//===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file provides a simple and efficient mechanism for performing general // tree-based pattern matches on the LLVM IR. The power of these routines is // that it allows you to write concise patterns that are expressive and easy to // understand. The other major advantage of this is that it allows you to // trivially capture/bind elements in the pattern to variables. For example, // you can do something like this: // // Value *Exp = ... // Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2) // if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)), // m_And(m_Value(Y), m_ConstantInt(C2))))) { // ... Pattern is matched and variables are bound ... // } // // This is primarily useful to things like the instruction combiner, but can // also be useful for static analysis tools or code generators. // //===----------------------------------------------------------------------===// #ifndef LLVM_IR_PATTERNMATCH_H #define LLVM_IR_PATTERNMATCH_H #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Operator.h" #include "llvm/IR/Value.h" #include "llvm/Support/Casting.h" #include namespace llvm { namespace PatternMatch { template bool match(Val *V, const Pattern &P) { return const_cast(P).match(V); } template bool match(ArrayRef Mask, const Pattern &P) { return const_cast(P).match(Mask); } template struct OneUse_match { SubPattern_t SubPattern; OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {} template bool match(OpTy *V) { return V->hasOneUse() && SubPattern.match(V); } }; template inline OneUse_match m_OneUse(const T &SubPattern) { return SubPattern; } template struct class_match { template bool match(ITy *V) { return isa(V); } }; /// Match an arbitrary value and ignore it. inline class_match m_Value() { return class_match(); } /// Match an arbitrary unary operation and ignore it. inline class_match m_UnOp() { return class_match(); } /// Match an arbitrary binary operation and ignore it. inline class_match m_BinOp() { return class_match(); } /// Matches any compare instruction and ignore it. inline class_match m_Cmp() { return class_match(); } struct undef_match { static bool check(const Value *V) { if (isa(V)) return true; const auto *CA = dyn_cast(V); if (!CA) return false; SmallPtrSet Seen; SmallVector Worklist; // Either UndefValue, PoisonValue, or an aggregate that only contains // these is accepted by matcher. // CheckValue returns false if CA cannot satisfy this constraint. auto CheckValue = [&](const ConstantAggregate *CA) { for (const Value *Op : CA->operand_values()) { if (isa(Op)) continue; const auto *CA = dyn_cast(Op); if (!CA) return false; if (Seen.insert(CA).second) Worklist.emplace_back(CA); } return true; }; if (!CheckValue(CA)) return false; while (!Worklist.empty()) { if (!CheckValue(Worklist.pop_back_val())) return false; } return true; } template bool match(ITy *V) { return check(V); } }; /// Match an arbitrary undef constant. This matches poison as well. /// If this is an aggregate and contains a non-aggregate element that is /// neither undef nor poison, the aggregate is not matched. inline auto m_Undef() { return undef_match(); } /// Match an arbitrary poison constant. inline class_match m_Poison() { return class_match(); } /// Match an arbitrary Constant and ignore it. inline class_match m_Constant() { return class_match(); } /// Match an arbitrary ConstantInt and ignore it. inline class_match m_ConstantInt() { return class_match(); } /// Match an arbitrary ConstantFP and ignore it. inline class_match m_ConstantFP() { return class_match(); } struct constantexpr_match { template bool match(ITy *V) { auto *C = dyn_cast(V); return C && (isa(C) || C->containsConstantExpression()); } }; /// Match a constant expression or a constant that contains a constant /// expression. inline constantexpr_match m_ConstantExpr() { return constantexpr_match(); } /// Match an arbitrary basic block value and ignore it. inline class_match m_BasicBlock() { return class_match(); } /// Inverting matcher template struct match_unless { Ty M; match_unless(const Ty &Matcher) : M(Matcher) {} template bool match(ITy *V) { return !M.match(V); } }; /// Match if the inner matcher does *NOT* match. template inline match_unless m_Unless(const Ty &M) { return match_unless(M); } /// Matching combinators template struct match_combine_or { LTy L; RTy R; match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {} template bool match(ITy *V) { if (L.match(V)) return true; if (R.match(V)) return true; return false; } }; template struct match_combine_and { LTy L; RTy R; match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {} template bool match(ITy *V) { if (L.match(V)) if (R.match(V)) return true; return false; } }; /// Combine two pattern matchers matching L || R template inline match_combine_or m_CombineOr(const LTy &L, const RTy &R) { return match_combine_or(L, R); } /// Combine two pattern matchers matching L && R template inline match_combine_and m_CombineAnd(const LTy &L, const RTy &R) { return match_combine_and(L, R); } struct apint_match { const APInt *&Res; bool AllowUndef; apint_match(const APInt *&Res, bool AllowUndef) : Res(Res), AllowUndef(AllowUndef) {} template bool match(ITy *V) { if (auto *CI = dyn_cast(V)) { Res = &CI->getValue(); return true; } if (V->getType()->isVectorTy()) if (const auto *C = dyn_cast(V)) if (auto *CI = dyn_cast_or_null(C->getSplatValue(AllowUndef))) { Res = &CI->getValue(); return true; } return false; } }; // Either constexpr if or renaming ConstantFP::getValueAPF to // ConstantFP::getValue is needed to do it via single template // function for both apint/apfloat. struct apfloat_match { const APFloat *&Res; bool AllowUndef; apfloat_match(const APFloat *&Res, bool AllowUndef) : Res(Res), AllowUndef(AllowUndef) {} template bool match(ITy *V) { if (auto *CI = dyn_cast(V)) { Res = &CI->getValueAPF(); return true; } if (V->getType()->isVectorTy()) if (const auto *C = dyn_cast(V)) if (auto *CI = dyn_cast_or_null(C->getSplatValue(AllowUndef))) { Res = &CI->getValueAPF(); return true; } return false; } }; /// Match a ConstantInt or splatted ConstantVector, binding the /// specified pointer to the contained APInt. inline apint_match m_APInt(const APInt *&Res) { // Forbid undefs by default to maintain previous behavior. return apint_match(Res, /* AllowUndef */ false); } /// Match APInt while allowing undefs in splat vector constants. inline apint_match m_APIntAllowUndef(const APInt *&Res) { return apint_match(Res, /* AllowUndef */ true); } /// Match APInt while forbidding undefs in splat vector constants. inline apint_match m_APIntForbidUndef(const APInt *&Res) { return apint_match(Res, /* AllowUndef */ false); } /// Match a ConstantFP or splatted ConstantVector, binding the /// specified pointer to the contained APFloat. inline apfloat_match m_APFloat(const APFloat *&Res) { // Forbid undefs by default to maintain previous behavior. return apfloat_match(Res, /* AllowUndef */ false); } /// Match APFloat while allowing undefs in splat vector constants. inline apfloat_match m_APFloatAllowUndef(const APFloat *&Res) { return apfloat_match(Res, /* AllowUndef */ true); } /// Match APFloat while forbidding undefs in splat vector constants. inline apfloat_match m_APFloatForbidUndef(const APFloat *&Res) { return apfloat_match(Res, /* AllowUndef */ false); } template struct constantint_match { template bool match(ITy *V) { if (const auto *CI = dyn_cast(V)) { const APInt &CIV = CI->getValue(); if (Val >= 0) return CIV == static_cast(Val); // If Val is negative, and CI is shorter than it, truncate to the right // number of bits. If it is larger, then we have to sign extend. Just // compare their negated values. return -CIV == -Val; } return false; } }; /// Match a ConstantInt with a specific value. template inline constantint_match m_ConstantInt() { return constantint_match(); } /// This helper class is used to match constant scalars, vector splats, /// and fixed width vectors that satisfy a specified predicate. /// For fixed width vector constants, undefined elements are ignored. template struct cstval_pred_ty : public Predicate { template bool match(ITy *V) { if (const auto *CV = dyn_cast(V)) return this->isValue(CV->getValue()); if (const auto *VTy = dyn_cast(V->getType())) { if (const auto *C = dyn_cast(V)) { if (const auto *CV = dyn_cast_or_null(C->getSplatValue())) return this->isValue(CV->getValue()); // Number of elements of a scalable vector unknown at compile time auto *FVTy = dyn_cast(VTy); if (!FVTy) return false; // Non-splat vector constant: check each element for a match. unsigned NumElts = FVTy->getNumElements(); assert(NumElts != 0 && "Constant vector with no elements?"); bool HasNonUndefElements = false; for (unsigned i = 0; i != NumElts; ++i) { Constant *Elt = C->getAggregateElement(i); if (!Elt) return false; if (isa(Elt)) continue; auto *CV = dyn_cast(Elt); if (!CV || !this->isValue(CV->getValue())) return false; HasNonUndefElements = true; } return HasNonUndefElements; } } return false; } }; /// specialization of cstval_pred_ty for ConstantInt template using cst_pred_ty = cstval_pred_ty; /// specialization of cstval_pred_ty for ConstantFP template using cstfp_pred_ty = cstval_pred_ty; /// This helper class is used to match scalar and vector constants that /// satisfy a specified predicate, and bind them to an APInt. template struct api_pred_ty : public Predicate { const APInt *&Res; api_pred_ty(const APInt *&R) : Res(R) {} template bool match(ITy *V) { if (const auto *CI = dyn_cast(V)) if (this->isValue(CI->getValue())) { Res = &CI->getValue(); return true; } if (V->getType()->isVectorTy()) if (const auto *C = dyn_cast(V)) if (auto *CI = dyn_cast_or_null(C->getSplatValue())) if (this->isValue(CI->getValue())) { Res = &CI->getValue(); return true; } return false; } }; /// This helper class is used to match scalar and vector constants that /// satisfy a specified predicate, and bind them to an APFloat. /// Undefs are allowed in splat vector constants. template struct apf_pred_ty : public Predicate { const APFloat *&Res; apf_pred_ty(const APFloat *&R) : Res(R) {} template bool match(ITy *V) { if (const auto *CI = dyn_cast(V)) if (this->isValue(CI->getValue())) { Res = &CI->getValue(); return true; } if (V->getType()->isVectorTy()) if (const auto *C = dyn_cast(V)) if (auto *CI = dyn_cast_or_null( C->getSplatValue(/* AllowUndef */ true))) if (this->isValue(CI->getValue())) { Res = &CI->getValue(); return true; } return false; } }; /////////////////////////////////////////////////////////////////////////////// // // Encapsulate constant value queries for use in templated predicate matchers. // This allows checking if constants match using compound predicates and works // with vector constants, possibly with relaxed constraints. For example, ignore // undef values. // /////////////////////////////////////////////////////////////////////////////// struct is_any_apint { bool isValue(const APInt &C) { return true; } }; /// Match an integer or vector with any integral constant. /// For vectors, this includes constants with undefined elements. inline cst_pred_ty m_AnyIntegralConstant() { return cst_pred_ty(); } struct is_shifted_mask { bool isValue(const APInt &C) { return C.isShiftedMask(); } }; inline cst_pred_ty m_ShiftedMask() { return cst_pred_ty(); } struct is_all_ones { bool isValue(const APInt &C) { return C.isAllOnes(); } }; /// Match an integer or vector with all bits set. /// For vectors, this includes constants with undefined elements. inline cst_pred_ty m_AllOnes() { return cst_pred_ty(); } struct is_maxsignedvalue { bool isValue(const APInt &C) { return C.isMaxSignedValue(); } }; /// Match an integer or vector with values having all bits except for the high /// bit set (0x7f...). /// For vectors, this includes constants with undefined elements. inline cst_pred_ty m_MaxSignedValue() { return cst_pred_ty(); } inline api_pred_ty m_MaxSignedValue(const APInt *&V) { return V; } struct is_negative { bool isValue(const APInt &C) { return C.isNegative(); } }; /// Match an integer or vector of negative values. /// For vectors, this includes constants with undefined elements. inline cst_pred_ty m_Negative() { return cst_pred_ty(); } inline api_pred_ty m_Negative(const APInt *&V) { return V; } struct is_nonnegative { bool isValue(const APInt &C) { return C.isNonNegative(); } }; /// Match an integer or vector of non-negative values. /// For vectors, this includes constants with undefined elements. inline cst_pred_ty m_NonNegative() { return cst_pred_ty(); } inline api_pred_ty m_NonNegative(const APInt *&V) { return V; } struct is_strictlypositive { bool isValue(const APInt &C) { return C.isStrictlyPositive(); } }; /// Match an integer or vector of strictly positive values. /// For vectors, this includes constants with undefined elements. inline cst_pred_ty m_StrictlyPositive() { return cst_pred_ty(); } inline api_pred_ty m_StrictlyPositive(const APInt *&V) { return V; } struct is_nonpositive { bool isValue(const APInt &C) { return C.isNonPositive(); } }; /// Match an integer or vector of non-positive values. /// For vectors, this includes constants with undefined elements. inline cst_pred_ty m_NonPositive() { return cst_pred_ty(); } inline api_pred_ty m_NonPositive(const APInt *&V) { return V; } struct is_one { bool isValue(const APInt &C) { return C.isOne(); } }; /// Match an integer 1 or a vector with all elements equal to 1. /// For vectors, this includes constants with undefined elements. inline cst_pred_ty m_One() { return cst_pred_ty(); } struct is_zero_int { bool isValue(const APInt &C) { return C.isZero(); } }; /// Match an integer 0 or a vector with all elements equal to 0. /// For vectors, this includes constants with undefined elements. inline cst_pred_ty m_ZeroInt() { return cst_pred_ty(); } struct is_zero { template bool match(ITy *V) { auto *C = dyn_cast(V); // FIXME: this should be able to do something for scalable vectors return C && (C->isNullValue() || cst_pred_ty().match(C)); } }; /// Match any null constant or a vector with all elements equal to 0. /// For vectors, this includes constants with undefined elements. inline is_zero m_Zero() { return is_zero(); } struct is_power2 { bool isValue(const APInt &C) { return C.isPowerOf2(); } }; /// Match an integer or vector power-of-2. /// For vectors, this includes constants with undefined elements. inline cst_pred_ty m_Power2() { return cst_pred_ty(); } inline api_pred_ty m_Power2(const APInt *&V) { return V; } struct is_negated_power2 { bool isValue(const APInt &C) { return C.isNegatedPowerOf2(); } }; /// Match a integer or vector negated power-of-2. /// For vectors, this includes constants with undefined elements. inline cst_pred_ty m_NegatedPower2() { return cst_pred_ty(); } inline api_pred_ty m_NegatedPower2(const APInt *&V) { return V; } struct is_power2_or_zero { bool isValue(const APInt &C) { return !C || C.isPowerOf2(); } }; /// Match an integer or vector of 0 or power-of-2 values. /// For vectors, this includes constants with undefined elements. inline cst_pred_ty m_Power2OrZero() { return cst_pred_ty(); } inline api_pred_ty m_Power2OrZero(const APInt *&V) { return V; } struct is_sign_mask { bool isValue(const APInt &C) { return C.isSignMask(); } }; /// Match an integer or vector with only the sign bit(s) set. /// For vectors, this includes constants with undefined elements. inline cst_pred_ty m_SignMask() { return cst_pred_ty(); } struct is_lowbit_mask { bool isValue(const APInt &C) { return C.isMask(); } }; /// Match an integer or vector with only the low bit(s) set. /// For vectors, this includes constants with undefined elements. inline cst_pred_ty m_LowBitMask() { return cst_pred_ty(); } inline api_pred_ty m_LowBitMask(const APInt *&V) { return V; } struct icmp_pred_with_threshold { ICmpInst::Predicate Pred; const APInt *Thr; bool isValue(const APInt &C) { return ICmpInst::compare(C, *Thr, Pred); } }; /// Match an integer or vector with every element comparing 'pred' (eg/ne/...) /// to Threshold. For vectors, this includes constants with undefined elements. inline cst_pred_ty m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold) { cst_pred_ty P; P.Pred = Predicate; P.Thr = &Threshold; return P; } struct is_nan { bool isValue(const APFloat &C) { return C.isNaN(); } }; /// Match an arbitrary NaN constant. This includes quiet and signalling nans. /// For vectors, this includes constants with undefined elements. inline cstfp_pred_ty m_NaN() { return cstfp_pred_ty(); } struct