//===-- M68kTargetMachine.cpp - M68k Target Machine -------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file contains implementation for M68k target machine. /// //===----------------------------------------------------------------------===// #include "M68kTargetMachine.h" #include "M68k.h" #include "M68kMachineFunction.h" #include "M68kSubtarget.h" #include "M68kTargetObjectFile.h" #include "TargetInfo/M68kTargetInfo.h" #include "llvm/CodeGen/GlobalISel/IRTranslator.h" #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" #include "llvm/CodeGen/GlobalISel/Legalizer.h" #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/InitializePasses.h" #include "llvm/MC/TargetRegistry.h" #include "llvm/PassRegistry.h" #include #include using namespace llvm; #define DEBUG_TYPE "m68k" extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeM68kTarget() { RegisterTargetMachine X(getTheM68kTarget()); auto *PR = PassRegistry::getPassRegistry(); initializeGlobalISel(*PR); initializeM68kDAGToDAGISelPass(*PR); initializeM68kExpandPseudoPass(*PR); initializeM68kGlobalBaseRegPass(*PR); initializeM68kCollapseMOVEMPass(*PR); } namespace { std::string computeDataLayout(const Triple &TT, StringRef CPU, const TargetOptions &Options) { std::string Ret = ""; // M68k is Big Endian Ret += "E"; // FIXME how to wire it with the used object format? Ret += "-m:e"; // M68k pointers are always 32 bit wide even for 16-bit CPUs. // The ABI only specifies 16-bit alignment. // On at least the 68020+ with a 32-bit bus, there is a performance benefit // to having 32-bit alignment. Ret += "-p:32:16:32"; // Bytes do not require special alignment, words are word aligned and // long words are word aligned at minimum. Ret += "-i8:8:8-i16:16:16-i32:16:32"; // FIXME no floats at the moment // The registers can hold 8, 16, 32 bits Ret += "-n8:16:32"; Ret += "-a:0:16-S16"; return Ret; } Reloc::Model getEffectiveRelocModel(const Triple &TT, std::optional RM) { // If not defined we default to static if (!RM.has_value()) return Reloc::Static; return *RM; } CodeModel::Model getEffectiveCodeModel(std::optional CM, bool JIT) { if (!CM) { return CodeModel::Small; } else if (CM == CodeModel::Large) { llvm_unreachable("Large code model is not supported"); } else if (CM == CodeModel::Kernel) { llvm_unreachable("Kernel code model is not implemented yet"); } return CM.value(); } } // end anonymous namespace M68kTargetMachine::M68kTargetMachine(const Target &T, const Triple &TT, StringRef CPU, StringRef FS, const TargetOptions &Options, std::optional RM, std::optional CM, CodeGenOptLevel OL, bool JIT) : LLVMTargetMachine(T, computeDataLayout(TT, CPU, Options), TT, CPU, FS, Options, getEffectiveRelocModel(TT, RM), ::getEffectiveCodeModel(CM, JIT), OL), TLOF(std::make_unique()), Subtarget(TT, CPU, FS, *this) { initAsmInfo(); } M68kTargetMachine::~M68kTargetMachine() {} const M68kSubtarget * M68kTargetMachine::getSubtargetImpl(const Function &F) const { Attribute CPUAttr = F.getFnAttribute("target-cpu"); Attribute FSAttr = F.getFnAttribute("target-features"); auto CPU = CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU; auto FS = FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS; auto &I = SubtargetMap[CPU + FS]; if (!I) { // This needs to be done before we create a new subtarget since any // creation will depend on the TM and the code generation flags on the // function that reside in TargetOptions. resetTargetOptions(F); I = std::make_unique(TargetTriple, CPU, FS, *this); } return I.get(); } MachineFunctionInfo *M68kTargetMachine::createMachineFunctionInfo( BumpPtrAllocator &Allocator, const Function &F, const TargetSubtargetInfo *STI) const { return M68kMachineFunctionInfo::create(Allocator, F, STI); } //===----------------------------------------------------------------------===// // Pass Pipeline Configuration //===----------------------------------------------------------------------===// namespace { class M68kPassConfig : public TargetPassConfig { public: M68kPassConfig(M68kTargetMachine &TM, PassManagerBase &PM) : TargetPassConfig(TM, PM) {} M68kTargetMachine &getM68kTargetMachine() const { return getTM(); } const M68kSubtarget &getM68kSubtarget() const { return *getM68kTargetMachine().getSubtargetImpl(); } void addIRPasses() override; bool addIRTranslator() override; bool addLegalizeMachineIR() override; bool addRegBankSelect() override; bool addGlobalInstructionSelect() override; bool addInstSelector() override; void addPreSched2() override; void addPreEmitPass() override; }; } // namespace TargetPassConfig *M68kTargetMachine::createPassConfig(PassManagerBase &PM) { return new M68kPassConfig(*this, PM); } void M68kPassConfig::addIRPasses() { addPass(createAtomicExpandPass()); TargetPassConfig::addIRPasses(); } bool M68kPassConfig::addInstSelector() { // Install an instruction selector. addPass(createM68kISelDag(getM68kTargetMachine())); addPass(createM68kGlobalBaseRegPass()); return false; } bool M68kPassConfig::addIRTranslator() { addPass(new IRTranslator()); return false; } bool M68kPassConfig::addLegalizeMachineIR() { addPass(new Legalizer()); return false; } bool M68kPassConfig::addRegBankSelect() { addPass(new RegBankSelect()); return false; } bool M68kPassConfig::addGlobalInstructionSelect() { addPass(new InstructionSelect()); return false; } void M68kPassConfig::addPreSched2() { addPass(createM68kExpandPseudoPass()); } void M68kPassConfig::addPreEmitPass() { addPass(createM68kCollapseMOVEMPass()); }