCUnion(bool V) { RecordDeclBits.HasNonTrivialToPrimitiveDefaultInitializeCUnion = V; } bool hasNonTrivialToPrimitiveDestructCUnion() const { return RecordDeclBits.HasNonTrivialToPrimitiveDestructCUnion; } void setHasNonTrivialToPrimitiveDestructCUnion(bool V) { RecordDeclBits.HasNonTrivialToPrimitiveDestructCUnion = V; } bool hasNonTrivialToPrimitiveCopyCUnion() const { return RecordDeclBits.HasNonTrivialToPrimitiveCopyCUnion; } void setHasNonTrivialToPrimitiveCopyCUnion(bool V) { RecordDeclBits.HasNonTrivialToPrimitiveCopyCUnion = V; } /// Determine whether this class can be passed in registers. In C++ mode, /// it must have at least one trivial, non-deleted copy or move constructor. /// FIXME: This should be set as part of completeDefinition. bool canPassInRegisters() const { return getArgPassingRestrictions() == RecordArgPassingKind::CanPassInRegs; } RecordArgPassingKind getArgPassingRestrictions() const { return static_cast( RecordDeclBits.ArgPassingRestrictions); } void setArgPassingRestrictions(RecordArgPassingKind Kind) { RecordDeclBits.ArgPassingRestrictions = llvm::to_underlying(Kind); } bool isParamDestroyedInCallee() const { return RecordDeclBits.ParamDestroyedInCallee; } void setParamDestroyedInCallee(bool V) { RecordDeclBits.ParamDestroyedInCallee = V; } bool isRandomized() const { return RecordDeclBits.IsRandomized; } void setIsRandomized(bool V) { RecordDeclBits.IsRandomized = V; } void reorderDecls(const SmallVectorImpl &Decls); /// Determines whether this declaration represents the /// injected class name. /// /// The injected class name in C++ is the name of the class that /// appears inside the class itself. For example: /// /// \code /// struct C { /// // C is implicitly declared here as a synonym for the class name. /// }; /// /// C::C c; // same as "C c;" /// \endcode bool isInjectedClassName() const; /// Determine whether this record is a class describing a lambda /// function object. bool isLambda() const; /// Determine whether this record is a record for captured variables in /// CapturedStmt construct. bool isCapturedRecord() const; /// Mark the record as a record for captured variables in CapturedStmt /// construct. void setCapturedRecord(); /// Returns the RecordDecl that actually defines /// this struct/union/class. When determining whether or not a /// struct/union/class is completely defined, one should use this /// method as opposed to 'isCompleteDefinition'. /// 'isCompleteDefinition' indicates whether or not a specific /// RecordDecl is a completed definition, not whether or not the /// record type is defined. This method returns NULL if there is /// no RecordDecl that defines the struct/union/tag. RecordDecl *getDefinition() const { return cast_or_null(TagDecl::getDefinition()); } /// Returns whether this record is a union, or contains (at any nesting level) /// a union member. This is used by CMSE to warn about possible information /// leaks. bool isOrContainsUnion() const; // Iterator access to field members. The field iterator only visits // the non-static data members of this class, ignoring any static // data members, functions, constructors, destructors, etc. using field_iterator = specific_decl_iterator; using field_range = llvm::iterator_range>; field_range fields() const { return field_range(field_begin(), field_end()); } field_iterator field_begin() const; field_iterator field_end() const { return field_iterator(decl_iterator()); } // Whether there are any fields (non-static data members) in this record. bool field_empty() const { return field_begin() == field_end(); } FieldDecl *getLastField() { FieldDecl *FD = nullptr; for (FieldDecl *Field : fields()) FD = Field; return FD; } const FieldDecl *getLastField() const { return const_cast(this)->getLastField(); } template const FieldDecl *findFieldIf(Functor &Pred) const { for (const Decl *D : decls()) { if (const auto *FD = dyn_cast(D); FD && Pred(FD)) return FD; if (const auto *RD = dyn_cast(D)) if (const FieldDecl *FD = RD->findFieldIf(Pred)) return FD; } return nullptr; } /// Note that the definition of this type is now