is_nonnan { bool isValue(const APFloat &C) { return !C.isNaN(); } }; /// Match a non-NaN FP constant. /// For vectors, this includes constants with undefined elements. inline cstfp_pred_ty m_NonNaN() { return cstfp_pred_ty(); } struct is_inf { bool isValue(const APFloat &C) { return C.isInfinity(); } }; /// Match a positive or negative infinity FP constant. /// For vectors, this includes constants with undefined elements. inline cstfp_pred_ty m_Inf() { return cstfp_pred_ty(); } struct is_noninf { bool isValue(const APFloat &C) { return !C.isInfinity(); } }; /// Match a non-infinity FP constant, i.e. finite or NaN. /// For vectors, this includes constants with undefined elements. inline cstfp_pred_ty m_NonInf() { return cstfp_pred_ty(); } struct is_finite { bool isValue(const APFloat &C) { return C.isFinite(); } }; /// Match a finite FP constant, i.e. not infinity or NaN. /// For vectors, this includes constants with undefined elements. inline cstfp_pred_ty m_Finite() { return cstfp_pred_ty(); } inline apf_pred_ty m_Finite(const APFloat *&V) { return V; } struct is_finitenonzero { bool isValue(const APFloat &C) { return C.isFiniteNonZero(); } }; /// Match a finite non-zero FP constant. /// For vectors, this includes constants with undefined elements. inline cstfp_pred_ty m_FiniteNonZero() { return cstfp_pred_ty(); } inline apf_pred_ty m_FiniteNonZero(const APFloat *&V) { return V; } struct is_any_zero_fp { bool isValue(const APFloat &C) { return C.isZero(); } }; /// Match a floating-point negative zero or positive zero. /// For vectors, this includes constants with undefined elements. inline cstfp_pred_ty m_AnyZeroFP() { return cstfp_pred_ty(); } struct is_pos_zero_fp { bool isValue(const APFloat &C) { return C.isPosZero(); } }; /// Match a floating-point positive zero. /// For vectors, this includes constants with undefined elements. inline cstfp_pred_ty m_PosZeroFP() { return cstfp_pred_ty(); } struct is_neg_zero_fp { bool isValue(const APFloat &C) { return C.isNegZero(); } }; /// Match a floating-point negative zero. /// For vectors, this includes constants with undefined elements. inline cstfp_pred_ty m_NegZeroFP() { return cstfp_pred_ty(); } struct is_non_zero_fp { bool isValue(const APFloat &C) { return C.isNonZero(); } }; /// Match a floating-point non-zero. /// For vectors, this includes constants with undefined elements. inline cstfp_pred_ty m_NonZeroFP() { return cstfp_pred_ty(); } /////////////////////////////////////////////////////////////////////////////// template struct bind_ty { Class *&VR; bind_ty(Class *&V) : VR(V) {} template bool match(ITy *V) { if (auto *CV = dyn_cast(V)) { VR = CV; return true; } return false; } }; /// Match a value, capturing it if we match. inline bind_ty m_Value(Value *&V) { return V; } inline bind_ty m_Value(const Value *&V) { return V; } /// Match an instruction, capturing it if we match. inline bind_ty m_Instruction(Instruction *&I) { return I; } /// Match a unary operator, capturing it if we match. inline bind_ty m_UnOp(UnaryOperator *&I) { return I; } /// Match a binary operator, capturing it if we match. inline bind_ty m_BinOp(BinaryOperator *&I) { return I; } /// Match a with overflow intrinsic, capturing it if we match. inline bind_ty m_WithOverflowInst(WithOverflowInst *&I) { return I; } inline bind_ty m_WithOverflowInst(const WithOverflowInst *&I) { return I; } /// Match a Constant, capturing the value if we match. inline bind_ty m_Constant(Constant *&C) { return C; } /// Match a ConstantInt, capturing the value if we match. inline bind_ty m_ConstantInt(ConstantInt *&CI) { return CI; } /// Match a ConstantFP, capturing the value if we match. inline bind_ty m_ConstantFP(ConstantFP *&C) { return C; } /// Match a ConstantExpr, capturing the value if we match. inline bind_ty m_ConstantExpr(ConstantExpr *&C) { return C; } /// Match a basic block value, capturing it if we match. inline bind_ty m_BasicBlock(BasicBlock *&V) { return V; } inline bind_ty m_BasicBlock(const BasicBlock *&V) { return V; } /// Match an arbitrary immediate Constant and ignore it. inline match_combine_and, match_unless> m_ImmConstant() { return m_CombineAnd(m_Constant(), m_Unless(m_ConstantExpr())); } /// Match an immediate Constant, capturing the value if we match. inline match_combine_and, match_unless> m_ImmConstant(Constant *&C) { return m_CombineAnd(m_Constant(C), m_Unless(m_ConstantExpr())); } /// Match a specified Value*. struct specificval_ty { const Value *Val; specificval_ty(const Value *V) : Val(V) {} template bool match(ITy *V) { return V == Val; } }; /// Match if we have a specific specified value. inline specificval_ty m_Specific(const Value *V) { return V; } /// Stores a reference to the Value *, not the Value * itself, /// thus can be used in commutative matchers. template struct deferredval_ty { Class *const &Val; deferredval_ty(Class *const &V) : Val(V) {} template bool match(ITy *const V) { return V == Val; } }; /// Like m_Specific(), but works if the specific value to match is determined /// as part of the same match() expression. For example: /// m_Add(m_Value(X), m_Specific(X)) is incorrect, because m_Specific() will /// bind X before the pattern match starts. /// m_Add(m_Value(X), m_Deferred(X)) is correct, and will check against /// whichever value m_Value(X) populated. inline deferredval_ty m_Deferred(Value *const &V) { return V; } inline deferredval_ty m_Deferred(const Value *const &V) { return V; } /// Match a specified floating point value or vector of all elements of /// that value. struct specific_fpval { double Val; specific_fpval(double V) : Val(V) {} template bool match(ITy *V) { if (const auto *CFP = dyn_cast(V)) return CFP->isExactlyValue(Val); if (V->getType()->isVectorTy()) if (const auto *C = dyn_cast(V)) if (auto *CFP = dyn_cast_or_null(C->getSplatValue())) return CFP->isExactlyValue(Val); return false; } }; /// Match a specific floating point value or vector with all elements /// equal to the value. inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); } /// Match a float 1.0 or vector with all elements equal to 1.0. inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); } struct bind_const_intval_ty { uint64_t &VR; bind_const_intval_ty(uint64_t &V) : VR(V) {} template bool match(ITy *V) { if (const auto *CV = dyn_cast(V)) if (CV->getValue().ule(UINT64_MAX)) { VR = CV->getZExtValue(); return true; } return false; } }; /// Match a specified integer value or vector of all elements of that /// value. template struct specific_intval { APInt Val; specific_intval(APInt V) : Val(std::move(V)) {} template bool match(ITy *V) { const auto *CI = dyn_cast(V); if (!CI && V->getType()->isVectorTy()) if (const auto *C = dyn_cast(V)) CI = dyn_cast_or_null(C->getSplatValue(AllowUndefs)); return CI && APInt::isSameValue(CI->getValue(), Val); } }; /// Match a specific integer value or vector with all elements equal to /// the value. inline specific_intval m_SpecificInt(APInt V) { return specific_intval(std::move(V)); } inline specific_intval m_SpecificInt(uint64_t V) { return m_SpecificInt(APInt(64, V)); } inline specific_intval m_SpecificIntAllowUndef(APInt V) { return specific_intval(std::move(V)); } inline specific_intval m_SpecificIntAllowUndef(uint64_t V) { return m_SpecificIntAllowUndef(APInt(64, V)); } /// Match a ConstantInt and bind to its value. This does not match /// ConstantInts wider than 64-bits. inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; } /// Match a specified basic block value. struct specific_bbval { BasicBlock *Val; specific_bbval(BasicBlock *Val) : Val(Val) {} template bool match(ITy *V) { const auto *BB = dyn_cast(V); return BB && BB == Val; } }; /// Match a specific basic block value. inline specific_bbval m_SpecificBB(BasicBlock *BB) { return specific_bbval(BB); } /// A commutative-friendly version of m_Specific(). inline deferredval_ty m_Deferred(BasicBlock *const &BB) { return BB; } inline deferredval_ty m_Deferred(const BasicBlock *const &BB) { return BB; } //===----------------------------------------------------------------------===// // Matcher for any binary operator. // template struct AnyBinaryOp_match { LHS_t L; RHS_t R; // The evaluation order is always stable, regardless of Commutability. // The LHS is always