//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements semantic analysis for expressions. // //===----------------------------------------------------------------------===// #include "clang/Sema/SemaInternal.h" #include "clang/Sema/Initialization.h" #include "clang/Sema/Lookup.h" #include "clang/Sema/AnalysisBasedWarnings.h" #include "clang/AST/ASTContext.h" #include "clang/AST/CXXInheritance.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/EvaluatedExprVisitor.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/RecursiveASTVisitor.h" #include "clang/AST/TypeLoc.h" #include "clang/Basic/PartialDiagnostic.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/TargetInfo.h" #include "clang/Lex/LiteralSupport.h" #include "clang/Lex/Preprocessor.h" #include "clang/Sema/DeclSpec.h" #include "clang/Sema/Designator.h" #include "clang/Sema/Scope.h" #include "clang/Sema/ScopeInfo.h" #include "clang/Sema/ParsedTemplate.h" #include "clang/Sema/Template.h" using namespace clang; using namespace sema; /// \brief Determine whether the use of this declaration is valid, and /// emit any corresponding diagnostics. /// /// This routine diagnoses various problems with referencing /// declarations that can occur when using a declaration. For example, /// it might warn if a deprecated or unavailable declaration is being /// used, or produce an error (and return true) if a C++0x deleted /// function is being used. /// /// If IgnoreDeprecated is set to true, this should not warn about deprecated /// decls. /// /// \returns true if there was an error (this declaration cannot be /// referenced), false otherwise. /// bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc, bool UnknownObjCClass) { if (getLangOptions().CPlusPlus && isa(D)) { // If there were any diagnostics suppressed by template argument deduction, // emit them now. llvm::DenseMap >::iterator Pos = SuppressedDiagnostics.find(D->getCanonicalDecl()); if (Pos != SuppressedDiagnostics.end()) { llvm::SmallVectorImpl &Suppressed = Pos->second; for (unsigned I = 0, N = Suppressed.size(); I != N; ++I) Diag(Suppressed[I].first, Suppressed[I].second); // Clear out the list of suppressed diagnostics, so that we don't emit // them again for this specialization. However, we don't remove this // entry from the table, because we want to avoid ever emitting these // diagnostics again. Suppressed.clear(); } } // See if this is an auto-typed variable whose initializer we are parsing. if (const VarDecl *VD = dyn_cast(D)) { if (VD->isParsingAutoInit()) { Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer) << D->getDeclName(); return true; } } // See if the decl is deprecated. if (const DeprecatedAttr *DA = D->getAttr()) EmitDeprecationWarning(D, DA->getMessage(), Loc, UnknownObjCClass); // See if the decl is unavailable if (const UnavailableAttr *UA = D->getAttr()) { if (UA->getMessage().empty()) { if (!UnknownObjCClass) Diag(Loc, diag::err_unavailable) << D->getDeclName(); else Diag(Loc, diag::warn_unavailable_fwdclass_message) << D->getDeclName(); } else Diag(Loc, diag::err_unavailable_message) << D->getDeclName() << UA->getMessage(); Diag(D->getLocation(), diag::note_unavailable_here) << 0; } // See if this is a deleted function. if (FunctionDecl *FD = dyn_cast(D)) { if (FD->isDeleted()) { Diag(Loc, diag::err_deleted_function_use); Diag(D->getLocation(), diag::note_unavailable_here) << true; return true; } } // Warn if this is used but marked unused. if (D->hasAttr()) Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName(); return false; } /// DiagnoseSentinelCalls - This routine checks on method dispatch calls /// (and other functions in future), which have been declared with sentinel /// attribute. It warns if call does not have the sentinel argument. /// void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc, Expr **Args, unsigned NumArgs) { const SentinelAttr *attr = D->getAttr(); if (!attr) return; // FIXME: In C++0x, if any of the arguments are parameter pack // expansions, we can't check for the sentinel now. int sentinelPos = attr->getSentinel(); int nullPos = attr->getNullPos(); // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common // base class. Then we won't be needing two versions of the same code. unsigned int i = 0; bool warnNotEnoughArgs = false; int isMethod = 0; if (ObjCMethodDecl *MD = dyn_cast(D)) { // skip over named parameters. ObjCMethodDecl::param_iterator P, E = MD->param_end(); for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) { if (nullPos) --nullPos; else ++i; } warnNotEnoughArgs = (P != E || i >= NumArgs); isMethod = 1; } else if (FunctionDecl *FD = dyn_cast(D)) { // skip over named parameters. ObjCMethodDecl::param_iterator P, E = FD->param_end(); for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) { if (nullPos) --nullPos; else ++i; } warnNotEnoughArgs = (P != E || i >= NumArgs); } else if (VarDecl *V = dyn_cast(D)) { // block or function pointer call. QualType Ty = V->getType(); if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) { const FunctionType *FT = Ty->isFunctionPointerType() ? Ty->getAs()->getPointeeType()->getAs() : Ty->getAs()->getPointeeType()->getAs(); if (const FunctionProtoType *Proto = dyn_cast(FT)) { unsigned NumArgsInProto = Proto->getNumArgs(); unsigned k; for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) { if (nullPos) --nullPos; else ++i; } warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs); } if (Ty->isBlockPointerType()) isMethod = 2; } else return; } else return; if (warnNotEnoughArgs) { Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName(); Diag(D->getLocation(), diag::note_sentinel_here) << isMethod; return; } int sentinel = i; while (sentinelPos > 0 && i < NumArgs-1) { --sentinelPos; ++i; } if (sentinelPos > 0) { Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName(); Diag(D->getLocation(), diag::note_sentinel_here) << isMethod; return; } while (i < NumArgs-1) { ++i; ++sentinel; } Expr *sentinelExpr = Args[sentinel]; if (!sentinelExpr) return; if (sentinelExpr->isTypeDependent()) return; if (sentinelExpr->isValueDependent()) return; // nullptr_t is always treated as null. if (sentinelExpr->getType()->isNullPtrType()) return; if (sentinelExpr->getType()->isAnyPointerType() && sentinelExpr->IgnoreParenCasts()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) return; // Unfortunately, __null has type 'int'. if (isa(sentinelExpr)) return; Diag(Loc, diag::warn_missing_sentinel) << isMethod; Diag(D->getLocation(), diag::note_sentinel_here) << isMethod; } SourceRange Sema::getExprRange(ExprTy *E) const { Expr *Ex = (Expr *)E; return Ex? Ex->getSourceRange() : SourceRange(); } //===----------------------------------------------------------------------===// // Standard Promotions and Conversions //===----------------------------------------------------------------------===// /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4). void Sema::DefaultFunctionArrayConversion(Expr *&E) { QualType Ty = E->getType(); assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type"); if (Ty->isFunctionType()) ImpCastExprToType(E, Context.getPointerType(Ty), CK_FunctionToPointerDecay); else if (Ty->isArrayType()) { // In C90 mode, arrays only promote to pointers if the array expression is // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has // type 'array of type' is converted to an expression that has type 'pointer // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression // that has type 'array of type' ...". The relevant change is "an lvalue" // (C90) to "an expression" (C99). // // C++ 4.2p1: // An lvalue or rvalue of type "array of N T" or "array of unknown bound of // T" can be converted to an rvalue of type "pointer to T". // if (getLangOptions().C99 || getLangOptions().CPlusPlus || E->isLValue()) ImpCastExprToType(E, Context.getArrayDecayedType(Ty), CK_ArrayToPointerDecay); } } void Sema::DefaultLvalueConversion(Expr *&E) { // C++ [conv.lval]p1: // A glvalue of a non-function, non-array type T can be // converted to a prvalue. if (!E->isGLValue()) return; QualType T = E->getType(); assert(!T.isNull() && "r-value conversion on typeless expression?"); // Create a load out of an ObjCProperty l-value, if necessary. if (E->getObjectKind() == OK_ObjCProperty) { ConvertPropertyForRValue(E); if (!E->isGLValue()) return; } // We don't want to throw lvalue-to-rvalue casts on top of // expressions of certain types in C++. if (getLangOptions().CPlusPlus && (E->getType() == Context.OverloadTy || T->isDependentType() || T->isRecordType())) return; // The C standard is actually really unclear on this point, and // DR106 tells us what the result should be but not why. It's // generally best to say that void types just doesn't undergo // lvalue-to-rvalue at all. Note that expressions of unqualified // 'void' type are never l-values, but qualified void can be. if (T->isVoidType()) return; // C++ [conv.lval]p1: // [...] If T is a non-class type, the type of the prvalue is the // cv-unqualified version of T. Otherwise, the type of the // rvalue is T. // // C99 6.3.2.1p2: // If the lvalue has qualified type, the value has the unqualified // version of the type of the lvalue; otherwise, the value has the // type of the lvalue. if (T.hasQualifiers()) T = T.getUnqualifiedType(); if (const ArraySubscriptExpr *ae = dyn_cast(E)) CheckArrayAccess(ae); E = ImplicitCastExpr::Create(Context, T, CK_LValueToRValue, E, 0, VK_RValue); } void Sema::DefaultFunctionArrayLvalueConversion(Expr *&E) { DefaultFunctionArrayConversion(E); DefaultLvalueConversion(E); } /// UsualUnaryConversions - Performs various conversions that are common to most /// operators (C99 6.3). The conversions of array and function types are /// sometimes surpressed. For example, the array->pointer conversion doesn't /// apply if the array is an argument to the sizeof or address (&) operators. /// In these instances, this routine should *not* be called. Expr *Sema::UsualUnaryConversions(Expr *&E) { // First, convert to an r-value. DefaultFunctionArrayLvalueConversion(E); QualType Ty = E->getType(); assert(!Ty.isNull() && "UsualUnaryConversions - missing type"); // Try to perform integral promotions if the object has a theoretically // promotable type. if (Ty->isIntegralOrUnscopedEnumerationType()) { // C99 6.3.1.1p2: // // The following may be used in an expression wherever an int or // unsigned int may be used: // - an object or expression with an integer type whose integer // conversion rank is less than or equal to the rank of int // and unsigned int. // - A bit-field of type _Bool, int, signed int, or unsigned int. // // If an int can represent all values of the original type, the // value is converted to an int; otherwise, it is converted to an // unsigned int. These are called the integer promotions. All // other types are unchanged by the integer promotions. QualType PTy = Context.isPromotableBitField(E); if (!PTy.isNull()) { ImpCastExprToType(E, PTy, CK_IntegralCast); return E; } if (Ty->isPromotableIntegerType()) { QualType PT = Context.getPromotedIntegerType(Ty); ImpCastExprToType(E, PT, CK_IntegralCast); return E; } } return E; } /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that /// do not have a prototype. Arguments that have type float are promoted to /// double. All other argument types are converted by UsualUnaryConversions(). void Sema::DefaultArgumentPromotion(Expr *&Expr) { QualType Ty = Expr->getType(); assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type"); UsualUnaryConversions(Expr); // If this is a 'float' (CVR qualified or typedef) promote to double. if (Ty->isSpecificBuiltinType(BuiltinType::Float)) return ImpCastExprToType(Expr, Context.DoubleTy, CK_FloatingCast); } /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but /// will warn if the resulting type is not a POD type, and rejects ObjC /// interfaces passed by value. This returns true if the argument type is /// completely illegal. bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT, FunctionDecl *FDecl) { DefaultArgumentPromotion(Expr); // __builtin_va_start takes the second argument as a "varargs" argument, but // it doesn't actually do anything with it. It doesn't need to be non-pod // etc. if (FDecl && FDecl->getBuiltinID() == Builtin::BI__builtin_va_start) return false; if (Expr->getType()->isObjCObjectType() && DiagRuntimeBehavior(Expr->getLocStart(), PDiag(diag::err_cannot_pass_objc_interface_to_vararg) << Expr->getType() << CT)) return true; if (!Expr->getType()->isPODType() && DiagRuntimeBehavior(Expr->getLocStart(), PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg) << Expr->getType() << CT)) return true; return false; } /// UsualArithmeticConversions - Performs various conversions that are common to /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this /// routine returns the first non-arithmetic type found. The client is /// responsible for emitting appropriate error diagnostics. /// FIXME: verify the conversion rules for "complex int" are consistent with /// GCC. QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr, bool isCompAssign) { if (!isCompAssign) UsualUnaryConversions(lhsExpr); UsualUnaryConversions(rhsExpr); // For conversion purposes, we ignore any qualifiers. // For example, "const float" and "float" are equivalent. QualType lhs = Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType(); QualType rhs = Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType(); // If both types are identical, no conversion is needed. if (lhs == rhs) return lhs; // If either side is a non-arithmetic type (e.g. a pointer), we are done. // The caller can deal with this (e.g. pointer + int). if (!lhs->isArithmeticType() || !rhs->isArithmeticType()) return lhs; // Apply unary and bitfield promotions to the LHS's type. QualType lhs_unpromoted = lhs; if (lhs->isPromotableIntegerType()) lhs = Context.getPromotedIntegerType(lhs); QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(lhsExpr); if (!LHSBitfieldPromoteTy.isNull()) lhs = LHSBitfieldPromoteTy; if (lhs != lhs_unpromoted && !isCompAssign) ImpCastExprToType(lhsExpr, lhs, CK_IntegralCast); // If both types are identical, no conversion is needed. if (lhs == rhs) return lhs; // At this point, we have two different arithmetic types. // Handle complex types first (C99 6.3.1.8p1). bool LHSComplexFloat = lhs->isComplexType(); bool RHSComplexFloat = rhs->isComplexType(); if (LHSComplexFloat || RHSComplexFloat) { // if we have an integer operand, the result is the complex type. if (!RHSComplexFloat && !rhs->isRealFloatingType()) { if (rhs->isIntegerType()) { QualType fp = cast(lhs)->getElementType(); ImpCastExprToType(rhsExpr, fp, CK_IntegralToFloating); ImpCastExprToType(rhsExpr, lhs, CK_FloatingRealToComplex); } else { assert(rhs->isComplexIntegerType()); ImpCastExprToType(rhsExpr, lhs, CK_IntegralComplexToFloatingComplex); } return lhs; } if (!LHSComplexFloat && !lhs->isRealFloatingType()) { if (!isCompAssign) { // int -> float -> _Complex float if (lhs->isIntegerType()) { QualType fp = cast(rhs)->getElementType(); ImpCastExprToType(lhsExpr, fp, CK_IntegralToFloating); ImpCastExprToType(lhsExpr, rhs, CK_FloatingRealToComplex); } else { assert(lhs->isComplexIntegerType()); ImpCastExprToType(lhsExpr, rhs, CK_IntegralComplexToFloatingComplex); } } return rhs; } // This handles complex/complex, complex/float, or float/complex. // When both operands are complex, the shorter operand is converted to the // type of the longer, and that is the type of the result. This corresponds // to what is done when combining two real floating-point operands. // The fun begins when size promotion occur across type domains. // From H&S 6.3.4: When one operand is complex and the other is a real // floating-point type, the less precise type is converted, within it's // real or complex domain, to the precision of the other type. For example, // when combining a "long double" with a "double _Complex", the // "double _Complex" is promoted to "long double _Complex". int order = Context.getFloatingTypeOrder(lhs, rhs); // If both are complex, just cast to the more precise type. if (LHSComplexFloat && RHSComplexFloat) { if (order > 0) { // _Complex float -> _Complex double ImpCastExprToType(rhsExpr, lhs, CK_FloatingComplexCast); return lhs; } else if (order < 0) { // _Complex float -> _Complex double if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs, CK_FloatingComplexCast); return rhs; } return lhs; } // If just the LHS is complex, the RHS needs to be converted, // and the LHS might need to be promoted. if (LHSComplexFloat) { if (order > 0) { // LHS is wider // float -> _Complex double QualType fp = cast(lhs)->getElementType(); ImpCastExprToType(rhsExpr, fp, CK_FloatingCast); ImpCastExprToType(rhsExpr, lhs, CK_FloatingRealToComplex); return lhs; } // RHS is at least as wide. Find its corresponding complex type. QualType result = (order == 0 ? lhs : Context.getComplexType(rhs)); // double -> _Complex double ImpCastExprToType(rhsExpr, result, CK_FloatingRealToComplex); // _Complex float -> _Complex double if (!isCompAssign && order < 0) ImpCastExprToType(lhsExpr, result, CK_FloatingComplexCast); return result; } // Just the RHS is complex, so the LHS needs to be converted // and the RHS might need to be promoted. assert(RHSComplexFloat); if (order < 0) { // RHS is wider // float -> _Complex double if (!isCompAssign) { QualType fp = cast(rhs)->getElementType(); ImpCastExprToType(lhsExpr, fp, CK_FloatingCast); ImpCastExprToType(lhsExpr, rhs, CK_FloatingRealToComplex); } return rhs; } // LHS is at least as wide. Find its corresponding complex type. QualType result = (order == 0 ? rhs : Context.getComplexType(lhs)); // double -> _Complex double if (!isCompAssign) ImpCastExprToType(lhsExpr, result, CK_FloatingRealToComplex); // _Complex float -> _Complex double if (order > 0) ImpCastExprToType(rhsExpr, result, CK_FloatingComplexCast); return result; } // Now handle "real" floating types (i.e. float, double, long double). bool LHSFloat = lhs->isRealFloatingType(); bool RHSFloat = rhs->isRealFloatingType(); if (LHSFloat || RHSFloat) { // If we have two real floating types, convert the smaller operand // to the bigger result. if (LHSFloat && RHSFloat) { int order = Context.getFloatingTypeOrder(lhs, rhs); if (order > 0) { ImpCastExprToType(rhsExpr, lhs, CK_FloatingCast); return lhs; } assert(order < 0 && "illegal float comparison"); if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs, CK_FloatingCast); return rhs; } // If we have an integer operand, the result is the real floating type. if (LHSFloat) { if (rhs->isIntegerType()) { // Convert rhs to the lhs floating point type. ImpCastExprToType(rhsExpr, lhs, CK_IntegralToFloating); return lhs; } // Convert both sides to the appropriate complex float. assert(rhs->isComplexIntegerType()); QualType result = Context.getComplexType(lhs); // _Complex int -> _Complex float ImpCastExprToType(rhsExpr, result, CK_IntegralComplexToFloatingComplex); // float -> _Complex float if (!isCompAssign) ImpCastExprToType(lhsExpr, result, CK_FloatingRealToComplex); return result; } assert(RHSFloat); if (lhs->isIntegerType()) { // Convert lhs to the rhs floating point type. if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs, CK_IntegralToFloating); return rhs; } // Convert both sides to the appropriate complex float. assert(lhs->isComplexIntegerType()); QualType result = Context.getComplexType(rhs); // _Complex int -> _Complex float if (!isCompAssign) ImpCastExprToType(lhsExpr, result, CK_IntegralComplexToFloatingComplex); // float -> _Complex float ImpCastExprToType(rhsExpr, result, CK_FloatingRealToComplex); return result; } // Handle GCC complex int extension. // FIXME: if the operands are (int, _Complex long), we currently // don't promote the complex. Also, signedness? const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType(); const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType(); if (lhsComplexInt && rhsComplexInt) { int order = Context.getIntegerTypeOrder(lhsComplexInt->getElementType(), rhsComplexInt->getElementType()); assert(order && "inequal types with equal element ordering"); if (order > 0) { // _Complex int -> _Complex long ImpCastExprToType(rhsExpr, lhs, CK_IntegralComplexCast); return lhs; } if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs, CK_IntegralComplexCast); return rhs; } else if (lhsComplexInt) { // int -> _Complex int ImpCastExprToType(rhsExpr, lhs, CK_IntegralRealToComplex); return lhs; } else if (rhsComplexInt) { // int -> _Complex int if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs, CK_IntegralRealToComplex); return rhs; } // Finally, we have two differing integer types. // The rules for this case are in C99 6.3.1.8 int compare = Context.getIntegerTypeOrder(lhs, rhs); bool lhsSigned = lhs->hasSignedIntegerRepresentation(), rhsSigned = rhs->hasSignedIntegerRepresentation(); if (lhsSigned == rhsSigned) { // Same signedness; use the higher-ranked type if (compare >= 0) { ImpCastExprToType(rhsExpr, lhs, CK_IntegralCast); return lhs; } else if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs, CK_IntegralCast); return rhs; } else if (compare != (lhsSigned ? 1 : -1)) { // The unsigned type has greater than or equal rank to the // signed type, so use the unsigned type if (rhsSigned) { ImpCastExprToType(rhsExpr, lhs, CK_IntegralCast); return lhs; } else if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs, CK_IntegralCast); return rhs; } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) { // The two types are different widths; if we are here, that // means the signed type is larger than the unsigned type, so // use the signed type. if (lhsSigned) { ImpCastExprToType(rhsExpr, lhs, CK_IntegralCast); return lhs; } else if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs, CK_IntegralCast); return rhs; } else { // The signed type is higher-ranked than the unsigned type, // but isn't actually any bigger (like unsigned int and long // on most 32-bit systems). Use the unsigned type corresponding // to the signed type. QualType result = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs); ImpCastExprToType(rhsExpr, result, CK_IntegralCast); if (!isCompAssign) ImpCastExprToType(lhsExpr, result, CK_IntegralCast); return result; } } //===----------------------------------------------------------------------===// // Semantic Analysis for various Expression Types //===----------------------------------------------------------------------===// /// ActOnStringLiteral - The specified tokens were lexed as pasted string /// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from /// multiple tokens. However, the common case is that StringToks points to one /// string. /// ExprResult Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) { assert(NumStringToks && "Must have at least one string!"); StringLiteralParser Literal(StringToks, NumStringToks, PP); if (Literal.hadError) return ExprError(); llvm::SmallVector StringTokLocs; for (unsigned i = 0; i != NumStringToks; ++i) StringTokLocs.push_back(StringToks[i].getLocation()); QualType StrTy = Context.CharTy; if (Literal.AnyWide) StrTy = Context.getWCharType(); if (Literal.Pascal) StrTy = Context.UnsignedCharTy; // A C++ string literal has a const-qualified element type (C++ 2.13.4p1). if (getLangOptions().CPlusPlus || getLangOptions().ConstStrings) StrTy.addConst(); // Get an array type for the string, according to C99 6.4.5. This includes // the nul terminator character as well as the string length for pascal // strings. StrTy = Context.getConstantArrayType(StrTy, llvm::APInt(32, Literal.GetNumStringChars()+1), ArrayType::Normal, 0); // Pass &StringTokLocs[0], StringTokLocs.size() to factory! return Owned(StringLiteral::Create(Context, Literal.GetString(), Literal.GetStringLength(), Literal.AnyWide, StrTy, &StringTokLocs[0], StringTokLocs.size())); } enum CaptureResult { /// No capture is required. CR_NoCapture, /// A capture is required. CR_Capture, /// A by-ref capture is required. CR_CaptureByRef, /// An error occurred when trying to capture the given variable. CR_Error }; /// Diagnose an uncapturable value reference. /// /// \param var - the variable referenced /// \param DC - the context which we couldn't capture through static CaptureResult diagnoseUncapturableValueReference(Sema &S, SourceLocation loc, VarDecl *var, DeclContext *DC) { switch (S.ExprEvalContexts.back().Context) { case Sema::Unevaluated: // The argument will never be evaluated, so don't complain. return CR_NoCapture; case Sema::PotentiallyEvaluated: case Sema::PotentiallyEvaluatedIfUsed: break; case Sema::PotentiallyPotentiallyEvaluated: // FIXME: delay these! break; } // Don't diagnose about capture if we're not actually in code right // now; in general, there are more appropriate places that will // diagnose this. if (!S.CurContext->isFunctionOrMethod()) return CR_NoCapture; // This particular madness can happen in ill-formed default // arguments; claim it's okay and let downstream code handle it. if (isa(var) && S.CurContext == var->getDeclContext()->getParent()) return CR_NoCapture; DeclarationName functionName; if (FunctionDecl *fn = dyn_cast(var->getDeclContext())) functionName = fn->getDeclName(); // FIXME: variable from enclosing block that we couldn't capture from! S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_function) << var->getIdentifier() << functionName; S.Diag(var->getLocation(), diag::note_local_variable_declared_here) << var->getIdentifier(); return CR_Error; } /// There is a well-formed capture at a particular scope level; /// propagate it through all the nested blocks. static CaptureResult propagateCapture(Sema &S, unsigned validScopeIndex, const BlockDecl::Capture &capture) { VarDecl *var = capture.getVariable(); // Update all the inner blocks with the capture information. for (unsigned i = validScopeIndex + 1, e = S.FunctionScopes.size(); i != e; ++i) { BlockScopeInfo *innerBlock = cast(S.FunctionScopes[i]); innerBlock->Captures.push_back( BlockDecl::Capture(capture.getVariable(), capture.isByRef(), /*nested*/ true, capture.getCopyExpr())); innerBlock->CaptureMap[var] = innerBlock->Captures.size(); // +1 } return capture.isByRef() ? CR_CaptureByRef : CR_Capture; } /// shouldCaptureValueReference - Determine if a reference to the /// given value in the current context requires a variable capture. /// /// This also keeps the captures set in the BlockScopeInfo records /// up-to-date. static CaptureResult shouldCaptureValueReference(Sema &S, SourceLocation loc, ValueDecl *value) { // Only variables ever require capture. VarDecl *var = dyn_cast(value); if (!var) return CR_NoCapture; // Fast path: variables from the current context never require capture. DeclContext *DC = S.CurContext; if (var->getDeclContext() == DC) return CR_NoCapture; // Only variables with local storage require capture. // FIXME: What about 'const' variables in C++? if (!var->hasLocalStorage()) return CR_NoCapture; // Otherwise, we need to capture. unsigned functionScopesIndex = S.FunctionScopes.size() - 1; do { // Only blocks (and eventually C++0x closures) can capture; other // scopes don't work. if (!isa(DC)) return diagnoseUncapturableValueReference(S, loc, var, DC); BlockScopeInfo *blockScope = cast(S.FunctionScopes[functionScopesIndex]); assert(blockScope->TheDecl == static_cast(DC)); // Check whether we've already captured it in this block. If so, // we're done. if (unsigned indexPlus1 = blockScope->CaptureMap[var]) return propagateCapture(S, functionScopesIndex, blockScope->Captures[indexPlus1 - 1]); functionScopesIndex--; DC = cast(DC)->getDeclContext(); } while (var->getDeclContext() != DC); // Okay, we descended all the way to the block that defines the variable. // Actually try to capture it. QualType type = var->getType(); // Prohibit variably-modified types. if (type->isVariablyModifiedType()) { S.Diag(loc, diag::err_ref_vm_type); S.Diag(var->getLocation(), diag::note_declared_at); return CR_Error; } // Prohibit arrays, even in __block variables, but not references to // them. if (type->isArrayType()) { S.Diag(loc, diag::err_ref_array_type); S.Diag(var->getLocation(), diag::note_declared_at); return CR_Error; } S.MarkDeclarationReferenced(loc, var); // The BlocksAttr indicates the variable is bound by-reference. bool byRef = var->hasAttr(); // Build a copy expression. Expr *copyExpr = 0; if (!byRef && S.getLangOptions().CPlusPlus && !type->isDependentType() && type->isStructureOrClassType()) { // According to the blocks spec, the capture of a variable from // the stack requires a const copy constructor. This is not true // of the copy/move done to move a __block variable to the heap. type.addConst(); Expr *declRef = new (S.Context) DeclRefExpr(var, type, VK_LValue, loc); ExprResult result = S.PerformCopyInitialization( InitializedEntity::InitializeBlock(var->getLocation(), type, false), loc, S.Owned(declRef)); // Build a full-expression copy expression if initialization // succeeded and used a non-trivial constructor. Recover from // errors by pretending that the copy isn't necessary. if (!result.isInvalid() && !cast(result.get())->getConstructor()->isTrivial()) { result = S.MaybeCreateExprWithCleanups(result); copyExpr = result.take(); } } // We're currently at the declarer; go back to the closure. functionScopesIndex++; BlockScopeInfo *blockScope = cast(S.FunctionScopes[functionScopesIndex]); // Build a valid capture in this scope. blockScope->Captures.push_back( BlockDecl::Capture(var, byRef, /*nested*/ false, copyExpr)); blockScope->CaptureMap[var] = blockScope->Captures.size(); // +1 // Propagate that to inner captures if necessary. return propagateCapture(S, functionScopesIndex, blockScope->Captures.back()); } static ExprResult BuildBlockDeclRefExpr(Sema &S, ValueDecl *vd, const DeclarationNameInfo &NameInfo, bool byRef) { assert(isa(vd) && "capturing non-variable"); VarDecl *var = cast(vd); assert(var->hasLocalStorage() && "capturing non-local"); assert(byRef == var->hasAttr() && "byref set wrong"); QualType exprType = var->getType().getNonReferenceType(); BlockDeclRefExpr *BDRE; if (!byRef) { // The variable will be bound by copy; make it const within the // closure, but record that this was done in the expression. bool constAdded = !exprType.isConstQualified(); exprType.addConst(); BDRE = new (S.Context) BlockDeclRefExpr(var, exprType, VK_LValue, NameInfo.getLoc(), false, constAdded); } else { BDRE = new (S.Context) BlockDeclRefExpr(var, exprType, VK_LValue, NameInfo.getLoc(), true); } return S.Owned(BDRE); } ExprResult Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, SourceLocation Loc, const CXXScopeSpec *SS) { DeclarationNameInfo NameInfo(D->getDeclName(), Loc); return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS); } /// BuildDeclRefExpr - Build an expression that references a /// declaration that does not require a closure capture. ExprResult Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, const DeclarationNameInfo &NameInfo, const CXXScopeSpec *SS) { MarkDeclarationReferenced(NameInfo.getLoc(), D); Expr *E = DeclRefExpr::Create(Context, SS? (NestedNameSpecifier *)SS->getScopeRep() : 0, SS? SS->getRange() : SourceRange(), D, NameInfo, Ty, VK); // Just in case we're building an illegal pointer-to-member. if (isa(D) && cast(D)->getBitWidth()) E->setObjectKind(OK_BitField); return Owned(E); } static ExprResult BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow, const CXXScopeSpec &SS, FieldDecl *Field, DeclAccessPair FoundDecl, const DeclarationNameInfo &MemberNameInfo); ExprResult Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS, SourceLocation loc, IndirectFieldDecl *indirectField, Expr *baseObjectExpr, SourceLocation opLoc) { // First, build the expression that refers to the base object. bool baseObjectIsPointer = false; Qualifiers baseQuals; // Case 1: the base of the indirect field is not a field. VarDecl *baseVariable = indirectField->getVarDecl(); CXXScopeSpec EmptySS; if (baseVariable) { assert(baseVariable->getType()->isRecordType()); // In principle we could have a member access expression that // accesses an anonymous struct/union that's a static member of // the base object's class. However, under the current standard, // static data members cannot be anonymous structs or unions. // Supporting this is as easy as building a MemberExpr here. assert(!baseObjectExpr && "anonymous struct/union is static data member?"); DeclarationNameInfo baseNameInfo(DeclarationName(), loc); ExprResult result = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable); if (result.isInvalid()) return ExprError(); baseObjectExpr = result.take(); baseObjectIsPointer = false; baseQuals = baseObjectExpr->getType().getQualifiers(); // Case 2: the base of the indirect field is a field and the user // wrote a member expression. } else if (baseObjectExpr) { // The caller provided the base object expression. Determine // whether its a pointer and whether it adds any qualifiers to the // anonymous struct/union fields we're looking into. QualType objectType = baseObjectExpr->getType(); if (const PointerType *ptr = objectType->getAs()) { baseObjectIsPointer = true; objectType = ptr->getPointeeType(); } else { baseObjectIsPointer = false; } baseQuals = objectType.getQualifiers(); // Case 3: the base of the indirect field is a field and we should // build an implicit member access. } else { // We've found a member of an anonymous struct/union that is // inside a non-anonymous struct/union, so in a well-formed // program our base object expression is "this". CXXMethodDecl *method = tryCaptureCXXThis(); if (!method) { Diag(loc, diag::err_invalid_member_use_in_static_method) << indirectField->getDeclName(); return ExprError(); } // Our base object expression is "this". baseObjectExpr = new (Context) CXXThisExpr(loc, method->getThisType(Context), /*isImplicit=*/ true); baseObjectIsPointer = true; baseQuals = Qualifiers::fromCVRMask(method->getTypeQualifiers()); } // Build the implicit member references to the field of the // anonymous struct/union. Expr *result = baseObjectExpr; IndirectFieldDecl::chain_iterator FI = indirectField->chain_begin(), FEnd = indirectField->chain_end(); // Build the first member access in the chain with full information. if (!baseVariable) { FieldDecl *field = cast(*FI); // FIXME: use the real found-decl info! DeclAccessPair foundDecl = DeclAccessPair::make(field, field->getAccess()); // Make a nameInfo that properly uses the anonymous name. DeclarationNameInfo memberNameInfo(field->getDeclName(), loc); result = BuildFieldReferenceExpr(*this, result, baseObjectIsPointer, EmptySS, field, foundDecl, memberNameInfo).take(); baseObjectIsPointer = false; // FIXME: check qualified member access } // In all cases, we should now skip the first declaration in the chain. ++FI; while (FI != FEnd) { FieldDecl *field = cast(*FI++); // FIXME: these are somewhat meaningless DeclarationNameInfo memberNameInfo(field->getDeclName(), loc); DeclAccessPair foundDecl = DeclAccessPair::make(field, field->getAccess()); result = BuildFieldReferenceExpr(*this, result, /*isarrow*/ false, (FI == FEnd? SS : EmptySS), field, foundDecl, memberNameInfo) .take(); } return Owned(result); } /// Decomposes the given name into a DeclarationNameInfo, its location, and /// possibly a list of template arguments. /// /// If this produces template arguments, it is permitted to call /// DecomposeTemplateName. /// /// This actually loses a lot of source location information for /// non-standard name kinds; we should consider preserving that in /// some way. static void DecomposeUnqualifiedId(Sema &SemaRef, const UnqualifiedId &Id, TemplateArgumentListInfo &Buffer, DeclarationNameInfo &NameInfo, const TemplateArgumentListInfo *&TemplateArgs) { if (Id.getKind() == UnqualifiedId::IK_TemplateId) { Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc); Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc); ASTTemplateArgsPtr TemplateArgsPtr(SemaRef, Id.TemplateId->getTemplateArgs(), Id.TemplateId->NumArgs); SemaRef.translateTemplateArguments(TemplateArgsPtr, Buffer); TemplateArgsPtr.release(); TemplateName TName = Id.TemplateId->Template.get(); SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc; NameInfo = SemaRef.Context.getNameForTemplate(TName, TNameLoc); TemplateArgs = &Buffer; } else { NameInfo = SemaRef.GetNameFromUnqualifiedId(Id); TemplateArgs = 0; } } /// Determines if the given class is provably not derived from all of /// the prospective base classes. static bool IsProvablyNotDerivedFrom(Sema &SemaRef, CXXRecordDecl *Record, const llvm::SmallPtrSet &Bases) { if (Bases.count(Record->getCanonicalDecl())) return false; RecordDecl *RD = Record->getDefinition(); if (!RD) return false; Record = cast(RD); for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) { CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType()); CanQual BaseRT = BaseT->getAs(); if (!BaseRT) return false; CXXRecordDecl *BaseRecord = cast(BaseRT->getDecl()); if (!IsProvablyNotDerivedFrom(SemaRef, BaseRecord, Bases)) return false; } return true; } enum IMAKind { /// The reference is definitely not an instance member access. IMA_Static, /// The reference may be an implicit instance member access. IMA_Mixed, /// The reference may be to an instance member, but it is invalid if /// so, because the context is not an instance method. IMA_Mixed_StaticContext, /// The reference may be to an instance member, but it is invalid if /// so, because the context is from an unrelated class. IMA_Mixed_Unrelated, /// The reference is definitely an implicit instance member access. IMA_Instance, /// The reference may be to an unresolved using declaration. IMA_Unresolved, /// The reference may be to an unresolved using declaration and the /// context is not an instance method. IMA_Unresolved_StaticContext, /// All possible referrents are instance members and the current /// context is not an instance method. IMA_Error_StaticContext, /// All possible referrents are instance members of an unrelated /// class. IMA_Error_Unrelated }; /// The given lookup names class member(s) and is not being used for /// an address-of-member expression. Classify the type of access /// according to whether it's possible that this reference names an /// instance member. This is best-effort; it is okay to /// conservatively answer "yes", in which case some errors will simply /// not be caught until template-instantiation. static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef, const LookupResult &R) { assert(!R.empty() && (*R.begin())->isCXXClassMember()); DeclContext *DC = SemaRef.getFunctionLevelDeclContext(); bool isStaticContext = (!isa(DC) || cast(DC)->isStatic()); if (R.isUnresolvableResult()) return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved; // Collect all the declaring classes of instance members we find. bool hasNonInstance = false; bool hasField = false; llvm::SmallPtrSet Classes; for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { NamedDecl *D = *I; if (D->isCXXInstanceMember()) { if (dyn_cast(D)) hasField = true; CXXRecordDecl *R = cast(D->getDeclContext()); Classes.insert(R->getCanonicalDecl()); } else hasNonInstance = true; } // If we didn't find any instance members, it can't be an implicit // member reference. if (Classes.empty()) return IMA_Static; // If the current