//===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This implements the ScheduleDAG class, which is a base class used by // scheduling implementation classes. // //===----------------------------------------------------------------------===// #include "ScheduleDAGSDNodes.h" #include "InstrEmitter.h" #include "SDNodeDbgValue.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/Config/llvm-config.h" #include "llvm/MC/MCInstrItineraries.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" using namespace llvm; #define DEBUG_TYPE "pre-RA-sched" STATISTIC(LoadsClustered, "Number of loads clustered together"); // This allows the latency-based scheduler to notice high latency instructions // without a target itinerary. The choice of number here has more to do with // balancing scheduler heuristics than with the actual machine latency. static cl::opt HighLatencyCycles( "sched-high-latency-cycles", cl::Hidden, cl::init(10), cl::desc("Roughly estimate the number of cycles that 'long latency'" "instructions take for targets with no itinerary")); ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf) : ScheduleDAG(mf), InstrItins(mf.getSubtarget().getInstrItineraryData()) {} /// Run - perform scheduling. /// void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb) { BB = bb; DAG = dag; // Clear the scheduler's SUnit DAG. ScheduleDAG::clearDAG(); Sequence.clear(); // Invoke the target's selection of scheduler. Schedule(); } /// NewSUnit - Creates a new SUnit and return a ptr to it. /// SUnit *ScheduleDAGSDNodes::newSUnit(SDNode *N) { #ifndef NDEBUG const SUnit *Addr = nullptr; if (!SUnits.empty()) Addr = &SUnits[0]; #endif SUnits.emplace_back(N, (unsigned)SUnits.size()); assert((Addr == nullptr || Addr == &SUnits[0]) && "SUnits std::vector reallocated on the fly!"); SUnits.back().OrigNode = &SUnits.back(); SUnit *SU = &SUnits.back(); const TargetLowering &TLI = DAG->getTargetLoweringInfo(); if (!N || (N->isMachineOpcode() && N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF)) SU->SchedulingPref = Sched::None; else SU->SchedulingPref = TLI.getSchedulingPreference(N); return SU; } SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) { SUnit *SU = newSUnit(Old->getNode()); SU->OrigNode = Old->OrigNode; SU->Latency = Old->Latency; SU->isVRegCycle = Old->isVRegCycle; SU->isCall = Old->isCall; SU->isCallOp = Old->isCallOp; SU->isTwoAddress = Old->isTwoAddress; SU->isCommutable = Old->isCommutable; SU->hasPhysRegDefs = Old->hasPhysRegDefs; SU->hasPhysRegClobbers = Old->hasPhysRegClobbers; SU->isScheduleHigh = Old->isScheduleHigh; SU->isScheduleLow = Old->isScheduleLow; SU->SchedulingPref = Old->SchedulingPref; Old->isCloned = true; return SU; } /// CheckForPhysRegDependency - Check if the dependency between def and use of /// a specified operand is a physical register dependency. If so, returns the /// register and the cost of copying the register. static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op, const TargetRegisterInfo *TRI, const TargetInstrInfo *TII, unsigned &PhysReg, int &Cost) { if (Op != 2 || User->getOpcode() != ISD::CopyToReg) return; unsigned Reg = cast(User->getOperand(1))->getReg(); if (Register::isVirtualRegister(Reg)) return; unsigned ResNo = User->getOperand(2).getResNo(); if (Def->getOpcode() == ISD::CopyFromReg && cast(Def->getOperand(1))->getReg() == Reg) { PhysReg = Reg; } else if (Def->isMachineOpcode()) { const MCInstrDesc &II = TII->get(Def->getMachineOpcode()); if (ResNo >= II.getNumDefs() && II.hasImplicitDefOfPhysReg(Reg)) PhysReg = Reg; } if (PhysReg != 0) { const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, Def->getSimpleValueType(ResNo)); Cost = RC->getCopyCost(); } } // Helper for AddGlue to clone node operands. static void CloneNodeWithValues(SDNode *N, SelectionDAG *DAG, ArrayRef VTs, SDValue ExtraOper = SDValue()) { SmallVector Ops(N->op_begin(), N->op_end()); if (ExtraOper.getNode()) Ops.push_back(ExtraOper); SDVTList VTList = DAG->getVTList(VTs); MachineSDNode *MN = dyn_cast(N); // Store memory references. SmallVector MMOs; if (MN) MMOs.assign(MN->memoperands_begin(), MN->memoperands_end()); DAG->MorphNodeTo(N, N->getOpcode(), VTList, Ops); // Reset the memory references if (MN) DAG->setNodeMemRefs(MN, MMOs); } static bool AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) { SDNode *GlueDestNode = Glue.getNode(); // Don't add glue from a node to itself. if (GlueDestNode == N) return false; // Don't add a glue operand to something that already uses glue. if (GlueDestNode && N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) { return false; } // Don't add glue to something that already has a glue value. if (N->getValueType(N->getNumValues() - 1) == MVT::Glue) return false; SmallVector VTs(N->values()); if (AddGlue) VTs.push_back(MVT::Glue); CloneNodeWithValues(N, DAG, VTs, Glue); return true; } // Cleanup after unsuccessful AddGlue. Use the standard method of morphing the // node even though simply shrinking the value list is sufficient. static void RemoveUnusedGlue(SDNode *N, SelectionDAG *DAG) { assert((N->getValueType(N->getNumValues() - 1) == MVT::Glue && !N->hasAnyUseOfValue(N->getNumValues() - 1)) && "expected an unused glue value"); CloneNodeWithValues(N, DAG, makeArrayRef(N->value_begin(), N->getNumValues() - 1)); } /// ClusterNeighboringLoads - Force nearby loads together by "gluing" them. /// This function finds loads of the same base and different offsets. If the /// offsets are not far apart (target specific), it add MVT::Glue inputs and /// outputs to ensure they are scheduled together and in order. This /// optimization may benefit some targets by improving cache locality. void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) { SDValue Chain; unsigned NumOps = Node->getNumOperands(); if (Node->getOperand(NumOps-1).getValueType() == MVT::Other) Chain = Node->getOperand(NumOps-1); if (!Chain) return; // Skip any load instruction that has a tied input. There may be an additional // dependency requiring a different order than by increasing offsets, and the // added glue may introduce a cycle. auto hasTiedInput = [this](const SDNode *N) { const MCInstrDesc &MCID = TII->get(N->getMachineOpcode()); for (unsigned I = 0; I != MCID.getNumOperands(); ++I) { if (MCID.getOperandConstraint(I, MCOI::TIED_TO) != -1) return true; } return false; }; // Look for other loads of the same chain. Find loads that are loading from // the same base pointer and different offsets. SmallPtrSet Visited; SmallVector Offsets; DenseMap O2SMap; // Map from offset to SDNode. bool Cluster = false; SDNode *Base = Node; if (hasTiedInput(Base)) return; // This algorithm requires a reasonably low use count before finding a match // to avoid uselessly blowing up compile time in large blocks. unsigned UseCount = 0; for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end(); I != E && UseCount < 100; ++I, ++UseCount) { if (I.getUse().getResNo() != Chain.getResNo()) continue; SDNode *User = *I; if (User == Node || !Visited.insert(User).second) continue; int64_t Offset1, Offset2; if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) || Offset1 == Offset2 || hasTiedInput(User)) { // FIXME: Should be ok if they addresses are identical. But earlier // optimizations really should have eliminated one of the loads. continue; } if (O2SMap.insert(std::make_pair(Offset1, Base)).second) Offsets.push_back(Offset1); O2SMap.insert(std::make_pair(Offset2, User)); Offsets.push_back(Offset2); if (Offset2 < Offset1) Base = User; Cluster = true; // Reset UseCount to allow more matches. UseCount = 0; } if (!Cluster) return; // Sort them in increasing order. llvm::sort(Offsets); // Check if the loads are close enough. SmallVector Loads; unsigned NumLoads = 0; int64_t BaseOff = Offsets[0]; SDNode *BaseLoad = O2SMap[BaseOff]; Loads.push_back(BaseLoad); for (unsigned i = 1, e = Offsets.size(); i != e; ++i) { int64_t Offset = Offsets[i]; SDNode *Load = O2SMap[Offset]; if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads)) break; // Stop right here. Ignore loads that are further away. Loads.push_back(Load); ++NumLoads; } if (NumLoads == 0) return; // Cluster loads by adding MVT::Glue outputs and inputs. This also // ensure they are scheduled in order of increasing addresses. SDNode *Lead = Loads[0]; SDValue InGlue; if (AddGlue(Lead, InGlue, true, DAG)) InGlue = SDValue(Lead, Lead->getNumValues() - 1); for (unsigned I = 1, E = Loads.size(); I != E; ++I) { bool OutGlue = I < E - 1; SDNode *Load = Loads[I]; // If AddGlue fails, we could leave an unsused glue value. This should not // cause any if (AddGlue(Load, InGlue, OutGlue, DAG)) { if (OutGlue) InGlue = SDValue(Load, Load->getNumValues() - 1); ++LoadsClustered; } else if (!OutGlue && InGlue.getNode()) RemoveUnusedGlue(InGlue.getNode(), DAG); } } /// ClusterNodes - Cluster certain nodes which should be scheduled together. /// void ScheduleDAGSDNodes::ClusterNodes() { for (SDNode &NI : DAG->allnodes()) { SDNode *Node = &NI; if (!Node || !Node->isMachineOpcode()) continue; unsigned Opc = Node->getMachineOpcode(); const MCInstrDesc &MCID = TII->get(Opc); if (MCID.mayLoad()) // Cluster loads from "near" addresses into combined SUnits. ClusterNeighboringLoads(Node); } } void ScheduleDAGSDNodes::BuildSchedUnits() { // During scheduling, the NodeId field of SDNode is used to map SDNodes // to their associated SUnits by holding SUnits table indices. A value // of -1 means the SDNode does not yet have an associated SUnit. unsigned NumNodes = 0; for (SDNode &NI : DAG->allnodes()) { NI.setNodeId(-1); ++NumNodes; } // Reserve entries in the vector for each of the SUnits we are creating. This // ensure that reallocation of the vector won't happen, so SUnit*'s won't get // invalidated. // FIXME: Multiply by 2 because we may clone nodes during scheduling. // This is a temporary workaround. SUnits.reserve(NumNodes * 2); // Add all nodes in depth first order. SmallVector Worklist; SmallPtrSet Visited; Worklist.push_back(DAG->getRoot().getNode()); Visited.insert(DAG->getRoot().getNode()); SmallVector CallSUnits; while (!Worklist.empty()) { SDNode *NI = Worklist.pop_back_val(); // Add all operands to the worklist unless they've already been added. for (const SDValue &Op : NI->op_values()) if (Visited.insert(Op.getNode()).second) Worklist.push_back(Op.getNode()); if (isPassiveNode(NI)) // Leaf node, e.g. a TargetImmediate. continue; // If this node has already been processed, stop now. if (NI->getNodeId() != -1) continue; SUnit *NodeSUnit = newSUnit(NI); // See if anything is glued to this node, if so, add them to glued // nodes. Nodes can have at most one glue input and one glue output. Glue // is required to be the last operand and result of a node. // Scan up to find glued preds. SDNode *N = NI; while (N->getNumOperands() && N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) { N = N->getOperand(N->getNumOperands()-1).getNode(); assert(N->getNodeId() == -1 && "Node already inserted!"); N->setNodeId(NodeSUnit->NodeNum); if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall()) NodeSUnit->isCall = true; } // Scan down to find any glued succs. N = NI; while (N->getValueType(N->getNumValues()-1) == MVT::Glue) { SDValue GlueVal(N, N->getNumValues()-1); // There are either zero or one users of the Glue result. bool HasGlueUse = false; for (SDNode *U : N->uses()) if (GlueVal.isOperandOf(U)) { HasGlueUse = true; assert(N->getNodeId() == -1 && "Node already inserted!"); N->setNodeId(NodeSUnit->NodeNum); N = U; if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall()) NodeSUnit->isCall = true; break; } if (!HasGlueUse) break; } if (NodeSUnit->isCall) CallSUnits.push_back(NodeSUnit); // Schedule zero-latency TokenFactor below any nodes that may increase the // schedule height. Otherwise, ancestors of the TokenFactor may appear to // have false stalls. if (NI->getOpcode() == ISD::TokenFactor) NodeSUnit->isScheduleLow = true; // If there are glue operands involved, N is now the bottom-most node // of the sequence of nodes that are glued together. // Update the SUnit. NodeSUnit->setNode(N); assert(N->getNodeId() == -1 && "Node already inserted!"); N->setNodeId(NodeSUnit->NodeNum); // Compute NumRegDefsLeft. This must be done before AddSchedEdges. InitNumRegDefsLeft(NodeSUnit); // Assign the Latency field