//===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the LoopInfo class that is used to identify natural loops // and determine the loop depth of various nodes of the CFG. Note that the // loops identified may actually be several natural loops that share the same // header node... not just a single natural loop. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/LoopInfo.h" #include "llvm/ADT/ScopeExit.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/Analysis/IVDescriptors.h" #include "llvm/Analysis/LoopIterator.h" #include "llvm/Analysis/LoopNestAnalysis.h" #include "llvm/Analysis/MemorySSA.h" #include "llvm/Analysis/MemorySSAUpdater.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Config/llvm-config.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/PrintPasses.h" #include "llvm/InitializePasses.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/GenericLoopInfoImpl.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops. template class llvm::LoopBase; template class llvm::LoopInfoBase; // Always verify loopinfo if expensive checking is enabled. #ifdef EXPENSIVE_CHECKS bool llvm::VerifyLoopInfo = true; #else bool llvm::VerifyLoopInfo = false; #endif static cl::opt VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo), cl::Hidden, cl::desc("Verify loop info (time consuming)")); //===----------------------------------------------------------------------===// // Loop implementation // bool Loop::isLoopInvariant(const Value *V) const { if (const Instruction *I = dyn_cast(V)) return !contains(I); return true; // All non-instructions are loop invariant } bool Loop::hasLoopInvariantOperands(const Instruction *I) const { return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); }); } bool Loop::makeLoopInvariant(Value *V, bool &Changed, Instruction *InsertPt, MemorySSAUpdater *MSSAU, ScalarEvolution *SE) const { if (Instruction *I = dyn_cast(V)) return makeLoopInvariant(I, Changed, InsertPt, MSSAU, SE); return true; // All non-instructions are loop-invariant. } bool Loop::makeLoopInvariant(Instruction *I, bool &Changed, Instruction *InsertPt, MemorySSAUpdater *MSSAU, ScalarEvolution *SE) const { // Test if the value is already loop-invariant. if (isLoopInvariant(I)) return true; if (!isSafeToSpeculativelyExecute(I)) return false; if (I->mayReadFromMemory()) return false; // EH block instructions are immobile. if (I->isEHPad()) return false; // Determine the insertion point, unless one was given. if (!InsertPt) { BasicBlock *Preheader = getLoopPreheader(); // Without a preheader, hoisting is not feasible. if (!Preheader) return false; InsertPt = Preheader->getTerminator(); } // Don't hoist instructions with loop-variant operands. for (Value *Operand : I->operands()) if (!makeLoopInvariant(Operand, Changed, InsertPt, MSSAU, SE)) return false; // Hoist. I->moveBefore(InsertPt); if (MSSAU) if (auto *MUD = MSSAU->getMemorySSA()->getMemoryAccess(I)) MSSAU->moveToPlace(MUD, InsertPt->getParent(), MemorySSA::BeforeTerminator); // There is possibility of hoisting this instruction above some arbitrary // condition. Any metadata defined on it can be control dependent on this // condition. Conservatively strip it here so that we don't give any wrong // information to the optimizer. I->dropUnknownNonDebugMetadata(); if (SE) SE->forgetBlockAndLoopDispositions(I); Changed = true; return true; } bool Loop::getIncomingAndBackEdge(BasicBlock *&Incoming, BasicBlock *&Backedge) const { BasicBlock *H = getHeader(); Incoming = nullptr; Backedge = nullptr; pred_iterator PI = pred_begin(H); assert(PI != pred_end(H) && "Loop must have at least one backedge!"); Backedge = *PI++; if (PI == pred_end(H)) return false; // dead loop Incoming = *PI++; if (PI != pred_end(H)) return false; // multiple backedges? if (contains(Incoming)) { if (contains(Backedge)) return false; std::swap(Incoming, Backedge); } else if (!contains(Backedge)) return false; assert(Incoming && Backedge && "expected non-null incoming and backedges"); return true; } PHINode *Loop::getCanonicalInductionVariable() const { BasicBlock *H = getHeader(); BasicBlock *Incoming = nullptr, *Backedge = nullptr; if (!getIncomingAndBackEdge(Incoming, Backedge)) return nullptr; // Loop over all of the PHI nodes, looking for a canonical indvar. for (BasicBlock::iterator I = H->begin(); isa(I); ++I) { PHINode *PN = cast(I); if (ConstantInt *CI = dyn_cast(PN->getIncomingValueForBlock(Incoming))) if (CI->isZero()) if (Instruction *Inc = dyn_cast(PN->getIncomingValueForBlock(Backedge))) if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN) if (ConstantInt *CI = dyn_cast(Inc->getOperand(1))) if (CI->isOne()) return PN; } return nullptr; } /// Get the latch condition instruction. ICmpInst *Loop::getLatchCmpInst() const { if (BasicBlock *Latch = getLoopLatch()) if (BranchInst *BI = dyn_cast_or_null(Latch->getTerminator())) if (BI->isConditional()) return dyn_cast(BI->getCondition()); return nullptr; } /// Return the final value of the loop induction variable if found. static Value *findFinalIVValue(const Loop &L, const PHINode &IndVar, const Instruction &StepInst) { ICmpInst *LatchCmpInst = L.getLatchCmpInst(); if (!LatchCmpInst) return nullptr; Value *Op0 = LatchCmpInst->getOperand(0); Value *Op1 = LatchCmpInst->getOperand(1); if (Op0 == &IndVar || Op0 == &StepInst) return Op1; if (Op1 == &IndVar || Op1 == &StepInst) return Op0; return nullptr; } std::optional Loop::LoopBounds::getBounds(const Loop &L, PHINode &IndVar, ScalarEvolution &SE) { InductionDescriptor IndDesc; if (!InductionDescriptor::isInductionPHI(&IndVar, &L, &SE, IndDesc)) return std::nullopt; Value *InitialIVValue = IndDesc.getStartValue(); Instruction *StepInst = IndDesc.getInductionBinOp(); if (!InitialIVValue || !StepInst) return std::nullopt; const SCEV *Step = IndDesc.getStep(); Value *StepInstOp1 = StepInst->getOperand(1); Value *StepInstOp0 = StepInst->getOperand(0); Value *StepValue = nullptr; if (SE.getSCEV(StepInstOp1) == Step) StepValue = StepInstOp1; else if (SE.getSCEV(StepInstOp0) == Step) StepValue = StepInstOp0; Value *FinalIVValue = findFinalIVValue(L, IndVar, *StepInst); if (!FinalIVValue) return std::nullopt; return LoopBounds(L, *InitialIVValue, *StepInst, StepValue, *FinalIVValue, SE); } using Direction = Loop::LoopBounds::Direction; ICmpInst::Predicate Loop::LoopBounds::getCanonicalPredicate() const { BasicBlock *Latch = L.getLoopLatch(); assert(Latch && "Expecting valid latch"); BranchInst *BI = dyn_cast_or_null(Latch->getTerminator()); assert(BI && BI->isConditional() && "Expecting conditional latch branch"); ICmpInst *LatchCmpInst = dyn_cast(BI->getCondition()); assert(LatchCmpInst && "Expecting the latch compare instruction to be a CmpInst"); // Need to inverse the predicate when first successor is not the loop // header ICmpInst::Predicate Pred = (BI->getSuccessor(0) == L.getHeader()) ? LatchCmpInst->getPredicate() : LatchCmpInst->getInversePredicate(); if (LatchCmpInst->getOperand(0) == &getFinalIVValue()) Pred = ICmpInst::getSwappedPredicate(Pred); // Need to flip strictness of the predicate when the latch compare instruction // is not using StepInst if (LatchCmpInst->getOperand(0) == &getStepInst() || LatchCmpInst->getOperand(1) == &getStepInst()) return Pred; // Cannot flip strictness of NE and EQ if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) return ICmpInst::getFlippedStrictnessPredicate(Pred); Direction D = getDirection(); if (D == Direction::Increasing) return ICmpInst::ICMP_SLT; if (D == Direction::Decreasing) return ICmpInst::ICMP_SGT; // If cannot determine the direction, then unable to find the canonical // predicate return ICmpInst::BAD_ICMP_PREDICATE; } Direction Loop::LoopBounds::getDirection() const { if (const SCEVAddRecExpr *StepAddRecExpr = dyn_cast(SE.getSCEV(&getStepInst()))) if (const SCEV *StepRecur = StepAddRecExpr->getStepRecurrence(SE)) { if (SE.isKnownPositive(StepRecur)) return Direction::Increasing; if (SE.isKnownNegative(StepRecur)) return Direction::Decreasing; } return Direction::Unknown; } std::optional Loop::getBounds(ScalarEvolution &SE) const { if (PHINode *IndVar = getInductionVariable(SE)) return LoopBounds::getBounds(*this, *IndVar, SE); return std::nullopt; } PHINode *Loop::getInductionVariable(ScalarEvolution &SE) const { if (!isLoopSimplifyForm()) return nullptr; BasicBlock *Header = getHeader(); assert(Header && "Expected a valid loop header"); ICmpInst *CmpInst = getLatchCmpInst(); if (!CmpInst) return nullptr; Value *LatchCmpOp0 = CmpInst->getOperand(0); Value *LatchCmpOp1 = CmpInst->getOperand(1); for (PHINode &IndVar : Header->phis()) { InductionDescriptor IndDesc; if (!InductionDescriptor::isInductionPHI(&IndVar, this, &SE, IndDesc)) continue; BasicBlock *Latch = getLoopLatch(); Value *StepInst = IndVar.getIncomingValueForBlock(Latch); // case 1: // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}] // StepInst = IndVar + step // cmp = StepInst < FinalValue if (StepInst == LatchCmpOp0 || StepInst == LatchCmpOp1) return &IndVar; // case 2: // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}] // StepInst = IndVar + step // cmp = IndVar < FinalValue if (&IndVar == LatchCmpOp0 || &IndVar == LatchCmpOp1) return &IndVar; } return nullptr; } bool Loop::getInductionDescriptor(ScalarEvolution &SE, InductionDescriptor &IndDesc) const { if (PHINode *IndVar = getInductionVariable(SE)) return InductionDescriptor::isInductionPHI(IndVar, this, &SE, IndDesc); return false; } bool Loop::isAuxiliaryInductionVariable(PHINode &AuxIndVar, ScalarEvolution &SE) const { // Located in the loop header BasicBlock *Header = getHeader(); if (AuxIndVar.getParent() != Header) return false; // No uses outside of the loop for (User *U : AuxIndVar.users()) if (const Instruction *I = dyn_cast(U)) if (!contains(I)) return false; InductionDescriptor IndDesc; if (!InductionDescriptor::isInductionPHI(&AuxIndVar, this, &SE, IndDesc)) return false; // The step instruction opcode should be add or sub. if (IndDesc.getInductionOpcode() != Instruction::Add && IndDesc.getInductionOpcode() != Instruction::Sub) return false; // Incremented by a loop invariant step for each loop iteration return SE.isLoopInvariant(IndDesc.getStep(), this); } BranchInst *Loop::getLoopGuardBranch() const { if (!isLoopSimplifyForm()) return nullptr; BasicBlock *Preheader = getLoopPreheader(); assert(Preheader && getLoopLatch() && "Expecting a loop with valid preheader and latch"); // Loop should be in rotate form. if (!isRotatedForm()) return nullptr; // Disallow loops with more than one unique exit block, as we do not verify // that GuardOtherSucc post dominates all exit blocks. BasicBlock *ExitFromLatch = getUniqueExitBlock(); if (!ExitFromLatch) return nullptr; BasicBlock *GuardBB = Preheader->getUniquePredecessor(); if (!GuardBB) return nullptr; assert(GuardBB->getTerminator() && "Expecting valid guard terminator"); BranchInst *GuardBI = dyn_cast(GuardBB->getTerminator()); if (!GuardBI || GuardBI->isUnconditional()) return nullptr; BasicBlock *GuardOtherSucc = (GuardBI->getSuccessor(0) == Preheader) ? GuardBI->getSuccessor(1) : GuardBI->getSuccessor(0); // Check if ExitFromLatch (or any BasicBlock which is an empty unique // successor of ExitFromLatch) is equal to GuardOtherSucc. If // skipEmptyBlockUntil returns GuardOtherSucc, then the guard branch for the // loop is GuardBI (return GuardBI), otherwise return nullptr. if (&LoopNest::skipEmptyBlockUntil(ExitFromLatch, GuardOtherSucc, /*CheckUniquePred=*/true) == GuardOtherSucc) return GuardBI; else return nullptr; } bool Loop::isCanonical(ScalarEvolution &SE) const { InductionDescriptor IndDesc; if (!getInductionDescriptor(SE, IndDesc)) return false; ConstantInt *Init = dyn_cast_or_null(IndDesc.getStartValue()); if (!Init || !Init->isZero()) return false; if (IndDesc.getInductionOpcode() != Instruction::Add) return false; ConstantInt *Step = IndDesc.getConstIntStepValue(); if (!Step || !Step->isOne()) return false; return true; } // Check that 'BB' doesn't have any uses outside of the 'L' static bool isBlockInLCSSAForm(const Loop &L, const BasicBlock &BB, const DominatorTree &DT, bool IgnoreTokens) { for (const Instruction &I : BB) { // Tokens can't be used in PHI nodes and live-out tokens prevent loop // optimizations, so for the purposes of considered LCSSA form, we // can ignore them. if (IgnoreTokens && I.getType()->isTokenTy()) continue; for (const Use &U : I.uses()) { const Instruction *UI = cast(U.getUser()); const BasicBlock *UserBB = UI->getParent(); // For practical purposes, we consider that the use in a PHI // occurs in the respective predecessor block. For more info, // see the `phi` doc in LangRef and the LCSSA doc. if (const PHINode *P = dyn_cast(UI)) UserBB = P->getIncomingBlock(U); // Check the current block, as a fast-path, before checking whether // the use is anywhere in the loop. Most values are used in the same // block they are defined in. Also, blocks not reachable from the // entry are special; uses in them don't need to go through PHIs. if (UserBB != &BB && !L.contains(UserBB) && DT.isReachableFromEntry(UserBB)) return false; } } return true; } bool Loop::isLCSSAForm(const DominatorTree &DT, bool IgnoreTokens) const { // For each block we check that it doesn't have any uses outside of this loop. return all_of(this->blocks(), [&](const