context is not an instance method, it can't be // an implicit member reference. if (isStaticContext) { if (hasNonInstance) return IMA_Mixed_StaticContext; if (SemaRef.getLangOptions().CPlusPlus0x && hasField) { // C++0x [expr.prim.general]p10: // An id-expression that denotes a non-static data member or non-static // member function of a class can only be used: // (...) // - if that id-expression denotes a non-static data member and it appears in an unevaluated operand. const Sema::ExpressionEvaluationContextRecord& record = SemaRef.ExprEvalContexts.back(); bool isUnevaluatedExpression = record.Context == Sema::Unevaluated; if (isUnevaluatedExpression) return IMA_Mixed_StaticContext; } return IMA_Error_StaticContext; } // If we can prove that the current context is unrelated to all the // declaring classes, it can't be an implicit member reference (in // which case it's an error if any of those members are selected). if (IsProvablyNotDerivedFrom(SemaRef, cast(DC)->getParent(), Classes)) return (hasNonInstance ? IMA_Mixed_Unrelated : IMA_Error_Unrelated); return (hasNonInstance ? IMA_Mixed : IMA_Instance); } /// Diagnose a reference to a field with no object available. static void DiagnoseInstanceReference(Sema &SemaRef, const CXXScopeSpec &SS, NamedDecl *rep, const DeclarationNameInfo &nameInfo) { SourceLocation Loc = nameInfo.getLoc(); SourceRange Range(Loc); if (SS.isSet()) Range.setBegin(SS.getRange().getBegin()); if (isa(rep) || isa(rep)) { if (CXXMethodDecl *MD = dyn_cast(SemaRef.CurContext)) { if (MD->isStatic()) { // "invalid use of member 'x' in static member function" SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method) << Range << nameInfo.getName(); return; } } SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use) << nameInfo.getName() << Range; return; } SemaRef.Diag(Loc, diag::err_member_call_without_object) << Range; } /// Diagnose an empty lookup. /// /// \return false if new lookup candidates were found bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R, CorrectTypoContext CTC) { DeclarationName Name = R.getLookupName(); unsigned diagnostic = diag::err_undeclared_var_use; unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest; if (Name.getNameKind() == DeclarationName::CXXOperatorName || Name.getNameKind() == DeclarationName::CXXLiteralOperatorName || Name.getNameKind() == DeclarationName::CXXConversionFunctionName) { diagnostic = diag::err_undeclared_use; diagnostic_suggest = diag::err_undeclared_use_suggest; } // If the original lookup was an unqualified lookup, fake an // unqualified lookup. This is useful when (for example) the // original lookup would not have found something because it was a // dependent name. for (DeclContext *DC = SS.isEmpty() ? CurContext : 0; DC; DC = DC->getParent()) { if (isa(DC)) { LookupQualifiedName(R, DC); if (!R.empty()) { // Don't give errors about ambiguities in this lookup. R.suppressDiagnostics(); CXXMethodDecl *CurMethod = dyn_cast(CurContext); bool isInstance = CurMethod && CurMethod->isInstance() && DC == CurMethod->getParent(); // Give a code modification hint to insert 'this->'. // TODO: fixit for inserting 'Base::' in the other cases. // Actually quite difficult! if (isInstance) { UnresolvedLookupExpr *ULE = cast( CallsUndergoingInstantiation.back()->getCallee()); CXXMethodDecl *DepMethod = cast_or_null( CurMethod->getInstantiatedFromMemberFunction()); if (DepMethod) { Diag(R.getNameLoc(), diagnostic) << Name << FixItHint::CreateInsertion(R.getNameLoc(), "this->"); QualType DepThisType = DepMethod->getThisType(Context); CXXThisExpr *DepThis = new (Context) CXXThisExpr( R.getNameLoc(), DepThisType, false); TemplateArgumentListInfo TList; if (ULE->hasExplicitTemplateArgs()) ULE->copyTemplateArgumentsInto(TList); CXXDependentScopeMemberExpr *DepExpr = CXXDependentScopeMemberExpr::Create( Context, DepThis, DepThisType, true, SourceLocation(), ULE->getQualifier(), ULE->getQualifierRange(), NULL, R.getLookupNameInfo(), &TList); CallsUndergoingInstantiation.back()->setCallee(DepExpr); } else { // FIXME: we should be able to handle this case too. It is correct // to add this-> here. This is a workaround for PR7947. Diag(R.getNameLoc(), diagnostic) << Name; } } else { Diag(R.getNameLoc(), diagnostic) << Name; } // Do we really want to note all of these? for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) Diag((*I)->getLocation(), diag::note_dependent_var_use); // Tell the callee to try to recover. return false; } R.clear(); } } // We didn't find anything, so try to correct for a typo. DeclarationName Corrected; if (S && (Corrected = CorrectTypo(R, S, &SS, 0, false, CTC))) { if (!R.empty()) { if (isa(*R.begin()) || isa(*R.begin())) { if (SS.isEmpty()) Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName() << FixItHint::CreateReplacement(R.getNameLoc(), R.getLookupName().getAsString()); else Diag(R.getNameLoc(), diag::err_no_member_suggest) << Name << computeDeclContext(SS, false) << R.getLookupName() << SS.getRange() << FixItHint::CreateReplacement(R.getNameLoc(), R.getLookupName().getAsString()); if (NamedDecl *ND = R.getAsSingle()) Diag(ND->getLocation(), diag::note_previous_decl) << ND->getDeclName(); // Tell the callee to try to recover. return false; } if (isa(*R.begin()) || isa(*R.begin())) { // FIXME: If we ended up with a typo for a type name or // Objective-C class name, we're in trouble because the parser // is in the wrong place to recover. Suggest the typo // correction, but don't make it a fix-it since we're not going // to recover well anyway. if (SS.isEmpty()) Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName(); else Diag(R.getNameLoc(), diag::err_no_member_suggest) << Name << computeDeclContext(SS, false) << R.getLookupName() << SS.getRange(); // Don't try to recover; it won't work. return true; } } else { // FIXME: We found a keyword. Suggest it, but don't provide a fix-it // because we aren't able to recover. if (SS.isEmpty()) Diag(R.getNameLoc(), diagnostic_suggest) << Name << Corrected; else Diag(R.getNameLoc(), diag::err_no_member_suggest) << Name << computeDeclContext(SS, false) << Corrected << SS.getRange(); return true; } R.clear(); } // Emit a special diagnostic for failed member lookups. // FIXME: computing the declaration context might fail here (?) if (!SS.isEmpty()) { Diag(R.getNameLoc(), diag::err_no_member) << Name << computeDeclContext(SS, false) << SS.getRange(); return true; } // Give up, we can't recover. Diag(R.getNameLoc(), diagnostic) << Name; return true; } ObjCPropertyDecl *Sema::canSynthesizeProvisionalIvar(IdentifierInfo *II) { ObjCMethodDecl *CurMeth = getCurMethodDecl(); ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface(); if (!IDecl) return 0; ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation(); if (!ClassImpDecl) return 0; ObjCPropertyDecl *property = LookupPropertyDecl(IDecl, II); if (!property) return 0; if (ObjCPropertyImplDecl *PIDecl = ClassImpDecl->FindPropertyImplDecl(II)) if (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic || PIDecl->getPropertyIvarDecl()) return 0; return property; } bool Sema::canSynthesizeProvisionalIvar(ObjCPropertyDecl *Property) { ObjCMethodDecl *CurMeth = getCurMethodDecl(); ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface(); if (!IDecl) return false; ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation(); if (!ClassImpDecl) return false; if (ObjCPropertyImplDecl *PIDecl = ClassImpDecl->FindPropertyImplDecl(Property->getIdentifier())) if (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic || PIDecl->getPropertyIvarDecl()) return false; return true; } static ObjCIvarDecl *SynthesizeProvisionalIvar(Sema &SemaRef, LookupResult &Lookup, IdentifierInfo *II, SourceLocation NameLoc) { ObjCMethodDecl *CurMeth = SemaRef.getCurMethodDecl(); bool LookForIvars; if (Lookup.empty()) LookForIvars = true; else if (CurMeth->isClassMethod()) LookForIvars = false; else LookForIvars = (Lookup.isSingleResult() && Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod() && (Lookup.getAsSingle() != 0)); if (!LookForIvars) return 0; ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface(); if (!IDecl) return 0; ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation(); if (!ClassImpDecl) return 0; bool DynamicImplSeen = false; ObjCPropertyDecl *property = SemaRef.LookupPropertyDecl(IDecl, II); if (!property) return 0; if (ObjCPropertyImplDecl *PIDecl = ClassImpDecl->FindPropertyImplDecl(II)) { DynamicImplSeen = (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic); // property implementation has a designated ivar. No need to assume a new // one. if (!DynamicImplSeen && PIDecl->getPropertyIvarDecl()) return 0; } if (!DynamicImplSeen) { QualType PropType = SemaRef.Context.getCanonicalType(property->getType()); ObjCIvarDecl *Ivar = ObjCIvarDecl::Create(SemaRef.Context, ClassImpDecl, NameLoc, II, PropType, /*Dinfo=*/0, ObjCIvarDecl::Private, (Expr *)0, true); ClassImpDecl->addDecl(Ivar); IDecl->makeDeclVisibleInContext(Ivar, false); property->setPropertyIvarDecl(Ivar); return Ivar; } return 0; } ExprResult Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS, UnqualifiedId &Id, bool HasTrailingLParen, bool isAddressOfOperand) { assert(!(isAddressOfOperand && HasTrailingLParen) && "cannot be direct & operand and have a trailing lparen"); if (SS.isInvalid()) return ExprError(); TemplateArgumentListInfo TemplateArgsBuffer; // Decompose the UnqualifiedId into the following data. DeclarationNameInfo NameInfo; const TemplateArgumentListInfo *TemplateArgs; DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer, NameInfo, TemplateArgs); DeclarationName Name = NameInfo.getName(); IdentifierInfo *II = Name.getAsIdentifierInfo(); SourceLocation NameLoc = NameInfo.getLoc(); // C++ [temp.dep.expr]p3: // An id-expression is type-dependent if it contains: // -- an identifier that was declared with a dependent type, // (note: handled after lookup) // -- a template-id that is dependent, // (note: handled in BuildTemplateIdExpr) // -- a conversion-function-id that specifies a dependent type, // -- a nested-name-specifier that contains a class-name that // names a dependent type. // Determine whether this is a member of an unknown specialization; // we need to handle these differently. bool DependentID = false; if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName && Name.getCXXNameType()->isDependentType()) { DependentID = true; } else if (SS.isSet()) { if (DeclContext *DC = computeDeclContext(SS, false)) { if (RequireCompleteDeclContext(SS, DC)) return ExprError(); } else { DependentID = true; } } if (DependentID) return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand, TemplateArgs); bool IvarLookupFollowUp = false; // Perform the required lookup. LookupResult R(*this, NameInfo, LookupOrdinaryName); if (TemplateArgs) { // Lookup the template name again to correctly establish the context in // which it was found. This is really unfortunate as we already did the // lookup to determine that it was a template name in the first place. If // this becomes a performance hit, we can work harder to preserve those // results until we get here but it's likely not worth it. bool MemberOfUnknownSpecialization; LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false, MemberOfUnknownSpecialization); if (MemberOfUnknownSpecialization || (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)) return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand, TemplateArgs); } else { IvarLookupFollowUp = (!SS.isSet() && II && getCurMethodDecl()); LookupParsedName(R, S, &SS, !IvarLookupFollowUp); // If the result might be in a dependent base class, this is a dependent // id-expression. if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation) return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand, TemplateArgs); // If this reference is in an Objective-C method, then we need to do // some special Objective-C lookup, too. if (IvarLookupFollowUp) { ExprResult E(LookupInObjCMethod(R, S, II, true)); if (E.isInvalid()) return ExprError(); if (Expr *Ex = E.takeAs()) return Owned(Ex); // Synthesize ivars lazily. if (getLangOptions().ObjCDefaultSynthProperties && getLangOptions().ObjCNonFragileABI2) { if (SynthesizeProvisionalIvar(*this, R, II, NameLoc)) { if (const ObjCPropertyDecl *Property = canSynthesizeProvisionalIvar(II)) { Diag(NameLoc, diag::warn_synthesized_ivar_access) << II; Diag(Property->getLocation(), diag::note_property_declare); } return ActOnIdExpression(S, SS, Id, HasTrailingLParen, isAddressOfOperand); } } // for further use, this must be set to false if in class method. IvarLookupFollowUp = getCurMethodDecl()->isInstanceMethod(); } } if (R.isAmbiguous()) return ExprError(); // Determine whether this name might be a candidate for // argument-dependent lookup. bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen); if (R.empty() && !ADL) { // Otherwise, this could be an implicitly declared function reference (legal // in C90, extension in C99, forbidden in C++). if (HasTrailingLParen && II && !getLangOptions().CPlusPlus) { NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S); if (D) R.addDecl(D); } // If this name wasn't predeclared and if this is not a function // call, diagnose the problem. if (R.empty()) { if (DiagnoseEmptyLookup(S, SS, R, CTC_Unknown)) return ExprError(); assert(!R.empty() && "DiagnoseEmptyLookup returned false but added no results"); // If we found an Objective-C instance variable, let // LookupInObjCMethod build the appropriate expression to // reference the ivar. if (ObjCIvarDecl *Ivar = R.getAsSingle()) { R.clear(); ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier())); assert(E.isInvalid() || E.get()); return move(E); } } } // This is guaranteed from this point on. assert(!R.empty() || ADL); if (VarDecl *Var = R.getAsSingle()) { if (getLangOptions().ObjCNonFragileABI && IvarLookupFollowUp && !