of NodeSUnit using target-provided information. computeLatency(NodeSUnit); } // Find all call operands. while (!CallSUnits.empty()) { SUnit *SU = CallSUnits.pop_back_val(); for (const SDNode *SUNode = SU->getNode(); SUNode; SUNode = SUNode->getGluedNode()) { if (SUNode->getOpcode() != ISD::CopyToReg) continue; SDNode *SrcN = SUNode->getOperand(2).getNode(); if (isPassiveNode(SrcN)) continue; // Not scheduled. SUnit *SrcSU = &SUnits[SrcN->getNodeId()]; SrcSU->isCallOp = true; } } } void ScheduleDAGSDNodes::AddSchedEdges() { const TargetSubtargetInfo &ST = MF.getSubtarget(); // Check to see if the scheduler cares about latencies. bool UnitLatencies = forceUnitLatencies(); // Pass 2: add the preds, succs, etc. for (SUnit &SU : SUnits) { SDNode *MainNode = SU.getNode(); if (MainNode->isMachineOpcode()) { unsigned Opc = MainNode->getMachineOpcode(); const MCInstrDesc &MCID = TII->get(Opc); for (unsigned i = 0; i != MCID.getNumOperands(); ++i) { if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) { SU.isTwoAddress = true; break; } } if (MCID.isCommutable()) SU.isCommutable = true; } // Find all predecessors and successors of the group. for (SDNode *N = SU.getNode(); N; N = N->getGluedNode()) { if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).getImplicitDefs()) { SU.hasPhysRegClobbers = true; unsigned NumUsed = InstrEmitter::CountResults(N); while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1)) --NumUsed; // Skip over unused values at the end. if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs()) SU.hasPhysRegDefs = true; } for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { SDNode *OpN = N->getOperand(i).getNode(); unsigned DefIdx = N->getOperand(i).getResNo(); if (isPassiveNode(OpN)) continue; // Not scheduled. SUnit *OpSU = &SUnits[OpN->getNodeId()]; assert(OpSU && "Node has no SUnit!"); if (OpSU == &SU) continue; // In the same group. EVT OpVT = N->getOperand(i).getValueType(); assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!"); bool isChain = OpVT == MVT::Other; unsigned PhysReg = 0; int Cost = 1; // Determine if this is a physical register dependency. CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost); assert((PhysReg == 0 || !isChain) && "Chain dependence via physreg data?"); // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler // emits a copy from the physical register to a virtual register unless // it requires a cross class copy (cost < 0). That means we are only // treating "expensive to copy" register dependency as physical register // dependency. This may change in the future though. if (Cost >= 0 && !StressSched) PhysReg = 0; // If this is a ctrl dep, latency is 1. unsigned OpLatency = isChain ? 1 : OpSU->Latency; // Special-case TokenFactor chains as zero-latency. if(isChain && OpN->getOpcode() == ISD::TokenFactor) OpLatency = 0; SDep Dep = isChain ? SDep(OpSU, SDep::Barrier) : SDep(OpSU, SDep::Data, PhysReg); Dep.setLatency(OpLatency); if (!isChain && !UnitLatencies) { computeOperandLatency(OpN, N, i, Dep); ST.adjustSchedDependency(OpSU, DefIdx, &SU, i, Dep); } if (!SU.addPred(Dep) && !Dep.isCtrl() && OpSU->NumRegDefsLeft > 1) { // Multiple register uses are combined in the same SUnit. For example, // we could have a set of glued nodes with all their defs consumed by // another set of glued nodes. Register pressure tracking sees this as // a single use, so to keep pressure balanced we reduce the defs. // // We can't tell (without more book-keeping) if this results from // glued nodes or duplicate operands. As long as we don't reduce // NumRegDefsLeft to zero, we handle the common cases well. --OpSU->NumRegDefsLeft; } } } } } /// BuildSchedGraph - Build the SUnit graph from the selection dag that we /// are input. This SUnit graph is similar to the SelectionDAG, but /// excludes nodes that aren't interesting to scheduling, and represents /// glued together nodes with a single SUnit. void ScheduleDAGSDNodes::BuildSchedGraph(AAResults *AA) { // Cluster certain nodes which should be scheduled together. ClusterNodes(); // Populate the SUnits array. BuildSchedUnits(); // Compute