matched first. AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} template bool match(OpTy *V) { if (auto *I = dyn_cast(V)) return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) || (Commutable && L.match(I->getOperand(1)) && R.match(I->getOperand(0))); return false; } }; template inline AnyBinaryOp_match m_BinOp(const LHS &L, const RHS &R) { return AnyBinaryOp_match(L, R); } //===----------------------------------------------------------------------===// // Matcher for any unary operator. // TODO fuse unary, binary matcher into n-ary matcher // template struct AnyUnaryOp_match { OP_t X; AnyUnaryOp_match(const OP_t &X) : X(X) {} template bool match(OpTy *V) { if (auto *I = dyn_cast(V)) return X.match(I->getOperand(0)); return false; } }; template inline AnyUnaryOp_match m_UnOp(const OP_t &X) { return AnyUnaryOp_match(X); } //===----------------------------------------------------------------------===// // Matchers for specific binary operators. // template struct BinaryOp_match { LHS_t L; RHS_t R; // The evaluation order is always stable, regardless of Commutability. // The LHS is always matched first. BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} template inline bool match(unsigned Opc, OpTy *V) { if (V->getValueID() == Value::InstructionVal + Opc) { auto *I = cast(V); return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) || (Commutable && L.match(I->getOperand(1)) && R.match(I->getOperand(0))); } return false; } template bool match(OpTy *V) { return match(Opcode, V); } }; template inline BinaryOp_match m_Add(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } template inline BinaryOp_match m_FAdd(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } template inline BinaryOp_match m_Sub(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } template inline BinaryOp_match m_FSub(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } template struct FNeg_match { Op_t X; FNeg_match(const Op_t &Op) : X(Op) {} template bool match(OpTy *V) { auto *FPMO = dyn_cast(V); if (!FPMO) return false; if (FPMO->getOpcode() == Instruction::FNeg) return X.match(FPMO->getOperand(0)); if (FPMO->getOpcode() == Instruction::FSub) { if (FPMO->hasNoSignedZeros()) { // With 'nsz', any zero goes. if (!cstfp_pred_ty().match(FPMO->getOperand(0))) return false; } else { // Without 'nsz', we need fsub -0.0, X exactly. if (!cstfp_pred_ty().match(FPMO->getOperand(0))) return false; } return X.match(FPMO->getOperand(1)); } return false; } }; /// Match 'fneg X' as 'fsub -0.0, X'. template inline FNeg_match m_FNeg(const OpTy &X) { return FNeg_match(X); } /// Match 'fneg X' as 'fsub +-0.0, X'. template inline BinaryOp_match, RHS, Instruction::FSub> m_FNegNSZ(const RHS &X) { return m_FSub(m_AnyZeroFP(), X); } template inline BinaryOp_match m_Mul(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } template inline BinaryOp_match m_FMul(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } template inline BinaryOp_match m_UDiv(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } template inline BinaryOp_match m_SDiv(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } template inline BinaryOp_match m_FDiv(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } template inline BinaryOp_match m_URem(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } template inline BinaryOp_match m_SRem(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } template inline BinaryOp_match m_FRem(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } template inline BinaryOp_match m_And(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } template inline BinaryOp_match m_Or(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } template inline BinaryOp_match m_Xor(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } template inline BinaryOp_match m_Shl(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } template inline BinaryOp_match m_LShr(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } template inline BinaryOp_match m_AShr(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } template struct OverflowingBinaryOp_match { LHS_t L; RHS_t R; OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} template bool match(OpTy *V) { if (auto *Op = dyn_cast(V)) { if (Op->getOpcode() != Opcode) return false; if ((WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap) && !Op->hasNoUnsignedWrap()) return false; if ((WrapFlags & OverflowingBinaryOperator::NoSignedWrap) && !Op->hasNoSignedWrap()) return false; return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1)); } return false; } }; template inline OverflowingBinaryOp_match m_NSWAdd(const LHS &L, const RHS &R) { return OverflowingBinaryOp_match(L, R); } template inline OverflowingBinaryOp_match m_NSWSub(const LHS &L, const RHS &R) { return OverflowingBinaryOp_match(L, R); } template inline OverflowingBinaryOp_match m_NSWMul(const LHS &L, const RHS &R) { return OverflowingBinaryOp_match(L, R); } template inline OverflowingBinaryOp_match m_NSWShl(const LHS &L, const RHS &R) { return OverflowingBinaryOp_match(L, R); } template inline OverflowingBinaryOp_match m_NUWAdd(const LHS &L, const RHS &R) { return OverflowingBinaryOp_match( L, R); } template inline OverflowingBinaryOp_match m_NUWSub(const LHS &L, const RHS &R) { return OverflowingBinaryOp_match( L, R); } template inline OverflowingBinaryOp_match m_NUWMul(const LHS &L, const RHS &R) { return OverflowingBinaryOp_match( L, R); } template inline OverflowingBinaryOp_match m_NUWShl(const LHS &L, const RHS &R) { return OverflowingBinaryOp_match( L, R); } template struct SpecificBinaryOp_match : public BinaryOp_match { unsigned Opcode; SpecificBinaryOp_match(unsigned Opcode, const LHS_t &LHS, const RHS_t &RHS) : BinaryOp_match(LHS, RHS), Opcode(Opcode) {} template bool match(OpTy *V) { return BinaryOp_match::match(Opcode, V); } }; /// Matches a specific opcode. template inline SpecificBinaryOp_match m_BinOp(unsigned Opcode, const LHS &L, const RHS &R) { return SpecificBinaryOp_match(Opcode, L, R); } template struct DisjointOr_match { LHS L; RHS R; DisjointOr_match(const LHS &L, const RHS &R) : L(L), R(R) {} template bool match(OpTy *V) { if (auto *PDI = dyn_cast(V)) { assert(PDI->getOpcode() == Instruction::Or && "Only or can be disjoint"); if (!PDI->isDisjoint()) return false; return (L.match(PDI->getOperand(0)) && R.match(PDI->getOperand(1))) || (Commutable && L.match(PDI->getOperand(1)) && R.match(PDI->getOperand(0))); } return false; } }; template inline DisjointOr_match m_DisjointOr(const LHS &L, const RHS &R) { return DisjointOr_match(L, R); } template inline DisjointOr_match m_c_DisjointOr(const LHS &L, const RHS &R) { return DisjointOr_match(L, R); } /// Match either "and" or "or disjoint". template inline match_combine_or, DisjointOr_match> m_AddLike(const LHS &L, const RHS &R) { return m_CombineOr(m_Add(L, R), m_DisjointOr(L, R)); } //===----------------------------------------------------------------------===// // Class that matches a group of binary opcodes. // template struct BinOpPred_match : Predicate { LHS_t L; RHS_t R; BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} template bool match(OpTy *V) { if (auto *I = dyn_cast(V)) return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) && R.match(I->getOperand(1)); return false; } }; struct is_shift_op { bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); } }; struct is_right_shift_op { bool isOpType(unsigned Opcode) { return Opcode == Instruction::LShr || Opcode == Instruction::AShr; } }; struct is_logical_shift_op { bool isOpType(unsigned Opcode) { return Opcode == Instruction::LShr || Opcode == Instruction::Shl; } }; struct is_bitwiselogic_op { bool isOpType(unsigned Opcode) { return Instruction::isBitwiseLogicOp(Opcode); } }; struct is_idiv_op { bool isOpType(unsigned Opcode) { return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv; } }; struct is_irem_op { bool isOpType(unsigned Opcode) { return Opcode == Instruction::SRem || Opcode == Instruction::URem; } }; /// Matches shift operations. template inline BinOpPred_match m_Shift(const LHS &L, const RHS &R) { return BinOpPred_match(L, R); } /// Matches logical shift operations. template inline BinOpPred_match m_Shr(const LHS &L, const RHS &R) { return BinOpPred_match(L, R); } /// Matches