(getLangOptions().ObjCDefaultSynthProperties && getLangOptions().ObjCNonFragileABI2) && Var->isFileVarDecl()) { ObjCPropertyDecl *Property = canSynthesizeProvisionalIvar(II); if (Property) { Diag(NameLoc, diag::warn_ivar_variable_conflict) << Var->getDeclName(); Diag(Property->getLocation(), diag::note_property_declare); Diag(Var->getLocation(), diag::note_global_declared_at); } } } // Check whether this might be a C++ implicit instance member access. // C++ [class.mfct.non-static]p3: // When an id-expression that is not part of a class member access // syntax and not used to form a pointer to member is used in the // body of a non-static member function of class X, if name lookup // resolves the name in the id-expression to a non-static non-type // member of some class C, the id-expression is transformed into a // class member access expression using (*this) as the // postfix-expression to the left of the . operator. // // But we don't actually need to do this for '&' operands if R // resolved to a function or overloaded function set, because the // expression is ill-formed if it actually works out to be a // non-static member function: // // C++ [expr.ref]p4: // Otherwise, if E1.E2 refers to a non-static member function. . . // [t]he expression can be used only as the left-hand operand of a // member function call. // // There are other safeguards against such uses, but it's important // to get this right here so that we don't end up making a // spuriously dependent expression if we're inside a dependent // instance method. if (!R.empty() && (*R.begin())->isCXXClassMember()) { bool MightBeImplicitMember; if (!isAddressOfOperand) MightBeImplicitMember = true; else if (!SS.isEmpty()) MightBeImplicitMember = false; else if (R.isOverloadedResult()) MightBeImplicitMember = false; else if (R.isUnresolvableResult()) MightBeImplicitMember = true; else MightBeImplicitMember = isa(R.getFoundDecl()) || isa(R.getFoundDecl()); if (MightBeImplicitMember) return BuildPossibleImplicitMemberExpr(SS, R, TemplateArgs); } if (TemplateArgs) return BuildTemplateIdExpr(SS, R, ADL, *TemplateArgs); return BuildDeclarationNameExpr(SS, R, ADL); } /// Builds an expression which might be an implicit member expression. ExprResult Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS, LookupResult &R, const TemplateArgumentListInfo *TemplateArgs) { switch (ClassifyImplicitMemberAccess(*this, R)) { case IMA_Instance: return BuildImplicitMemberExpr(SS, R, TemplateArgs, true); case IMA_Mixed: case IMA_Mixed_Unrelated: case IMA_Unresolved: return BuildImplicitMemberExpr(SS, R, TemplateArgs, false); case IMA_Static: case IMA_Mixed_StaticContext: case IMA_Unresolved_StaticContext: if (TemplateArgs) return BuildTemplateIdExpr(SS, R, false, *TemplateArgs); return BuildDeclarationNameExpr(SS, R, false); case IMA_Error_StaticContext: case IMA_Error_Unrelated: DiagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(), R.getLookupNameInfo()); return ExprError(); } llvm_unreachable("unexpected instance member access kind"); return ExprError(); } /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified /// declaration name, generally during template instantiation. /// There's a large number of things which don't need to be done along /// this path. ExprResult Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo) { DeclContext *DC; if (!(DC = computeDeclContext(SS, false)) || DC->isDependentContext()) return BuildDependentDeclRefExpr(SS, NameInfo, 0); if (RequireCompleteDeclContext(SS, DC)) return ExprError(); LookupResult R(*this, NameInfo, LookupOrdinaryName); LookupQualifiedName(R, DC); if (R.isAmbiguous()) return ExprError(); if (R.empty()) { Diag(NameInfo.getLoc(), diag::err_no_member) << NameInfo.getName() << DC << SS.getRange(); return ExprError(); } return BuildDeclarationNameExpr(SS, R, /*ADL*/ false); } /// LookupInObjCMethod - The parser has read a name in, and Sema has /// detected that we're currently inside an ObjC method. Perform some /// additional lookup. /// /// Ideally, most of this would be done by lookup, but there's /// actually quite a lot of extra work involved. /// /// Returns a null sentinel to indicate trivial success. ExprResult Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S, IdentifierInfo *II, bool AllowBuiltinCreation) { SourceLocation Loc = Lookup.getNameLoc(); ObjCMethodDecl *CurMethod = getCurMethodDecl(); // There are two cases to handle here. 1) scoped lookup could have failed, // in which case we should look for an ivar. 2) scoped lookup could have // found a decl, but that decl is outside the current instance method (i.e. // a global variable). In these two cases, we do a lookup for an ivar with // this name, if the lookup sucedes, we replace it our current decl. // If we're in a class method, we don't normally want to look for // ivars. But if we don't find anything else, and there's an // ivar, that's an error. bool IsClassMethod = CurMethod->isClassMethod(); bool LookForIvars; if (Lookup.empty()) LookForIvars = true; else if (IsClassMethod) LookForIvars = false; else LookForIvars = (Lookup.isSingleResult() && Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()); ObjCInterfaceDecl *IFace = 0; if (LookForIvars) { IFace = CurMethod->getClassInterface(); ObjCInterfaceDecl *ClassDeclared; if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) { // Diagnose using an ivar in a class method. if (IsClassMethod) return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method) << IV->getDeclName()); // If we're referencing an invalid decl, just return this as a silent // error node. The error diagnostic was already emitted on the decl. if (IV->isInvalidDecl()) return ExprError(); // Check if referencing a field with __attribute__((deprecated)). if (DiagnoseUseOfDecl(IV, Loc)) return ExprError(); // Diagnose the use of an ivar outside of the declaring class. if (IV->getAccessControl() == ObjCIvarDecl::Private && ClassDeclared != IFace) Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName(); // FIXME: This should use a new expr for a direct reference, don't // turn this into Self->ivar, just return a BareIVarExpr or something. IdentifierInfo &II = Context.Idents.get("self"); UnqualifiedId SelfName; SelfName.setIdentifier(&II, SourceLocation()); CXXScopeSpec SelfScopeSpec; ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec, SelfName, false, false); if (SelfExpr.isInvalid()) return ExprError(); Expr *SelfE = SelfExpr.take(); DefaultLvalueConversion(SelfE); MarkDeclarationReferenced(Loc, IV); return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(), Loc, SelfE, true, true)); } } else if (CurMethod->isInstanceMethod()) { // We should warn if a local variable hides an ivar. ObjCInterfaceDecl *IFace = CurMethod->getClassInterface(); ObjCInterfaceDecl *ClassDeclared; if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) { if (IV->getAccessControl() != ObjCIvarDecl::Private || IFace == ClassDeclared) Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName(); } } if (Lookup.empty() && II && AllowBuiltinCreation) { // FIXME. Consolidate this with similar code in LookupName. if (unsigned BuiltinID = II->getBuiltinID()) { if (!(getLangOptions().CPlusPlus && Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) { NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, S, Lookup.isForRedeclaration(), Lookup.getNameLoc()); if (D) Lookup.addDecl(D); } } } // Sentinel value saying that we didn't do anything special. return Owned((Expr*) 0); } /// \brief Cast a base object to a member's actual type. /// /// Logically this happens in three phases: /// /// * First we cast from the base type to the naming class. /// The naming class is the class into which we were looking /// when we found the member; it's the qualifier type if a /// qualifier was provided, and otherwise it's the base type. /// /// * Next we cast from the naming class to the declaring class. /// If the member we found was brought into a class's scope by /// a using declaration, this is that class; otherwise it's /// the class declaring the member. /// /// * Finally we cast from the declaring class to the "true" /// declaring class of the member. This conversion does not /// obey access control. bool Sema::PerformObjectMemberConversion(Expr *&From, NestedNameSpecifier *Qualifier, NamedDecl *FoundDecl, NamedDecl *Member) { CXXRecordDecl *RD = dyn_cast(Member->getDeclContext()); if (!RD) return false; QualType DestRecordType; QualType DestType; QualType FromRecordType; QualType FromType = From->getType(); bool PointerConversions = false; if (isa(Member)) { DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD)); if (FromType->getAs()) { DestType = Context.getPointerType(DestRecordType); FromRecordType = FromType->getPointeeType(); PointerConversions = true; } else { DestType = DestRecordType; FromRecordType = FromType; } } else if (CXXMethodDecl *Method = dyn_cast(Member)) { if (Method->isStatic()) return false; DestType = Method->getThisType(Context); DestRecordType = DestType->getPointeeType(); if (FromType->getAs()) { FromRecordType = FromType->getPointeeType(); PointerConversions = true; } else { FromRecordType = FromType; DestType = DestRecordType; } } else { // No conversion necessary. return false; } if (DestType->isDependentType() || FromType->isDependentType()) return false; // If the unqualified types are the same, no conversion is necessary. if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType)) return false; SourceRange FromRange = From->getSourceRange(); SourceLocation FromLoc = FromRange.getBegin(); ExprValueKind VK = CastCategory(From); // C++ [class.member.lookup]p8: // [...] Ambiguities can often be resolved by qualifying a name with its // class name. // // If the member was a qualified name and the qualified referred to a // specific base subobject type, we'll cast to that intermediate type // first and then to the object in which the member is declared. That allows // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as: // // class Base { public: int x; }; // class Derived1 : public Base { }; // class Derived2 : public Base { }; // class VeryDerived : public Derived1, public Derived2 { void f(); }; // // void VeryDerived::f() { // x = 17; // error: ambiguous base subobjects // Derived1::x = 17; // okay, pick the Base subobject of Derived1 // } if (Qualifier) { QualType QType = QualType(Qualifier->getAsType(), 0); assert(!QType.isNull() && "lookup done with dependent qualifier?"); assert(QType->isRecordType() && "lookup done with non-record type"); QualType QRecordType = QualType(QType->getAs(), 0); // In C++98, the qualifier type doesn't actually have to be a base // type of the object type, in which case we just ignore it. // Otherwise build the appropriate casts. if (IsDerivedFrom(FromRecordType, QRecordType)) { CXXCastPath BasePath; if (CheckDerivedToBaseConversion(FromRecordType, QRecordType, FromLoc, FromRange, &BasePath)) return true; if (PointerConversions) QType = Context.getPointerType(QType); ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase, VK, &BasePath); FromType = QType; FromRecordType = QRecordType; // If the qualifier type was the same as the destination type, // we're done. if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType)) return false; } } bool IgnoreAccess = false; // If we actually found the member through a using declaration, cast // down to the using declaration's type. // // Pointer equality is fine here because only one declaration of a // class ever has member declarations. if (FoundDecl->getDeclContext() != Member->getDeclContext()) { assert(isa(FoundDecl)); QualType URecordType = Context.getTypeDeclType( cast(FoundDecl->getDeclContext())); // We only need to do this if the naming-class to declaring-class // conversion is non-trivial. if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) { assert(IsDerivedFrom(FromRecordType, URecordType)); CXXCastPath BasePath; if (CheckDerivedToBaseConversion(FromRecordType, URecordType, FromLoc, FromRange, &BasePath)) return true; QualType UType = URecordType; if (PointerConversions) UType = Context.getPointerType(UType); ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase, VK, &BasePath); FromType = UType; FromRecordType = URecordType; } // We don't do access control for the conversion from the // declaring class to the true