//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the X86-specific support for the FastISel class. Much // of the target-specific code is generated by tablegen in the file // X86GenFastISel.inc, which is #included here. // //===----------------------------------------------------------------------===// #include "X86.h" #include "X86CallingConv.h" #include "X86InstrBuilder.h" #include "X86InstrInfo.h" #include "X86MachineFunctionInfo.h" #include "X86RegisterInfo.h" #include "X86Subtarget.h" #include "X86TargetMachine.h" #include "llvm/Analysis/BranchProbabilityInfo.h" #include "llvm/CodeGen/FastISel.h" #include "llvm/CodeGen/FunctionLoweringInfo.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/DebugInfo.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/GetElementPtrTypeIterator.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/IntrinsicsX86.h" #include "llvm/IR/Operator.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCSymbol.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Target/TargetOptions.h" using namespace llvm; namespace { class X86FastISel final : public FastISel { /// Subtarget - Keep a pointer to the X86Subtarget around so that we can /// make the right decision when generating code for different targets. const X86Subtarget *Subtarget; public: explicit X86FastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo) : FastISel(funcInfo, libInfo) { Subtarget = &funcInfo.MF->getSubtarget(); } bool fastSelectInstruction(const Instruction *I) override; /// The specified machine instr operand is a vreg, and that /// vreg is being provided by the specified load instruction. If possible, /// try to fold the load as an operand to the instruction, returning true if /// possible. bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, const LoadInst *LI) override; bool fastLowerArguments() override; bool fastLowerCall(CallLoweringInfo &CLI) override; bool fastLowerIntrinsicCall(const IntrinsicInst *II) override; #include "X86GenFastISel.inc" private: bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT, const DebugLoc &DL); bool X86FastEmitLoad(MVT VT, X86AddressMode &AM, MachineMemOperand *MMO, unsigned &ResultReg, unsigned Alignment = 1); bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM, MachineMemOperand *MMO = nullptr, bool Aligned = false); bool X86FastEmitStore(EVT VT, unsigned ValReg, X86AddressMode &AM, MachineMemOperand *MMO = nullptr, bool Aligned = false); bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT, unsigned &ResultReg); bool X86SelectAddress(const Value *V, X86AddressMode &AM); bool X86SelectCallAddress(const Value *V, X86AddressMode &AM); bool X86SelectLoad(const Instruction *I); bool X86SelectStore(const Instruction *I); bool X86SelectRet(const Instruction *I); bool X86SelectCmp(const Instruction *I); bool X86SelectZExt(const Instruction *I); bool X86SelectSExt(const Instruction *I); bool X86SelectBranch(const Instruction *I); bool X86SelectShift(const Instruction *I); bool X86SelectDivRem(const Instruction *I); bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I); bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I); bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I); bool X86SelectSelect(const Instruction *I); bool X86SelectTrunc(const Instruction *I); bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc, const TargetRegisterClass *RC); bool X86SelectFPExt(const Instruction *I); bool X86SelectFPTrunc(const Instruction *I); bool X86SelectSIToFP(const Instruction *I); bool X86SelectUIToFP(const Instruction *I); bool X86SelectIntToFP(const Instruction *I, bool IsSigned); const X86InstrInfo *getInstrInfo() const { return Subtarget->getInstrInfo(); } const X86TargetMachine *getTargetMachine() const { return static_cast(&TM); } bool handleConstantAddresses(const Value *V, X86AddressMode &AM); unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT); unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT); unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT); unsigned fastMaterializeConstant(const Constant *C) override; unsigned fastMaterializeAlloca(const AllocaInst *C) override; unsigned fastMaterializeFloatZero(const ConstantFP *CF) override; /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is /// computed in an SSE register, not on the X87 floating point stack. bool isScalarFPTypeInSSEReg(EVT VT) const { return (VT == MVT::f64 && Subtarget->hasSSE2()) || (VT == MVT::f32 && Subtarget->hasSSE1()) || VT == MVT::f16; } bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false); bool IsMemcpySmall(uint64_t Len); bool TryEmitSmallMemcpy(X86AddressMode DestAM, X86AddressMode SrcAM, uint64_t Len); bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I, const Value *Cond); const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB, X86AddressMode &AM); unsigned fastEmitInst_rrrr(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, unsigned Op1, unsigned Op2, unsigned Op3); }; } // end anonymous namespace. static std::pair getX86SSEConditionCode(CmpInst::Predicate Predicate) { unsigned CC; bool NeedSwap = false; // SSE Condition code mapping: // 0 - EQ // 1 - LT // 2 - LE // 3 - UNORD // 4 - NEQ // 5 - NLT // 6 - NLE // 7 - ORD switch (Predicate) { default: llvm_unreachable("Unexpected predicate"); case CmpInst::FCMP_OEQ: CC = 0; break; case CmpInst::FCMP_OGT: NeedSwap = true; [[fallthrough]]; case CmpInst::FCMP_OLT: CC = 1; break; case CmpInst::FCMP_OGE: NeedSwap = true; [[fallthrough]]; case CmpInst::FCMP_OLE: CC = 2; break; case CmpInst::FCMP_UNO: CC = 3; break; case CmpInst::FCMP_UNE: CC = 4; break; case CmpInst::FCMP_ULE: NeedSwap = true; [[fallthrough]]; case CmpInst::FCMP_UGE: CC = 5; break; case CmpInst::FCMP_ULT: NeedSwap = true; [[fallthrough]]; case CmpInst::FCMP_UGT: CC = 6; break; case CmpInst::FCMP_ORD: CC = 7; break; case CmpInst::FCMP_UEQ: CC = 8; break; case CmpInst::FCMP_ONE: CC = 12; break; } return std::make_pair(CC, NeedSwap); } /// Adds a complex addressing mode to the given machine instr builder. /// Note, this will constrain the index register. If its not possible to /// constrain the given index register, then a new one will be created. The /// IndexReg field of the addressing mode will be updated to match in this case. const MachineInstrBuilder & X86FastISel::addFullAddress(const MachineInstrBuilder &MIB, X86AddressMode &AM) { // First constrain the index register. It needs to be a GR64_NOSP. AM.IndexReg = constrainOperandRegClass(MIB->getDesc(), AM.IndexReg, MIB->getNumOperands() + X86::AddrIndexReg); return ::addFullAddress(MIB, AM); } /// Check if it is possible to fold the condition from the XALU intrinsic /// into the user. The condition code will only be updated on success. bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I, const Value *Cond) { if (!isa(Cond)) return false; const auto *EV = cast(Cond); if (!isa(EV->getAggregateOperand())) return false; const auto *II = cast(EV->getAggregateOperand()); MVT RetVT; const Function *Callee = II->getCalledFunction(); Type *RetTy = cast(Callee->getReturnType())->getTypeAtIndex(0U); if (!isTypeLegal(RetTy, RetVT)) return false; if (RetVT != MVT::i32 && RetVT != MVT::i64) return false; X86::CondCode TmpCC; switch (II->getIntrinsicID()) { default: return false; case Intrinsic::sadd_with_overflow: case Intrinsic::ssub_with_overflow: case Intrinsic::smul_with_overflow: case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break; case Intrinsic::uadd_with_overflow: case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break; } // Check if both instructions are in the same basic block. if (II->getParent() != I->getParent()) return false; // Make sure nothing is in the way BasicBlock::const_iterator Start(I); BasicBlock::const_iterator End(II); for (auto Itr = std::prev(Start); Itr != End; --Itr) { // We only expect extractvalue instructions between the intrinsic and the // instruction to be selected. if (!isa(Itr)) return false; // Check that the extractvalue operand comes from the intrinsic. const auto *EVI = cast(Itr); if (EVI->getAggregateOperand() != II) return false; } // Make sure no potentially eflags clobbering phi moves can be inserted in // between. auto HasPhis = [](const BasicBlock *Succ) { return !Succ->phis().empty(); }; if (I->isTerminator() && llvm::any_of(successors(I), HasPhis)) return false; // Make sure there are no potentially eflags clobbering constant // materializations in between. if (llvm::any_of(I->operands(), [](Value *V) { return isa(V); })) return false; CC = TmpCC; return true; } bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) { EVT evt = TLI.getValueType(DL, Ty, /*AllowUnknown=*/true); if (evt == MVT::Other || !evt.isSimple()) // Unhandled type. Halt "fast" selection and bail. return false; VT = evt.getSimpleVT(); // For now, require SSE/SSE2 for performing floating-point operations, // since x87 requires additional work. if (VT == MVT::f64 && !Subtarget->hasSSE2()) return false; if (VT == MVT::f32 && !Subtarget->hasSSE1()) return false; // Similarly, no f80 support yet. if (VT == MVT::f80) return false; // We only handle legal types. For example, on x86-32 the instruction // selector contains all of the 64-bit instructions from x86-64, // under the assumption that i64 won't be used if the target doesn't // support it. return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT); } /// X86FastEmitLoad - Emit a machine instruction to load a value of type VT. /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV. /// Return true and the result register by reference if it is possible. bool X86FastISel::X86FastEmitLoad(MVT VT, X86AddressMode &AM, MachineMemOperand *MMO, unsigned &ResultReg, unsigned Alignment) { bool HasSSE1 = Subtarget->hasSSE1(); bool HasSSE2 = Subtarget->hasSSE2(); bool HasSSE41 = Subtarget->hasSSE41(); bool HasAVX = Subtarget->hasAVX(); bool HasAVX2 = Subtarget->hasAVX2(); bool HasAVX512 = Subtarget->hasAVX512(); bool HasVLX = Subtarget->hasVLX(); bool IsNonTemporal = MMO && MMO->isNonTemporal(); // Treat i1 loads the same as i8 loads. Masking will be done when storing. if (VT == MVT::i1) VT = MVT::i8; // Get opcode and regclass of the output for the given load instruction. unsigned Opc = 0; switch (VT.SimpleTy) { default: return false; case MVT::i8: Opc = X86::MOV8rm; break; case MVT::i16: Opc = X86::MOV16rm; break; case MVT::i32: Opc = X86::MOV32rm; break; case MVT::i64: // Must be in x86-64 mode. Opc = X86::MOV64rm; break; case MVT::f32: Opc = HasAVX512 ? X86::VMOVSSZrm_alt : HasAVX ? X86::VMOVSSrm_alt : HasSSE1 ? X86::MOVSSrm_alt : X86::LD_Fp32m; break; case MVT::f64: Opc = HasAVX512 ? X86::VMOVSDZrm_alt : HasAVX ? X86::VMOVSDrm_alt : HasSSE2 ? X86::MOVSDrm_alt : X86::LD_Fp64m; break; case MVT::f80: // No f80 support yet. return false; case MVT::v4f32: if (IsNonTemporal && Alignment >= 16 && HasSSE41) Opc = HasVLX ? X86::VMOVNTDQAZ128rm : HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; else if (Alignment >= 16) Opc = HasVLX ? X86::VMOVAPSZ128rm : HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm; else Opc = HasVLX ? X86::VMOVUPSZ128rm : HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm; break; case MVT::v2f64: if (IsNonTemporal && Alignment >= 16 && HasSSE41) Opc = HasVLX ? X86::VMOVNTDQAZ128rm : HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; else if (Alignment >= 16) Opc = HasVLX ? X86::VMOVAPDZ128rm : HasAVX ? X86::VMOVAPDrm : X86::MOVAPDrm; else Opc = HasVLX ? X86::VMOVUPDZ128rm : HasAVX ? X86::VMOVUPDrm : X86::MOVUPDrm; break; case MVT::v4i32: case MVT::v2i64: case MVT::v8i16: case MVT::v16i8: if (IsNonTemporal && Alignment >= 16 && HasSSE41) Opc = HasVLX ? X86::VMOVNTDQAZ128rm : HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; else if (Alignment >= 16) Opc = HasVLX ? X86::VMOVDQA64Z128rm : HasAVX ? X86::VMOVDQArm : X86::MOVDQArm; else Opc = HasVLX ? X86::VMOVDQU64Z128rm : HasAVX ? X86::VMOVDQUrm : X86::MOVDQUrm; break; case MVT::v8f32: assert(HasAVX); if (IsNonTemporal && Alignment >= 32 && HasAVX2) Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; else if (IsNonTemporal && Alignment >= 16) return false; // Force split for X86::VMOVNTDQArm else if (Alignment >= 32) Opc = HasVLX ? X86::VMOVAPSZ256rm : X86::VMOVAPSYrm; else Opc = HasVLX ? X86::VMOVUPSZ256rm : X86::VMOVUPSYrm; break; case MVT::v4f64: assert(HasAVX); if (IsNonTemporal && Alignment >= 32 && HasAVX2) Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; else if (IsNonTemporal && Alignment >= 16) return false; // Force split for X86::VMOVNTDQArm else if (Alignment >= 32) Opc = HasVLX ? X86::VMOVAPDZ256rm : X86::VMOVAPDYrm; else Opc = HasVLX ? X86::VMOVUPDZ256rm : X86::VMOVUPDYrm; break; case MVT::v8i32: case MVT::v4i64: case MVT::v16i16: case MVT::v32i8: assert(HasAVX); if (IsNonTemporal && Alignment >= 32 && HasAVX2) Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; else if (IsNonTemporal && Alignment >= 16) return false; // Force split for X86::VMOVNTDQArm else if (Alignment >= 32) Opc = HasVLX ? X86::VMOVDQA64Z256rm : X86::VMOVDQAYrm; else Opc = HasVLX ? X86::VMOVDQU64Z256rm : X86::VMOVDQUYrm; break; case MVT::v16f32: assert(HasAVX512); if (IsNonTemporal && Alignment >= 64) Opc = X86::VMOVNTDQAZrm; else Opc = (Alignment >= 64) ? X86::VMOVAPSZrm : X86::VMOVUPSZrm; break; case MVT::v8f64: assert(HasAVX512); if (IsNonTemporal && Alignment >= 64) Opc = X86::VMOVNTDQAZrm; else Opc = (Alignment >= 64) ? X86::VMOVAPDZrm : X86::VMOVUPDZrm; break; case MVT::v8i64: case MVT::v16i32: case MVT::v32i16: case MVT::v64i8: assert(HasAVX512); // Note: There are a lot more choices based on type with AVX-512, but // there's really no advantage when the load isn't masked. if (IsNonTemporal && Alignment >= 64) Opc = X86::VMOVNTDQAZrm; else Opc = (Alignment >= 64) ? X86::VMOVDQA64Zrm : X86::VMOVDQU64Zrm; break; } const TargetRegisterClass *RC = TLI.getRegClassFor(VT); ResultReg = createResultReg(RC); MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg); addFullAddress(MIB, AM); if (MMO) MIB->addMemOperand(*FuncInfo.MF, MMO); return true; } /// X86FastEmitStore - Emit a machine instruction to store a value Val of /// type VT. The address is either pre-computed, consisted of a base ptr, Ptr /// and a displacement offset, or a GlobalAddress, /// i.e. V. Return true if it is possible. bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, X86AddressMode &AM, MachineMemOperand *MMO, bool Aligned) { bool HasSSE1 = Subtarget->hasSSE1(); bool HasSSE2 = Subtarget->hasSSE2(); bool HasSSE4A = Subtarget->hasSSE4A(); bool HasAVX = Subtarget->hasAVX(); bool HasAVX512 = Subtarget->hasAVX512(); bool HasVLX = Subtarget->hasVLX(); bool IsNonTemporal = MMO && MMO->isNonTemporal(); // Get opcode and regclass of the output for the given store instruction. unsigned Opc = 0; switch (VT.getSimpleVT().SimpleTy) { case MVT::f80: // No f80 support yet. default: return false; case MVT::i1: { // Mask out all but lowest bit. Register AndResult = createResultReg(&X86::GR8RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::AND8ri), AndResult) .addReg(ValReg).addImm(1); ValReg = AndResult; [[fallthrough]]; // handle i1 as i8. } case MVT::i8: Opc = X86::MOV8mr; break; case MVT::i16: Opc = X86::MOV16mr; break; case MVT::i32: Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTImr : X86::MOV32mr; break; case MVT::i64: // Must be in x86-64 mode. Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTI_64mr : X86::MOV64mr; break; case MVT::f32: if (HasSSE1) { if (IsNonTemporal && HasSSE4A) Opc = X86::MOVNTSS; else Opc = HasAVX512 ? X86::VMOVSSZmr : HasAVX ? X86::VMOVSSmr : X86::MOVSSmr; } else Opc = X86::ST_Fp32m; break; case MVT::f64: if (HasSSE2) { if (IsNonTemporal && HasSSE4A) Opc = X86::MOVNTSD; else Opc = HasAVX512 ? X86::VMOVSDZmr : HasAVX ? X86::VMOVSDmr : X86::MOVSDmr; } else Opc = X86::ST_Fp64m; break; case MVT::x86mmx: Opc = (IsNonTemporal && HasSSE1) ? X86::MMX_MOVNTQmr : X86::MMX_MOVQ64mr; break; case MVT::v4f32: if (Aligned) { if (IsNonTemporal) Opc = HasVLX ? X86::VMOVNTPSZ128mr : HasAVX ? X86::VMOVNTPSmr : X86::MOVNTPSmr; else Opc = HasVLX ? X86::VMOVAPSZ128mr : HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr; } else Opc = HasVLX ? X86::VMOVUPSZ128mr : HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr; break; case MVT::v2f64: if (Aligned) { if (IsNonTemporal) Opc = HasVLX ? X86::VMOVNTPDZ128mr : HasAVX ? X86::VMOVNTPDmr : X86::MOVNTPDmr; else Opc = HasVLX ? X86::VMOVAPDZ128mr : HasAVX ? X86::VMOVAPDmr : X86::MOVAPDmr; } else Opc = HasVLX ? X86::VMOVUPDZ128mr : HasAVX ? X86::VMOVUPDmr : X86::MOVUPDmr; break; case MVT::v4i32: case MVT::v2i64: case MVT::v8i16: case MVT::v16i8: if (Aligned) { if (IsNonTemporal) Opc = HasVLX ? X86::VMOVNTDQZ128mr : HasAVX ? X86::VMOVNTDQmr : X86::MOVNTDQmr; else Opc = HasVLX ? X86::VMOVDQA64Z128mr : HasAVX ? X86::VMOVDQAmr : X86::MOVDQAmr; } else Opc = HasVLX ? X86::VMOVDQU64Z128mr : HasAVX ? X86::VMOVDQUmr : X86::MOVDQUmr; break; case MVT::v8f32: assert(HasAVX); if (Aligned) { if (IsNonTemporal) Opc = HasVLX ? X86::VMOVNTPSZ256mr : X86::VMOVNTPSYmr; else Opc = HasVLX ? X86::VMOVAPSZ256mr : X86::VMOVAPSYmr; } else Opc = HasVLX ? X86::VMOVUPSZ256mr : X86::VMOVUPSYmr; break; case MVT::v4f64: assert(HasAVX); if (Aligned) { if (IsNonTemporal) Opc = HasVLX ? X86::VMOVNTPDZ256mr : X86::VMOVNTPDYmr; else Opc = HasVLX ? X86::VMOVAPDZ256mr : X86::VMOVAPDYmr; } else Opc = HasVLX ? X86::VMOVUPDZ256mr : X86::VMOVUPDYmr; break; case MVT::v8i32: case MVT::v4i64: case MVT::v16i16: case MVT::v32i8: assert(HasAVX); if (Aligned) { if (IsNonTemporal) Opc = HasVLX ? X86::VMOVNTDQZ256mr : X86::VMOVNTDQYmr; else Opc = HasVLX ? X86::VMOVDQA64Z256mr : X86::VMOVDQAYmr; } else Opc = HasVLX ? X86::VMOVDQU64Z256mr : X86::VMOVDQUYmr; break; case MVT::v16f32: assert(HasAVX512); if (Aligned) Opc = IsNonTemporal ? X86::VMOVNTPSZmr : X86::VMOVAPSZmr; else Opc = X86::VMOVUPSZmr; break; case MVT::v8f64: assert(HasAVX512); if (Aligned) { Opc = IsNonTemporal ? X86::VMOVNTPDZmr : X86::VMOVAPDZmr; } else Opc = X86::VMOVUPDZmr; break; case MVT::v8i64: case MVT::v16i32: case MVT::v32i16: case MVT::v64i8: assert(HasAVX512); // Note: There are a lot more choices based on type with AVX-512, but // there's really no advantage when the store isn't masked. if (Aligned) Opc = IsNonTemporal ? X86::VMOVNTDQZmr : X86::VMOVDQA64Zmr; else Opc = X86::VMOVDQU64Zmr; break; } const MCInstrDesc &Desc = TII.get(Opc); // Some of the instructions in the previous switch use FR128 instead // of FR32 for ValReg. Make sure the register we feed the instruction // matches its register class constraints. // Note: This is fine to do a copy from FR32 to FR128, this is the // same registers behind the scene and actually why it did not trigger // any bugs before. ValReg = constrainOperandRegClass(Desc, ValReg, Desc.getNumOperands() - 1); MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, Desc); addFullAddress(MIB, AM).addReg(ValReg); if (MMO) MIB->addMemOperand(*FuncInfo.MF, MMO); return true; } bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM, MachineMemOperand *MMO, bool Aligned) { // Handle 'null' like i32/i64 0. if (isa(Val)) Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext())); // If this is a store of a simple constant, fold the constant into the store. if (const ConstantInt *CI = dyn_cast(Val)) { unsigned Opc = 0; bool Signed = true; switch (VT.getSimpleVT().SimpleTy) { default: break; case MVT::i1: Signed = false; [[fallthrough]]; // Handle as i8. case MVT::i8: Opc = X86::MOV8mi; break; case MVT::i16: Opc = X86::MOV16mi; break; case MVT::i32: Opc = X86::MOV32mi; break; case MVT::i64: // Must be a 32-bit sign extended value. if (isInt<32>(CI->getSExtValue())) Opc = X86::MOV64mi32; break; } if (Opc) { MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc)); addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue() : CI->getZExtValue()); if (MMO) MIB->addMemOperand(*FuncInfo.MF, MMO); return true; } } Register ValReg = getRegForValue(Val); if (ValReg == 0) return false; return X86FastEmitStore(VT, ValReg, AM, MMO, Aligned); } /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of /// type SrcVT to type DstVT using the specified extension opcode Opc (e.g. /// ISD::SIGN_EXTEND). bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT, unsigned &ResultReg) { unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, Src); if (RR == 0) return false; ResultReg = RR; return true; } bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) { // Handle constant address. if (const GlobalValue *GV = dyn_cast(V)) { // Can't handle alternate code models yet. if (TM.getCodeModel() != CodeModel::Small && TM.getCodeModel() != CodeModel::Medium) return false; // Can't handle large objects yet. if (TM.isLargeGlobalValue(GV)) return false; // Can't handle TLS yet. if (GV->isThreadLocal()) return false; // Can't handle !absolute_symbol references yet. if (GV->isAbsoluteSymbolRef()) return false; // RIP-relative addresses can't have additional register operands, so if // we've already folded stuff into the addressing mode, just force the // global value into its own register, which we can use as the basereg. if (!Subtarget->isPICStyleRIPRel() || (AM.Base.Reg == 0 && AM.IndexReg == 0)) { // Okay, we've committed to selecting this global. Set up the address. AM.GV = GV; // Allow the subtarget to classify the global. unsigned char GVFlags = Subtarget->classifyGlobalReference(GV); // If this reference is relative to the pic base, set it now. if (isGlobalRelativeToPICBase(GVFlags)) { // FIXME: How do we know Base.Reg is free?? AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); } // Unless the ABI requires an extra load, return a direct reference to // the global. if (!isGlobalStubReference(GVFlags)) { if (Subtarget->isPICStyleRIPRel()) { // Use rip-relative addressing if we can. Above we verified that the // base and index registers are unused. assert(AM.Base.Reg == 0 && AM.IndexReg == 0); AM.Base.Reg = X86::RIP; } AM.GVOpFlags = GVFlags; return true; } // Ok, we need to do a load from a stub. If we've already loaded from // this stub, reuse the loaded pointer, otherwise emit the load now. DenseMap::iterator I = LocalValueMap.find(V); Register LoadReg; if (I != LocalValueMap.end() && I->second) { LoadReg = I->second; } else { // Issue load from stub. unsigned Opc = 0; const TargetRegisterClass *RC = nullptr; X86AddressMode StubAM; StubAM.Base.Reg = AM.Base.Reg; StubAM.GV = GV; StubAM.GVOpFlags = GVFlags; // Prepare for inserting code in the local-value area. SavePoint SaveInsertPt = enterLocalValueArea(); if (TLI.getPointerTy(DL) == MVT::i64) { Opc = X86::MOV64rm; RC = &X86::GR64RegClass; } else { Opc = X86::MOV32rm; RC = &X86::GR32RegClass; } if (Subtarget->isPICStyleRIPRel() || GVFlags == X86II::MO_GOTPCREL || GVFlags == X86II::MO_GOTPCREL_NORELAX) StubAM.Base.Reg = X86::RIP; LoadReg = createResultReg(RC); MachineInstrBuilder LoadMI = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), LoadReg); addFullAddress(LoadMI, StubAM); // Ok, back to normal mode. leaveLocalValueArea(SaveInsertPt); // Prevent loading GV stub multiple times in same MBB. LocalValueMap[V] = LoadReg; } // Now construct the final address. Note that the Disp, Scale, // and Index values may already be set here. AM.Base.Reg = LoadReg; AM.GV = nullptr; return true; } } // If all else fails, try to materialize the value in a register. if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { if (AM.Base.Reg == 0) { AM.Base.Reg = getRegForValue(V); return AM.Base.Reg != 0; } if (AM.IndexReg == 0) { assert(AM.Scale == 1 && "Scale with no index!"); AM.IndexReg = getRegForValue(V); return AM.IndexReg != 0; } } return false; } /// X86SelectAddress - Attempt to fill in an address from the given value. /// bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) { SmallVector GEPs; redo_gep: const User *U = nullptr; unsigned Opcode = Instruction::UserOp1; if (const Instruction *I = dyn_cast(V)) { // Don't walk into other basic blocks; it's possible we haven't // visited them yet, so the instructions may not yet be assigned // virtual registers. if (FuncInfo.StaticAllocaMap.count(static_cast(V)) || FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { Opcode = I->getOpcode(); U = I; } } else if (const ConstantExpr *C = dyn_cast(V)) { Opcode = C->getOpcode(); U = C; } if (PointerType *Ty = dyn_cast(V->getType())) if (Ty->getAddressSpace() > 255) // Fast instruction selection doesn't support the special // address spaces. return false; switch (Opcode) { default: break; case Instruction::BitCast: // Look past bitcasts. return X86SelectAddress(U->getOperand(0), AM); case Instruction::IntToPtr: // Look past no-op inttoptrs. if (TLI.getValueType(DL, U->getOperand(0)->getType()) == TLI.getPointerTy(DL)) return X86SelectAddress(U->getOperand(0), AM); break; case Instruction::PtrToInt: // Look past no-op ptrtoints. if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) return X86SelectAddress(U->getOperand(0), AM); break; case Instruction::Alloca: { // Do static allocas. const AllocaInst *A = cast(V); DenseMap::iterator SI = FuncInfo.StaticAllocaMap.find(A); if (SI != FuncInfo.StaticAllocaMap.end()) { AM.BaseType = X86AddressMode::FrameIndexBase; AM.Base.FrameIndex = SI->second; return true; } break; } case Instruction::Add: { // Adds of constants are common and easy enough. if (const ConstantInt *CI = dyn_cast(U->getOperand(1))) { uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue(); // They have to fit in the 32-bit signed displacement field though. if (isInt<32>(Disp)) { AM.Disp = (uint32_t)Disp; return X86SelectAddress(U->getOperand(0), AM); } } break; } case Instruction::GetElementPtr: { X86AddressMode SavedAM = AM; // Pattern-match simple GEPs. uint64_t Disp = (int32_t)AM.Disp; unsigned IndexReg = AM.IndexReg; unsigned Scale = AM.Scale; gep_type_iterator GTI = gep_type_begin(U); // Iterate through the indices, folding what we can. Constants can be // folded, and one dynamic index can be handled, if the scale is supported. for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i, ++GTI) { const Value *Op = *i; if (StructType *STy = GTI.getStructTypeOrNull()) { const StructLayout *SL = DL.getStructLayout(STy); Disp += SL->getElementOffset(cast(Op)->getZExtValue()); continue; } // A array/variable index is always of the form i*S where S is the // constant scale size. See if we can push the scale into immediates. uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); for (;;) { if (const ConstantInt *CI = dyn_cast(Op)) { // Constant-offset addressing. Disp += CI->getSExtValue() * S; break; } if (canFoldAddIntoGEP(U, Op)) { // A compatible add with a constant operand. Fold the constant. ConstantInt *CI = cast(cast(Op)->getOperand(1)); Disp += CI->getSExtValue() * S; // Iterate on the other operand. Op = cast(Op)->getOperand(0); continue; } if (IndexReg == 0 && (!AM.GV || !Subtarget->isPICStyleRIPRel()) && (S == 1 || S == 2 || S == 4 || S == 8)) { // Scaled-index addressing. Scale = S; IndexReg = getRegForGEPIndex(Op); if (IndexReg == 0) return false; break; } // Unsupported. goto unsupported_gep; } } // Check for displacement overflow. if (!isInt<32>(Disp)) break; AM.IndexReg = IndexReg; AM.Scale = Scale; AM.Disp = (uint32_t)Disp; GEPs.push_back(V); if (const GetElementPtrInst *GEP = dyn_cast(U->getOperand(0))) { // Ok, the GEP indices were covered by constant-offset and scaled-index // addressing. Update the address state and move on to examining the base. V = GEP; goto redo_gep; } else if (X86SelectAddress(U->getOperand(0), AM)) { return true; } // If we couldn't merge the gep value into this addr mode, revert back to // our address and just match the value instead of completely failing. AM = SavedAM; for (const Value *I : reverse(GEPs)) if (handleConstantAddresses(I, AM)) return true; return false; unsupported_gep: // Ok, the GEP indices weren't all covered. break; } } return handleConstantAddresses(V, AM); } /// X86SelectCallAddress - Attempt to fill in an address from the given value. /// bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) { const User *U = nullptr; unsigned Opcode = Instruction::UserOp1; const Instruction *I = dyn_cast(V); // Record if the value is defined in the same basic block. // // This information is crucial to know whether or not folding an // operand is valid. // Indeed, FastISel generates or reuses a virtual register for all // operands of all instructions it selects. Obviously, the definition and // its uses must use the same virtual register otherwise the produced // code is incorrect. // Before instruction selection, FunctionLoweringInfo::set sets the virtual // registers for values that are alive across basic blocks. This ensures // that the values are consistently set between across basic block, even // if different instruction selection mechanisms are used (e.g., a mix of // SDISel and FastISel). // For values local to a basic block, the instruction selection process // generates these virtual registers with whatever method is appropriate // for its needs. In particular, FastISel and SDISel do not share the way // local virtual registers are set. // Therefore, this is impossible (or at least unsafe) to share values // between basic blocks unless they use the same instruction selection // method, which is not guarantee for X86. // Moreover, things like hasOneUse could not be used accurately, if we // allow to reference values across basic blocks whereas they are not // alive across basic blocks initially. bool InMBB = true; if (I) { Opcode = I->getOpcode(); U = I; InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock(); } else if (const ConstantExpr *C = dyn_cast(V)) { Opcode = C->getOpcode(); U = C; } switch (Opcode) { default: break; case Instruction::BitCast: // Look past bitcasts if its