logical shift operations. template inline BinOpPred_match m_LogicalShift(const LHS &L, const RHS &R) { return BinOpPred_match(L, R); } /// Matches bitwise logic operations. template inline BinOpPred_match m_BitwiseLogic(const LHS &L, const RHS &R) { return BinOpPred_match(L, R); } /// Matches integer division operations. template inline BinOpPred_match m_IDiv(const LHS &L, const RHS &R) { return BinOpPred_match(L, R); } /// Matches integer remainder operations. template inline BinOpPred_match m_IRem(const LHS &L, const RHS &R) { return BinOpPred_match(L, R); } //===----------------------------------------------------------------------===// // Class that matches exact binary ops. // template struct Exact_match { SubPattern_t SubPattern; Exact_match(const SubPattern_t &SP) : SubPattern(SP) {} template bool match(OpTy *V) { if (auto *PEO = dyn_cast(V)) return PEO->isExact() && SubPattern.match(V); return false; } }; template inline Exact_match m_Exact(const T &SubPattern) { return SubPattern; } //===----------------------------------------------------------------------===// // Matchers for CmpInst classes // template struct CmpClass_match { PredicateTy &Predicate; LHS_t L; RHS_t R; // The evaluation order is always stable, regardless of Commutability. // The LHS is always matched first. CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS) : Predicate(Pred), L(LHS), R(RHS) {} template bool match(OpTy *V) { if (auto *I = dyn_cast(V)) { if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) { Predicate = I->getPredicate(); return true; } else if (Commutable && L.match(I->getOperand(1)) && R.match(I->getOperand(0))) { Predicate = I->getSwappedPredicate(); return true; } } return false; } }; template inline CmpClass_match m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) { return CmpClass_match(Pred, L, R); } template inline CmpClass_match m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { return CmpClass_match(Pred, L, R); } template inline CmpClass_match m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) { return CmpClass_match(Pred, L, R); } //===----------------------------------------------------------------------===// // Matchers for instructions with a given opcode and number of operands. // /// Matches instructions with Opcode and three operands. template struct OneOps_match { T0 Op1; OneOps_match(const T0 &Op1) : Op1(Op1) {} template bool match(OpTy *V) { if (V->getValueID() == Value::InstructionVal + Opcode) { auto *I = cast(V); return Op1.match(I->getOperand(0)); } return false; } }; /// Matches instructions with Opcode and three operands. template struct TwoOps_match { T0 Op1; T1 Op2; TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {} template bool match(OpTy *V) { if (V->getValueID() == Value::InstructionVal + Opcode) { auto *I = cast(V); return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)); } return false; } }; /// Matches instructions with Opcode and three operands. template struct ThreeOps_match { T0 Op1; T1 Op2; T2 Op3; ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3) : Op1(Op1), Op2(Op2), Op3(Op3) {} template bool match(OpTy *V) { if (V->getValueID() == Value::InstructionVal + Opcode) { auto *I = cast(V); return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) && Op3.match(I->getOperand(2)); } return false; } }; /// Matches SelectInst. template inline ThreeOps_match m_Select(const Cond &C, const LHS &L, const RHS &R) { return ThreeOps_match(C, L, R); } /// This matches a select of two constants, e.g.: /// m_SelectCst<-1, 0>(m_Value(V)) template inline ThreeOps_match, constantint_match, Instruction::Select> m_SelectCst(const Cond &C) { return m_Select(C, m_ConstantInt(), m_ConstantInt()); } /// Matches FreezeInst. template inline OneOps_match m_Freeze(const OpTy &Op) { return OneOps_match(Op); } /// Matches InsertElementInst. template inline ThreeOps_match m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) { return ThreeOps_match( Val, Elt, Idx); } /// Matches ExtractElementInst. template inline TwoOps_match m_ExtractElt(const Val_t &Val, const Idx_t &Idx) { return TwoOps_match(Val, Idx); } /// Matches shuffle. template struct Shuffle_match { T0 Op1; T1 Op2; T2 Mask; Shuffle_match(const T0 &Op1, const T1 &Op2, const T2 &Mask) : Op1(Op1), Op2(Op2), Mask(Mask) {} template bool match(OpTy *V) { if (auto *I = dyn_cast(V)) { return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) && Mask.match(I->getShuffleMask()); } return false; } }; struct m_Mask { ArrayRef &MaskRef; m_Mask(ArrayRef &MaskRef) : MaskRef(MaskRef) {} bool match(ArrayRef Mask) { MaskRef = Mask; return true; } }; struct m_ZeroMask { bool match(ArrayRef Mask) { return all_of(Mask, [](int Elem) { return Elem == 0 || Elem == -1; }); } }; struct m_SpecificMask { ArrayRef &MaskRef; m_SpecificMask(ArrayRef &MaskRef) : MaskRef(MaskRef) {} bool match(ArrayRef Mask) { return MaskRef == Mask; } }; struct m_SplatOrUndefMask { int &SplatIndex; m_SplatOrUndefMask(int &SplatIndex) : SplatIndex(SplatIndex) {} bool match(ArrayRef Mask) { const auto *First = find_if(Mask, [](int Elem) { return Elem != -1; }); if (First == Mask.end()) return false; SplatIndex = *First; return all_of(Mask, [First](int Elem) { return Elem == *First || Elem == -1; }); } }; /// Matches ShuffleVectorInst independently of mask value. template inline TwoOps_match m_Shuffle(const V1_t &v1, const V2_t &v2) { return TwoOps_match(v1, v2); } template inline Shuffle_match m_Shuffle(const V1_t &v1, const V2_t &v2, const Mask_t &mask) { return Shuffle_match(v1, v2, mask); } /// Matches LoadInst. template inline OneOps_match m_Load(const OpTy &Op) { return OneOps_match(Op); } /// Matches StoreInst. template inline TwoOps_match m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) { return TwoOps_match(ValueOp, PointerOp); } //===----------------------------------------------------------------------===// // Matchers for CastInst classes // template struct CastOperator_match { Op_t Op; CastOperator_match(const Op_t &OpMatch) : Op(OpMatch) {} template bool match(OpTy *V) { if (auto *O = dyn_cast(V)) return O->getOpcode() == Opcode && Op.match(O->getOperand(0)); return false; } }; template struct CastInst_match { Op_t Op; CastInst_match(const Op_t &OpMatch) : Op(OpMatch) {} template bool match(OpTy *V) { if (auto *I = dyn_cast(V)) return I->getOpcode() == Opcode && Op.match(I->getOperand(0)); return false; } }; template struct PtrToIntSameSize_match { const DataLayout &DL; Op_t Op; PtrToIntSameSize_match(const DataLayout &DL, const Op_t &OpMatch) : DL(DL), Op(OpMatch) {} template bool match(OpTy *V) { if (auto *O = dyn_cast(V)) return O->getOpcode() == Instruction::PtrToInt && DL.getTypeSizeInBits(O->getType()) == DL.getTypeSizeInBits(O->getOperand(0)->getType()) && Op.match(O->getOperand(0)); return false; } }; template struct NNegZExt_match { Op_t Op; NNegZExt_match(const Op_t &OpMatch) : Op(OpMatch) {} template bool match(OpTy *V) { if (auto *I = dyn_cast(V)) return I->getOpcode() == Instruction::ZExt && I->hasNonNeg() && Op.match(I->getOperand(0)); return false; } }; /// Matches BitCast. template inline CastOperator_match m_BitCast(const OpTy &Op) { return CastOperator_match(Op); } /// Matches PtrToInt. template inline CastOperator_match m_PtrToInt(const OpTy &Op) { return CastOperator_match(Op); } template inline PtrToIntSameSize_match m_PtrToIntSameSize(const DataLayout &DL, const OpTy &Op) { return PtrToIntSameSize_match(DL, Op); } /// Matches IntToPtr. template inline CastOperator_match m_IntToPtr(const OpTy &Op) { return CastOperator_match(Op); } /// Matches Trunc. template inline CastOperator_match m_Trunc(const OpTy &Op) { return CastOperator_match(Op); } template inline match_combine_or, OpTy> m_TruncOrSelf(const OpTy &Op) { return m_CombineOr(m_Trunc(Op), Op); } /// Matches SExt. template inline CastInst_match m_SExt(const OpTy &Op) { return CastInst_match(Op); } /// Matches ZExt. template inline CastInst_match m_ZExt(const OpTy &Op) { return CastInst_match(Op); } template inline NNegZExt_match m_NNegZExt(const OpTy &Op) { return NNegZExt_match(Op); } template inline match_combine_or, OpTy> m_ZExtOrSelf(const OpTy &Op) { return m_CombineOr(m_ZExt(Op), Op); } template inline match_combine_or, OpTy> m_SExtOrSelf(const