declaring class. IgnoreAccess = true; } CXXCastPath BasePath; if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType, FromLoc, FromRange, &BasePath, IgnoreAccess)) return true; ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase, VK, &BasePath); return false; } /// \brief Build a MemberExpr AST node. static MemberExpr *BuildMemberExpr(ASTContext &C, Expr *Base, bool isArrow, const CXXScopeSpec &SS, ValueDecl *Member, DeclAccessPair FoundDecl, const DeclarationNameInfo &MemberNameInfo, QualType Ty, ExprValueKind VK, ExprObjectKind OK, const TemplateArgumentListInfo *TemplateArgs = 0) { NestedNameSpecifier *Qualifier = 0; SourceRange QualifierRange; if (SS.isSet()) { Qualifier = (NestedNameSpecifier *) SS.getScopeRep(); QualifierRange = SS.getRange(); } return MemberExpr::Create(C, Base, isArrow, Qualifier, QualifierRange, Member, FoundDecl, MemberNameInfo, TemplateArgs, Ty, VK, OK); } static ExprResult BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow, const CXXScopeSpec &SS, FieldDecl *Field, DeclAccessPair FoundDecl, const DeclarationNameInfo &MemberNameInfo) { // x.a is an l-value if 'a' has a reference type. Otherwise: // x.a is an l-value/x-value/pr-value if the base is (and note // that *x is always an l-value), except that if the base isn't // an ordinary object then we must have an rvalue. ExprValueKind VK = VK_LValue; ExprObjectKind OK = OK_Ordinary; if (!IsArrow) { if (BaseExpr->getObjectKind() == OK_Ordinary) VK = BaseExpr->getValueKind(); else VK = VK_RValue; } if (VK != VK_RValue && Field->isBitField()) OK = OK_BitField; // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref] QualType MemberType = Field->getType(); if (const ReferenceType *Ref = MemberType->getAs()) { MemberType = Ref->getPointeeType(); VK = VK_LValue; } else { QualType BaseType = BaseExpr->getType(); if (IsArrow) BaseType = BaseType->getAs()->getPointeeType(); Qualifiers BaseQuals = BaseType.getQualifiers(); // GC attributes are never picked up by members. BaseQuals.removeObjCGCAttr(); // CVR attributes from the base are picked up by members, // except that 'mutable' members don't pick up 'const'. if (Field->isMutable()) BaseQuals.removeConst(); Qualifiers MemberQuals = S.Context.getCanonicalType(MemberType).getQualifiers(); // TR 18037 does not allow fields to be declared with address spaces. assert(!MemberQuals.hasAddressSpace()); Qualifiers Combined = BaseQuals + MemberQuals; if (Combined != MemberQuals) MemberType = S.Context.getQualifiedType(MemberType, Combined); } S.MarkDeclarationReferenced(MemberNameInfo.getLoc(), Field); if (S.PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(), FoundDecl, Field)) return ExprError(); return S.Owned(BuildMemberExpr(S.Context, BaseExpr, IsArrow, SS, Field, FoundDecl, MemberNameInfo, MemberType, VK, OK)); } /// Builds an implicit member access expression. The current context /// is known to be an instance method, and the given unqualified lookup /// set is known to contain only instance members, at least one of which /// is from an appropriate type. ExprResult Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS, LookupResult &R, const TemplateArgumentListInfo *TemplateArgs, bool IsKnownInstance) { assert(!R.empty() && !R.isAmbiguous()); SourceLocation loc = R.getNameLoc(); // We may have found a field within an anonymous union or struct // (C++ [class.union]). // FIXME: template-ids inside anonymous structs? if (IndirectFieldDecl *FD = R.getAsSingle()) return BuildAnonymousStructUnionMemberReference(SS, R.getNameLoc(), FD); // If this is known to be an instance access, go ahead and build an // implicit 'this' expression now. // 'this' expression now. CXXMethodDecl *method = tryCaptureCXXThis(); assert(method && "didn't correctly pre-flight capture of 'this'"); QualType thisType = method->getThisType(Context); Expr *baseExpr = 0; // null signifies implicit access if (IsKnownInstance) { SourceLocation Loc = R.getNameLoc(); if (SS.getRange().isValid()) Loc = SS.getRange().getBegin(); baseExpr = new (Context) CXXThisExpr(loc, thisType, /*isImplicit=*/true); } return BuildMemberReferenceExpr(baseExpr, thisType, /*OpLoc*/ SourceLocation(), /*IsArrow*/ true, SS, /*FirstQualifierInScope*/ 0, R, TemplateArgs); } bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS, const LookupResult &R, bool HasTrailingLParen) { // Only when used directly as the postfix-expression of a call. if (!HasTrailingLParen) return false; // Never if a scope specifier was provided. if (SS.isSet()) return false; // Only in C++ or ObjC++. if (!getLangOptions().CPlusPlus) return false; // Turn off ADL when we find certain kinds of declarations during // normal lookup: for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { NamedDecl *D = *I; // C++0x [basic.lookup.argdep]p3: // -- a declaration of a class member // Since using decls preserve this property, we check this on the // original decl. if (D->isCXXClassMember()) return false; // C++0x [basic.lookup.argdep]p3: // -- a block-scope function declaration that is not a // using-declaration // NOTE: we also trigger this for function templates (in fact, we // don't check the decl type at all, since all other decl types // turn off ADL anyway). if (isa(D)) D = cast(D)->getTargetDecl(); else if (D->getDeclContext()->isFunctionOrMethod()) return false; // C++0x [basic.lookup.argdep]p3: // -- a declaration that is neither a function or a function // template // And also for builtin functions. if (isa(D)) { FunctionDecl *FDecl = cast(D); // But also builtin functions. if (FDecl->getBuiltinID() && FDecl->isImplicit()) return false; } else if (!isa(D)) return false; } return true; } /// Diagnoses obvious problems with the use of the given declaration /// as an expression. This is only actually called for lookups that /// were not overloaded, and it doesn't promise that the declaration /// will in fact be used. static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) { if (isa(D)) { S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName(); return true; } if (isa(D)) { S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName(); return true; } if (isa(D)) { S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName(); return true; } return false; } ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS, LookupResult &R, bool NeedsADL) { // If this is a single, fully-resolved result and we don't need ADL, // just build an ordinary singleton decl ref. if (!NeedsADL && R.isSingleResult() && !R.getAsSingle()) return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl()); // We only need to check the declaration if there's exactly one // result, because in the overloaded case the results can only be // functions and function templates. if (R.isSingleResult() && CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl())) return ExprError(); // Otherwise, just build an unresolved lookup expression. Suppress // any lookup-related diagnostics; we'll hash these out later, when // we've picked a target. R.suppressDiagnostics(); UnresolvedLookupExpr *ULE = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), (NestedNameSpecifier*) SS.getScopeRep(), SS.getRange(), R.getLookupNameInfo(), NeedsADL, R.isOverloadedResult(), R.begin(), R.end()); return Owned(ULE); } /// \brief Complete semantic analysis for a reference to the given declaration. ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D) { assert(D && "Cannot refer to a NULL declaration"); assert(!isa(D) && "Cannot refer unambiguously to a function template"); SourceLocation Loc = NameInfo.getLoc(); if (CheckDeclInExpr(*this, Loc, D)) return ExprError(); if (TemplateDecl *Template = dyn_cast(D)) { // Specifically diagnose references to class templates that are missing // a template argument list. Diag(Loc, diag::err_template_decl_ref) << Template << SS.getRange(); Diag(Template->getLocation(), diag::note_template_decl_here); return ExprError(); } // Make sure that we're referring to a value. ValueDecl *VD = dyn_cast(D); if (!VD) { Diag(Loc, diag::err_ref_non_value) << D << SS.getRange(); Diag(D->getLocation(), diag::note_declared_at); return ExprError(); } // Check whether this declaration can be used. Note that we suppress // this check when we're going to perform argument-dependent lookup // on this function name, because this might not be the function // that overload resolution actually selects. if (DiagnoseUseOfDecl(VD, Loc)) return ExprError(); // Only create DeclRefExpr's for valid Decl's. if (VD->isInvalidDecl()) return ExprError(); // Handle members of anonymous structs and unions. If we got here, // and the reference is to a class member indirect field, then this // must be the subject of a pointer-to-member expression. if (IndirectFieldDecl *indirectField = dyn_cast(VD)) if (!indirectField->isCXXClassMember()) return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(), indirectField); // If the identifier reference is inside a block, and it refers to a value // that is outside the block, create a BlockDeclRefExpr instead of a // DeclRefExpr. This ensures the value is treated as a copy-in snapshot when // the block is formed. // // We do not do this for things like enum constants, global variables, etc, // as they do not get snapshotted. // switch (shouldCaptureValueReference(*this, NameInfo.getLoc(), VD)) { case CR_Error: return ExprError(); case CR_Capture: assert(!SS.isSet() && "referenced local variable with scope specifier?"); return BuildBlockDeclRefExpr(*this, VD, NameInfo, /*byref*/ false); case CR_CaptureByRef: assert(!SS.isSet() && "referenced local variable with scope specifier?"); return BuildBlockDeclRefExpr(*this, VD, NameInfo, /*byref*/ true); case CR_NoCapture: { // If this reference is not in a block or if the referenced // variable is within the block, create a normal DeclRefExpr. QualType type = VD->getType(); ExprValueKind valueKind = VK_RValue; switch (D->getKind()) { // Ignore all the non-ValueDecl kinds. #define ABSTRACT_DECL(kind) #define VALUE(type, base) #define DECL(type, base) \ case Decl::type: #include "clang/AST/DeclNodes.inc" llvm_unreachable("invalid value decl kind"); return ExprError(); // These shouldn't make it here. case Decl::ObjCAtDefsField: case Decl::ObjCIvar: llvm_unreachable("forming non-member reference to ivar?"); return ExprError(); // Enum constants are always r-values and never references. // Unresolved using declarations are dependent. case Decl::EnumConstant: case Decl::UnresolvedUsingValue: valueKind = VK_RValue; break; // Fields and indirect fields that got here must be for // pointer-to-member expressions; we just call them l-values for // internal consistency, because this subexpression doesn't really // exist in the high-level semantics. case Decl::Field: case Decl::IndirectField: assert(getLangOptions().CPlusPlus && "building reference to field in C?"); // These can't have reference type in well-formed programs, but // for internal consistency we do this anyway. type = type.getNonReferenceType(); valueKind = VK_LValue; break; // Non-type template parameters are either l-values or r-values // depending on the type. case Decl::NonTypeTemplateParm: { if (const ReferenceType *reftype = type->getAs()) { type = reftype->getPointeeType(); valueKind = VK_LValue; // even if the parameter is an r-value reference break; } // For non-references, we need to strip qualifiers just in case // the template parameter was declared as 'const int' or whatever. valueKind = VK_RValue; type = type.getUnqualifiedType(); break; } case Decl::Var: // In C, "extern void blah;" is valid and is an r-value. if (!getLangOptions().CPlusPlus && !type.hasQualifiers() && type->isVoidType()) { valueKind = VK_RValue; break; } // fallthrough case Decl::ImplicitParam: case Decl::ParmVar: // These are always l-values. valueKind = VK_LValue; type = type.getNonReferenceType(); break; case Decl::Function: { // Functions are l-values in C++. if (getLangOptions().CPlusPlus) { valueKind = VK_LValue; break; } // C99 DR 316 says that, if a function type comes from a // function definition (without a prototype), that type is only // used for checking compatibility. Therefore, when referencing // the function, we pretend that we don't have the full function // type. if (!cast(VD)->hasPrototype()) if (const FunctionProtoType *proto = type->getAs()) type = Context.getFunctionNoProtoType(proto->getResultType(), proto->getExtInfo()); // Functions are r-values in C. valueKind = VK_RValue; break; } case Decl::CXXMethod: // C++ methods are l-values if static, r-values if non-static. if (cast(VD)->isStatic()) { valueKind = VK_LValue; break; } // fallthrough case Decl::CXXConversion: case Decl::CXXDestructor: case Decl::CXXConstructor: valueKind = VK_RValue; break; } return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS); } } llvm_unreachable("unknown capture result"); return ExprError(); } ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) { PredefinedExpr::IdentType IT; switch (Kind) { default: assert(0 && "Unknown simple primary expr!"); case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2] case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break; case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break; } // Pre-defined