all the scheduling dependencies between nodes. AddSchedEdges(); } // Initialize NumNodeDefs for the current Node's opcode. void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() { // Check for phys reg copy. if (!Node) return; if (!Node->isMachineOpcode()) { if (Node->getOpcode() == ISD::CopyFromReg) NodeNumDefs = 1; else NodeNumDefs = 0; return; } unsigned POpc = Node->getMachineOpcode(); if (POpc == TargetOpcode::IMPLICIT_DEF) { // No register need be allocated for this. NodeNumDefs = 0; return; } if (POpc == TargetOpcode::PATCHPOINT && Node->getValueType(0) == MVT::Other) { // PATCHPOINT is defined to have one result, but it might really have none // if we're not using CallingConv::AnyReg. Don't mistake the chain for a // real definition. NodeNumDefs = 0; return; } unsigned NRegDefs = SchedDAG->TII->get(Node->getMachineOpcode()).getNumDefs(); // Some instructions define regs that are not represented in the selection DAG // (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues. NodeNumDefs = std::min(Node->getNumValues(), NRegDefs); DefIdx = 0; } // Construct a RegDefIter for this SUnit and find the first valid value. ScheduleDAGSDNodes::RegDefIter::RegDefIter(const SUnit *SU, const ScheduleDAGSDNodes *SD) : SchedDAG(SD), Node(SU->getNode()) { InitNodeNumDefs(); Advance(); } // Advance to the next valid value defined by the SUnit. void ScheduleDAGSDNodes::RegDefIter::Advance() { for (;Node;) { // Visit all glued nodes. for (;DefIdx < NodeNumDefs; ++DefIdx) { if (!Node->hasAnyUseOfValue(DefIdx)) continue; ValueType = Node->getSimpleValueType(DefIdx); ++DefIdx; return; // Found a normal regdef. } Node = Node->getGluedNode(); if (!Node) { return; // No values left to visit. } InitNodeNumDefs(); } } void ScheduleDAGSDNodes::InitNumRegDefsLeft(SUnit *SU) { assert(SU->NumRegDefsLeft == 0 && "expect a new node"); for (RegDefIter I(SU, this); I.IsValid(); I.Advance()) { assert(SU->NumRegDefsLeft < USHRT_MAX && "overflow is ok but unexpected"); ++SU->NumRegDefsLeft; } } void ScheduleDAGSDNodes::computeLatency(SUnit *SU) { SDNode *N = SU->getNode(); // TokenFactor operands are considered zero latency, and some schedulers // (e.g. Top-Down list) may rely on the fact that operand latency is nonzero // whenever node latency is nonzero. if (N && N->getOpcode() == ISD::TokenFactor) { SU->Latency = 0; return; } // Check to see if the scheduler cares about latencies. if (forceUnitLatencies()) { SU->Latency = 1; return; } if (!InstrItins || InstrItins->isEmpty()) { if (N && N->isMachineOpcode() && TII->isHighLatencyDef(N->getMachineOpcode())) SU->Latency = HighLatencyCycles; else SU->Latency = 1; return; } // Compute the latency for the node. We use the sum of the latencies for // all nodes glued together into this SUnit. SU->Latency = 0; for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) if (N->isMachineOpcode()) SU->Latency += TII->getInstrLatency(InstrItins, N); } void ScheduleDAGSDNodes::computeOperandLatency(SDNode *Def, SDNode *Use, unsigned OpIdx, SDep& dep) const{ // Check to see if the scheduler cares about latencies. if (forceUnitLatencies()) return; if (dep.getKind() != SDep::Data) return; unsigned DefIdx = Use->getOperand(OpIdx).getResNo(); if (Use->isMachineOpcode()) // Adjust the use operand index by num of defs. OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs(); int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx); if (Latency > 1 && Use->getOpcode() == ISD::CopyToReg && !BB->succ_empty()) { unsigned Reg = cast(Use->getOperand(1))->getReg(); if (Register::isVirtualRegister(Reg)) // This copy is a liveout value. It is likely coalesced, so reduce the // latency so not to penalize the def. // FIXME: need target specific adjustment here? Latency = (Latency > 1) ? Latency - 1 : 1; } if (Latency >= 0) dep.setLatency(Latency); } void ScheduleDAGSDNodes::dumpNode(const SUnit &SU) const { #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) dumpNodeName(SU); dbgs() << ": "; if (!SU.getNode()) { dbgs() << "PHYS REG COPY\n"; return; } SU.getNode()->dump(DAG); dbgs() << "\n"; SmallVector