BasicBlock *BB) { return isBlockInLCSSAForm(*this, *BB, DT, IgnoreTokens); }); } bool Loop::isRecursivelyLCSSAForm(const DominatorTree &DT, const LoopInfo &LI, bool IgnoreTokens) const { // For each block we check that it doesn't have any uses outside of its // innermost loop. This process will transitively guarantee that the current // loop and all of the nested loops are in LCSSA form. return all_of(this->blocks(), [&](const BasicBlock *BB) { return isBlockInLCSSAForm(*LI.getLoopFor(BB), *BB, DT, IgnoreTokens); }); } bool Loop::isLoopSimplifyForm() const { // Normal-form loops have a preheader, a single backedge, and all of their // exits have all their predecessors inside the loop. return getLoopPreheader() && getLoopLatch() && hasDedicatedExits(); } // Routines that reform the loop CFG and split edges often fail on indirectbr. bool Loop::isSafeToClone() const { // Return false if any loop blocks contain indirectbrs, or there are any calls // to noduplicate functions. for (BasicBlock *BB : this->blocks()) { if (isa(BB->getTerminator())) return false; for (Instruction &I : *BB) if (auto *CB = dyn_cast(&I)) if (CB->cannotDuplicate()) return false; } return true; } MDNode *Loop::getLoopID() const { MDNode *LoopID = nullptr; // Go through the latch blocks and check the terminator for the metadata. SmallVector LatchesBlocks; getLoopLatches(LatchesBlocks); for (BasicBlock *BB : LatchesBlocks) { Instruction *TI = BB->getTerminator(); MDNode *MD = TI->getMetadata(LLVMContext::MD_loop); if (!MD) return nullptr; if (!LoopID) LoopID = MD; else if (MD != LoopID) return nullptr; } if (!LoopID || LoopID->getNumOperands() == 0 || LoopID->getOperand(0) != LoopID) return nullptr; return LoopID; } void Loop::setLoopID(MDNode *LoopID) const { assert((!LoopID || LoopID->getNumOperands() > 0) && "Loop ID needs at least one operand"); assert((!LoopID || LoopID->getOperand(0) == LoopID) && "Loop ID should refer to itself"); SmallVector LoopLatches; getLoopLatches(LoopLatches); for (BasicBlock *BB : LoopLatches) BB->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID); } void Loop::setLoopAlreadyUnrolled() { LLVMContext &Context = getHeader()->getContext(); MDNode *DisableUnrollMD = MDNode::get(Context, MDString::get(Context, "llvm.loop.unroll.disable")); MDNode *LoopID = getLoopID(); MDNode *NewLoopID = makePostTransformationMetadata( Context, LoopID, {"llvm.loop.unroll."}, {DisableUnrollMD}); setLoopID(NewLoopID); } void Loop::setLoopMustProgress() { LLVMContext &Context = getHeader()->getContext(); MDNode *MustProgress = findOptionMDForLoop(this, "llvm.loop.mustprogress"); if (MustProgress) return; MDNode *MustProgressMD = MDNode::get(Context, MDString::get(Context, "llvm.loop.mustprogress")); MDNode *LoopID = getLoopID(); MDNode *NewLoopID = makePostTransformationMetadata(Context, LoopID, {}, {MustProgressMD}); setLoopID(NewLoopID); } bool Loop::isAnnotatedParallel() const { MDNode *DesiredLoopIdMetadata = getLoopID(); if (!DesiredLoopIdMetadata) return false; MDNode *ParallelAccesses = findOptionMDForLoop(this, "llvm.loop.parallel_accesses"); SmallPtrSet ParallelAccessGroups; // For scalable 'contains' check. if (ParallelAccesses) { for (const MDOperand &MD : drop_begin(ParallelAccesses->operands())) { MDNode *AccGroup = cast(MD.get()); assert(isValidAsAccessGroup(AccGroup) && "List item must be an access group"); ParallelAccessGroups.insert(AccGroup); } } // The loop branch contains the parallel loop metadata. In order to ensure // that any parallel-loop-unaware optimization pass hasn't added loop-carried // dependencies (thus converted the loop back to a sequential loop), check // that all the memory instructions in the loop belong to an access group that // is parallel to this loop. for (BasicBlock *BB : this->blocks()) { for (Instruction &I : *BB) { if (!I.mayReadOrWriteMemory()) continue; if (MDNode *AccessGroup = I.getMetadata(LLVMContext::MD_access_group)) { auto ContainsAccessGroup = [&ParallelAccessGroups](MDNode *AG) -> bool { if (AG->getNumOperands() == 0) { assert(isValidAsAccessGroup(AG) && "Item must be an access group"); return ParallelAccessGroups.count(AG); } for (const MDOperand &AccessListItem : AG->operands()) { MDNode *AccGroup = cast(AccessListItem.get()); assert(isValidAsAccessGroup(AccGroup) && "List item must be an access group"); if (ParallelAccessGroups.count(AccGroup)) return true; } return false; }; if (ContainsAccessGroup(AccessGroup)) continue; } // The memory instruction can refer to the loop identifier metadata // directly or indirectly through another list metadata (in case of // nested parallel loops). The loop identifier metadata refers to // itself so we can check both cases with the same routine. MDNode *LoopIdMD = I.getMetadata(LLVMContext::MD_mem_parallel_loop_access); if (!LoopIdMD) return false; if (!llvm::is_contained(LoopIdMD->operands(), DesiredLoopIdMetadata)) return false; } } return true; } DebugLoc Loop::getStartLoc() const { return getLocRange().getStart(); } Loop::LocRange Loop::getLocRange() const { // If we have a debug location in the loop ID, then use it. if (MDNode *LoopID = getLoopID()) { DebugLoc Start; // We use the first DebugLoc in the header as the start location of the loop // and if there is a second DebugLoc in the header we use it as end location // of the loop. for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { if (DILocation *L = dyn_cast(LoopID->getOperand(i))) { if (!Start) Start = DebugLoc(L); else return LocRange(Start, DebugLoc(L)); } } if (Start) return LocRange(Start); } // Try the pre-header first. if (BasicBlock *PHeadBB = getLoopPreheader()) if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc()) return LocRange(DL); // If we have no pre-header or there are no instructions with debug // info in it, try the header. if (BasicBlock *HeadBB = getHeader()) return LocRange(HeadBB->getTerminator()->getDebugLoc()); return LocRange(); } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void Loop::dump() const { print(dbgs()); } LLVM_DUMP_METHOD void Loop::dumpVerbose() const { print(dbgs(), /*Verbose=*/true); } #endif //===----------------------------------------------------------------------===// // UnloopUpdater implementation // namespace { /// Find the new parent loop for all blocks within the "unloop" whose last /// backedges has just been removed. class UnloopUpdater { Loop &Unloop; LoopInfo *LI; LoopBlocksDFS DFS; // Map unloop's immediate subloops to their nearest reachable parents. Nested // loops within these subloops will not change parents. However, an immediate // subloop's new parent will be the nearest loop reachable from either its own // exits *or* any of its nested loop's exits. DenseMap SubloopParents; // Flag the presence of an irreducible backedge whose destination is a block // directly contained by the original unloop. bool FoundIB = false; public: UnloopUpdater(Loop *UL, LoopInfo *LInfo) : Unloop(*UL), LI(LInfo), DFS(UL) {} void updateBlockParents(); void removeBlocksFromAncestors(); void updateSubloopParents(); protected: Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop); }; } // end anonymous namespace /// Update the parent loop for all blocks that are directly contained within the /// original "unloop". void UnloopUpdater::updateBlockParents() { if (Unloop.getNumBlocks()) { // Perform a post order CFG traversal of all blocks within this loop, // propagating the nearest loop from successors to predecessors. LoopBlocksTraversal Traversal(DFS, LI); for (BasicBlock *POI : Traversal) { Loop *L = LI->getLoopFor(POI); Loop *NL = getNearestLoop(POI, L); if (NL != L) { // For reducible loops, NL is now an ancestor of Unloop. assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) && "uninitialized successor"); LI->changeLoopFor(POI, NL); } else { // Or the current block is part of a subloop, in which case its parent // is unchanged. assert((FoundIB || Unloop.contains(L)) && "uninitialized successor"); } } } // Each irreducible loop within the unloop induces a round of iteration using // the DFS result cached by Traversal. bool Changed = FoundIB; for (unsigned NIters = 0; Changed; ++NIters) { assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm"); (void)NIters; // Iterate over the postorder list of blocks, propagating the nearest loop // from successors to predecessors as before. Changed = false; for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(), POE = DFS.endPostorder(); POI != POE; ++POI) { Loop *L = LI->getLoopFor(*POI); Loop *NL = getNearestLoop(*POI, L); if (NL != L) { assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) && "uninitialized successor"); LI->changeLoopFor(*POI, NL); Changed = true; } } } } /// Remove unloop's blocks from all ancestors below their new parents. void UnloopUpdater::removeBlocksFromAncestors() { // Remove all unloop's blocks (including those in