OpTy &Op) { return m_CombineOr(m_SExt(Op), Op); } /// Match either "sext" or "zext nneg". template inline match_combine_or, NNegZExt_match> m_SExtLike(const OpTy &Op) { return m_CombineOr(m_SExt(Op), m_NNegZExt(Op)); } template inline match_combine_or, CastInst_match> m_ZExtOrSExt(const OpTy &Op) { return m_CombineOr(m_ZExt(Op), m_SExt(Op)); } template inline match_combine_or< match_combine_or, CastInst_match>, OpTy> m_ZExtOrSExtOrSelf(const OpTy &Op) { return m_CombineOr(m_ZExtOrSExt(Op), Op); } template inline CastInst_match m_UIToFP(const OpTy &Op) { return CastInst_match(Op); } template inline CastInst_match m_SIToFP(const OpTy &Op) { return CastInst_match(Op); } template inline CastInst_match m_FPToUI(const OpTy &Op) { return CastInst_match(Op); } template inline CastInst_match m_FPToSI(const OpTy &Op) { return CastInst_match(Op); } template inline CastInst_match m_FPTrunc(const OpTy &Op) { return CastInst_match(Op); } template inline CastInst_match m_FPExt(const OpTy &Op) { return CastInst_match(Op); } //===----------------------------------------------------------------------===// // Matchers for control flow. // struct br_match { BasicBlock *&Succ; br_match(BasicBlock *&Succ) : Succ(Succ) {} template bool match(OpTy *V) { if (auto *BI = dyn_cast(V)) if (BI->isUnconditional()) { Succ = BI->getSuccessor(0); return true; } return false; } }; inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); } template struct brc_match { Cond_t Cond; TrueBlock_t T; FalseBlock_t F; brc_match(const Cond_t &C, const TrueBlock_t &t, const FalseBlock_t &f) : Cond(C), T(t), F(f) {} template bool match(OpTy *V) { if (auto *BI = dyn_cast(V)) if (BI->isConditional() && Cond.match(BI->getCondition())) return T.match(BI->getSuccessor(0)) && F.match(BI->getSuccessor(1)); return false; } }; template inline brc_match, bind_ty> m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) { return brc_match, bind_ty>( C, m_BasicBlock(T), m_BasicBlock(F)); } template inline brc_match m_Br(const Cond_t &C, const TrueBlock_t &T, const FalseBlock_t &F) { return brc_match(C, T, F); } //===----------------------------------------------------------------------===// // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y). // template struct MaxMin_match { using PredType = Pred_t; LHS_t L; RHS_t R; // The evaluation order is always stable, regardless of Commutability. // The LHS is always matched first. MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} template bool match(OpTy *V) { if (auto *II = dyn_cast(V)) { Intrinsic::ID IID = II->getIntrinsicID(); if ((IID == Intrinsic::smax && Pred_t::match(ICmpInst::ICMP_SGT)) || (IID == Intrinsic::smin && Pred_t::match(ICmpInst::ICMP_SLT)) || (IID == Intrinsic::umax && Pred_t::match(ICmpInst::ICMP_UGT)) || (IID == Intrinsic::umin && Pred_t::match(ICmpInst::ICMP_ULT))) { Value *LHS = II->getOperand(0), *RHS = II->getOperand(1); return (L.match(LHS) && R.match(RHS)) || (Commutable && L.match(RHS) && R.match(LHS)); } } // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x". auto *SI = dyn_cast(V); if (!SI) return false; auto *Cmp = dyn_cast(SI->getCondition()); if (!Cmp) return false; // At this point we have a select conditioned on a comparison. Check that // it is the values returned by the select that are being compared. auto *TrueVal = SI->getTrueValue(); auto *FalseVal = SI->getFalseValue(); auto *LHS = Cmp->getOperand(0); auto *RHS = Cmp->getOperand(1); if ((TrueVal != LHS || FalseVal != RHS) && (TrueVal != RHS || FalseVal != LHS)) return false; typename CmpInst_t::Predicate Pred = LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate(); // Does "(x pred y) ? x : y" represent the desired max/min operation? if (!Pred_t::match(Pred)) return false; // It does! Bind the operands. return (L.match(LHS) && R.match(RHS)) || (Commutable && L.match(RHS) && R.match(LHS)); } }; /// Helper class for identifying signed max predicates. struct smax_pred_ty { static bool match(ICmpInst::Predicate Pred) { return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE; } }; /// Helper class for identifying signed min predicates. struct smin_pred_ty { static bool match(ICmpInst::Predicate Pred) { return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE; } }; /// Helper class for identifying unsigned max predicates. struct umax_pred_ty { static bool match(ICmpInst::Predicate Pred) { return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE; } }; /// Helper class for identifying unsigned min predicates. struct umin_pred_ty { static bool match(ICmpInst::Predicate Pred) { return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE; } }; /// Helper class for identifying ordered max predicates. struct ofmax_pred_ty { static bool match(FCmpInst::Predicate Pred) { return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE; } }; /// Helper class for identifying ordered min predicates. struct ofmin_pred_ty { static bool match(FCmpInst::Predicate Pred) { return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE; } }; /// Helper class for identifying unordered max predicates. struct ufmax_pred_ty { static bool match(FCmpInst::Predicate Pred) { return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE; } }; /// Helper class for identifying unordered min predicates. struct ufmin_pred_ty { static bool match(FCmpInst::Predicate Pred) { return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE; } }; template inline MaxMin_match m_SMax(const LHS &L, const RHS &R) { return MaxMin_match(L, R); } template inline MaxMin_match m_SMin(const LHS &L, const RHS &R) { return MaxMin_match(L, R); } template inline MaxMin_match m_UMax(const LHS &L, const RHS &R) { return MaxMin_match(L, R); } template inline MaxMin_match m_UMin(const LHS &L, const RHS &R) { return MaxMin_match(L, R); } template inline match_combine_or< match_combine_or, MaxMin_match>, match_combine_or, MaxMin_match>> m_MaxOrMin(const LHS &L, const RHS &R) { return m_CombineOr(m_CombineOr(m_SMax(L, R), m_SMin(L, R)), m_CombineOr(m_UMax(L, R), m_UMin(L, R))); } /// Match an 'ordered' floating point maximum function. /// Floating point has one special value 'NaN'. Therefore, there is no total /// order. However, if we can ignore the 'NaN' value (for example, because of a /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum' /// semantics. In the presence of 'NaN' we have to preserve the original /// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate. /// /// max(L, R) iff L and R are not NaN /// m_OrdFMax(L, R) = R iff L or R are NaN template inline MaxMin_match m_OrdFMax(const LHS &L, const RHS &R) { return MaxMin_match(L, R); } /// Match an 'ordered' floating point minimum function. /// Floating point has one special value 'NaN'. Therefore, there is no total /// order. However, if we can ignore the 'NaN' value (for example, because of a /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum' /// semantics. In the presence of 'NaN' we have to preserve the original /// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate. /// /// min(L, R) iff L and R are not NaN /// m_OrdFMin(L, R) = R iff L or R are NaN template inline MaxMin_match m_OrdFMin(const LHS &L, const RHS &R) { return MaxMin_match(L, R); } /// Match an 'unordered' floating point maximum function. /// Floating point has one special value 'NaN'. Therefore, there is no total /// order. However, if we can ignore the 'NaN' value (for example, because of a /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum' /// semantics. In the presence of 'NaN' we have to preserve the original /// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate. /// /// max(L, R) iff L and R are not NaN /// m_UnordFMax(L, R) = L iff L or R are NaN template inline MaxMin_match m_UnordFMax(const LHS &L, const RHS &R) { return MaxMin_match(L, R); } /// Match an 'unordered' floating point minimum function. /// Floating point has one special value 'NaN'. Therefore, there is no total /// order. However, if we can ignore the 'NaN' value (for example, because of a /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum' /// semantics. In the presence of 'NaN' we have to preserve the original /// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate. /// /// min(L, R) iff L and R are not NaN /// m_UnordFMin(L, R) = L