GluedNodes; for (SDNode *N = SU.getNode()->getGluedNode(); N; N = N->getGluedNode()) GluedNodes.push_back(N); while (!GluedNodes.empty()) { dbgs() << " "; GluedNodes.back()->dump(DAG); dbgs() << "\n"; GluedNodes.pop_back(); } #endif } void ScheduleDAGSDNodes::dump() const { #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) if (EntrySU.getNode() != nullptr) dumpNodeAll(EntrySU); for (const SUnit &SU : SUnits) dumpNodeAll(SU); if (ExitSU.getNode() != nullptr) dumpNodeAll(ExitSU); #endif } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void ScheduleDAGSDNodes::dumpSchedule() const { for (const SUnit *SU : Sequence) { if (SU) dumpNode(*SU); else dbgs() << "**** NOOP ****\n"; } } #endif #ifndef NDEBUG /// VerifyScheduledSequence - Verify that all SUnits were scheduled and that /// their state is consistent with the nodes listed in Sequence. /// void ScheduleDAGSDNodes::VerifyScheduledSequence(bool isBottomUp) { unsigned ScheduledNodes = ScheduleDAG::VerifyScheduledDAG(isBottomUp); unsigned Noops = llvm::count(Sequence, nullptr); assert(Sequence.size() - Noops == ScheduledNodes && "The number of nodes scheduled doesn't match the expected number!"); } #endif // NDEBUG /// ProcessSDDbgValues - Process SDDbgValues associated with this node. static void ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter, SmallVectorImpl > &Orders, DenseMap &VRBaseMap, unsigned Order) { if (!N->getHasDebugValue()) return; /// Returns true if \p DV has any VReg operand locations which don't exist in /// VRBaseMap. auto HasUnknownVReg = [&VRBaseMap](SDDbgValue *DV) { for (const SDDbgOperand &L : DV->getLocationOps()) { if (L.getKind() == SDDbgOperand::SDNODE && VRBaseMap.count({L.getSDNode(), L.getResNo()}) == 0) return true; } return false; }; // Opportunistically insert immediate dbg_value uses, i.e. those with the same // source order number as N. MachineBasicBlock *BB = Emitter.getBlock(); MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos(); for (auto DV : DAG->GetDbgValues(N)) { if (DV->isEmitted()) continue; unsigned DVOrder = DV->getOrder(); if (Order != 0 && DVOrder != Order) continue; // If DV has any VReg location operands which haven't been mapped then // either that node is no longer available or we just haven't visited the // node yet. In the former case we should emit an undef dbg_value, but we // can do it later. And for the latter we'll want to wait until all // dependent nodes have been visited. if (!DV->isInvalidated() && HasUnknownVReg(DV)) continue; MachineInstr *DbgMI = Emitter.EmitDbgValue(DV, VRBaseMap); if (!DbgMI) continue; Orders.push_back({DVOrder, DbgMI}); BB->insert(InsertPos, DbgMI); } } // ProcessSourceNode - Process nodes with source order numbers. These are added // to a vector which EmitSchedule uses to determine how to insert dbg_value // instructions in the right order. static void ProcessSourceNode(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter, DenseMap &VRBaseMap, SmallVectorImpl> &Orders, SmallSet &Seen, MachineInstr *NewInsn) { unsigned Order = N->getIROrder(); if (!Order || Seen.count(Order)) { // Process any valid SDDbgValues even if node does not have any order // assigned. ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, 0); return; } // If a new instruction was generated for this Order number, record it. // Otherwise, leave this order number unseen: we will either find later // instructions for it, or leave it unseen if there were no instructions at // all. if (NewInsn) { Seen.insert(Order); Orders.push_back({Order, NewInsn}); } // Even if no instruction was generated, a Value may have become defined via // earlier nodes. Try to process them now. ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order); } void ScheduleDAGSDNodes:: EmitPhysRegCopy(SUnit *SU, DenseMap &VRBaseMap, MachineBasicBlock::iterator InsertPos) { for (const SDep &Pred : SU->Preds) { if (Pred.isCtrl()) continue; // ignore chain preds if (Pred.getSUnit()->CopyDstRC) { // Copy to physical register. DenseMap::iterator VRI = VRBaseMap.find(Pred.getSUnit()); assert(VRI != VRBaseMap.end() && "Node emitted out of order - late"); // Find the destination physical register. Register Reg; for (const SDep &Succ : SU->Succs) { if (Succ.isCtrl()) continue; // ignore chain preds if (Succ.getReg()) { Reg = Succ.getReg(); break; } } BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), Reg) .addReg(VRI->second); } else { // Copy from physical register. assert(Pred.getReg() && "Unknown physical register!"); Register VRBase = MRI.createVirtualRegister(SU->CopyDstRC); bool isNew = VRBaseMap.insert(std::make_pair(SU, VRBase)).second; (void)isNew; // Silence compiler warning. assert(isNew && "Node emitted out of order - early"); BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), VRBase) .addReg(Pred.getReg()); } break; } } /// EmitSchedule - Emit the machine code in scheduled order. Return the new /// InsertPos and MachineBasicBlock that contains this insertion /// point. ScheduleDAGSDNodes holds a BB pointer for convenience, but this does /// not necessarily refer to returned BB. The emitter may split blocks. MachineBasicBlock *ScheduleDAGSDNodes:: EmitSchedule(MachineBasicBlock::iterator &InsertPos) { InstrEmitter Emitter(DAG->getTarget(), BB, InsertPos, DAG->getUseInstrRefDebugInfo()); DenseMap VRBaseMap; DenseMap CopyVRBaseMap; SmallVector, 32> Orders; SmallSet Seen; bool HasDbg = DAG->hasDebugValues(); // Emit a node, and determine where its first instruction is for debuginfo. // Zero, one, or multiple instructions can be created when emitting a node. auto EmitNode = [&](SDNode *Node, bool IsClone, bool IsCloned, DenseMap &VRBaseMap) -> MachineInstr * { // Fetch instruction prior to this, or end() if nonexistant. auto GetPrevInsn = [&](MachineBasicBlock::iterator I) { if (I == BB->begin()) return BB->end(); else return std::prev(Emitter.getInsertPos()); }; MachineBasicBlock::iterator Before = GetPrevInsn(Emitter.getInsertPos()); Emitter.EmitNode(Node, IsClone, IsCloned, VRBaseMap); MachineBasicBlock::iterator After = GetPrevInsn(Emitter.getInsertPos()); // If the iterator did not change, no instructions were inserted. if (Before == After) return nullptr; MachineInstr *MI; if (Before == BB->end()) { // There were no prior instructions; the new ones must start at the // beginning of the block. MI = &Emitter.getBlock()->instr_front(); } else { // Return first instruction after the pre-existing instructions. MI = &*std::next(Before); } if (MI->isCandidateForCallSiteEntry() && DAG->getTarget().Options.EmitCallSiteInfo) MF.addCallArgsForwardingRegs(MI, DAG->getSDCallSiteInfo(Node)); if (DAG->getNoMergeSiteInfo(Node)) { MI->setFlag(MachineInstr::MIFlag::NoMerge); } return MI; }; // If this is the first BB, emit byval parameter dbg_value's. if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) { SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin(); SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd(); for (; PDI != PDE; ++PDI) { MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap); if (DbgMI) { BB->insert(InsertPos, DbgMI); // We re-emit the dbg_value closer to its use, too, after instructions // are emitted to the BB. (*PDI)->clearIsEmitted(); } } } for (SUnit *SU : Sequence) { if (!SU) { // Null SUnit* is a noop. TII->insertNoop(*Emitter.getBlock(), InsertPos); continue; } // For pre-regalloc scheduling, create instructions corresponding to the // SDNode and any glued SDNodes and append them to the block. if (!SU->getNode()) { // Emit a copy. EmitPhysRegCopy(SU, CopyVRBaseMap, InsertPos); continue; } SmallVector GluedNodes; for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode()) GluedNodes.push_back(N); while (!GluedNodes.empty()) { SDNode *N = GluedNodes.back(); auto NewInsn = EmitNode(N, SU->OrigNode != SU, SU->isCloned, VRBaseMap); // Remember the source order of the inserted instruction. if (HasDbg) ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen, NewInsn); if (MDNode *MD = DAG->getHeapAllocSite(N)) if (NewInsn && NewInsn->isCall()) NewInsn->setHeapAllocMarker(MF, MD); GluedNodes.pop_back(); } auto NewInsn = EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned, VRBaseMap); // Remember the