nested subloops) from // ancestors below the new parent loop. for (BasicBlock *BB : Unloop.blocks()) { Loop *OuterParent = LI->getLoopFor(BB); if (Unloop.contains(OuterParent)) { while (OuterParent->getParentLoop() != &Unloop) OuterParent = OuterParent->getParentLoop(); OuterParent = SubloopParents[OuterParent]; } // Remove blocks from former Ancestors except Unloop itself which will be // deleted. for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent; OldParent = OldParent->getParentLoop()) { assert(OldParent && "new loop is not an ancestor of the original"); OldParent->removeBlockFromLoop(BB); } } } /// Update the parent loop for all subloops directly nested within unloop. void UnloopUpdater::updateSubloopParents() { while (!Unloop.isInnermost()) { Loop *Subloop = *std::prev(Unloop.end()); Unloop.removeChildLoop(std::prev(Unloop.end())); assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop"); if (Loop *Parent = SubloopParents[Subloop]) Parent->addChildLoop(Subloop); else LI->addTopLevelLoop(Subloop); } } /// Return the nearest parent loop among this block's successors. If a successor /// is a subloop header, consider its parent to be the nearest parent of the /// subloop's exits. /// /// For subloop blocks, simply update SubloopParents and return NULL. Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) { // Initially for blocks directly contained by Unloop, NearLoop == Unloop and // is considered uninitialized. Loop *NearLoop = BBLoop; Loop *Subloop = nullptr; if (NearLoop != &Unloop && Unloop.contains(NearLoop)) { Subloop = NearLoop; // Find the subloop ancestor that is directly contained within Unloop. while (Subloop->getParentLoop() != &Unloop) { Subloop = Subloop->getParentLoop(); assert(Subloop && "subloop is not an ancestor of the original loop"); } // Get the current nearest parent of the Subloop exits, initially Unloop. NearLoop = SubloopParents.insert({Subloop, &Unloop}).first->second; } succ_iterator I = succ_begin(BB), E = succ_end(BB); if (I == E) { assert(!Subloop && "subloop blocks must have a successor"); NearLoop = nullptr; // unloop blocks may now exit the function. } for (; I != E; ++I) { if (*I == BB) continue; // self loops are uninteresting Loop *L = LI->getLoopFor(*I); if (L == &Unloop) { // This successor has not been processed. This path must lead to an // irreducible backedge. assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB"); FoundIB = true; } if (L != &Unloop && Unloop.contains(L)) { // Successor is in a subloop. if (Subloop) continue; // Branching within subloops. Ignore it. // BB branches from the original into a subloop header. assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops"); // Get the current nearest parent of the Subloop's exits. L = SubloopParents[L]; // L could be Unloop if the only exit was an irreducible backedge. } if (L == &Unloop) { continue; } // Handle critical edges from Unloop into a sibling loop. if (L && !L->contains(&Unloop)) { L = L->getParentLoop(); } // Remember the nearest parent loop among successors or subloop exits. if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L)) NearLoop = L; } if (Subloop) { SubloopParents[Subloop] = NearLoop; return BBLoop; } return NearLoop; } LoopInfo::LoopInfo(const DomTreeBase &DomTree) { analyze(DomTree); } bool LoopInfo::invalidate(Function &F, const PreservedAnalyses &PA, FunctionAnalysisManager::Invalidator &) { // Check whether the analysis, all analyses on functions, or the function's // CFG have been preserved. auto PAC = PA.getChecker(); return !(PAC.preserved() || PAC.preservedSet>() || PAC.preservedSet()); } void LoopInfo::erase(Loop *Unloop) { assert(!Unloop->isInvalid() && "Loop has already been erased!"); auto InvalidateOnExit = make_scope_exit([&]() { destroy(Unloop); }); // First handle the special case of no parent loop to simplify the algorithm. if (Unloop->isOutermost()) { // Since BBLoop had no parent, Unloop blocks are no longer in a loop. for (BasicBlock *BB : Unloop->blocks()) { // Don't reparent blocks in subloops. if (getLoopFor(BB) != Unloop) continue; // Blocks no longer have a parent but are still referenced by Unloop until // the Unloop object is deleted. changeLoopFor(BB, nullptr); } // Remove the loop from the top-level LoopInfo object. for (iterator I = begin();; ++I) { assert(I != end() && "Couldn't find loop"); if (*I == Unloop) { removeLoop(I); break; } } // Move all of the subloops to the