operand is in the same BB. if (InMBB) return X86SelectCallAddress(U->getOperand(0), AM); break; case Instruction::IntToPtr: // Look past no-op inttoptrs if its operand is in the same BB. if (InMBB && TLI.getValueType(DL, U->getOperand(0)->getType()) == TLI.getPointerTy(DL)) return X86SelectCallAddress(U->getOperand(0), AM); break; case Instruction::PtrToInt: // Look past no-op ptrtoints if its operand is in the same BB. if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) return X86SelectCallAddress(U->getOperand(0), AM); break; } // Handle constant address. if (const GlobalValue *GV = dyn_cast(V)) { // Can't handle alternate code models yet. if (TM.getCodeModel() != CodeModel::Small && TM.getCodeModel() != CodeModel::Medium) return false; // RIP-relative addresses can't have additional register operands. if (Subtarget->isPICStyleRIPRel() && (AM.Base.Reg != 0 || AM.IndexReg != 0)) return false; // Can't handle TLS. if (const GlobalVariable *GVar = dyn_cast(GV)) if (GVar->isThreadLocal()) return false; // Okay, we've committed to selecting this global. Set up the basic address. AM.GV = GV; // Return a direct reference to the global. Fastisel can handle calls to // functions that require loads, such as dllimport and nonlazybind // functions. if (Subtarget->isPICStyleRIPRel()) { // Use rip-relative addressing if we can. Above we verified that the // base and index registers are unused. assert(AM.Base.Reg == 0 && AM.IndexReg == 0); AM.Base.Reg = X86::RIP; } else { AM.GVOpFlags = Subtarget->classifyLocalReference(nullptr); } return true; } // If all else fails, try to materialize the value in a register. if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { auto GetCallRegForValue = [this](const Value *V) { Register Reg = getRegForValue(V); // In 64-bit mode, we need a 64-bit register even if pointers are 32 bits. if (Reg && Subtarget->isTarget64BitILP32()) { Register CopyReg = createResultReg(&X86::GR32RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV32rr), CopyReg) .addReg(Reg); Register ExtReg = createResultReg(&X86::GR64RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::SUBREG_TO_REG), ExtReg) .addImm(0) .addReg(CopyReg) .addImm(X86::sub_32bit); Reg = ExtReg; } return Reg; }; if (AM.Base.Reg == 0) { AM.Base.Reg = GetCallRegForValue(V); return AM.Base.Reg != 0; } if (AM.IndexReg == 0) { assert(AM.Scale == 1 && "Scale with no index!"); AM.IndexReg = GetCallRegForValue(V); return AM.IndexReg != 0; } } return false; } /// X86SelectStore - Select and emit code to implement store instructions. bool X86FastISel::X86SelectStore(const Instruction *I) { // Atomic stores need special handling. const StoreInst *S = cast(I); if (S->isAtomic()) return false; const Value *PtrV = I->getOperand(1); if (TLI.supportSwiftError()) { // Swifterror values can come from either a function parameter with // swifterror attribute or an alloca with swifterror attribute. if (const Argument *Arg = dyn_cast(PtrV)) { if (Arg->hasSwiftErrorAttr()) return false; } if (const AllocaInst *Alloca = dyn_cast(PtrV)) { if (Alloca->isSwiftError()) return false; } } const Value *Val = S->getValueOperand(); const Value *Ptr = S->getPointerOperand(); MVT VT; if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true)) return false; Align Alignment = S->getAlign(); Align ABIAlignment = DL.getABITypeAlign(Val->getType()); bool Aligned = Alignment >= ABIAlignment; X86AddressMode AM; if (!X86SelectAddress(Ptr, AM)) return false; return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned); } /// X86SelectRet - Select and emit code to implement ret instructions. bool X86FastISel::X86SelectRet(const Instruction *I) { const ReturnInst *Ret = cast(I); const Function &F = *I->getParent()->getParent(); const X86MachineFunctionInfo *X86MFInfo = FuncInfo.MF->getInfo(); if (!FuncInfo.CanLowerReturn) return false; if (TLI.supportSwiftError() && F.getAttributes().hasAttrSomewhere(Attribute::SwiftError)) return false; if (TLI.supportSplitCSR(FuncInfo.MF)) return false; CallingConv::ID CC = F.getCallingConv(); if (CC != CallingConv::C && CC != CallingConv::Fast && CC != CallingConv::Tail && CC != CallingConv::SwiftTail && CC != CallingConv::X86_FastCall && CC != CallingConv::X86_StdCall && CC != CallingConv::X86_ThisCall && CC != CallingConv::X86_64_SysV && CC != CallingConv::Win64) return false; // Don't handle popping bytes if they don't fit the ret's immediate. if (!isUInt<16>(X86MFInfo->getBytesToPopOnReturn())) return false; // fastcc with -tailcallopt is intended to provide a guaranteed // tail call optimization. Fastisel doesn't know how to do that. if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) || CC == CallingConv::Tail || CC == CallingConv::SwiftTail) return false; // Let SDISel handle vararg functions. if (F.isVarArg()) return false; // Build a list of return value registers. SmallVector RetRegs; if (Ret->getNumOperands() > 0) { SmallVector Outs; GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL); // Analyze operands of the call, assigning locations to each operand. SmallVector ValLocs; CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext()); CCInfo.AnalyzeReturn(Outs, RetCC_X86); const Value *RV = Ret->getOperand(0); Register Reg = getRegForValue(RV); if (Reg == 0) return false; // Only handle a single return value for now. if (ValLocs.size() != 1) return false; CCValAssign &VA = ValLocs[0]; // Don't bother handling odd stuff for now. if (VA.getLocInfo() != CCValAssign::Full) return false; // Only handle register returns for now. if (!VA.isRegLoc()) return false; // The calling-convention tables for x87 returns don't tell // the whole story. if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) return false; unsigned SrcReg = Reg + VA.getValNo(); EVT SrcVT = TLI.getValueType(DL, RV->getType()); EVT DstVT = VA.getValVT(); // Special handling for extended integers. if (SrcVT != DstVT) { if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16) return false; if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt()) return false; assert(DstVT == MVT::i32 && "X86 should always ext to i32"); if (SrcVT == MVT::i1) { if (Outs[0].Flags.isSExt()) return false; // TODO SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg); SrcVT = MVT::i8; } unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND; // TODO SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op, SrcReg); } // Make the copy. Register DstReg = VA.getLocReg(); const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg); // Avoid a cross-class copy. This is very unlikely. if (!SrcRC->contains(DstReg)) return false; BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg); // Add register to return instruction. RetRegs.push_back(VA.getLocReg()); } // Swift calling convention does not require we copy the sret argument // into %rax/%eax for the return, and SRetReturnReg is not set for Swift. // All x86 ABIs require that for returning structs by value we copy // the sret argument into %rax/%eax (depending on ABI) for the return. // We saved the argument into a virtual register in the entry block, // so now we copy the value out and into %rax/%eax. if (F.hasStructRetAttr() && CC != CallingConv::Swift && CC != CallingConv::SwiftTail) { Register Reg = X86MFInfo->getSRetReturnReg(); assert(Reg && "SRetReturnReg should have been set in LowerFormalArguments()!"); unsigned RetReg = Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX; BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), RetReg).addReg(Reg); RetRegs.push_back(RetReg); } // Now emit the RET. MachineInstrBuilder MIB; if (X86MFInfo->getBytesToPopOnReturn()) { MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Subtarget->is64Bit() ? X86::RETI64 : X86::RETI32)) .addImm(X86MFInfo->getBytesToPopOnReturn()); } else { MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Subtarget->is64Bit() ? X86::RET64 : X86::RET32)); } for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) MIB.addReg(RetRegs[i], RegState::Implicit); return true; } /// X86SelectLoad - Select and emit code to implement load instructions. /// bool X86FastISel::X86SelectLoad(const Instruction *I) { const LoadInst *LI = cast(I); // Atomic loads need special handling. if (LI->isAtomic()) return false; const Value *SV = I->getOperand(0); if (TLI.supportSwiftError()) { // Swifterror values can come from either a function parameter with // swifterror attribute or an alloca with swifterror attribute. if (const Argument *Arg = dyn_cast(SV)) { if (Arg->hasSwiftErrorAttr()) return false; } if (const AllocaInst *Alloca = dyn_cast(SV)) { if (Alloca->isSwiftError()) return false; } } MVT VT; if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true)) return false; const Value *Ptr = LI->getPointerOperand(); X86AddressMode AM; if (!X86SelectAddress(Ptr, AM)) return false; unsigned ResultReg = 0; if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg, LI->getAlign().value())) return false; updateValueMap(I, ResultReg); return true; } static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) { bool HasAVX512 = Subtarget->hasAVX512(); bool HasAVX = Subtarget->hasAVX(); bool HasSSE1 = Subtarget->hasSSE1(); bool HasSSE2 = Subtarget->hasSSE2(); switch (VT.getSimpleVT().SimpleTy) { default: return 0; case MVT::i8: return X86::CMP8rr; case MVT::i16: return X86::CMP16rr; case MVT::i32: return X86::CMP32rr; case MVT::i64: return X86::CMP64rr; case MVT::f32: return HasAVX512 ? X86::VUCOMISSZrr : HasAVX ? X86::VUCOMISSrr : HasSSE1 ? X86::UCOMISSrr : 0; case MVT::f64: return HasAVX512 ? X86::VUCOMISDZrr : HasAVX ? X86::VUCOMISDrr : HasSSE2 ? X86::UCOMISDrr : 0; } } /// If we have a comparison with RHS as the RHS of the comparison, return an /// opcode that works for the compare (e.g. CMP32ri) otherwise return 0. static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) { switch (VT.getSimpleVT().SimpleTy) { // Otherwise, we can't fold the immediate into this comparison. default: return 0; case MVT::i8: return X86::CMP8ri; case MVT::i16: return X86::CMP16ri; case MVT::i32: return X86::CMP32ri; case MVT::i64: // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext // field. return isInt<32>(RHSC->getSExtValue()) ? X86::CMP64ri32 : 0; } } bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, EVT VT, const DebugLoc &CurMIMD) { Register Op0Reg = getRegForValue(Op0); if (Op0Reg == 0) return false; // Handle 'null' like i32/i64 0. if (isa(Op1)) Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext())); // We have two options: compare with register or immediate. If the RHS of // the compare is an immediate that we can fold into this compare, use // CMPri, otherwise use CMPrr. if (const ConstantInt *Op1C = dyn_cast(Op1)) { if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurMIMD, TII.get(CompareImmOpc)) .addReg(Op0Reg) .addImm(Op1C->getSExtValue()); return true; } } unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget); if (CompareOpc == 0) return false; Register Op1Reg = getRegForValue(Op1); if (Op1Reg == 0) return false; BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurMIMD, TII.get(CompareOpc)) .addReg(Op0Reg) .addReg(Op1Reg); return true; } bool X86FastISel::X86SelectCmp(const Instruction *I) { const CmpInst *CI = cast(I); MVT VT; if (!isTypeLegal(I->getOperand(0)->getType(), VT)) return false; // Below code only works for scalars. if (VT.isVector()) return false; // Try to optimize or fold the cmp. CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); unsigned ResultReg = 0; switch (Predicate) { default: break; case CmpInst::FCMP_FALSE: { ResultReg = createResultReg(&X86::GR32RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV32r0), ResultReg); ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, X86::sub_8bit); if (!ResultReg) return false; break; } case CmpInst::FCMP_TRUE: { ResultReg = createResultReg(&X86::GR8RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV8ri), ResultReg).addImm(1); break; } } if (ResultReg) { updateValueMap(I, ResultReg); return true; } const Value *LHS = CI->getOperand(0); const Value *RHS = CI->getOperand(1); // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0. // We don't have to materialize a zero constant for this case and can just use // %x again on the RHS. if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { const auto *RHSC = dyn_cast(RHS); if (RHSC && RHSC->isNullValue()) RHS = LHS; } // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction. static const uint16_t SETFOpcTable[2][3] = { { X86::COND_E, X86::COND_NP, X86::AND8rr }, { X86::COND_NE, X86::COND_P, X86::OR8rr } }; const uint16_t *SETFOpc = nullptr; switch (Predicate) { default: break; case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break; case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break; } ResultReg = createResultReg(&X86::GR8RegClass); if (SETFOpc) { if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc())) return false; Register FlagReg1 = createResultReg(&X86::GR8RegClass); Register FlagReg2 = createResultReg(&X86::GR8RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr), FlagReg1).addImm(SETFOpc[0]); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr), FlagReg2).addImm(SETFOpc[1]); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(SETFOpc[2]), ResultReg).addReg(FlagReg1).addReg(FlagReg2); updateValueMap(I, ResultReg); return true; } X86::CondCode CC; bool SwapArgs; std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate); assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); if (SwapArgs) std::swap(LHS, RHS); // Emit a compare of LHS/RHS. if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc())) return false; BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr), ResultReg).addImm(CC); updateValueMap(I, ResultReg); return true; } bool X86FastISel::X86SelectZExt(const Instruction *I) { EVT DstVT = TLI.getValueType(DL, I->getType()); if (!TLI.isTypeLegal(DstVT)) return false; Register ResultReg = getRegForValue(I->getOperand(0)); if (ResultReg == 0) return false; // Handle zero-extension from i1 to i8, which is common. MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType()); if (SrcVT == MVT::i1) { // Set the high bits to zero. ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg); SrcVT = MVT::i8; if (ResultReg == 0) return false; } if (DstVT == MVT::i64) { // Handle extension to 64-bits via sub-register shenanigans. unsigned MovInst; switch (SrcVT.SimpleTy) { case MVT::i8: MovInst = X86::MOVZX32rr8; break; case MVT::i16: MovInst = X86::MOVZX32rr16; break; case MVT::i32: MovInst = X86::MOV32rr; break; default: llvm_unreachable("Unexpected zext to i64 source type"); } Register Result32 = createResultReg(&X86::GR32RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(MovInst), Result32) .addReg(ResultReg); ResultReg = createResultReg(&X86::GR64RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg) .addImm(0).addReg(Result32).addImm(X86::sub_32bit); } else if (DstVT == MVT::i16) { // i8->i16 doesn't exist in the autogenerated isel table. Need to zero // extend to 32-bits and then extract down to 16-bits. Register Result32 = createResultReg(&X86::GR32RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOVZX32rr8), Result32).addReg(ResultReg); ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, X86::sub_16bit); } else if (DstVT != MVT::i8) { ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND, ResultReg); if (ResultReg == 0) return false; } updateValueMap(I, ResultReg); return true; } bool X86FastISel::X86SelectSExt(const Instruction *I) { EVT DstVT = TLI.getValueType(DL, I->getType()); if (!TLI.isTypeLegal(DstVT)) return false; Register ResultReg = getRegForValue(I->getOperand(0)); if (ResultReg == 0) return false; // Handle sign-extension from i1 to i8. MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType()); if (SrcVT == MVT::i1) { // Set the high bits to zero. Register ZExtReg = fastEmitZExtFromI1(MVT::i8, ResultReg); if (ZExtReg == 0) return false; // Negate the result to make an 8-bit sign extended value. ResultReg = createResultReg(&X86::GR8RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::NEG8r), ResultReg).addReg(ZExtReg); SrcVT = MVT::i8; } if (DstVT == MVT::i16) { // i8->i16 doesn't exist in the autogenerated isel table. Need to sign // extend to 32-bits and then extract down to 16-bits. Register Result32 = createResultReg(&X86::GR32RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOVSX32rr8), Result32).addReg(ResultReg); ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, X86::sub_16bit); } else if (DstVT != MVT::i8) { ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::SIGN_EXTEND, ResultReg); if (ResultReg == 0) return false; } updateValueMap(I, ResultReg); return true; } bool X86FastISel::X86SelectBranch(const Instruction *I) { // Unconditional branches are selected by tablegen-generated code. // Handle a conditional branch. const BranchInst *BI = cast(I); MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; // Fold the common case of a conditional branch with a comparison // in the same block (values defined on other blocks may not have // initialized registers). X86::CondCode CC; if (const CmpInst *CI = dyn_cast(BI->getCondition())) { if (CI->hasOneUse() && CI->getParent() == I->getParent()) { EVT VT = TLI.getValueType(DL, CI->getOperand(0)->getType()); // Try to optimize or fold the cmp. CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); switch (Predicate) { default: break; case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, MIMD.getDL()); return true; case CmpInst::FCMP_TRUE: fastEmitBranch(TrueMBB, MIMD.getDL()); return true; } const Value *CmpLHS = CI->getOperand(0); const Value *CmpRHS = CI->getOperand(1); // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, // 0.0. // We don't have to materialize a zero constant for this case and can just // use %x again on the RHS. if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { const auto *CmpRHSC = dyn_cast(CmpRHS); if (CmpRHSC && CmpRHSC->isNullValue()) CmpRHS = CmpLHS; } // Try to take advantage of fallthrough opportunities. if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) { std::swap(TrueMBB, FalseMBB); Predicate = CmpInst::getInversePredicate(Predicate); } // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition // code check. Instead two branch instructions are required to check all // the flags. First we change the predicate to a supported condition code, // which will be the first branch. Later one we will emit the second // branch. bool NeedExtraBranch = false; switch (Predicate) { default: break; case CmpInst::FCMP_OEQ: std::swap(TrueMBB, FalseMBB); [[fallthrough]]; case CmpInst::FCMP_UNE: NeedExtraBranch = true; Predicate = CmpInst::FCMP_ONE; break; } bool SwapArgs; std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate); assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); if (SwapArgs) std::swap(CmpLHS, CmpRHS); // Emit a compare of the LHS and RHS, setting the flags. if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc())) return false; BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1)) .addMBB(TrueMBB).addImm(CC); // X86 requires a second branch to handle UNE (and OEQ, which is mapped // to UNE above). if (NeedExtraBranch) { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1)) .addMBB(TrueMBB).addImm(X86::COND_P); } finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); return true; } } else if (TruncInst *TI = dyn_cast(BI->getCondition())) { // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which // typically happen for _Bool and C++ bools. MVT SourceVT; if (TI->hasOneUse() && TI->getParent() == I->getParent() && isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) { unsigned TestOpc = 0; switch (SourceVT.SimpleTy) { default: break; case MVT::i8: TestOpc = X86::TEST8ri; break; case MVT::i16: TestOpc = X86::TEST16ri; break; case MVT::i32: TestOpc = X86::TEST32ri; break; case MVT::i64: TestOpc = X86::TEST64ri32; break; } if (TestOpc) { Register OpReg = getRegForValue(TI->getOperand(0)); if (OpReg == 0) return false; BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TestOpc)) .addReg(OpReg).addImm(1); unsigned JmpCond = X86::COND_NE; if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) { std::swap(TrueMBB, FalseMBB); JmpCond = X86::COND_E; } BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1)) .addMBB(TrueMBB).addImm(JmpCond); finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); return true; } } } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) { // Fake request the condition, otherwise the intrinsic might be completely // optimized away. Register TmpReg = getRegForValue(BI->getCondition()); if (TmpReg == 0) return false; BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1)) .addMBB(TrueMBB).addImm(CC); finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); return true; } // Otherwise do a clumsy setcc and re-test it. // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used // in an explicit cast, so make sure to handle that correctly. Register OpReg = getRegForValue(BI->getCondition()); if (OpReg == 0) return false; // In case OpReg is a K register, COPY to a GPR if (MRI.getRegClass(OpReg) == &X86::VK1RegClass) { unsigned KOpReg = OpReg; OpReg = createResultReg(&X86::GR32RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), OpReg) .addReg(KOpReg); OpReg = fastEmitInst_extractsubreg(MVT::i8, OpReg, X86::sub_8bit); } BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TEST8ri)) .addReg(OpReg) .addImm(1); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1)) .addMBB(TrueMBB).addImm(X86::COND_NE); finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); return true; } bool X86FastISel::X86SelectShift(const Instruction *I) { unsigned CReg = 0, OpReg = 0; const TargetRegisterClass *RC = nullptr; if (I->getType()->isIntegerTy(8)) { CReg = X86::CL; RC = &X86::GR8RegClass; switch (I->getOpcode()) { case Instruction::LShr: OpReg = X86::SHR8rCL; break; case Instruction::AShr: OpReg = X86::SAR8rCL; break; case Instruction::Shl: OpReg = X86::SHL8rCL; break; default: return false; } } else if (I->getType()->isIntegerTy(16)) { CReg = X86::CX; RC = &X86::GR16RegClass; switch (I->getOpcode()) { default: llvm_unreachable("Unexpected shift opcode"); case Instruction::LShr: OpReg = X86::SHR16rCL; break; case Instruction::AShr: OpReg = X86::SAR16rCL; break; case Instruction::Shl: OpReg = X86::SHL16rCL; break; } } else if (I->getType()->isIntegerTy(32)) { CReg = X86::ECX; RC = &X86::GR32RegClass; switch (I->getOpcode()) { default: llvm_unreachable("Unexpected shift opcode"); case Instruction::LShr: OpReg = X86::SHR32rCL; break; case Instruction::AShr: OpReg = X86::SAR32rCL; break; case Instruction::Shl: OpReg = X86::SHL32rCL; break; } } else if (I->getType()->isIntegerTy(64)) { CReg = X86::RCX; RC = &X86::GR64RegClass; switch (I->getOpcode()) { default: llvm_unreachable("Unexpected shift opcode"); case Instruction::LShr: OpReg = X86::SHR64rCL; break; case Instruction::AShr: OpReg = X86::SAR64rCL; break; case Instruction::Shl: OpReg = X86::SHL64rCL; break; } } else { return false; } MVT VT; if (!isTypeLegal(I->getType(), VT)) return false; Register Op0Reg = getRegForValue(I->getOperand(0)); if (Op0Reg == 0) return false; Register Op1Reg = getRegForValue(I->getOperand(1)); if (Op1Reg == 0) return false; BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), CReg).addReg(Op1Reg); // The shift instruction uses X86::CL. If we defined a super-register // of X86::CL, emit a subreg KILL to precisely describe what we're doing here. if (CReg != X86::CL) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::KILL), X86::CL) .addReg(CReg, RegState::Kill); Register ResultReg = createResultReg(RC); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(OpReg), ResultReg) .addReg(Op0Reg); updateValueMap(I, ResultReg); return true; } bool X86FastISel::X86SelectDivRem(const Instruction *I) { const static unsigned NumTypes = 4; // i8, i16, i32, i64 const static unsigned NumOps = 4; // SDiv, SRem, UDiv, URem const static bool S = true; // IsSigned const static bool U = false; // !IsSigned const static unsigned Copy = TargetOpcode::COPY; // For the X86 DIV/IDIV instruction, in most cases the dividend // (numerator) must be in a specific register pair highreg:lowreg, // producing the quotient in lowreg and the remainder in highreg. // For most data types, to set up the instruction, the dividend is // copied into lowreg, and lowreg is sign-extended or zero-extended // into highreg. The exception is i8, where the dividend is defined // as a single register rather than a register pair, and we // therefore directly sign-extend or zero-extend the dividend into // lowreg, instead of copying, and ignore the highreg. const static struct DivRemEntry { // The following portion depends only on the data type. const TargetRegisterClass *RC; unsigned LowInReg; // low part of the register pair unsigned HighInReg; // high part of the register pair // The following portion depends on both the data type and the operation. struct DivRemResult { unsigned OpDivRem; // The specific DIV/IDIV opcode to use. unsigned OpSignExtend; // Opcode for sign-extending lowreg into // highreg, or copying a zero into highreg. unsigned OpCopy; // Opcode for copying dividend into lowreg, or // zero/sign-extending into lowreg for i8. unsigned DivRemResultReg; // Register containing the desired result. bool IsOpSigned; // Whether to use signed or unsigned form. } ResultTable[NumOps]; } OpTable[NumTypes] = { { &X86::GR8RegClass, X86::AX, 0, { { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AL, S }, // SDiv { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AH, S }, // SRem { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AL, U }, // UDiv { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AH, U }, // URem } }, // i8 { &X86::GR16RegClass, X86::AX, X86::DX, { { X86::IDIV16r, X86::CWD, Copy, X86::AX, S }, // SDiv { X86::IDIV16r, X86::CWD, Copy, X86::DX, S }, // SRem { X86::DIV16r, X86::MOV32r0, Copy, X86::AX, U }, // UDiv { X86::DIV16r, X86::MOV32r0, Copy, X86::DX, U }, // URem } }, // i16 { &X86::GR32RegClass, X86::EAX, X86::EDX, { { X86::IDIV32r, X86::CDQ, Copy, X86::EAX, S }, // SDiv { X86::IDIV32r, X86::CDQ, Copy, X86::EDX, S }, // SRem { X86::DIV32r, X86::MOV32r0, Copy, X86::EAX, U }, // UDiv { X86::DIV32r, X86::MOV32r0, Copy, X86::EDX, U }, // URem } }, // i32 { &X86::GR64RegClass, X86::RAX, X86::RDX, { { X86::IDIV64r, X86::CQO, Copy, X86::RAX, S }, // SDiv { X86::IDIV64r, X86::CQO, Copy, X86::RDX, S }, // SRem { X86::DIV64r, X86::MOV32r0, Copy, X86::RAX, U }, // UDiv { X86::DIV64r, X86::MOV32r0, Copy, X86::RDX, U }, // URem } }, // i64 }; MVT VT; if (!isTypeLegal(I->getType(), VT)) return false; unsigned TypeIndex, OpIndex; switch (VT.SimpleTy) { default: return false; case MVT::i8: TypeIndex = 0; break; case MVT::i16: TypeIndex = 1; break; case MVT::i32: TypeIndex = 2; break; case MVT::i64: TypeIndex = 3; if (!Subtarget->is64Bit()) return false; break; } switch (I->getOpcode()) { default: llvm_unreachable("Unexpected div/rem opcode"); case Instruction::SDiv: OpIndex = 0; break; case Instruction::SRem: OpIndex = 1; break; case Instruction::UDiv: OpIndex = 2; break; case Instruction::URem: OpIndex = 3; break; } const DivRemEntry &TypeEntry = OpTable[TypeIndex]; const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex]; Register Op0Reg = getRegForValue(I->getOperand(0)); if (Op0Reg == 0) return false; Register Op1Reg = getRegForValue(I->getOperand(1)); if (Op1Reg == 0) return false; // Move op0 into low-order input register. BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg); // Zero-extend or sign-extend into high-order input register. if (OpEntry.OpSignExtend) { if (OpEntry.IsOpSigned) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(OpEntry.OpSignExtend)); else { Register Zero32 = createResultReg(&X86::GR32RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV32r0), Zero32); // Copy the zero into the appropriate sub/super/identical physical // register. Unfortunately the operations needed are not uniform enough // to fit neatly into the table above. if (VT == MVT::i16) { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Copy), TypeEntry.HighInReg) .addReg(Zero32, 0, X86::sub_16bit); } else if (VT == MVT::i32) { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Copy), TypeEntry.HighInReg) .addReg(Zero32); } else if (VT == MVT::i64) { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg) .addImm(0).addReg(Zero32).addImm(X86::sub_32bit); } } } // Generate the DIV/IDIV instruction. BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(OpEntry.OpDivRem)).addReg(Op1Reg); // For i8 remainder, we can't reference ah directly, as we'll end // up with bogus copies like %r9b = COPY %ah. Reference ax // instead to prevent ah references in a rex instruction. // // The current assumption of the fast register allocator is that isel // won't generate explicit references to the GR8_NOREX registers. If // the allocator and/or the backend get enhanced to be more robust in // that regard, this can be, and should be, removed. unsigned ResultReg = 0; if ((I->getOpcode() == Instruction::SRem || I->getOpcode() == Instruction::URem) && OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) { Register SourceSuperReg = createResultReg(&X86::GR16RegClass); Register ResultSuperReg = createResultReg(&X86::GR16RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Copy), SourceSuperReg).addReg(X86::AX); // Shift AX right by 8 bits instead of using AH. BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SHR16ri), ResultSuperReg).addReg(SourceSuperReg).addImm(8); // Now reference the 8-bit subreg of the result. ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg, X86::sub_8bit); } // Copy the result out of the physreg if we haven't already. if (!ResultReg) { ResultReg = createResultReg(TypeEntry.RC); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Copy), ResultReg) .addReg(OpEntry.DivRemResultReg); } updateValueMap(I, ResultReg); return true; } /// Emit a conditional move instruction (if the are supported) to lower /// the select. bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) { // Check if the subtarget supports these instructions. if (!Subtarget->canUseCMOV()) return false; // FIXME: Add support for i8. if (RetVT < MVT::i16 || RetVT > MVT::i64) return false; const Value *Cond = I->getOperand(0); const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); bool NeedTest = true; X86::CondCode CC = X86::COND_NE; // Optimize conditions coming from a compare if both instructions are in the // same basic block (values defined in other basic blocks may not have // initialized registers). const auto *CI = dyn_cast(Cond); if (CI && (CI->getParent() == I->getParent())) { CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction. static const uint16_t SETFOpcTable[2][3] = { { X86::COND_NP, X86::COND_E, X86::TEST8rr }, { X86::COND_P, X86::COND_NE, X86::OR8rr } }; const uint16_t *SETFOpc = nullptr; switch (Predicate) { default: break; case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; Predicate = CmpInst::ICMP_NE; break; case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; Predicate = CmpInst::ICMP_NE; break; } bool NeedSwap; std::tie(CC, NeedSwap) = X86::getX86ConditionCode(Predicate); assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); const Value *CmpLHS = CI->getOperand(0); const Value *CmpRHS = CI->getOperand(1); if (NeedSwap) std::swap(CmpLHS, CmpRHS); EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType()); // Emit a compare of the LHS and RHS, setting the flags. if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc())) return false; if (SETFOpc) { Register FlagReg1 = createResultReg(&X86::GR8RegClass); Register FlagReg2 = createResultReg(&X86::GR8RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr), FlagReg1).addImm(SETFOpc[0]); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr), FlagReg2).addImm(SETFOpc[1]); auto const &II = TII.get(SETFOpc[2]); if (II.getNumDefs()) { Register TmpReg = createResultReg(&X86::GR8RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, TmpReg) .addReg(FlagReg2).addReg(FlagReg1); } else { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) .addReg(FlagReg2).addReg(FlagReg1); } } NeedTest = false; } else if (foldX86XALUIntrinsic(CC, I, Cond)) { // Fake request the condition, otherwise the intrinsic might be completely // optimized away. Register TmpReg = getRegForValue(Cond); if (TmpReg == 0) return false; NeedTest = false; } if (NeedTest) { // Selects operate on i1, however, CondReg is 8 bits width and may contain // garbage. Indeed, only the less significant bit is supposed to be // accurate. If we read more than the lsb, we may see non-zero values // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for // the select. This is achieved by performing TEST against 1. Register CondReg = getRegForValue(Cond); if (CondReg == 0) return false; // In case OpReg is a K register, COPY to a GPR if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) { unsigned KCondReg = CondReg; CondReg = createResultReg(&X86::GR32RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), CondReg) .addReg(KCondReg); CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, X86::sub_8bit); } BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TEST8ri)) .addReg(CondReg) .addImm(1); } const Value *LHS = I->getOperand(1); const Value *RHS = I->getOperand(2); Register RHSReg = getRegForValue(RHS); Register LHSReg = getRegForValue(LHS); if (!LHSReg || !RHSReg) return false; const TargetRegisterInfo &TRI = *Subtarget->getRegisterInfo(); unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(*RC)/8); Register ResultReg = fastEmitInst_rri(Opc, RC, RHSReg, LHSReg, CC); updateValueMap(I, ResultReg); return true; } /// Emit SSE or AVX instructions to lower the select. /// /// Try to use SSE1/SSE2 instructions to simulate a select without branches. /// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary /// SSE instructions are available. If AVX is available, try to use a VBLENDV. bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) { // Optimize conditions coming from a compare if both instructions are in the // same basic block (values defined in other basic blocks may not have // initialized registers). const auto *CI = dyn_cast(I->getOperand(0)); if (!CI || (CI->getParent() != I->getParent())) return false; if (I->getType() != CI->getOperand(0)->getType() || !((Subtarget->hasSSE1() && RetVT == MVT::f32) || (Subtarget->hasSSE2() && RetVT == MVT::f64))) return false; const Value *CmpLHS = CI->getOperand(0); const Value *CmpRHS = CI->getOperand(1); CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0. // We don't have to materialize a zero constant for this case and can just use // %x again on the RHS. if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { const auto *CmpRHSC = dyn_cast(CmpRHS); if (CmpRHSC && CmpRHSC->isNullValue()) CmpRHS = CmpLHS; } unsigned CC; bool NeedSwap; std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate); if (CC > 7 && !Subtarget->hasAVX()) return false; if (NeedSwap) std::swap(CmpLHS, CmpRHS); const Value *LHS = I->getOperand(1); const Value *RHS = I->getOperand(2); Register LHSReg = getRegForValue(LHS); Register RHSReg = getRegForValue(RHS); Register CmpLHSReg = getRegForValue(CmpLHS); Register CmpRHSReg = getRegForValue(CmpRHS); if (!LHSReg || !RHSReg || !CmpLHSReg || !CmpRHSReg) return false; const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); unsigned ResultReg; if (Subtarget->hasAVX512()) { // If we have AVX512 we can use a mask compare and masked movss/sd. const TargetRegisterClass *VR128X = &X86::VR128XRegClass; const TargetRegisterClass *VK1 = &X86::VK1RegClass; unsigned CmpOpcode = (RetVT == MVT::f32) ? X86::VCMPSSZrr : X86::VCMPSDZrr; Register CmpReg = fastEmitInst_rri(CmpOpcode, VK1, CmpLHSReg, CmpRHSReg, CC); // Need an IMPLICIT_DEF for the input that is used to generate the upper // bits of the result register since its not based on any of the inputs. Register ImplicitDefReg = createResultReg(VR128X); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); // Place RHSReg is the passthru of the masked movss/sd operation and put // LHS in the input. The mask input comes from the compare. unsigned MovOpcode = (RetVT == MVT::f32) ? X86::VMOVSSZrrk : X86::VMOVSDZrrk; unsigned MovReg = fastEmitInst_rrrr(MovOpcode, VR128X, RHSReg, CmpReg, ImplicitDefReg, LHSReg); ResultReg = createResultReg(RC); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), ResultReg).addReg(MovReg); } else if (Subtarget->hasAVX()) { const TargetRegisterClass *VR128 = &X86::VR128RegClass; // If we have AVX, create 1 blendv instead of 3 logic instructions. // Blendv was introduced with SSE 4.1, but the 2 register form implicitly // uses XMM0 as the selection register. That may need just as many // instructions as the AND/ANDN/OR sequence due to register moves, so // don't bother. unsigned CmpOpcode = (RetVT == MVT::f32) ? X86::VCMPSSrr : X86::VCMPSDrr; unsigned BlendOpcode = (RetVT == MVT::f32) ? X86::VBLENDVPSrr : X86::VBLENDVPDrr; Register CmpReg = fastEmitInst_rri(CmpOpcode, RC, CmpLHSReg, CmpRHSReg, CC); Register VBlendReg = fastEmitInst_rrr(BlendOpcode, VR128, RHSReg, LHSReg, CmpReg); ResultReg = createResultReg(RC); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), ResultReg).addReg(VBlendReg); } else { // Choose the SSE instruction sequence based on data type (float or double). static const uint16_t OpcTable[2][4] = { { X86::CMPSSrr, X86::ANDPSrr, X86::ANDNPSrr, X86::ORPSrr }, { X86::CMPSDrr, X86::ANDPDrr, X86::ANDNPDrr, X86::ORPDrr } }; const uint16_t *Opc = nullptr; switch (RetVT.SimpleTy) { default: return false; case MVT::f32: Opc = &OpcTable[0][0]; break; case MVT::f64: Opc = &OpcTable[1][0]; break; } const TargetRegisterClass *VR128 = &X86::VR128RegClass; Register CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpRHSReg, CC); Register AndReg = fastEmitInst_rr(Opc[1], VR128, CmpReg, LHSReg); Register AndNReg = fastEmitInst_rr(Opc[2], VR128, CmpReg, RHSReg); Register OrReg = fastEmitInst_rr(Opc[3], VR128, AndNReg, AndReg); ResultReg = createResultReg(RC); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), ResultReg).addReg(OrReg); } updateValueMap(I, ResultReg); return true; } bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) { // These are pseudo CMOV instructions and will be later expanded into control- // flow. unsigned Opc; switch (RetVT.SimpleTy) { default: return false; case MVT::i8: Opc = X86::CMOV_GR8; break; case MVT::i16: Opc = X86::CMOV_GR16; break; case MVT::i32: Opc = X86::CMOV_GR32; break; case MVT::f16: Opc = Subtarget->hasAVX512() ? X86::CMOV_FR16X : X86::CMOV_FR16; break; case MVT::f32: Opc = Subtarget->hasAVX512() ? X86::CMOV_FR32X : X86::CMOV_FR32; break; case MVT::f64: Opc = Subtarget->hasAVX512() ? X86::CMOV_FR64X : X86::CMOV_FR64; break; } const Value *Cond = I->getOperand(0); X86::CondCode CC = X86::COND_NE; // Optimize conditions coming from a compare if both instructions are in the // same basic block (values defined in other basic blocks may not have // initialized registers). const auto *CI = dyn_cast(Cond); if (CI && (CI->getParent() == I->getParent())) { bool NeedSwap; std::tie(CC, NeedSwap) = X86::getX86ConditionCode(CI->getPredicate()); if (CC > X86::LAST_VALID_COND) return false; const Value *CmpLHS = CI->getOperand(0); const Value *CmpRHS = CI->getOperand(1); if (NeedSwap) std::swap(CmpLHS, CmpRHS); EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType()); if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc())) return false; } else { Register CondReg = getRegForValue(Cond); if (CondReg == 0) return false; // In case OpReg is a K register, COPY to a GPR if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) { unsigned KCondReg = CondReg; CondReg = createResultReg(&X86::GR32RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), CondReg) .addReg(KCondReg); CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, X86::sub_8bit); } BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TEST8ri)) .addReg(CondReg) .addImm(1); } const Value *LHS = I->getOperand(1); const Value *RHS = I->getOperand(2); Register LHSReg = getRegForValue(LHS); Register RHSReg = getRegForValue(RHS); if (!LHSReg || !RHSReg) return false; const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); Register ResultReg = fastEmitInst_rri(Opc, RC, RHSReg, LHSReg, CC); updateValueMap(I, ResultReg); return true; } bool X86FastISel::X86SelectSelect(const Instruction *I) { MVT RetVT; if (!isTypeLegal(I->getType(), RetVT)) return false; // Check if we can fold the select. if (const auto *CI = dyn_cast(I->getOperand(0))) { CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); const Value *Opnd = nullptr; switch (Predicate) { default: break; case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break; case CmpInst::FCMP_TRUE: Opnd = I->getOperand(1); break; } // No need for a select anymore - this is an unconditional move. if (Opnd) { Register OpReg = getRegForValue(Opnd); if (OpReg == 0) return false; const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); Register ResultReg = createResultReg(RC); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), ResultReg) .addReg(OpReg); updateValueMap(I, ResultReg); return true; } } // First try to use real conditional move instructions. if (X86FastEmitCMoveSelect(RetVT, I)) return true; // Try to use a sequence of SSE instructions to simulate a conditional move. if (X86FastEmitSSESelect(RetVT, I)) return true; // Fall-back to pseudo conditional move instructions, which will be later // converted to control-flow. if (X86FastEmitPseudoSelect(RetVT, I)) return true; return false; } // Common code for X86SelectSIToFP and X86SelectUIToFP. bool X86FastISel::X86SelectIntToFP(const Instruction *I, bool IsSigned) { // The target-independent selection algorithm in FastISel already knows how // to select a SINT_TO_FP if the target is SSE but not AVX. // Early exit if the subtarget doesn't have AVX. // Unsigned conversion requires avx512. bool HasAVX512 = Subtarget->hasAVX512(); if (!Subtarget->hasAVX() || (!IsSigned && !HasAVX512)) return false; // TODO: We could sign extend narrower types. EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); if (SrcVT != MVT::i32 && SrcVT != MVT::i64) return false; // Select integer to float/double conversion. Register OpReg = getRegForValue(I->getOperand(0)); if (OpReg == 0) return false; unsigned Opcode; static const uint16_t SCvtOpc[2][2][2] = { { { X86::VCVTSI2SSrr, X86::VCVTSI642SSrr }, { X86::VCVTSI2SDrr, X86::VCVTSI642SDrr } }, { { X86::VCVTSI2SSZrr, X86::VCVTSI642SSZrr }, { X86::VCVTSI2SDZrr, X86::VCVTSI642SDZrr } }, }; static const uint16_t UCvtOpc[2][2] = { { X86::VCVTUSI2SSZrr, X86::VCVTUSI642SSZrr }, { X86::VCVTUSI2SDZrr, X86::VCVTUSI642SDZrr }, }; bool Is64Bit = SrcVT == MVT::i64; if (I->getType()->isDoubleTy()) { // s/uitofp int -> double Opcode = IsSigned ? SCvtOpc[HasAVX512][1][Is64Bit] : UCvtOpc[1][Is64Bit]; } else if (I->getType()->isFloatTy()) { // s/uitofp int -> float Opcode = IsSigned ? SCvtOpc[HasAVX512][0][Is64Bit] : UCvtOpc[0][Is64Bit]; } else return false; MVT DstVT = TLI.getValueType(DL, I->getType()).getSimpleVT(); const TargetRegisterClass *RC = TLI.getRegClassFor(DstVT); Register ImplicitDefReg = createResultReg(RC); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); Register ResultReg = fastEmitInst_rr(Opcode, RC, ImplicitDefReg, OpReg); updateValueMap(I, ResultReg); return true; } bool X86FastISel::X86SelectSIToFP(const Instruction *I) { return X86SelectIntToFP(I, /*IsSigned*/true); } bool X86FastISel::X86SelectUIToFP(const Instruction *I) { return X86SelectIntToFP(I, /*IsSigned*/false); } // Helper method used by X86SelectFPExt and X86SelectFPTrunc. bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned TargetOpc, const TargetRegisterClass *RC) { assert((I->getOpcode() == Instruction::FPExt || I->getOpcode() == Instruction::FPTrunc) && "Instruction must be an FPExt or FPTrunc!"); bool HasAVX = Subtarget->hasAVX(); Register OpReg = getRegForValue(I->getOperand(0)); if (OpReg == 0) return false; unsigned ImplicitDefReg; if (HasAVX) { ImplicitDefReg = createResultReg(RC); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); } Register ResultReg = createResultReg(RC); MachineInstrBuilder MIB; MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpc), ResultReg); if (HasAVX) MIB.addReg(ImplicitDefReg); MIB.addReg(OpReg); updateValueMap(I, ResultReg); return true; } bool X86FastISel::X86SelectFPExt(const Instruction *I) { if (Subtarget->hasSSE2() && I->getType()->isDoubleTy() && I->getOperand(0)->getType()->isFloatTy()) { bool HasAVX512 = Subtarget->hasAVX512(); // fpext from float to double. unsigned Opc = HasAVX512 ? X86::VCVTSS2SDZrr : Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr; return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f64)); } return false; } bool X86FastISel::X86SelectFPTrunc(const Instruction *I) { if (Subtarget->hasSSE2() && I->getType()->isFloatTy() && I->getOperand(0)->getType()->isDoubleTy()) { bool HasAVX512 = Subtarget->hasAVX512(); // fptrunc from double to float. unsigned Opc = HasAVX512 ? X86::VCVTSD2SSZrr : Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr; return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f32)); } return false; } bool X86FastISel::X86SelectTrunc(const Instruction *I) { EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); EVT DstVT = TLI.getValueType(DL, I->getType()); // This code only handles truncation to byte. if (DstVT != MVT::i8 && DstVT != MVT::i1) return false; if (!TLI.isTypeLegal(SrcVT)) return false; Register InputReg = getRegForValue(I->getOperand(0)); if (!InputReg) // Unhandled operand. Halt "fast" selection and bail. return false; if (SrcVT == MVT::i8) { // Truncate from i8 to i1; no code needed. updateValueMap(I, InputReg); return true; } // Issue an extract_subreg. Register ResultReg = fastEmitInst_extractsubreg(MVT::i8, InputReg, X86::sub_8bit); if (!ResultReg) return false; updateValueMap(I, ResultReg); return true; } bool X86FastISel::IsMemcpySmall(uint64_t Len) { return Len <= (Subtarget->is64Bit() ? 