complete. virtual void completeDefinition(); static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K >= firstRecord && K <= lastRecord; } /// Get whether or not this is an ms_struct which can /// be turned on with an attribute, pragma, or -mms-bitfields /// commandline option. bool isMsStruct(const ASTContext &C) const; /// Whether we are allowed to insert extra padding between fields. /// These padding are added to help AddressSanitizer detect /// intra-object-overflow bugs. bool mayInsertExtraPadding(bool EmitRemark = false) const; /// Finds the first data member which has a name. /// nullptr is returned if no named data member exists. const FieldDecl *findFirstNamedDataMember() const; /// Get precomputed ODRHash or add a new one. unsigned getODRHash(); private: /// Deserialize just the fields. void LoadFieldsFromExternalStorage() const; /// True if a valid hash is stored in ODRHash. bool hasODRHash() const { return RecordDeclBits.ODRHash; } void setODRHash(unsigned Hash) { RecordDeclBits.ODRHash = Hash; } }; class FileScopeAsmDecl : public Decl { StringLiteral *AsmString; SourceLocation RParenLoc; FileScopeAsmDecl(DeclContext *DC, StringLiteral *asmstring, SourceLocation StartL, SourceLocation EndL) : Decl(FileScopeAsm, DC, StartL), AsmString(asmstring), RParenLoc(EndL) {} virtual void anchor(); public: static FileScopeAsmDecl *Create(ASTContext &C, DeclContext *DC, StringLiteral *Str, SourceLocation AsmLoc, SourceLocation RParenLoc); static FileScopeAsmDecl *CreateDeserialized(ASTContext &C, unsigned ID); SourceLocation getAsmLoc() const { return getLocation(); } SourceLocation getRParenLoc() const { return RParenLoc; } void setRParenLoc(SourceLocation L) { RParenLoc = L; } SourceRange getSourceRange() const override LLVM_READONLY { return SourceRange(getAsmLoc(), getRParenLoc()); } const StringLiteral *getAsmString() const { return AsmString; } StringLiteral *getAsmString() { return AsmString; } void setAsmString(StringLiteral *Asm) { AsmString = Asm; } static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == FileScopeAsm; } }; /// A declaration that models statements at global scope. This declaration /// supports incremental and interactive C/C++. /// /// \note This is used in libInterpreter, clang -cc1 -fincremental-extensions /// and in tools such as clang-repl. class TopLevelStmtDecl : public Decl { friend class ASTDeclReader; friend class ASTDeclWriter; Stmt *Statement = nullptr; bool IsSemiMissing = false; TopLevelStmtDecl(DeclContext *DC, SourceLocation L, Stmt *S) : Decl(TopLevelStmt, DC, L), Statement(S) {} virtual void anchor(); public: static TopLevelStmtDecl *Create(ASTContext &C, Stmt *Statement); static TopLevelStmtDecl *CreateDeserialized(ASTContext &C, unsigned ID); SourceRange getSourceRange() const override LLVM_READONLY; Stmt *getStmt() { return Statement; } const Stmt *getStmt() const { return Statement; } void setStmt(Stmt *S) { assert(IsSemiMissing && "Operation supported for printing values only!"); Statement = S; } bool isSemiMissing() const { return IsSemiMissing; } void setSemiMissing(bool Missing = true) { IsSemiMissing = Missing; } static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == TopLevelStmt; } }; /// Represents a block literal declaration, which is like an /// unnamed FunctionDecl. For example: /// ^{ statement-body } or ^(int arg1, float arg2){ statement-body } class BlockDecl : public Decl, public DeclContext { // This class stores some data in DeclContext::BlockDeclBits // to save some space. Use the provided accessors to access it. public: /// A class which contains all the information about a particular /// captured value. class Capture { enum { flag_isByRef = 0x1, flag_isNested = 0x2 }; /// The variable being captured. llvm::PointerIntPair VariableAndFlags; /// The copy expression, expressed in terms of a DeclRef (or /// BlockDeclRef) to the captured variable. Only required if the /// variable has a C++ class type. Expr *CopyExpr; public: Capture(VarDecl *variable, bool byRef, bool nested, Expr *copy) : VariableAndFlags(variable, (byRef ? flag_isByRef : 0) | (nested ? flag_isNested : 0)), CopyExpr(copy) {} /// The variable being captured. VarDecl *getVariable() const { return VariableAndFlags.getPointer(); } /// Whether this is a "by ref" capture, i.e. a capture of a __block /// variable. bool isByRef() const { return VariableAndFlags.getInt() & flag_isByRef; } bool isEscapingByref() const { return getVariable()->isEscapingByref(); } bool isNonEscapingByref() const { return getVariable()->isNonEscapingByref(); } /// Whether this is a nested capture, i.e. the variable captured /// is not from outside the immediately enclosing function/block. bool isNested() const { return VariableAndFlags.getInt() & flag_isNested; } bool hasCopyExpr() const { return CopyExpr != nullptr; } Expr *getCopyExpr() const { return CopyExpr; } void setCopyExpr(Expr *e) { CopyExpr = e; } }; private: /// A new[]'d array of pointers to ParmVarDecls for the formal /// parameters of this function. This is null if a prototype or if there are /// no formals. ParmVarDecl **ParamInfo = nullptr; unsigned NumParams = 0; Stmt *Body = nullptr; TypeSourceInfo *SignatureAsWritten = nullptr; const Capture *Captures = nullptr; unsigned NumCaptures = 0; unsigned ManglingNumber = 0; Decl *ManglingContextDecl = nullptr; protected: BlockDecl(DeclContext *DC, SourceLocation CaretLoc); public: static BlockDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L); static BlockDecl *CreateDeserialized(ASTContext &C, unsigned ID); SourceLocation getCaretLocation() const { return getLocation(); } bool isVariadic() const { return BlockDeclBits.IsVariadic; } void setIsVariadic(bool value) { BlockDeclBits.IsVariadic = value; } CompoundStmt *getCompoundBody() const { return (CompoundStmt*) Body; } Stmt *getBody() const override { return (Stmt*) Body; } void setBody(CompoundStmt *B) { Body = (Stmt*) B; } void setSignatureAsWritten(TypeSourceInfo *Sig) { SignatureAsWritten = Sig; } TypeSourceInfo *getSignatureAsWritten() const { return SignatureAsWritten; } // ArrayRef access to formal parameters. ArrayRef parameters() const { return {ParamInfo, getNumParams()}; } MutableArrayRef parameters() { return {ParamInfo, getNumParams()}; } // Iterator access to formal parameters. using param_iterator = MutableArrayRef::iterator; using param_const_iterator = ArrayRef::const_iterator; bool param_empty() const { return parameters().empty(); } param_iterator param_begin() { return parameters().begin(); } param_iterator param_end() { return parameters().end(); } param_const_iterator param_begin() const { return parameters().begin(); } param_const_iterator param_end() const { return parameters().end(); } size_t param_size() const { return parameters().size(); } unsigned getNumParams() const { return NumParams; } const ParmVarDecl *getParamDecl(unsigned i) const { assert(i < getNumParams() && "Illegal param #"); return ParamInfo[i]; } ParmVarDecl *getParamDecl(unsigned i) { assert(i < getNumParams() && "Illegal param #"); return ParamInfo[i]; } void setParams(ArrayRef NewParamInfo); /// True if this block (or its nested blocks) captures /// anything of local storage from its enclosing scopes. bool hasCaptures() const { return NumCaptures || capturesCXXThis(); } /// Returns the number of captured variables. /// Does not include an entry for 'this'. unsigned getNumCaptures() const { return NumCaptures; } using capture_const_iterator = ArrayRef::const_iterator; ArrayRef captures() const { return {Captures, NumCaptures}; } capture_const_iterator capture_begin() const { return captures().begin(); } capture_const_iterator capture_end() const { return captures().end(); } bool capturesCXXThis() const { return BlockDeclBits.CapturesCXXThis; } void setCapturesCXXThis(bool B = true) { BlockDeclBits.CapturesCXXThis = B; } bool blockMissingReturnType() const { return BlockDeclBits.BlockMissingReturnType; } void setBlockMissingReturnType(bool val = true) { BlockDeclBits.BlockMissingReturnType = val; } bool isConversionFromLambda() const { return BlockDeclBits.IsConversionFromLambda; } void setIsConversionFromLambda(bool val = true) { BlockDeclBits.IsConversionFromLambda = val; } bool doesNotEscape() const { return BlockDeclBits.DoesNotEscape; } void setDoesNotEscape(bool B = true) { BlockDeclBits.DoesNotEscape = B; } bool canAvoidCopyToHeap() const { return BlockDeclBits.CanAvoidCopyToHeap; } void setCanAvoidCopyToHeap(bool B = true) { BlockDeclBits.CanAvoidCopyToHeap = B; } bool capturesVariable(const VarDecl *var) const; void setCaptures(ASTContext &Context, ArrayRef Captures, bool CapturesCXXThis); unsigned getBlockManglingNumber() const { return ManglingNumber; } Decl *getBlockManglingContextDecl() const { return ManglingContextDecl; } void setBlockMangling(unsigned Number, Decl *Ctx) { ManglingNumber = Number; ManglingContextDecl = Ctx; } SourceRange getSourceRange() const override LLVM_READONLY; // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == Block; } static DeclContext *castToDeclContext(const BlockDecl *D) { return static_cast(const_cast(D)); } static BlockDecl *castFromDeclContext(const DeclContext *DC) { return static_cast(const_cast(DC)); } }; /// Represents the body of a CapturedStmt, and serves as its DeclContext. class CapturedDecl final : public Decl, public DeclContext, private llvm::TrailingObjects { protected: size_t numTrailingObjects(OverloadToken) { return NumParams; } private: /// The number of parameters to the outlined function. unsigned NumParams; /// The position of context parameter in list of parameters. unsigned ContextParam; /// The body of the outlined function. llvm::PointerIntPair BodyAndNothrow; explicit CapturedDecl(DeclContext *DC, unsigned NumParams); ImplicitParamDecl *const *getParams() const { return getTrailingObjects(); } ImplicitParamDecl **getParams() { return getTrailingObjects(); } public: friend class ASTDeclReader; friend class ASTDeclWriter; friend TrailingObjects; static CapturedDecl *Create(ASTContext &C, DeclContext *DC, unsigned NumParams); static CapturedDecl *CreateDeserialized(ASTContext &C, unsigned ID, unsigned NumParams); Stmt *getBody() const override; void setBody(Stmt *B); bool isNothrow() const; void setNothrow(bool Nothrow = true); unsigned getNumParams() const { return NumParams; } ImplicitParamDecl *getParam(unsigned i) const { assert(i < NumParams); return getParams()[i]; } void setParam(unsigned i, ImplicitParamDecl *P) { assert(i < NumParams); getParams()[i] = P; } // ArrayRef interface to parameters. ArrayRef parameters() const { return {getParams(), getNumParams()}; } MutableArrayRef parameters() { return {getParams(), getNumParams()}; } /// Retrieve the parameter containing captured variables. ImplicitParamDecl *getContextParam() const { assert(ContextParam < NumParams); return getParam(ContextParam); } void setContextParam(unsigned i, ImplicitParamDecl *P) { assert(i < NumParams); ContextParam = i; setParam(i, P); } unsigned getContextParamPosition() const { return ContextParam; } using param_iterator = ImplicitParamDecl *const *; using param_range = llvm::iterator_range; /// Retrieve an iterator pointing to the first parameter decl. param_iterator param_begin() const { return getParams(); } /// Retrieve an iterator one past the last parameter decl. param_iterator param_end() const { return getParams() + NumParams; } // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == Captured; } static DeclContext *castToDeclContext(const CapturedDecl *D) { return static_cast(const_cast(D)); } static CapturedDecl *castFromDeclContext(const DeclContext *DC) { return static_cast(const_cast(DC)); } }; /// Describes a module import declaration, which makes the contents /// of the named module visible in the current translation unit. /// /// An import declaration imports the named module (or submodule). For example: /// \code /// @import std.vector; /// \endcode /// /// A C++20 module import declaration imports the named module or partition. /// Periods are permitted in C++20 module names, but have no semantic meaning. /// For example: /// \code /// import NamedModule; /// import :SomePartition; // Must be a partition of the current module. /// import Names.Like.this; // Allowed. /// import :and.Also.Partition.names; /// \endcode /// /// Import declarations can also be implicitly generated from /// \#include/\#import directives. class ImportDecl final : public Decl, llvm::TrailingObjects { friend class ASTContext; friend class ASTDeclReader; friend class ASTReader; friend TrailingObjects; /// The imported module. Module *ImportedModule = nullptr; /// The next import in the list of imports local to the translation /// unit being parsed (not loaded from an AST file). /// /// Includes a bit that indicates whether we have source-location information /// for each identifier in the module name. /// /// When the bit is false, we only have a single source location for the /// end of the import declaration. llvm::PointerIntPair NextLocalImportAndComplete; ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported, ArrayRef IdentifierLocs); ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported, SourceLocation EndLoc); ImportDecl(EmptyShell Empty) : Decl(Import, Empty) {} bool isImportComplete() const { return NextLocalImportAndComplete.getInt(); } void setImportComplete(bool C) { NextLocalImportAndComplete.setInt(C); } /// The next import in the list of imports local to the translation /// unit being parsed (not loaded from an AST file). ImportDecl *getNextLocalImport() const { return NextLocalImportAndComplete.getPointer(); } void setNextLocalImport(ImportDecl *Import) { NextLocalImportAndComplete.setPointer(Import); } public: /// Create a new module import declaration. static ImportDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, Module *Imported, ArrayRef IdentifierLocs); /// Create a new module import declaration for an implicitly-generated /// import. static ImportDecl *CreateImplicit(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, Module *Imported, SourceLocation EndLoc); /// Create a new, deserialized module import declaration. static ImportDecl *CreateDeserialized(ASTContext &C, unsigned ID, unsigned NumLocations); /// Retrieve the module that was imported by the import declaration. Module *getImportedModule() const { return ImportedModule; } /// Retrieves the locations of each of the identifiers that make up /// the complete module name in the import declaration. /// /// This will return an empty array if the locations of the individual /// identifiers aren't available. ArrayRef getIdentifierLocs() const; SourceRange getSourceRange() const override LLVM_READONLY; static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == Import; } }; /// Represents a standard C++ module export declaration. /// /// For example: /// \code /// export void foo(); /// \endcode class ExportDecl final : public Decl, public DeclContext { virtual void anchor(); private: friend class ASTDeclReader; /// The source location for the right brace (if valid). SourceLocation RBraceLoc; ExportDecl(DeclContext *DC, SourceLocation ExportLoc) : Decl(Export, DC, ExportLoc), DeclContext(Export), RBraceLoc(SourceLocation()) {} public: static ExportDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation ExportLoc); static ExportDecl *CreateDeserialized(ASTContext &C, unsigned ID); SourceLocation getExportLoc() const { return getLocation(); } SourceLocation getRBraceLoc() const { return RBraceLoc; } void setRBraceLoc(SourceLocation L) { RBraceLoc = L; } bool hasBraces() const { return RBraceLoc.isValid(); } SourceLocation getEndLoc() const LLVM_READONLY { if (hasBraces()) return RBraceLoc; // No braces: get the end location of the (only) declaration in context // (if present). return decls_empty() ? getLocation() : decls_begin()->getEndLoc(); } SourceRange getSourceRange() const override LLVM_READONLY { return SourceRange(getLocation(), getEndLoc()); } static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == Export; } static DeclContext *castToDeclContext(const ExportDecl *D) { return static_cast(const_cast(D)); } static ExportDecl *castFromDeclContext(const DeclContext *DC) { return static_cast(const_cast(DC)); } }; /// Represents an empty-declaration. class EmptyDecl : public Decl { EmptyDecl(DeclContext *DC, SourceLocation L) : Decl(Empty, DC, L) {} virtual void anchor(); public: static EmptyDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L); static EmptyDecl *CreateDeserialized(ASTContext &C, unsigned ID); static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == Empty; } }; /// HLSLBufferDecl - Represent a cbuffer or tbuffer declaration. class HLSLBufferDecl final : public NamedDecl, public DeclContext { /// LBraceLoc - The ending location of the source range. SourceLocation LBraceLoc; /// RBraceLoc - The ending location of the source range. SourceLocation RBraceLoc; /// KwLoc - The location of the cbuffer or tbuffer keyword. SourceLocation KwLoc; /// IsCBuffer - Whether the buffer is a cbuffer (and not a tbuffer). bool IsCBuffer; HLSLBufferDecl(DeclContext *DC, bool CBuffer, SourceLocation KwLoc, IdentifierInfo *ID, SourceLocation IDLoc, SourceLocation LBrace); public: static HLSLBufferDecl *Create(ASTContext &C, DeclContext *LexicalParent, bool CBuffer, SourceLocation KwLoc, IdentifierInfo *ID, SourceLocation IDLoc, SourceLocation LBrace); static HLSLBufferDecl *CreateDeserialized(ASTContext &C, unsigned ID); SourceRange getSourceRange() const override LLVM_READONLY { return SourceRange(getLocStart(), RBraceLoc); } SourceLocation getLocStart() const LLVM_READONLY { return KwLoc; } SourceLocation getLBraceLoc() const { return LBraceLoc; } SourceLocation getRBraceLoc() const { return RBraceLoc; } void setRBraceLoc(SourceLocation L) { RBraceLoc = L; } bool isCBuffer() const { return IsCBuffer; } // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == HLSLBuffer; } static DeclContext *castToDeclContext(const HLSLBufferDecl *D) { return static_cast(const_cast(D)); } static HLSLBufferDecl *castFromDeclContext(const DeclContext *DC) { return static_cast(const_cast(DC)); } friend class ASTDeclReader; friend class ASTDeclWriter; }; /// Insertion operator for diagnostics. This allows sending NamedDecl's /// into a diagnostic with <<. inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD, const NamedDecl *ND) { PD.AddTaggedVal(reinterpret_cast(ND), DiagnosticsEngine::ak_nameddecl); return PD; } template void Redeclarable::setPreviousDecl(decl_type *PrevDecl) { // Note: This routine is implemented here because we need both NamedDecl // and Redeclarable to be defined. assert(RedeclLink.isFirst() && "setPreviousDecl on a decl already in a redeclaration chain"); if (PrevDecl) { // Point to previous. Make sure that this is actually the most recent // redeclaration, or we can build invalid chains. If the most recent // redeclaration is invalid, it won't be PrevDecl, but we want it anyway. First = PrevDecl->getFirstDecl(); assert(First->RedeclLink.isFirst() && "Expected first"); decl_type *MostRecent = First->getNextRedeclaration(); RedeclLink = PreviousDeclLink(cast(MostRecent)); // If the declaration was previously visible, a redeclaration of it remains // visible even if it wouldn't be visible by itself. static_cast(this)->IdentifierNamespace |= MostRecent->getIdentifierNamespace() & (Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Type); } else { // Make this first. First = static_cast(this); } // First one will point to this one as latest. First->RedeclLink.setLatest(static_cast(this)); assert(!isa(static_cast(this)) || cast(static_cast(this))->isLinkageValid()); } // Inline function definitions. /// Check if the given decl is complete. /// /// We use this function to break a cycle between the inline definitions in /// Type.h and Decl.h. inline bool IsEnumDeclComplete(EnumDecl *ED) { return ED->isComplete(); } /// Check if the given decl is scoped. /// /// We use this function to break a cycle between the inline definitions in /// Type.h and Decl.h. inline bool IsEnumDeclScoped(EnumDecl *ED) { return ED->isScoped(); } /// OpenMP variants are mangled early based on their OpenMP context selector. /// The new name looks likes this: /// + OpenMPVariantManglingSeparatorStr + static constexpr StringRef getOpenMPVariantManglingSeparatorStr() { return "$ompvariant"; } } // namespace clang #endif // LLVM_CLANG_AST_DECL_H