iff L or R are NaN template inline MaxMin_match m_UnordFMin(const LHS &L, const RHS &R) { return MaxMin_match(L, R); } //===----------------------------------------------------------------------===// // Matchers for overflow check patterns: e.g. (a + b) u< a, (a ^ -1) struct UAddWithOverflow_match { LHS_t L; RHS_t R; Sum_t S; UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S) : L(L), R(R), S(S) {} template bool match(OpTy *V) { Value *ICmpLHS, *ICmpRHS; ICmpInst::Predicate Pred; if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V)) return false; Value *AddLHS, *AddRHS; auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS)); // (a + b) u< a, (a + b) u< b if (Pred == ICmpInst::ICMP_ULT) if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS)) return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS); // a >u (a + b), b >u (a + b) if (Pred == ICmpInst::ICMP_UGT) if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS)) return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS); Value *Op1; auto XorExpr = m_OneUse(m_Xor(m_Value(Op1), m_AllOnes())); // (a ^ -1) u (a ^ -1) if (Pred == ICmpInst::ICMP_UGT) { if (XorExpr.match(ICmpRHS)) return L.match(Op1) && R.match(ICmpLHS) && S.match(ICmpRHS); } // Match special-case for increment-by-1. if (Pred == ICmpInst::ICMP_EQ) { // (a + 1) == 0 // (1 + a) == 0 if (AddExpr.match(ICmpLHS) && m_ZeroInt().match(ICmpRHS) && (m_One().match(AddLHS) || m_One().match(AddRHS))) return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS); // 0 == (a + 1) // 0 == (1 + a) if (m_ZeroInt().match(ICmpLHS) && AddExpr.match(ICmpRHS) && (m_One().match(AddLHS) || m_One().match(AddRHS))) return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS); } return false; } }; /// Match an icmp instruction checking for unsigned overflow on addition. /// /// S is matched to the addition whose result is being checked for overflow, and /// L and R are matched to the LHS and RHS of S. template UAddWithOverflow_match m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) { return UAddWithOverflow_match(L, R, S); } template struct Argument_match { unsigned OpI; Opnd_t Val; Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {} template bool match(OpTy *V) { // FIXME: Should likely be switched to use `CallBase`. if (const auto *CI = dyn_cast(V)) return Val.match(CI->getArgOperand(OpI)); return false; } }; /// Match an argument. template inline Argument_match m_Argument(const Opnd_t &Op) { return Argument_match(OpI, Op); } /// Intrinsic matchers. struct IntrinsicID_match { unsigned ID; IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {} template bool match(OpTy *V) { if (const auto *CI = dyn_cast(V)) if (const auto *F = CI->getCalledFunction()) return F->getIntrinsicID() == ID; return false; } }; /// Intrinsic matches are combinations of ID matchers, and argument /// matchers. Higher arity matcher are defined recursively in terms of and-ing /// them with lower arity matchers. Here's some convenient typedefs for up to /// several arguments, and more can be added as needed template struct m_Intrinsic_Ty; template struct m_Intrinsic_Ty { using Ty = match_combine_and>; }; template struct m_Intrinsic_Ty { using Ty = match_combine_and::Ty, Argument_match>; }; template struct m_Intrinsic_Ty { using Ty = match_combine_and::Ty, Argument_match>; }; template struct m_Intrinsic_Ty { using Ty = match_combine_and::Ty, Argument_match>; }; template struct m_Intrinsic_Ty { using Ty = match_combine_and::Ty, Argument_match>; }; template struct m_Intrinsic_Ty { using Ty = match_combine_and::Ty, Argument_match>; }; /// Match intrinsic calls like this: /// m_Intrinsic(m_Value(X)) template inline IntrinsicID_match m_Intrinsic() { return IntrinsicID_match(IntrID); } /// Matches MaskedLoad Intrinsic. template inline typename m_Intrinsic_Ty::Ty m_MaskedLoad(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2, const Opnd3 &Op3) { return m_Intrinsic(Op0, Op1, Op2, Op3); } /// Matches MaskedGather Intrinsic. template inline typename m_Intrinsic_Ty::Ty m_MaskedGather(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2, const Opnd3 &Op3) { return m_Intrinsic(Op0, Op1, Op2, Op3); } template inline typename m_Intrinsic_Ty::Ty m_Intrinsic(const T0 &Op0) { return m_CombineAnd(m_Intrinsic(), m_Argument<0>(Op0)); } template inline typename m_Intrinsic_Ty::Ty m_Intrinsic(const T0 &Op0, const T1 &Op1) { return m_CombineAnd(m_Intrinsic(Op0), m_Argument<1>(Op1)); } template inline typename m_Intrinsic_Ty::Ty m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) { return m_CombineAnd(m_Intrinsic(Op0, Op1), m_Argument<2>(Op2)); } template inline typename m_Intrinsic_Ty::Ty m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) { return m_CombineAnd(m_Intrinsic(Op0, Op1, Op2), m_Argument<3>(Op3)); } template inline typename m_Intrinsic_Ty::Ty m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3, const T4 &Op4) { return m_CombineAnd(m_Intrinsic(Op0, Op1, Op2, Op3), m_Argument<4>(Op4)); } template inline typename m_Intrinsic_Ty::Ty m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3, const T4 &Op4, const T5 &Op5) { return m_CombineAnd(m_Intrinsic(Op0, Op1, Op2, Op3, Op4), m_Argument<5>(Op5)); } // Helper intrinsic matching specializations. template inline typename m_Intrinsic_Ty::Ty m_BitReverse(const Opnd0 &Op0) { return m_Intrinsic(Op0); } template inline typename m_Intrinsic_Ty::Ty m_BSwap(const Opnd0 &Op0) { return m_Intrinsic(Op0); } template inline typename m_Intrinsic_Ty::Ty m_FAbs(const Opnd0 &Op0) { return m_Intrinsic(Op0); } template inline typename m_Intrinsic_Ty::Ty m_FCanonicalize(const Opnd0 &Op0) { return m_Intrinsic(Op0); } template inline typename m_Intrinsic_Ty::Ty m_FMin(const Opnd0 &Op0, const Opnd1 &Op1) { return m_Intrinsic(Op0, Op1); } template inline typename m_Intrinsic_Ty::Ty m_FMax(const Opnd0 &Op0, const Opnd1 &Op1) { return m_Intrinsic(Op0, Op1); } template inline typename m_Intrinsic_Ty::Ty m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) { return m_Intrinsic(Op0, Op1, Op2); } template inline typename m_Intrinsic_Ty::Ty m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) { return m_Intrinsic(Op0, Op1, Op2); } template inline typename m_Intrinsic_Ty::Ty m_Sqrt(const Opnd0 &Op0) { return m_Intrinsic(Op0); } template inline typename m_Intrinsic_Ty::Ty m_CopySign(const Opnd0 &Op0, const Opnd1 &Op1) { return m_Intrinsic(Op0, Op1); } template inline typename m_Intrinsic_Ty::Ty m_VecReverse(const Opnd0 &Op0) { return m_Intrinsic(Op0); } //===----------------------------------------------------------------------===// // Matchers for two-operands operators with the operators in either order // /// Matches a BinaryOperator with LHS and RHS in either order. template inline AnyBinaryOp_match m_c_BinOp(const LHS &L, const RHS &R) { return AnyBinaryOp_match(L, R); } /// Matches an ICmp with a predicate over LHS and RHS in either order. /// Swaps the predicate if operands are commuted. template inline CmpClass_match m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { return CmpClass_match(Pred, L, R); } /// Matches a specific opcode with LHS and RHS in either order. template inline SpecificBinaryOp_match m_c_BinOp(unsigned Opcode, const LHS &L, const RHS &R) { return SpecificBinaryOp_match(Opcode, L, R); } /// Matches a Add with LHS and RHS in either order. template inline BinaryOp_match m_c_Add(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } /// Matches a Mul with LHS and RHS in either order. template inline BinaryOp_match m_c_Mul(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } /// Matches an And with LHS and RHS in either order. template inline BinaryOp_match m_c_And(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } /// Matches an Or with LHS and RHS in either order. template inline BinaryOp_match m_c_Or(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } /// Matches an Xor with LHS and RHS in either order. template inline BinaryOp_match m_c_Xor(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } /// Matches a 'Neg' as 'sub 0, V'. template inline BinaryOp_match, ValTy, Instruction::Sub> m_Neg(const ValTy &V) { return m_Sub(m_ZeroInt(), V); } /// Matches a 'Neg' as 'sub nsw 0, V'. template inline