32 : 16); } bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM, X86AddressMode SrcAM, uint64_t Len) { // Make sure we don't bloat code by inlining very large memcpy's. if (!IsMemcpySmall(Len)) return false; bool i64Legal = Subtarget->is64Bit(); // We don't care about alignment here since we just emit integer accesses. while (Len) { MVT VT; if (Len >= 8 && i64Legal) VT = MVT::i64; else if (Len >= 4) VT = MVT::i32; else if (Len >= 2) VT = MVT::i16; else VT = MVT::i8; unsigned Reg; bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg); RV &= X86FastEmitStore(VT, Reg, DestAM); assert(RV && "Failed to emit load or store??"); (void)RV; unsigned Size = VT.getSizeInBits()/8; Len -= Size; DestAM.Disp += Size; SrcAM.Disp += Size; } return true; } bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) { // FIXME: Handle more intrinsics. switch (II->getIntrinsicID()) { default: return false; case Intrinsic::convert_from_fp16: case Intrinsic::convert_to_fp16: { if (Subtarget->useSoftFloat() || !Subtarget->hasF16C()) return false; const Value *Op = II->getArgOperand(0); Register InputReg = getRegForValue(Op); if (InputReg == 0) return false; // F16C only allows converting from float to half and from half to float. bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16; if (IsFloatToHalf) { if (!Op->getType()->isFloatTy()) return false; } else { if (!II->getType()->isFloatTy()) return false; } unsigned ResultReg = 0; const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16); if (IsFloatToHalf) { // 'InputReg' is implicitly promoted from register class FR32 to // register class VR128 by method 'constrainOperandRegClass' which is // directly called by 'fastEmitInst_ri'. // Instruction VCVTPS2PHrr takes an extra immediate operand which is // used to provide rounding control: use MXCSR.RC, encoded as 0b100. // It's consistent with the other FP instructions, which are usually // controlled by MXCSR. unsigned Opc = Subtarget->hasVLX() ? X86::VCVTPS2PHZ128rr : X86::VCVTPS2PHrr; InputReg = fastEmitInst_ri(Opc, RC, InputReg, 4); // Move the lower 32-bits of ResultReg to another register of class GR32. Opc = Subtarget->hasAVX512() ? X86::VMOVPDI2DIZrr : X86::VMOVPDI2DIrr; ResultReg = createResultReg(&X86::GR32RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg) .addReg(InputReg, RegState::Kill); // The result value is in the lower 16-bits of ResultReg. unsigned RegIdx = X86::sub_16bit; ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, RegIdx); } else { assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!"); // Explicitly zero-extend the input to 32-bit. InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::ZERO_EXTEND, InputReg); // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr. InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR, InputReg); unsigned Opc = Subtarget->hasVLX() ? X86::VCVTPH2PSZ128rr : X86::VCVTPH2PSrr; InputReg = fastEmitInst_r(Opc, RC, InputReg); // The result value is in the lower 32-bits of ResultReg. // Emit an explicit copy from register class VR128 to register class FR32. ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32)); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), ResultReg) .addReg(InputReg, RegState::Kill); } updateValueMap(II, ResultReg); return true; } case Intrinsic::frameaddress: { MachineFunction *MF = FuncInfo.MF; if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI()) return false; Type *RetTy = II->getCalledFunction()->getReturnType(); MVT VT; if (!isTypeLegal(RetTy, VT)) return false; unsigned Opc; const TargetRegisterClass *RC = nullptr; switch (VT.SimpleTy) { default: llvm_unreachable("Invalid result type for frameaddress."); case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break; case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break; } // This needs to be set before we call getPtrSizedFrameRegister, otherwise // we get the wrong frame register. MachineFrameInfo &MFI = MF->getFrameInfo(); MFI.setFrameAddressIsTaken(true); const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF); assert(((FrameReg == X86::RBP && VT == MVT::i64) || (FrameReg == X86::EBP && VT == MVT::i32)) && "Invalid Frame Register!"); // Always make a copy of the frame register to a vreg first, so that we // never directly reference the frame register (the TwoAddressInstruction- // Pass doesn't like that). Register SrcReg = createResultReg(RC); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg); // Now recursively load from the frame address. // movq (%rbp), %rax // movq (%rax), %rax // movq (%rax), %rax // ... unsigned Depth = cast(II->getOperand(0))->getZExtValue(); while (Depth--) { Register DestReg = createResultReg(RC); addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg), SrcReg); SrcReg = DestReg; } updateValueMap(II, SrcReg); return true; } case Intrinsic::memcpy: { const MemCpyInst *MCI = cast(II); // Don't handle volatile or variable length memcpys. if (MCI->isVolatile()) return false; if (isa(MCI->getLength())) { // Small memcpy's are common enough that we want to do them // without a call if possible. uint64_t Len = cast(MCI->getLength())->getZExtValue(); if (IsMemcpySmall(Len)) { X86AddressMode DestAM, SrcAM; if (!X86SelectAddress(MCI->getRawDest(), DestAM) || !X86SelectAddress(MCI->getRawSource(), SrcAM)) return false; TryEmitSmallMemcpy(DestAM, SrcAM, Len); return true; } } unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32; if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth)) return false; if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255) return false; return lowerCallTo(II, "memcpy", II->arg_size() - 1); } case Intrinsic::memset: { const MemSetInst *MSI = cast(II); if (MSI->isVolatile()) return false; unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32; if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth)) return false; if (MSI->getDestAddressSpace() > 255) return false; return lowerCallTo(II, "memset", II->arg_size() - 1); } case Intrinsic::stackprotector: { // Emit code to store the stack guard onto the stack. EVT PtrTy = TLI.getPointerTy(DL); const Value *Op1 = II->getArgOperand(0); // The guard's value. const AllocaInst *Slot = cast(II->getArgOperand(1)); MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]); // Grab the frame index. X86AddressMode AM; if (!X86SelectAddress(Slot, AM)) return false; if (!X86FastEmitStore(PtrTy, Op1, AM)) return false; return true; } case Intrinsic::dbg_declare: { const DbgDeclareInst *DI = cast(II); X86AddressMode AM; assert(DI->getAddress() && "Null address should be checked earlier!"); if (!X86SelectAddress(DI->getAddress(), AM)) return false; const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); assert(DI->getVariable()->isValidLocationForIntrinsic(MIMD.getDL()) && "Expected inlined-at fields to agree"); addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II), AM) .addImm(0) .addMetadata(DI->getVariable()) .addMetadata(DI->getExpression()); return true; } case Intrinsic::trap: { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TRAP)); return true; } case Intrinsic::sqrt: { if (!Subtarget->hasSSE1()) return false; Type *RetTy = II->getCalledFunction()->getReturnType(); MVT VT; if (!isTypeLegal(RetTy, VT)) return false; // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT // is not generated by FastISel yet. // FIXME: Update this code once tablegen can handle it. static const uint16_t SqrtOpc[3][2] = { { X86::SQRTSSr, X86::SQRTSDr }, { X86::VSQRTSSr, X86::VSQRTSDr }, { X86::VSQRTSSZr, X86::VSQRTSDZr }, }; unsigned AVXLevel = Subtarget->hasAVX512() ? 2 : Subtarget->hasAVX() ? 1 : 0; unsigned Opc; switch (VT.SimpleTy) { default: return false; case MVT::f32: Opc = SqrtOpc[AVXLevel][0]; break; case MVT::f64: Opc = SqrtOpc[AVXLevel][1]; break; } const Value *SrcVal = II->getArgOperand(0); Register SrcReg = getRegForValue(SrcVal); if (SrcReg == 0) return false; const TargetRegisterClass *RC = TLI.getRegClassFor(VT); unsigned ImplicitDefReg = 0; if (AVXLevel > 0) { ImplicitDefReg = createResultReg(RC); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); } Register ResultReg = createResultReg(RC); MachineInstrBuilder MIB; MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg); if (ImplicitDefReg) MIB.addReg(ImplicitDefReg); MIB.addReg(SrcReg); updateValueMap(II, ResultReg); return true; } case Intrinsic::sadd_with_overflow: case Intrinsic::uadd_with_overflow: case Intrinsic::ssub_with_overflow: case Intrinsic::usub_with_overflow: case Intrinsic::smul_with_overflow: case Intrinsic::umul_with_overflow: { // This implements the basic lowering of the xalu with overflow intrinsics // into add/sub/mul followed by either seto or setb. const Function *Callee = II->getCalledFunction(); auto *Ty = cast(Callee->getReturnType()); Type *RetTy = Ty->getTypeAtIndex(0U); assert(Ty->getTypeAtIndex(1)->isIntegerTy() && Ty->getTypeAtIndex(1)->getScalarSizeInBits() == 1 && "Overflow value expected to be an i1"); MVT VT; if (!isTypeLegal(RetTy, VT)) return false; if (VT < MVT::i8 || VT > MVT::i64) return false; const Value *LHS = II->getArgOperand(0); const Value *RHS = II->getArgOperand(1); // Canonicalize immediate to the RHS. if (isa(LHS) && !isa(RHS) && II->isCommutative()) std::swap(LHS, RHS); unsigned BaseOpc, CondCode; switch (II->getIntrinsicID()) { default: llvm_unreachable("Unexpected intrinsic!"); case Intrinsic::sadd_with_overflow: BaseOpc = ISD::ADD; CondCode = X86::COND_O; break; case Intrinsic::uadd_with_overflow: BaseOpc = ISD::ADD; CondCode = X86::COND_B; break; case Intrinsic::ssub_with_overflow: BaseOpc = ISD::SUB; CondCode = X86::COND_O; break; case Intrinsic::usub_with_overflow: BaseOpc = ISD::SUB; CondCode = X86::COND_B; break; case Intrinsic::smul_with_overflow: BaseOpc = X86ISD::SMUL; CondCode = X86::COND_O; break; case Intrinsic::umul_with_overflow: BaseOpc = X86ISD::UMUL; CondCode = X86::COND_O; break; } Register LHSReg = getRegForValue(LHS); if (LHSReg == 0) return false; unsigned ResultReg = 0; // Check if we have an immediate version. if (const auto *CI = dyn_cast(RHS)) { static const uint16_t Opc[2][4] = { { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r }, { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r } }; if (CI->isOne() && (BaseOpc == ISD::ADD || BaseOpc == ISD::SUB) && CondCode == X86::COND_O) { // We can use INC/DEC. ResultReg = createResultReg(TLI.getRegClassFor(VT)); bool IsDec = BaseOpc == ISD::SUB; BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg) .addReg(LHSReg); } else ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, CI->getZExtValue()); } unsigned RHSReg; if (!ResultReg) { RHSReg = getRegForValue(RHS); if (RHSReg == 0) return false; ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, RHSReg); } // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit // it manually. if (BaseOpc == X86ISD::UMUL && !ResultReg) { static const uint16_t MULOpc[] = { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r }; static const MCPhysReg Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX }; // First copy the first operand into RAX, which is an implicit input to // the X86::MUL*r instruction. BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8]) .addReg(LHSReg); ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8], TLI.getRegClassFor(VT), RHSReg); } else if (BaseOpc == X86ISD::SMUL && !ResultReg) { static const uint16_t MULOpc[] = { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr }; if (VT == MVT::i8) { // Copy the first operand into AL, which is an implicit input to the // X86::IMUL8r instruction. BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), X86::AL) .addReg(LHSReg); ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg); } else ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8], TLI.getRegClassFor(VT), LHSReg, RHSReg); } if (!ResultReg) return false; // Assign to a GPR since the overflow return value is lowered to a SETcc. Register ResultReg2 = createResultReg(&X86::GR8RegClass); assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers."); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr), ResultReg2).addImm(CondCode); updateValueMap(II, ResultReg, 2); return true; } case Intrinsic::x86_sse_cvttss2si: case Intrinsic::x86_sse_cvttss2si64: case Intrinsic::x86_sse2_cvttsd2si: case Intrinsic::x86_sse2_cvttsd2si64: { bool IsInputDouble; switch (II->getIntrinsicID()) { default: llvm_unreachable("Unexpected intrinsic."); case Intrinsic::x86_sse_cvttss2si: case Intrinsic::x86_sse_cvttss2si64: if (!Subtarget->hasSSE1()) return false; IsInputDouble = false; break; case Intrinsic::x86_sse2_cvttsd2si: case Intrinsic::x86_sse2_cvttsd2si64: if (!Subtarget->hasSSE2()) return false; IsInputDouble = true; break; } Type *RetTy = II->getCalledFunction()->getReturnType(); MVT VT; if (!isTypeLegal(RetTy, VT)) return false; static const uint16_t CvtOpc[3][2][2] = { { { X86::CVTTSS2SIrr, X86::CVTTSS2SI64rr }, { X86::CVTTSD2SIrr, X86::CVTTSD2SI64rr } }, { { X86::VCVTTSS2SIrr, X86::VCVTTSS2SI64rr }, { X86::VCVTTSD2SIrr, X86::VCVTTSD2SI64rr } }, { { X86::VCVTTSS2SIZrr, X86::VCVTTSS2SI64Zrr }, { X86::VCVTTSD2SIZrr, X86::VCVTTSD2SI64Zrr } }, }; unsigned AVXLevel = Subtarget->hasAVX512() ? 2 : Subtarget->hasAVX() ? 