top-level. while (!Unloop->isInnermost()) addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end()))); return; } // Update the parent loop for all blocks within the loop. Blocks within // subloops will not change parents. UnloopUpdater Updater(Unloop, this); Updater.updateBlockParents(); // Remove blocks from former ancestor loops. Updater.removeBlocksFromAncestors(); // Add direct subloops as children in their new parent loop. Updater.updateSubloopParents(); // Remove unloop from its parent loop. Loop *ParentLoop = Unloop->getParentLoop(); for (Loop::iterator I = ParentLoop->begin();; ++I) { assert(I != ParentLoop->end() && "Couldn't find loop"); if (*I == Unloop) { ParentLoop->removeChildLoop(I); break; } } } bool LoopInfo::wouldBeOutOfLoopUseRequiringLCSSA( const Value *V, const BasicBlock *ExitBB) const { if (V->getType()->isTokenTy()) // We can't form PHIs of token type, so the definition of LCSSA excludes // values of that type. return false; const Instruction *I = dyn_cast(V); if (!I) return false; const Loop *L = getLoopFor(I->getParent()); if (!L) return false; if (L->contains(ExitBB)) // Could be an exit bb of a subloop and contained in defining loop return false; // We found a (new) out-of-loop use location, for a value defined in-loop. // (Note that because of LCSSA, we don't have to account for values defined // in sibling loops. Such values will have LCSSA phis of their own in the // common parent loop.) return true; } AnalysisKey LoopAnalysis::Key; LoopInfo LoopAnalysis::run(Function &F, FunctionAnalysisManager &AM) { // FIXME: Currently we create a LoopInfo from scratch for every function. // This may prove to be too wasteful due to deallocating and re-allocating // memory each time for the underlying map and vector datastructures. At some // point it may prove worthwhile to use a freelist and recycle LoopInfo // objects. I don't want to add that kind of complexity until the scope of // the problem is better understood. LoopInfo LI; LI.analyze(AM.getResult(F)); return LI; } PreservedAnalyses LoopPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { AM.getResult(F).print(OS); return PreservedAnalyses::all(); } void llvm::printLoop(Loop &L, raw_ostream &OS, const std::string &Banner) { if (forcePrintModuleIR()) { // handling -print-module-scope OS << Banner << " (loop: "; L.getHeader()->printAsOperand(OS, false); OS << ")\n"; // printing whole module OS << *L.getHeader()->getModule(); return; } OS << Banner; auto *PreHeader = L.getLoopPreheader(); if (PreHeader) { OS << "\n; Preheader:"; PreHeader->print(OS); OS << "\n; Loop:"; } for (auto *Block : L.blocks()) if (Block) Block->print(OS); else OS << "Printing block"; SmallVector ExitBlocks; L.getExitBlocks(ExitBlocks); if (!ExitBlocks.empty()) { OS << "\n; Exit blocks"; for (auto *Block : ExitBlocks) if (Block) Block->print(OS); else OS << "Printing block"; } } MDNode *llvm::findOptionMDForLoopID(MDNode *LoopID, StringRef Name) { // No loop metadata node, no loop properties. if (!LoopID) return nullptr; // First operand should refer to the metadata node itself, for legacy reasons. assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); // Iterate over the metdata node operands and look for MDString metadata. for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { MDNode *MD = dyn_cast(LoopID->getOperand(i)); if (!MD || MD->getNumOperands() < 1) continue; MDString *S = dyn_cast(MD->getOperand(0)); if (!S) continue; // Return the operand node if MDString holds expected metadata. if (Name.equals(S->getString())) return MD; } // Loop property not found. return nullptr; } MDNode *llvm::findOptionMDForLoop(const Loop *TheLoop, StringRef Name) { return findOptionMDForLoopID(TheLoop->getLoopID(), Name); } /// Find string metadata for loop /// /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an /// operand or null otherwise. If the string metadata is not found return /// Optional's not-a-value. std::optional llvm::findStringMetadataForLoop(const Loop *TheLoop, StringRef Name) { MDNode *MD = findOptionMDForLoop(TheLoop, Name); if (!MD) return std::nullopt; switch (MD->getNumOperands()) { case 1: return nullptr; case 2: return &MD->getOperand(1); default: llvm_unreachable("loop metadata has 0 or 1 operand"); } } std::optional llvm::getOptionalBoolLoopAttribute(const Loop *TheLoop, StringRef Name) { MDNode *MD = findOptionMDForLoop(TheLoop, Name); if (!MD) return std::nullopt; switch (MD->getNumOperands()) { case 1: // When the value is absent it is interpreted as 'attribute set'. return true; case 2: if (ConstantInt *IntMD = mdconst::extract_or_null(MD->getOperand(1).get())) return IntMD->getZExtValue(); return true; } llvm_unreachable("unexpected number of options"); } bool llvm::getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) { return getOptionalBoolLoopAttribute(TheLoop, Name).value_or(false); } std::optional llvm::getOptionalIntLoopAttribute(const Loop *TheLoop, StringRef Name) { const MDOperand *AttrMD = findStringMetadataForLoop(TheLoop, Name).value_or(nullptr); if (!AttrMD) return std::nullopt; ConstantInt *IntMD = mdconst::extract_or_null(AttrMD->get()); if (!IntMD) return std::nullopt; return IntMD->getSExtValue(); } int llvm::getIntLoopAttribute(const Loop *TheLoop, StringRef Name, int Default) { return getOptionalIntLoopAttribute(TheLoop, Name).value_or(Default); } bool llvm::isFinite(const Loop *L) { return L->getHeader()->getParent()->willReturn(); } static const char *LLVMLoopMustProgress = "llvm.loop.mustprogress"; bool llvm::hasMustProgress(const Loop *L) { return getBooleanLoopAttribute(L, LLVMLoopMustProgress); } bool llvm::isMustProgress(const Loop *L) { return L->getHeader()->getParent()->mustProgress() || hasMustProgress(L); } bool llvm::isValidAsAccessGroup(MDNode *Node) { return Node->getNumOperands() == 0 && Node->isDistinct(); } MDNode *llvm::makePostTransformationMetadata(LLVMContext &Context, MDNode *OrigLoopID, ArrayRef RemovePrefixes, ArrayRef AddAttrs) { // First remove any existing loop metadata related to this transformation. SmallVector MDs; // Reserve first location for self reference to the LoopID metadata node. MDs.push_back(nullptr); // Remove metadata for the transformation that has been applied or that became // outdated. if (OrigLoopID) { for (unsigned i = 1, ie = OrigLoopID->getNumOperands(); i < ie; ++i) { bool IsVectorMetadata = false; Metadata *Op = OrigLoopID->getOperand(i); if (MDNode *MD = dyn_cast(Op)) { const MDString *S = dyn_cast(MD->getOperand(0)); if (S) IsVectorMetadata = llvm::any_of(RemovePrefixes, [S](StringRef Prefix) -> bool { return S->getString().starts_with(Prefix); }); } if (!IsVectorMetadata) MDs.push_back(Op); } } // Add metadata to avoid reapplying a transformation, such as // llvm.loop.unroll.disable and llvm.loop.isvectorized. MDs.append(AddAttrs.begin(), AddAttrs.end()); MDNode *NewLoopID = MDNode::getDistinct(Context, MDs); // Replace the temporary node with a self-reference. NewLoopID->replaceOperandWith(0, NewLoopID); return NewLoopID; } //===----------------------------------------------------------------------===// // LoopInfo implementation // LoopInfoWrapperPass::LoopInfoWrapperPass() : FunctionPass(ID) { initializeLoopInfoWrapperPassPass(*PassRegistry::getPassRegistry()); } char LoopInfoWrapperPass::ID = 0; INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information", true, true) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information", true, true) bool LoopInfoWrapperPass::runOnFunction(Function &) { releaseMemory(); LI.analyze(getAnalysis().getDomTree()); return false; } void LoopInfoWrapperPass::verifyAnalysis() const { // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the // function each time verifyAnalysis is called is very expensive. The // -verify-loop-info option can enable this. In order to perform some // checking by default, LoopPass has been taught to call verifyLoop manually // during loop pass sequences. if (VerifyLoopInfo) { auto &DT = getAnalysis().getDomTree(); LI.verify(DT); } } void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequiredTransitive(); } void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const { LI.print(OS); } PreservedAnalyses LoopVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { LoopInfo &LI = AM.getResult(F); auto &DT = AM.getResult(F); LI.verify(DT); return PreservedAnalyses::all(); } //===----------------------------------------------------------------------===// // LoopBlocksDFS implementation // /// Traverse the loop blocks and store the DFS result. /// Useful for clients that just want the final DFS result and don't need to /// visit blocks during the initial traversal. void LoopBlocksDFS::perform(const LoopInfo *LI) { LoopBlocksTraversal Traversal(*this, LI); for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), POE = Traversal.end(); POI != POE; ++POI) ; }