OverflowingBinaryOp_match, ValTy, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap> m_NSWNeg(const ValTy &V) { return m_NSWSub(m_ZeroInt(), V); } /// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'. /// NOTE: we first match the 'Not' (by matching '-1'), /// and only then match the inner matcher! template inline BinaryOp_match, ValTy, Instruction::Xor, true> m_Not(const ValTy &V) { return m_c_Xor(m_AllOnes(), V); } template struct NotForbidUndef_match { ValTy Val; NotForbidUndef_match(const ValTy &V) : Val(V) {} template bool match(OpTy *V) { // We do not use m_c_Xor because that could match an arbitrary APInt that is // not -1 as C and then fail to match the other operand if it is -1. // This code should still work even when both operands are constants. Value *X; const APInt *C; if (m_Xor(m_Value(X), m_APIntForbidUndef(C)).match(V) && C->isAllOnes()) return Val.match(X); if (m_Xor(m_APIntForbidUndef(C), m_Value(X)).match(V) && C->isAllOnes()) return Val.match(X); return false; } }; /// Matches a bitwise 'not' as 'xor V, -1' or 'xor -1, V'. For vectors, the /// constant value must be composed of only -1 scalar elements. template inline NotForbidUndef_match m_NotForbidUndef(const ValTy &V) { return NotForbidUndef_match(V); } /// Matches an SMin with LHS and RHS in either order. template inline MaxMin_match m_c_SMin(const LHS &L, const RHS &R) { return MaxMin_match(L, R); } /// Matches an SMax with LHS and RHS in either order. template inline MaxMin_match m_c_SMax(const LHS &L, const RHS &R) { return MaxMin_match(L, R); } /// Matches a UMin with LHS and RHS in either order. template inline MaxMin_match m_c_UMin(const LHS &L, const RHS &R) { return MaxMin_match(L, R); } /// Matches a UMax with LHS and RHS in either order. template inline MaxMin_match m_c_UMax(const LHS &L, const RHS &R) { return MaxMin_match(L, R); } template inline match_combine_or< match_combine_or, MaxMin_match>, match_combine_or, MaxMin_match>> m_c_MaxOrMin(const LHS &L, const RHS &R) { return m_CombineOr(m_CombineOr(m_c_SMax(L, R), m_c_SMin(L, R)), m_CombineOr(m_c_UMax(L, R), m_c_UMin(L, R))); } template inline match_combine_or::Ty, typename m_Intrinsic_Ty::Ty> m_c_Intrinsic(const T0 &Op0, const T1 &Op1) { return m_CombineOr(m_Intrinsic(Op0, Op1), m_Intrinsic(Op1, Op0)); } /// Matches FAdd with LHS and RHS in either order. template inline BinaryOp_match m_c_FAdd(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } /// Matches FMul with LHS and RHS in either order. template inline BinaryOp_match m_c_FMul(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } template struct Signum_match { Opnd_t Val; Signum_match(const Opnd_t &V) : Val(V) {} template bool match(OpTy *V) { unsigned TypeSize = V->getType()->getScalarSizeInBits(); if (TypeSize == 0) return false; unsigned ShiftWidth = TypeSize - 1; Value *OpL = nullptr, *OpR = nullptr; // This is the representation of signum we match: // // signum(x) == (x >> 63) | (-x >>u 63) // // An i1 value is its own signum, so it's correct to match // // signum(x) == (x >> 0) | (-x >>u 0) // // for i1 values. auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth)); auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth)); auto Signum = m_Or(LHS, RHS); return Signum.match(V) && OpL == OpR && Val.match(OpL); } }; /// Matches a signum pattern. /// /// signum(x) = /// x > 0 -> 1 /// x == 0 -> 0 /// x < 0 -> -1 template inline Signum_match m_Signum(const Val_t &V) { return Signum_match(V); } template struct ExtractValue_match { Opnd_t Val; ExtractValue_match(const Opnd_t &V) : Val(V) {} template bool match(OpTy *V) { if (auto *I = dyn_cast(V)) { // If Ind is -1, don't inspect indices if (Ind != -1 && !(I->getNumIndices() == 1 && I->getIndices()[0] == (unsigned)Ind)) return false; return Val.match(I->getAggregateOperand()); } return false; } }; /// Match a single index ExtractValue instruction. /// For example m_ExtractValue<1>(...) template inline ExtractValue_match m_ExtractValue(const Val_t &V) { return ExtractValue_match(V); } /// Match an ExtractValue instruction with any index. /// For example m_ExtractValue(...) template inline ExtractValue_match<-1, Val_t> m_ExtractValue(const Val_t &V) { return ExtractValue_match<-1, Val_t>(V); } /// Matcher for a single index InsertValue instruction. template struct InsertValue_match { T0 Op0; T1 Op1; InsertValue_match(const T0 &Op0, const T1 &Op1) : Op0(Op0), Op1(Op1) {} template bool match(OpTy *V) { if (auto *I = dyn_cast(V)) { return Op0.match(I->getOperand(0)) && Op1.match(I->getOperand(1)) && I->getNumIndices() == 1 && Ind == I->getIndices()[0]; } return false; } }; /// Matches a single index InsertValue instruction. template inline InsertValue_match m_InsertValue(const Val_t &Val, const Elt_t &Elt) { return InsertValue_match(Val, Elt); } /// Matches patterns for `vscale`. This can either be a call to `llvm.vscale` or /// the constant expression /// `ptrtoint(gep , * null, i32 1>` /// under the right conditions determined by DataLayout. struct VScaleVal_match { template bool match(ITy *V) { if (m_Intrinsic().match(V)) return true; Value *Ptr; if (m_PtrToInt(m_Value(Ptr)).match(V)) { if (auto *GEP = dyn_cast(Ptr)) { auto *DerefTy = dyn_cast(GEP->getSourceElementType()); if (GEP->getNumIndices() == 1 && DerefTy && DerefTy->getElementType()->isIntegerTy(8) && m_Zero().match(GEP->getPointerOperand()) && m_SpecificInt(1).match(GEP->idx_begin()->get())) return true; } } return false; } }; inline VScaleVal_match m_VScale() { return VScaleVal_match(); } template struct LogicalOp_match { LHS L; RHS R; LogicalOp_match(const LHS &L, const RHS &R) : L(L), R(R) {} template bool match(T *V) { auto *I = dyn_cast(V); if (!I || !I->getType()->isIntOrIntVectorTy(1)) return false; if (I->getOpcode() == Opcode) { auto *Op0 = I->getOperand(0); auto *Op1 = I->getOperand(1); return (L.match(Op0) && R.match(Op1)) || (Commutable && L.match(Op1) && R.match(Op0)); } if (auto *Select = dyn_cast(I)) { auto *Cond = Select->getCondition(); auto *TVal = Select->getTrueValue(); auto *FVal = Select->getFalseValue(); // Don't match a scalar select of bool vectors. // Transforms expect a single type for operands if this matches. if (Cond->getType() != Select->getType()) return false; if (Opcode == Instruction::And) { auto *C = dyn_cast(FVal); if (C && C->isNullValue()) return (L.match(Cond) && R.match(TVal)) || (Commutable && L.match(TVal) && R.match(Cond)); } else { assert(Opcode == Instruction::Or); auto *C = dyn_cast(TVal); if (C && C->isOneValue()) return (L.match(Cond) && R.match(FVal)) || (Commutable && L.match(FVal) && R.match(Cond)); } } return false; } }; /// Matches L && R either in the form of L & R or L ? R : false. /// Note that the latter form is poison-blocking. template inline LogicalOp_match m_LogicalAnd(const LHS &L, const RHS &R) { return LogicalOp_match(L, R); } /// Matches L && R where L and R are arbitrary values. inline auto m_LogicalAnd() { return m_LogicalAnd(m_Value(), m_Value()); } /// Matches L && R with LHS and RHS in either order. template inline LogicalOp_match m_c_LogicalAnd(const LHS &L, const RHS &R) { return LogicalOp_match(L, R); } /// Matches L || R either in the form of L | R or L ? true : R. /// Note that the latter form is poison-blocking. template inline LogicalOp_match m_LogicalOr(const LHS &L, const RHS &R) { return LogicalOp_match(L, R); } /// Matches L || R where L and R are arbitrary values. inline auto m_LogicalOr() { return m_LogicalOr(m_Value(), m_Value()); } /// Matches L || R with LHS and RHS in either order. template inline LogicalOp_match m_c_LogicalOr(const LHS &L, const RHS &R) { return LogicalOp_match(L, R); } /// Matches either L && R or L || R, /// either one being in the either binary or logical form. /// Note that the latter form is poison-blocking. template inline auto m_LogicalOp(const LHS &L, const RHS &R) { return m_CombineOr( LogicalOp_match(L, R), LogicalOp_match(L, R)); } /// Matches either L && R or L || R where L and R are arbitrary values. inline auto m_LogicalOp() { return m_LogicalOp(m_Value(), m_Value()); } /// Matches either L && R or L || R with LHS and RHS in either order. template inline auto m_c_LogicalOp(const LHS &L, const RHS &R) { return m_LogicalOp(L, R); } } // end namespace PatternMatch } // end namespace llvm #endif // LLVM_IR_PATTERNMATCH_H