1 : 0; unsigned Opc; switch (VT.SimpleTy) { default: llvm_unreachable("Unexpected result type."); case MVT::i32: Opc = CvtOpc[AVXLevel][IsInputDouble][0]; break; case MVT::i64: Opc = CvtOpc[AVXLevel][IsInputDouble][1]; break; } // Check if we can fold insertelement instructions into the convert. const Value *Op = II->getArgOperand(0); while (auto *IE = dyn_cast(Op)) { const Value *Index = IE->getOperand(2); if (!isa(Index)) break; unsigned Idx = cast(Index)->getZExtValue(); if (Idx == 0) { Op = IE->getOperand(1); break; } Op = IE->getOperand(0); } Register Reg = getRegForValue(Op); if (Reg == 0) return false; Register ResultReg = createResultReg(TLI.getRegClassFor(VT)); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg) .addReg(Reg); updateValueMap(II, ResultReg); return true; } case Intrinsic::x86_sse42_crc32_32_8: case Intrinsic::x86_sse42_crc32_32_16: case Intrinsic::x86_sse42_crc32_32_32: case Intrinsic::x86_sse42_crc32_64_64: { if (!Subtarget->hasCRC32()) return false; Type *RetTy = II->getCalledFunction()->getReturnType(); MVT VT; if (!isTypeLegal(RetTy, VT)) return false; unsigned Opc; const TargetRegisterClass *RC = nullptr; switch (II->getIntrinsicID()) { default: llvm_unreachable("Unexpected intrinsic."); case Intrinsic::x86_sse42_crc32_32_8: Opc = X86::CRC32r32r8; RC = &X86::GR32RegClass; break; case Intrinsic::x86_sse42_crc32_32_16: Opc = X86::CRC32r32r16; RC = &X86::GR32RegClass; break; case Intrinsic::x86_sse42_crc32_32_32: Opc = X86::CRC32r32r32; RC = &X86::GR32RegClass; break; case Intrinsic::x86_sse42_crc32_64_64: Opc = X86::CRC32r64r64; RC = &X86::GR64RegClass; break; } const Value *LHS = II->getArgOperand(0); const Value *RHS = II->getArgOperand(1); Register LHSReg = getRegForValue(LHS); Register RHSReg = getRegForValue(RHS); if (!LHSReg || !RHSReg) return false; Register ResultReg = fastEmitInst_rr(Opc, RC, LHSReg, RHSReg); if (!ResultReg) return false; updateValueMap(II, ResultReg); return true; } } } bool X86FastISel::fastLowerArguments() { if (!FuncInfo.CanLowerReturn) return false; const Function *F = FuncInfo.Fn; if (F->isVarArg()) return false; CallingConv::ID CC = F->getCallingConv(); if (CC != CallingConv::C) return false; if (Subtarget->isCallingConvWin64(CC)) return false; if (!Subtarget->is64Bit()) return false; if (Subtarget->useSoftFloat()) return false; // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments. unsigned GPRCnt = 0; unsigned FPRCnt = 0; for (auto const &Arg : F->args()) { if (Arg.hasAttribute(Attribute::ByVal) || Arg.hasAttribute(Attribute::InReg) || Arg.hasAttribute(Attribute::StructRet) || Arg.hasAttribute(Attribute::SwiftSelf) || Arg.hasAttribute(Attribute::SwiftAsync) || Arg.hasAttribute(Attribute::SwiftError) || Arg.hasAttribute(Attribute::Nest)) return false; Type *ArgTy = Arg.getType(); if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) return false; EVT ArgVT = TLI.getValueType(DL, ArgTy); if (!ArgVT.isSimple()) return false; switch (ArgVT.getSimpleVT().SimpleTy) { default: return false; case MVT::i32: case MVT::i64: ++GPRCnt; break; case MVT::f32: case MVT::f64: if (!Subtarget->hasSSE1()) return false; ++FPRCnt; break; } if (GPRCnt > 6) return false; if (FPRCnt > 8) return false; } static const MCPhysReg GPR32ArgRegs[] = { X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D }; static const MCPhysReg GPR64ArgRegs[] = { X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9 }; static const MCPhysReg XMMArgRegs[] = { X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 }; unsigned GPRIdx = 0; unsigned FPRIdx = 0; for (auto const &Arg : F->args()) { MVT VT = TLI.getSimpleValueType(DL, Arg.getType()); const TargetRegisterClass *RC = TLI.getRegClassFor(VT); unsigned SrcReg; switch (VT.SimpleTy) { default: llvm_unreachable("Unexpected value type."); case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break; case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break; case MVT::f32: [[fallthrough]]; case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break; } Register DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC); // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. // Without this, EmitLiveInCopies may eliminate the livein if its only // use is a bitcast (which isn't turned into an instruction). Register ResultReg = createResultReg(RC); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), ResultReg) .addReg(DstReg, getKillRegState(true)); updateValueMap(&Arg, ResultReg); } return true; } static unsigned computeBytesPoppedByCalleeForSRet(const X86Subtarget *Subtarget, CallingConv::ID CC, const CallBase *CB) { if (Subtarget->is64Bit()) return 0; if (Subtarget->getTargetTriple().isOSMSVCRT()) return 0; if (CC == CallingConv::Fast || CC == CallingConv::GHC || CC == CallingConv::HiPE || CC == CallingConv::Tail || CC == CallingConv::SwiftTail) return 0; if (CB) if (CB->arg_empty() || !CB->paramHasAttr(0, Attribute::StructRet) || CB->paramHasAttr(0, Attribute::InReg) || Subtarget->isTargetMCU()) return 0; return 4; } bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) { auto &OutVals = CLI.OutVals; auto &OutFlags = CLI.OutFlags; auto &OutRegs = CLI.OutRegs; auto &Ins = CLI.Ins; auto &InRegs = CLI.InRegs; CallingConv::ID CC = CLI.CallConv; bool &IsTailCall = CLI.IsTailCall; bool IsVarArg = CLI.IsVarArg; const Value *Callee = CLI.Callee; MCSymbol *Symbol = CLI.Symbol; const auto *CB = CLI.CB; bool Is64Bit = Subtarget->is64Bit(); bool IsWin64 = Subtarget->isCallingConvWin64(CC); // Call / invoke instructions with NoCfCheck attribute require special // handling. if (CB && CB->doesNoCfCheck()) return false; // Functions with no_caller_saved_registers that need special handling. if ((CB && isa(CB) && CB->hasFnAttr("no_caller_saved_registers"))) return false; // Functions with no_callee_saved_registers that need special handling. if ((CB && CB->hasFnAttr("no_callee_saved_registers"))) return false; // Indirect calls with CFI checks need special handling. if (CB && CB->isIndirectCall() && CB->getOperandBundle(LLVMContext::OB_kcfi)) return false; // Functions using thunks for indirect calls need to use SDISel. if (Subtarget->useIndirectThunkCalls()) return false; // Handle only C and fastcc calling conventions for now. switch (CC) { default: return false; case CallingConv::C: case CallingConv::Fast: case CallingConv::Tail: case CallingConv::Swift: case CallingConv::SwiftTail: case CallingConv::X86_FastCall: case CallingConv::X86_StdCall: case CallingConv::X86_ThisCall: case CallingConv::Win64: case CallingConv::X86_64_SysV: case CallingConv::CFGuard_Check: break; } // Allow SelectionDAG isel to handle tail calls. if (IsTailCall) return false; // fastcc with -tailcallopt is intended to provide a guaranteed // tail call optimization. Fastisel doesn't know how to do that. if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) || CC == CallingConv::Tail || CC == CallingConv::SwiftTail) return false; // Don't know how to handle Win64 varargs yet. Nothing special needed for // x86-32. Special handling for x86-64 is implemented. if (IsVarArg && IsWin64) return false; // Don't know about inalloca yet. if (CLI.CB && CLI.CB->hasInAllocaArgument()) return false; for (auto Flag : CLI.OutFlags) if (Flag.isSwiftError() || Flag.isPreallocated()) return false; SmallVector OutVTs; SmallVector ArgRegs; // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra // instruction. This is safe because it is common to all FastISel supported // calling conventions on x86. for (int i = 0, e = OutVals.size(); i != e; ++i) { Value *&Val = OutVals[i]; ISD::ArgFlagsTy Flags = OutFlags[i]; if (auto *CI = dyn_cast(Val)) { if (CI->getBitWidth() < 32) { if (Flags.isSExt()) Val = ConstantInt::get(CI->getContext(), CI->getValue().sext(32)); else Val = ConstantInt::get(CI->getContext(), CI->getValue().zext(32)); } } // Passing bools around ends up doing a trunc to i1 and passing it. // Codegen this as an argument + "and 1". MVT VT; auto *TI = dyn_cast(Val); unsigned ResultReg; if (TI && TI->getType()->isIntegerTy(1) && CLI.CB && (TI->getParent() == CLI.CB->getParent()) && TI->hasOneUse()) { Value *PrevVal = TI->getOperand(0); ResultReg = getRegForValue(PrevVal); if (!ResultReg) return false; if (!isTypeLegal(PrevVal->getType(), VT)) return false; ResultReg = fastEmit_ri(VT, VT, ISD::AND, ResultReg, 1); } else { if (!isTypeLegal(Val->getType(), VT) || (VT.isVector() && VT.getVectorElementType() == MVT::i1)) return false; ResultReg = getRegForValue(Val); } if (!ResultReg) return false; ArgRegs.push_back(ResultReg); OutVTs.push_back(VT); } // Analyze operands of the call, assigning locations to each operand. SmallVector ArgLocs; CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext()); // Allocate shadow area for Win64 if (IsWin64) CCInfo.AllocateStack(32, Align(8)); CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86); // Get a count of how many bytes are to be pushed on the stack. unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); // Issue CALLSEQ_START unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackDown)) .addImm(NumBytes).addImm(0).addImm(0); // Walk the register/memloc assignments, inserting copies/loads. const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign const &VA = ArgLocs[i]; const Value *ArgVal = OutVals[VA.getValNo()]; MVT ArgVT = OutVTs[VA.getValNo()]; if (ArgVT == MVT::x86mmx) return false; unsigned ArgReg = ArgRegs[VA.getValNo()]; // Promote the value if needed. switch (VA.getLocInfo()) { case CCValAssign::Full: break; case CCValAssign::SExt: { assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && "Unexpected extend"); if (ArgVT == MVT::i1) return false; bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg, ArgVT, ArgReg); assert(Emitted && "Failed to emit a sext!"); (void)Emitted; ArgVT = VA.getLocVT(); break; } case CCValAssign::ZExt: { assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && "Unexpected extend"); // Handle zero-extension from i1 to i8, which is common. if (ArgVT == MVT::i1) { // Set the high bits to zero. ArgReg = fastEmitZExtFromI1(MVT::i8, ArgReg); ArgVT = MVT::i8; if (ArgReg == 0) return false; } bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg, ArgVT, ArgReg); assert(Emitted && "Failed to emit a zext!"); (void)Emitted; ArgVT = VA.getLocVT(); break; } case CCValAssign::AExt: { assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && "Unexpected extend"); bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg, ArgVT, ArgReg); if (!Emitted) Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg, ArgVT, ArgReg); if (!Emitted) Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg, ArgVT, ArgReg); assert(Emitted && "Failed to emit a aext!"); (void)Emitted; ArgVT = VA.getLocVT(); break; } case CCValAssign::BCvt: { ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg); assert(ArgReg && "Failed to emit a bitcast!"); ArgVT = VA.getLocVT(); break; } case CCValAssign::VExt: // VExt has not been implemented, so this should be impossible to reach // for now. However, fallback to Selection DAG isel once implemented. return false; case CCValAssign::AExtUpper: case CCValAssign::SExtUpper: case CCValAssign::ZExtUpper: case CCValAssign::FPExt: case CCValAssign::Trunc: llvm_unreachable("Unexpected loc info!"); case CCValAssign::Indirect: // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully // support this. return false; } if (VA.isRegLoc()) { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg); OutRegs.push_back(VA.getLocReg()); } else { assert(VA.isMemLoc() && "Unknown value location!"); // Don't emit stores for undef values. if (isa(ArgVal)) continue; unsigned LocMemOffset = VA.getLocMemOffset(); X86AddressMode AM; AM.Base.Reg = RegInfo->getStackRegister(); AM.Disp = LocMemOffset; ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()]; Align Alignment = DL.getABITypeAlign(ArgVal->getType()); MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( MachinePointerInfo::getStack(*FuncInfo.MF, LocMemOffset), MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment); if (Flags.isByVal()) { X86AddressMode SrcAM; SrcAM.Base.Reg = ArgReg; if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize())) return false; } else if (isa(ArgVal) || isa(ArgVal)) { // If this is a really simple value, emit this with the Value* version // of X86FastEmitStore. If it isn't simple, we don't want to do this, // as it can cause us to reevaluate the argument. if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO)) return false; } else { if (!X86FastEmitStore(ArgVT, ArgReg, AM, MMO)) return false; } } } // ELF / PIC requires GOT in the EBX register before function calls via PLT // GOT pointer. if (Subtarget->isPICStyleGOT()) { unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base); } if (Is64Bit && IsVarArg && !IsWin64) { // From AMD64 ABI document: // For calls that may call functions that use varargs or stdargs // (prototype-less calls or calls to functions containing ellipsis (...) in // the declaration) %al is used as hidden argument to specify the number // of SSE registers used. The contents of %al do not need to match exactly // the number of registers, but must be an ubound on the number of SSE // registers used and is in the range 0 - 8 inclusive. // Count the number of XMM registers allocated. static const MCPhysReg XMMArgRegs[] = { X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 }; unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs); assert((Subtarget->hasSSE1() || !NumXMMRegs) && "SSE registers cannot be used when SSE is disabled"); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV8ri), X86::AL).addImm(NumXMMRegs); } // Materialize callee address in a register. FIXME: GV address can be // handled with a CALLpcrel32 instead. X86AddressMode CalleeAM; if (!X86SelectCallAddress(Callee, CalleeAM)) return false; unsigned CalleeOp = 0; const GlobalValue *GV = nullptr; if (CalleeAM.GV != nullptr) { GV = CalleeAM.GV; } else if (CalleeAM.Base.Reg != 0) { CalleeOp = CalleeAM.Base.Reg; } else return false; // Issue the call. MachineInstrBuilder MIB; if (CalleeOp) { // Register-indirect call. unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r; MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(CallOpc)) .addReg(CalleeOp); } else { // Direct call. assert(GV && "Not a direct call"); // See if we need any target-specific flags on the GV operand. unsigned char OpFlags = Subtarget->classifyGlobalFunctionReference(GV); if (OpFlags == X86II::MO_PLT && !Is64Bit && TM.getRelocationModel() == Reloc::Static && isa(GV) && cast(GV)->isIntrinsic()) OpFlags = X86II::MO_NO_FLAG; // This will be a direct call, or an indirect call through memory for // NonLazyBind calls or dllimport calls. bool NeedLoad = OpFlags == X86II::MO_DLLIMPORT || OpFlags == X86II::MO_GOTPCREL || OpFlags == X86II::MO_GOTPCREL_NORELAX || OpFlags == X86II::MO_COFFSTUB; unsigned CallOpc = NeedLoad ? (Is64Bit ? X86::CALL64m : X86::CALL32m) : (Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32); MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(CallOpc)); if (NeedLoad) MIB.addReg(Is64Bit ? X86::RIP : 0).addImm(1).addReg(0); if (Symbol) MIB.addSym(Symbol, OpFlags); else MIB.addGlobalAddress(GV, 0, OpFlags); if (NeedLoad) MIB.addReg(0); } // Add a register mask operand representing the call-preserved registers. // Proper defs for return values will be added by setPhysRegsDeadExcept(). MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); // Add an implicit use GOT pointer in EBX. if (Subtarget->isPICStyleGOT()) MIB.addReg(X86::EBX, RegState::Implicit); if (Is64Bit && IsVarArg && !IsWin64) MIB.addReg(X86::AL, RegState::Implicit); // Add implicit physical register uses to the call. for (auto Reg : OutRegs) MIB.addReg(Reg, RegState::Implicit); // Issue CALLSEQ_END unsigned NumBytesForCalleeToPop = X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg, TM.Options.GuaranteedTailCallOpt) ? NumBytes // Callee pops everything. : computeBytesPoppedByCalleeForSRet(Subtarget, CC, CLI.CB); unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackUp)) .addImm(NumBytes).addImm(NumBytesForCalleeToPop); // Now handle call return values. SmallVector RVLocs; CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, CLI.RetTy->getContext()); CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86); // Copy all of the result registers out of their specified physreg. Register ResultReg = FuncInfo.CreateRegs(CLI.RetTy); for (unsigned i = 0; i != RVLocs.size(); ++i) { CCValAssign &VA = RVLocs[i]; EVT CopyVT = VA.getValVT(); unsigned CopyReg = ResultReg + i; Register SrcReg = VA.getLocReg(); // If this is x86-64, and we disabled SSE, we can't return FP values if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) && ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) { report_fatal_error("SSE register return with SSE disabled"); } // If we prefer to use the value in xmm registers, copy it out as f80 and // use a truncate to move it from fp stack reg to xmm reg. if ((SrcReg == X86::FP0 || SrcReg == X86::FP1) && isScalarFPTypeInSSEReg(VA.getValVT())) { CopyVT = MVT::f80; CopyReg = createResultReg(&X86::RFP80RegClass); } // Copy out the result. BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), CopyReg).addReg(SrcReg); InRegs.push_back(VA.getLocReg()); // Round the f80 to the right size, which also moves it to the appropriate // xmm register. This is accomplished by storing the f80 value in memory // and then loading it back. if (CopyVT != VA.getValVT()) { EVT ResVT = VA.getValVT(); unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64; unsigned MemSize = ResVT.getSizeInBits()/8; int FI = MFI.CreateStackObject(MemSize, Align(MemSize), false); addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc)), FI) .addReg(CopyReg); Opc = ResVT == MVT::f32 ? X86::MOVSSrm_alt : X86::MOVSDrm_alt; addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg + i), FI); } } CLI.ResultReg = ResultReg; CLI.NumResultRegs = RVLocs.size(); CLI.Call = MIB; return true; } bool X86FastISel::fastSelectInstruction(const Instruction *I) { switch (I->getOpcode()) { default: break; case Instruction::Load: return X86SelectLoad(I); case Instruction::Store: return X86SelectStore(I); case Instruction::Ret: return X86SelectRet(I); case Instruction::ICmp: case Instruction::FCmp: return X86SelectCmp(I); case Instruction::ZExt: return X86SelectZExt(I); case Instruction::SExt: return X86SelectSExt(I); case Instruction::Br: return X86SelectBranch(I); case Instruction::LShr: case Instruction::AShr: case Instruction::Shl: return X86SelectShift(I); case Instruction::SDiv: case Instruction::UDiv: case Instruction::SRem: case Instruction::URem: return X86SelectDivRem(I); case Instruction::Select: return X86SelectSelect(I); case Instruction::Trunc: return X86SelectTrunc(I); case Instruction::FPExt: return X86SelectFPExt(I); case Instruction::FPTrunc: return X86SelectFPTrunc(I); case Instruction::SIToFP: return X86SelectSIToFP(I); case Instruction::UIToFP: return X86SelectUIToFP(I); case Instruction::IntToPtr: // Deliberate fall-through. case Instruction::PtrToInt: { EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); EVT DstVT = TLI.getValueType(DL, I->getType()); if (DstVT.bitsGT(SrcVT)) return X86SelectZExt(I); if (DstVT.bitsLT(SrcVT)) return X86SelectTrunc(I); Register Reg = getRegForValue(I->getOperand(0)); if (Reg == 0) return false; updateValueMap(I, Reg); return true; } case Instruction::BitCast: { // Select SSE2/AVX bitcasts between 128/256/512 bit vector types. if (!Subtarget->hasSSE2()) return false; MVT SrcVT, DstVT; if (!isTypeLegal(I->getOperand(0)->getType(), SrcVT) || !isTypeLegal(I->getType(), DstVT)) return false; // Only allow vectors that use xmm/ymm/zmm. if (!SrcVT.isVector() || !DstVT.isVector() || SrcVT.getVectorElementType() == MVT::i1 || DstVT.getVectorElementType() == MVT::i1) return false; Register Reg = getRegForValue(I->getOperand(0)); if (!Reg) return false; // Emit a reg-reg copy so we don't propagate cached known bits information // with the wrong VT if we fall out of fast isel after selecting this. const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT); Register ResultReg = createResultReg(DstClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg); updateValueMap(I, ResultReg); return true; } } return false; } unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) { if (VT > MVT::i64) return 0; uint64_t Imm = CI->getZExtValue(); if (Imm == 0) { Register SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass); switch (VT.SimpleTy) { default: llvm_unreachable("Unexpected value type"); case MVT::i1: case MVT::i8: return fastEmitInst_extractsubreg(MVT::i8, SrcReg, X86::sub_8bit); case MVT::i16: return fastEmitInst_extractsubreg(MVT::i16, SrcReg, X86::sub_16bit); case MVT::i32: return SrcReg; case MVT::i64: { Register ResultReg = createResultReg(&X86::GR64RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg) .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit); return ResultReg; } } } unsigned Opc = 0; switch (VT.SimpleTy) { default: llvm_unreachable("Unexpected value type"); case MVT::i1: VT = MVT::i8; [[fallthrough]]; case MVT::i8: Opc = X86::MOV8ri; break; case MVT::i16: Opc = X86::MOV16ri; break; case MVT::i32: Opc = X86::MOV32ri; break; case MVT::i64: { if (isUInt<32>(Imm)) Opc = X86::MOV32ri64; else if (isInt<32>(Imm)) Opc = X86::MOV64ri32; else Opc = X86::MOV64ri; break; } } return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm); } unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) { if (CFP->isNullValue()) return fastMaterializeFloatZero(CFP); // Can't handle alternate code models yet. CodeModel::Model CM = TM.getCodeModel(); if (CM != CodeModel::Small && CM != CodeModel::Medium && CM != CodeModel::Large) return 0; // Get opcode and regclass of the output for the given load instruction. unsigned Opc = 0; bool HasSSE1 = Subtarget->hasSSE1(); bool HasSSE2 = Subtarget->hasSSE2(); bool HasAVX = Subtarget->hasAVX(); bool HasAVX512 = Subtarget->hasAVX512(); switch (VT.SimpleTy) { default: return 0; case MVT::f32: Opc = HasAVX512 ? X86::VMOVSSZrm_alt : HasAVX ? X86::VMOVSSrm_alt : HasSSE1 ? X86::MOVSSrm_alt : X86::LD_Fp32m; break; case MVT::f64: Opc = HasAVX512 ? X86::VMOVSDZrm_alt : HasAVX ? X86::VMOVSDrm_alt : HasSSE2 ? X86::MOVSDrm_alt : X86::LD_Fp64m; break; case MVT::f80: // No f80 support yet. return 0; } // MachineConstantPool wants an explicit alignment. Align Alignment = DL.getPrefTypeAlign(CFP->getType()); // x86-32 PIC requires a PIC base register for constant pools. unsigned PICBase = 0; unsigned char OpFlag = Subtarget->classifyLocalReference(nullptr); if (OpFlag == X86II::MO_PIC_BASE_OFFSET) PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); else if (OpFlag == X86II::MO_GOTOFF) PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); else if (Subtarget->is64Bit() && TM.getCodeModel() != CodeModel::Large) PICBase = X86::RIP; // Create the load from the constant pool. unsigned CPI = MCP.getConstantPoolIndex(CFP, Alignment); Register ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy)); // Large code model only applies to 64-bit mode. if (Subtarget->is64Bit() && CM == CodeModel::Large) { Register AddrReg = createResultReg(&X86::GR64RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV64ri), AddrReg) .addConstantPoolIndex(CPI, 0, OpFlag); MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg); addRegReg(MIB, AddrReg, false, PICBase, false); MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( MachinePointerInfo::getConstantPool(*FuncInfo.MF), MachineMemOperand::MOLoad, DL.getPointerSize(), Alignment); MIB->addMemOperand(*FuncInfo.MF, MMO); return ResultReg; } addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg), CPI, PICBase, OpFlag); return ResultReg; } unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) { // Can't handle large GlobalValues yet. if (TM.getCodeModel() != CodeModel::Small && TM.getCodeModel() != CodeModel::Medium) return 0; if (TM.isLargeGlobalValue(GV)) return 0; // Materialize addresses with LEA/MOV instructions. X86AddressMode AM; if (X86SelectAddress(GV, AM)) { // If the expression is just a basereg, then we're done, otherwise we need // to emit an LEA. if (AM.BaseType == X86AddressMode::RegBase && AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr) return AM.Base.Reg; Register ResultReg = createResultReg(TLI.getRegClassFor(VT)); if (TM.getRelocationModel() == Reloc::Static && TLI.getPointerTy(DL) == MVT::i64) { // The displacement code could be more than 32 bits away so we need to use // an instruction with a 64 bit immediate BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV64ri), ResultReg) .addGlobalAddress(GV); } else { unsigned Opc = TLI.getPointerTy(DL) == MVT::i32 ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r) : X86::LEA64r; addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg), AM); } return ResultReg; } return 0; } unsigned X86FastISel::fastMaterializeConstant(const Constant *C) { EVT CEVT = TLI.getValueType(DL, C->getType(), true); // Only handle simple types. if (!CEVT.isSimple()) return 0; MVT VT = CEVT.getSimpleVT(); if (const auto *CI = dyn_cast(C)) return X86MaterializeInt(CI, VT); if (const auto *CFP = dyn_cast(C)) return X86MaterializeFP(CFP, VT); if (const auto *GV = dyn_cast(C)) return X86MaterializeGV(GV, VT); if (isa(C)) { unsigned Opc = 0; switch (VT.SimpleTy) { default: break; case MVT::f32: if (!Subtarget->hasSSE1()) Opc = X86::LD_Fp032; break; case MVT::f64: if (!Subtarget->hasSSE2()) Opc = X86::LD_Fp064; break; case MVT::f80: Opc = X86::LD_Fp080; break; } if (Opc) { Register ResultReg = createResultReg(TLI.getRegClassFor(VT)); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg); return ResultReg; } } return 0; } unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) { // Fail on dynamic allocas. At this point, getRegForValue has already // checked its CSE maps, so if we're here trying to handle a dynamic // alloca, we're not going to succeed. X86SelectAddress has a // check for dynamic allocas, because it's called directly from // various places, but targetMaterializeAlloca also needs a check // in order to avoid recursion between getRegForValue, // X86SelectAddrss, and targetMaterializeAlloca. if (!FuncInfo.StaticAllocaMap.count(C)) return 0; assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?"); X86AddressMode AM; if (!X86SelectAddress(C, AM)) return 0; unsigned Opc = TLI.getPointerTy(DL) == MVT::i32 ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r) : X86::LEA64r; const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); Register ResultReg = createResultReg(RC); addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg), AM); return ResultReg; } unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) { MVT VT; if (!isTypeLegal(CF->getType(), VT)) return 0; // Get opcode and regclass for the given zero. bool HasSSE1 = Subtarget->hasSSE1(); bool HasSSE2 = Subtarget->hasSSE2(); bool HasAVX512 = Subtarget->hasAVX512(); unsigned Opc = 0; switch (VT.SimpleTy) { default: return 0; case MVT::f16: Opc = HasAVX512 ? X86::AVX512_FsFLD0SH : X86::FsFLD0SH; break; case MVT::f32: Opc = HasAVX512 ? X86::AVX512_FsFLD0SS : HasSSE1 ? X86::FsFLD0SS : X86::LD_Fp032; break; case MVT::f64: Opc = HasAVX512 ? X86::AVX512_FsFLD0SD : HasSSE2 ? X86::FsFLD0SD : X86::LD_Fp064; break; case MVT::f80: // No f80 support yet. return 0; } Register ResultReg = createResultReg(TLI.getRegClassFor(VT)); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg); return ResultReg; } bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, const LoadInst *LI) { const Value *Ptr = LI->getPointerOperand(); X86AddressMode AM; if (!X86SelectAddress(Ptr, AM)) return false; const X86InstrInfo &XII = (const X86InstrInfo &)TII; unsigned Size = DL.getTypeAllocSize(LI->getType()); SmallVector AddrOps; AM.getFullAddress(AddrOps); MachineInstr *Result = XII.foldMemoryOperandImpl( *FuncInfo.MF, *MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, LI->getAlign(), /*AllowCommute=*/true); if (!Result) return false; // The index register could be in the wrong register class. Unfortunately, // foldMemoryOperandImpl could have commuted the instruction so its not enough // to just look at OpNo + the offset to the index reg. We actually need to // scan the instruction to find the index reg and see if its the correct reg // class. unsigned OperandNo = 0; for (MachineInstr::mop_iterator I = Result->operands_begin(), E = Result->operands_end(); I != E; ++I, ++OperandNo) { MachineOperand &MO = *I; if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg) continue; // Found the index reg, now try to rewrite it. Register IndexReg = constrainOperandRegClass(Result->getDesc(), MO.getReg(), OperandNo); if (IndexReg == MO.getReg()) continue; MO.setReg(IndexReg); } Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI)); Result->cloneInstrSymbols(*FuncInfo.MF, *MI); MachineBasicBlock::iterator I(MI); removeDeadCode(I, std::next(I)); return true; } unsigned X86FastISel::fastEmitInst_rrrr(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, unsigned Op1, unsigned Op2, unsigned Op3) { const MCInstrDesc &II = TII.get(MachineInstOpcode); Register ResultReg = createResultReg(RC); Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); Op3 = constrainOperandRegClass(II, Op3, II.getNumDefs() + 3); if (II.getNumDefs() >= 1) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) .addReg(Op0) .addReg(Op1) .addReg(Op2) .addReg(Op3); else { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) .addReg(Op0) .addReg(Op1) .addReg(Op2) .addReg(Op3); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), ResultReg) .addReg(II.implicit_defs()[0]); } return ResultReg; } namespace llvm { FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo) { return new X86FastISel(funcInfo, libInfo); } }