source order of the inserted instruction. if (HasDbg) ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders, Seen, NewInsn); if (MDNode *MD = DAG->getHeapAllocSite(SU->getNode())) { if (NewInsn && NewInsn->isCall()) NewInsn->setHeapAllocMarker(MF, MD); } } // Insert all the dbg_values which have not already been inserted in source // order sequence. if (HasDbg) { MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI(); // Sort the source order instructions and use the order to insert debug // values. Use stable_sort so that DBG_VALUEs are inserted in the same order // regardless of the host's implementation fo std::sort. llvm::stable_sort(Orders, less_first()); std::stable_sort(DAG->DbgBegin(), DAG->DbgEnd(), [](const SDDbgValue *LHS, const SDDbgValue *RHS) { return LHS->getOrder() < RHS->getOrder(); }); SDDbgInfo::DbgIterator DI = DAG->DbgBegin(); SDDbgInfo::DbgIterator DE = DAG->DbgEnd(); // Now emit the rest according to source order. unsigned LastOrder = 0; for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) { unsigned Order = Orders[i].first; MachineInstr *MI = Orders[i].second; // Insert all SDDbgValue's whose order(s) are before "Order". assert(MI); for (; DI != DE; ++DI) { if ((*DI)->getOrder() < LastOrder || (*DI)->getOrder() >= Order) break; if ((*DI)->isEmitted()) continue; MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap); if (DbgMI) { if (!LastOrder) // Insert to start of the BB (after PHIs). BB->insert(BBBegin, DbgMI); else { // Insert at the instruction, which may be in a different // block, if the block was split by a custom inserter. MachineBasicBlock::iterator Pos = MI; MI->getParent()->insert(Pos, DbgMI); } } } LastOrder = Order; } // Add trailing DbgValue's before the terminator. FIXME: May want to add // some of them before one or more conditional branches? SmallVector DbgMIs; for (; DI != DE; ++DI) { if ((*DI)->isEmitted()) continue; assert((*DI)->getOrder() >= LastOrder && "emitting DBG_VALUE out of order"); if (MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap)) DbgMIs.push_back(DbgMI); } MachineBasicBlock *InsertBB = Emitter.getBlock(); MachineBasicBlock::iterator Pos = InsertBB->getFirstTerminator(); InsertBB->insert(Pos, DbgMIs.begin(), DbgMIs.end()); SDDbgInfo::DbgLabelIterator DLI = DAG->DbgLabelBegin(); SDDbgInfo::DbgLabelIterator DLE = DAG->DbgLabelEnd(); // Now emit the rest according to source order. LastOrder = 0; for (const auto &InstrOrder : Orders) { unsigned Order = InstrOrder.first; MachineInstr *MI = InstrOrder.second; if (!MI) continue; // Insert all SDDbgLabel's whose order(s) are before "Order". for (; DLI != DLE && (*DLI)->getOrder() >= LastOrder && (*DLI)->getOrder() < Order; ++DLI) { MachineInstr *DbgMI = Emitter.EmitDbgLabel(*DLI); if (DbgMI) { if (!LastOrder) // Insert to start of the BB (after PHIs). BB->insert(BBBegin, DbgMI); else { // Insert at the instruction, which may be in a different // block, if the block was split by a custom inserter. MachineBasicBlock::iterator Pos = MI; MI->getParent()->insert(Pos, DbgMI); } } } if (DLI == DLE) break; LastOrder = Order; } } InsertPos = Emitter.getInsertPos(); // In some cases, DBG_VALUEs might be inserted after the first terminator, // which results in an invalid MBB. If that happens, move the DBG_VALUEs // before the first terminator. MachineBasicBlock *InsertBB = Emitter.getBlock(); auto FirstTerm = InsertBB->getFirstTerminator(); if (FirstTerm != InsertBB->end()) { assert(!FirstTerm->isDebugValue() && "first terminator cannot be a debug value"); for (MachineInstr &MI : make_early_inc_range( make_range(std::next(FirstTerm), InsertBB->end()))) { // Only scan up to insertion point. if (&MI == InsertPos) break; if (!MI.isDebugValue()) continue; // The DBG_VALUE was referencing a value produced by a terminator. By // moving the DBG_VALUE, the referenced value also needs invalidating. MI.getOperand(0).ChangeToRegister(0, false); MI.moveBefore(&*FirstTerm); } } return InsertBB; } /// Return the basic block label. std::string ScheduleDAGSDNodes::getDAGName() const { return "sunit-dag." + BB->getFullName(); }