identifiers are of type char[x], where x is the length of the // string. Decl *currentDecl = getCurFunctionOrMethodDecl(); if (!currentDecl && getCurBlock()) currentDecl = getCurBlock()->TheDecl; if (!currentDecl) { Diag(Loc, diag::ext_predef_outside_function); currentDecl = Context.getTranslationUnitDecl(); } QualType ResTy; if (cast(currentDecl)->isDependentContext()) { ResTy = Context.DependentTy; } else { unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length(); llvm::APInt LengthI(32, Length + 1); ResTy = Context.CharTy.withConst(); ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0); } return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT)); } ExprResult Sema::ActOnCharacterConstant(const Token &Tok) { llvm::SmallString<16> CharBuffer; bool Invalid = false; llvm::StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid); if (Invalid) return ExprError(); CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(), PP); if (Literal.hadError()) return ExprError(); QualType Ty; if (!getLangOptions().CPlusPlus) Ty = Context.IntTy; // 'x' and L'x' -> int in C. else if (Literal.isWide()) Ty = Context.WCharTy; // L'x' -> wchar_t in C++. else if (Literal.isMultiChar()) Ty = Context.IntTy; // 'wxyz' -> int in C++. else Ty = Context.CharTy; // 'x' -> char in C++ return Owned(new (Context) CharacterLiteral(Literal.getValue(), Literal.isWide(), Ty, Tok.getLocation())); } ExprResult Sema::ActOnNumericConstant(const Token &Tok) { // Fast path for a single digit (which is quite common). A single digit // cannot have a trigraph, escaped newline, radix prefix, or type suffix. if (Tok.getLength() == 1) { const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok); unsigned IntSize = Context.Target.getIntWidth(); return Owned(IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val-'0'), Context.IntTy, Tok.getLocation())); } llvm::SmallString<512> IntegerBuffer; // Add padding so that NumericLiteralParser can overread by one character. IntegerBuffer.resize(Tok.getLength()+1); const char *ThisTokBegin = &IntegerBuffer[0]; // Get the spelling of the token, which eliminates trigraphs, etc. bool Invalid = false; unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid); if (Invalid) return ExprError(); NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength, Tok.getLocation(), PP); if (Literal.hadError) return ExprError(); Expr *Res; if (Literal.isFloatingLiteral()) { QualType Ty; if (Literal.isFloat) Ty = Context.FloatTy; else if (!Literal.isLong) Ty = Context.DoubleTy; else Ty = Context.LongDoubleTy; const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty); using llvm::APFloat; APFloat Val(Format); APFloat::opStatus result = Literal.GetFloatValue(Val); // Overflow is always an error, but underflow is only an error if // we underflowed to zero (APFloat reports denormals as underflow). if ((result & APFloat::opOverflow) || ((result & APFloat::opUnderflow) && Val.isZero())) { unsigned diagnostic; llvm::SmallString<20> buffer; if (result & APFloat::opOverflow) { diagnostic = diag::warn_float_overflow; APFloat::getLargest(Format).toString(buffer); } else { diagnostic = diag::warn_float_underflow; APFloat::getSmallest(Format).toString(buffer); } Diag(Tok.getLocation(), diagnostic) << Ty << llvm::StringRef(buffer.data(), buffer.size()); } bool isExact = (result == APFloat::opOK); Res = FloatingLiteral::Create(Context, Val, isExact, Ty, Tok.getLocation()); if (getLangOptions().SinglePrecisionConstants && Ty == Context.DoubleTy) ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast); } else if (!Literal.isIntegerLiteral()) { return ExprError(); } else { QualType Ty; // long long is a C99 feature. if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x && Literal.isLongLong) Diag(Tok.getLocation(), diag::ext_longlong); // Get the value in the widest-possible width. llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0); if (Literal.GetIntegerValue(ResultVal)) { // If this value didn't fit into uintmax_t, warn and force to ull. Diag(Tok.getLocation(), diag::warn_integer_too_large); Ty = Context.UnsignedLongLongTy; assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() && "long long is not intmax_t?"); } else { // If this value fits into a ULL, try to figure out what else it fits into // according to the rules of C99 6.4.4.1p5. // Octal, Hexadecimal, and integers with a U suffix are allowed to // be an unsigned int. bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10; // Check from smallest to largest, picking the smallest type we can. unsigned Width = 0; if (!Literal.isLong && !Literal.isLongLong) { // Are int/unsigned possibilities? unsigned IntSize = Context.Target.getIntWidth(); // Does it fit in a unsigned int? if (ResultVal.isIntN(IntSize)) { // Does it fit in a signed int? if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0) Ty = Context.IntTy; else if (AllowUnsigned) Ty = Context.UnsignedIntTy; Width = IntSize; } } // Are long/unsigned long possibilities? if (Ty.isNull() && !Literal.isLongLong) { unsigned LongSize = Context.Target.getLongWidth(); // Does it fit in a unsigned long? if (ResultVal.isIntN(LongSize)) { // Does it fit in a signed long? if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0) Ty = Context.LongTy; else if (AllowUnsigned) Ty = Context.UnsignedLongTy; Width = LongSize; } } // Finally, check long long if needed. if (Ty.isNull()) { unsigned LongLongSize = Context.Target.getLongLongWidth(); // Does it fit in a unsigned long long? if (ResultVal.isIntN(LongLongSize)) { // Does it fit in a signed long long? // To be compatible with MSVC, hex integer literals ending with the // LL or i64 suffix are always signed in Microsoft mode. if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 || (getLangOptions().Microsoft && Literal.isLongLong))) Ty = Context.LongLongTy; else if (AllowUnsigned) Ty = Context.UnsignedLongLongTy; Width = LongLongSize; } } // If we still couldn't decide a type, we probably have something that // does not fit in a signed long long, but has no U suffix. if (Ty.isNull()) { Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed); Ty = Context.UnsignedLongLongTy; Width = Context.Target.getLongLongWidth(); } if (ResultVal.getBitWidth() != Width) ResultVal = ResultVal.trunc(Width); } Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation()); } // If this is an imaginary literal, create the ImaginaryLiteral wrapper. if (Literal.isImaginary) Res = new (Context) ImaginaryLiteral(Res, Context.getComplexType(Res->getType())); return Owned(Res); } ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) { assert((E != 0) && "ActOnParenExpr() missing expr"); return Owned(new (Context) ParenExpr(L, R, E)); } /// The UsualUnaryConversions() function is *not* called by this routine. /// See C99 6.3.2.1p[2-4] for more details. bool Sema::CheckSizeOfAlignOfOperand(QualType exprType, SourceLocation OpLoc, SourceRange ExprRange, bool isSizeof) { if (exprType->isDependentType()) return false; // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, // the result is the size of the referenced type." // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the // result shall be the alignment of the referenced type." if (const ReferenceType *Ref = exprType->getAs()) exprType = Ref->getPointeeType(); // C99 6.5.3.4p1: if (exprType->isFunctionType()) { // alignof(function) is allowed as an extension. if (isSizeof) Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange; return false; } // Allow sizeof(void)/alignof(void) as an extension. if (exprType->isVoidType()) { Diag(OpLoc, diag::ext_sizeof_void_type) << (isSizeof ? "sizeof" : "__alignof") << ExprRange; return false; } if (RequireCompleteType(OpLoc, exprType, PDiag(diag::err_sizeof_alignof_incomplete_type) << int(!isSizeof) << ExprRange)) return true; // Reject sizeof(interface) and sizeof(interface) in 64-bit mode. if (LangOpts.ObjCNonFragileABI && exprType->isObjCObjectType()) { Diag(OpLoc, diag::err_sizeof_nonfragile_interface) << exprType << isSizeof << ExprRange; return true; } return false; } static bool CheckAlignOfExpr(Sema &S, Expr *E, SourceLocation OpLoc, SourceRange ExprRange) { E = E->IgnoreParens(); // alignof decl is always ok. if (isa(E)) return false; // Cannot know anything else if the expression is dependent. if (E->isTypeDependent()) return false; if (E->getBitField()) { S. Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange; return true; } // Alignment of a field access is always okay, so long as it isn't a // bit-field. if (MemberExpr *ME = dyn_cast(E)) if (isa(ME->getMemberDecl())) return false; return S.CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false); } /// \brief Build a sizeof or alignof expression given a type operand. ExprResult Sema::CreateSizeOfAlignOfExpr(TypeSourceInfo *TInfo, SourceLocation OpLoc, bool isSizeOf, SourceRange R) { if (!TInfo) return ExprError(); QualType T = TInfo->getType(); if (!T->isDependentType() && CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf)) return ExprError(); // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t. return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, TInfo, Context.getSizeType(), OpLoc, R.getEnd())); } /// \brief Build a sizeof or alignof expression given an expression /// operand. ExprResult Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc, bool isSizeOf, SourceRange R) { // Verify that the operand is valid. bool isInvalid = false; if (E->isTypeDependent()) { // Delay type-checking for type-dependent expressions. } else if (!isSizeOf) { isInvalid = CheckAlignOfExpr(*this, E, OpLoc, R); } else if (E->getBitField()) { // C99 6.5.3.4p1. Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0; isInvalid = true; } else if (E->getType()->isPlaceholderType()) { ExprResult PE = CheckPlaceholderExpr(E, OpLoc); if (PE.isInvalid()) return ExprError(); return CreateSizeOfAlignOfExpr(PE.take(), OpLoc, isSizeOf, R); } else { isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true); } if (isInvalid) return ExprError(); // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t. return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E, Context.getSizeType(), OpLoc, R.getEnd())); } /// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and /// the same for @c alignof and @c __alignof /// Note that the ArgRange is invalid if isType is false. ExprResult Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType, void *TyOrEx, const SourceRange &ArgRange) { // If error parsing type, ignore. if (TyOrEx == 0) return ExprError(); if (isType) { TypeSourceInfo *TInfo; (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo); return CreateSizeOfAlignOfExpr(TInfo, OpLoc, isSizeof, ArgRange); } Expr *ArgEx = (Expr *)TyOrEx; ExprResult Result = CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange()); return move(Result); } static QualType CheckRealImagOperand(Sema &S, Expr *&V, SourceLocation Loc, bool isReal) { if (V->isTypeDependent()) return S.Context.DependentTy; // _Real and _Imag are only l-values for normal l-values. if (V->getObjectKind() != OK_Ordinary) S.DefaultLvalueConversion(V); // These operators return the element type of a complex type. if (const ComplexType *CT = V->getType()->getAs()) return CT->getElementType(); // Otherwise they pass through real integer and floating point types here. if (V->getType()->isArithmeticType()) return V->getType(); // Test for placeholders. ExprResult PR = S.CheckPlaceholderExpr(V, Loc); if (PR.isInvalid()) return QualType(); if (PR.take() != V) { V = PR.take(); return CheckRealImagOperand(S, V, Loc, isReal); } // Reject anything else. S.Diag(Loc, diag::err_realimag_invalid_type) << V->getType() << (isReal ? "__real" : "__imag"); return QualType(); } ExprResult Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Kind, Expr *Input) { UnaryOperatorKind Opc; switch (Kind) { default: assert(0 && "Unknown unary op!"); case tok::plusplus: Opc = UO_PostInc; break; case tok::minusminus: Opc = UO_PostDec; break; } return BuildUnaryOp(S, OpLoc, Opc, Input); } /// Expressions of certain arbitrary types are forbidden by C from /// having l-value type. These are: /// - 'void', but not qualified void /// - function types /// /// The exact rule here is C99 6.3.2.1: /// An lvalue is an expression with an object type or an incomplete /// type other than void. static bool IsCForbiddenLValueType(ASTContext &C, QualType T) { return ((T->isVoidType() && !T.hasQualifiers()) || T->isFunctionType()); } ExprResult Sema::ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc, Expr *Idx, SourceLocation RLoc) { // Since this might be a postfix expression, get rid of ParenListExprs. ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base); if (Result.isInvalid()) return ExprError(); Base = Result.take(); Expr *LHSExp = Base, *RHSExp = Idx; if (getLangOptions().CPlusPlus && (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) { return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp, Context.DependentTy, VK_LValue, OK_Ordinary, RLoc)); } if (getLangOptions().CPlusPlus && (LHSExp->getType()->isRecordType() || LHSExp->getType()->isEnumeralType() || RHSExp->getType()->isRecordType() || RHSExp->getType()->isEnumeralType())) { return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, Base, Idx); } return CreateBuiltinArraySubscriptExpr(Base, LLoc, Idx, RLoc); } ExprResult Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc, Expr *Idx, SourceLocation RLoc) { Expr *LHSExp = Base; Expr *RHSExp = Idx; // Perform default conversions. if (!LHSExp->getType()->getAs()) DefaultFunctionArrayLvalueConversion(LHSExp); DefaultFunctionArrayLvalueConversion(RHSExp); QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType(); ExprValueKind VK = VK_LValue; ExprObjectKind OK = OK_Ordinary; // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent // to the expression *((e1)+(e2)). This means the array "Base" may actually be // in the subscript position. As a result, we need to derive the array base // and index from the expression types. Expr *BaseExpr, *IndexExpr; QualType ResultType; if (LHSTy->isDependentType() || RHSTy->isDependentType()) { BaseExpr = LHSExp; IndexExpr = RHSExp; ResultType = Context.DependentTy; } else if (const PointerType *PTy = LHSTy->getAs()) { BaseExpr = LHSExp; IndexExpr = RHSExp; ResultType = PTy->getPointeeType(); } else if (const PointerType *PTy = RHSTy->getAs()) { // Handle the uncommon case of "123[Ptr]". BaseExpr = RHSExp; IndexExpr = LHSExp; ResultType = PTy->getPointeeType(); } else if (const ObjCObjectPointerType *PTy = LHSTy->getAs()) { BaseExpr = LHSExp; IndexExpr = RHSExp; ResultType = PTy->getPointeeType(); } else if (const ObjCObjectPointerType *PTy = RHSTy->getAs()) { // Handle the uncommon case of "123[Ptr]". BaseExpr = RHSExp; IndexExpr = LHSExp; ResultType = PTy->getPointeeType(); } else if (const VectorType *VTy = LHSTy->getAs()) { BaseExpr = LHSExp; // vectors: V[123] IndexExpr = RHSExp; VK = LHSExp->getValueKind(); if (VK != VK_RValue) OK = OK_VectorComponent; // FIXME: need to deal with const... ResultType = VTy->getElementType(); } else if (LHSTy->isArrayType()) { // If we see an array that wasn't promoted by // DefaultFunctionArrayLvalueConversion, it must be an array that // wasn't promoted because of the C90 rule that doesn't // allow promoting non-lvalue arrays. Warn, then // force the promotion here. Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) << LHSExp->getSourceRange(); ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy), CK_ArrayToPointerDecay); LHSTy = LHSExp->getType(); BaseExpr = LHSExp; IndexExpr = RHSExp; ResultType = LHSTy->getAs()->getPointeeType(); } else if (RHSTy->isArrayType()) { // Same as previous, except for 123[f().a] case Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) << RHSExp->getSourceRange(); ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy), CK_ArrayToPointerDecay); RHSTy = RHSExp->getType(); BaseExpr = RHSExp; IndexExpr = LHSExp; ResultType = RHSTy->getAs()->getPointeeType(); } else { return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value) << LHSExp->getSourceRange() << RHSExp->getSourceRange()); } // C99 6.5.2.1p1 if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent()) return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer) << IndexExpr->getSourceRange()); if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) || IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) && !IndexExpr->isTypeDependent()) Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange(); // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly, // C++ [expr.sub]p1: The type "T" shall be a completely-defined object // type. Note that Functions are not objects, and that (in C99 parlance) // incomplete types are not object types. if (ResultType->isFunctionType()) { Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type) << ResultType << BaseExpr->getSourceRange(); return ExprError(); } if (ResultType->isVoidType() && !getLangOptions().CPlusPlus) { // GNU extension: subscripting on pointer to void Diag(LLoc, diag::ext_gnu_void_ptr) << BaseExpr->getSourceRange(); // C forbids expressions of unqualified void type from being l-values. // See IsCForbiddenLValueType. if (!ResultType.hasQualifiers()) VK = VK_RValue; } else if (!ResultType->isDependentType() && RequireCompleteType(LLoc, ResultType, PDiag(diag::err_subscript_incomplete_type) << BaseExpr->getSourceRange())) return ExprError(); // Diagnose bad cases where we step over interface counts. if (ResultType->isObjCObjectType() && LangOpts.ObjCNonFragileABI) { Diag(LLoc, diag::err_subscript_nonfragile_interface) << ResultType << BaseExpr->getSourceRange(); return ExprError(); } assert(VK == VK_RValue || LangOpts.CPlusPlus || !IsCForbiddenLValueType(Context, ResultType)); return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc)); } /// Check an ext-vector component access expression. /// /// VK should be set in advance to the value kind of the base /// expression. static QualType CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK, SourceLocation OpLoc, const IdentifierInfo *CompName, SourceLocation CompLoc) { // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements, // see FIXME there. // // FIXME: This logic can be greatly simplified by splitting it along // halving/not halving and reworking the component checking. const ExtVectorType *vecType = baseType->getAs(); // The vector accessor can't exceed the number of elements. const char *compStr = CompName->getNameStart(); // This flag determines whether or not the component is one of the four // special names that indicate a subset of exactly half the elements are // to be selected. bool HalvingSwizzle = false; // This flag determines whether or not CompName has an 's' char prefix, // indicating that it is a string of hex values to be used as vector indices. bool HexSwizzle = *compStr == 's' || *compStr == 'S'; bool HasRepeated = false; bool HasIndex[16] = {}; int Idx; // Check that we've found one of the special components, or that the component // names must come from the same set. if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") || !strcmp(compStr, "even") || !strcmp(compStr, "odd")) { HalvingSwizzle = true; } else if (!HexSwizzle && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) { do { if (HasIndex[Idx]) HasRepeated = true; HasIndex[Idx] = true; compStr++; } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1); } else { if (HexSwizzle) compStr++; while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) { if (HasIndex[Idx]) HasRepeated = true; HasIndex[Idx] = true; compStr++; } } if (!HalvingSwizzle && *compStr) { // We didn't get to the end of the string. This means the component names // didn't come from the same set *or* we encountered an illegal name. S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal) << llvm::StringRef(compStr, 1) << SourceRange(CompLoc); return QualType(); } // Ensure no component accessor exceeds the width of the vector type it // operates on. if (!HalvingSwizzle) { compStr = CompName->getNameStart(); if (HexSwizzle) compStr++; while (*compStr) { if (!vecType->isAccessorWithinNumElements(*compStr++)) { S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length) << baseType << SourceRange(CompLoc); return QualType(); } } } // The component accessor looks fine - now we need to compute the actual type. // The vector type is implied by the component accessor. For example, // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc. // vec4.s0 is a float, vec4.s23 is a vec3, etc. // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2. unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2 : CompName->getLength(); if (HexSwizzle) CompSize--; if (CompSize == 1) return vecType->getElementType(); if (HasRepeated) VK = VK_RValue; QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize); // Now look up the TypeDefDecl from the vector type. Without this, // diagostics look bad. We want extended vector types to appear built-in. for (unsigned i = 0, E = S.ExtVectorDecls.size(); i != E; ++i) { if (S.ExtVectorDecls[i]->getUnderlyingType() == VT) return S.Context.getTypedefType(S.ExtVectorDecls[i]); } return VT; // should never get here (a typedef type should always be found). } static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl, IdentifierInfo *Member, const Selector &Sel, ASTContext &Context) { if (Member) if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member)) return PD; if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel)) return OMD; for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(), E = PDecl->protocol_end(); I != E; ++I) { if (Decl *D = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel, Context)) return D; } return 0; } static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy, IdentifierInfo *Member, const Selector &Sel, ASTContext &Context) { // Check protocols on qualified interfaces. Decl *GDecl = 0; for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(), E = QIdTy->qual_end(); I != E; ++I) { if (Member) if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) { GDecl = PD; break; } // Also must look for a getter or setter name which uses property syntax. if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) { GDecl = OMD; break; } } if (!GDecl) { for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(), E = QIdTy->qual_end(); I != E; ++I) { // Search in the protocol-qualifier list of current protocol. GDecl = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel, Context); if (GDecl) return GDecl; } } return GDecl; } ExprResult Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType, bool IsArrow, SourceLocation OpLoc, const CXXScopeSpec &SS, NamedDecl *FirstQualifierInScope, const DeclarationNameInfo &NameInfo, const TemplateArgumentListInfo *TemplateArgs) { // Even in dependent contexts, try to diagnose base expressions with // obviously wrong types, e.g.: // // T* t; // t.f; // // In Obj-C++, however, the above expression is valid, since it could be // accessing the 'f' property if T is an Obj-C interface. The extra check // allows this, while still reporting an error if T is a struct pointer. if (!IsArrow) { const PointerType *PT = BaseType->getAs(); if (PT && (!getLangOptions().ObjC1 || PT->getPointeeType()->isRecordType())) { assert(BaseExpr && "cannot happen with implicit member accesses"); Diag(NameInfo.getLoc(), diag::err_typecheck_member_reference_struct_union) << BaseType << BaseExpr->getSourceRange(); return ExprError(); } } assert(BaseType->isDependentType() || NameInfo.getName().isDependentName() || isDependentScopeSpecifier(SS)); // Get the type being accessed in BaseType. If this is an arrow, the BaseExpr // must have pointer type, and the accessed type is the pointee. return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, BaseType, IsArrow, OpLoc, SS.getScopeRep(), SS.getRange(), FirstQualifierInScope, NameInfo, TemplateArgs)); } /// We know that the given qualified member reference points only to /// declarations which do not belong to the static type of the base /// expression. Diagnose the problem. static void DiagnoseQualifiedMemberReference(Sema &SemaRef, Expr *BaseExpr, QualType BaseType, const CXXScopeSpec &SS, NamedDecl *rep, const DeclarationNameInfo &nameInfo) { // If this is an implicit member access, use a different set of // diagnostics. if (!BaseExpr) return DiagnoseInstanceReference(SemaRef, SS, rep, nameInfo); SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated) << SS.getRange() << rep << BaseType; } // Check whether the declarations we found through a nested-name // specifier in a member expression are actually members of the base // type. The restriction here is: // // C++ [expr.ref]p2: // ... In these cases, the id-expression shall name a // member of the class or of one of its base classes. // // So it's perfectly legitimate for the nested-name specifier to name // an unrelated class, and for us to find an overload set including // decls from classes which are not superclasses, as long as the decl // we actually pick through overload resolution is from a superclass. bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr, QualType BaseType, const CXXScopeSpec &SS, const LookupResult &R) { const RecordType *BaseRT = BaseType->getAs(); if (!BaseRT) { // We can't check this yet because the base type is still // dependent. assert(BaseType->isDependentType()); return false; } CXXRecordDecl *BaseRecord = cast(BaseRT->getDecl()); for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { // If this is an implicit member reference and we find a // non-instance member, it's not an error. if (!BaseExpr && !(*I)->isCXXInstanceMember()) return false; // Note that we use the DC of the decl, not the underlying decl. DeclContext *DC = (*I)->getDeclContext(); while (DC->isTransparentContext()) DC = DC->getParent(); if (!DC->isRecord()) continue; llvm::SmallPtrSet MemberRecord; MemberRecord.insert(cast(DC)->getCanonicalDecl()); if (!IsProvablyNotDerivedFrom(*this, BaseRecord, MemberRecord)) return false; } DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS, R.getRepresentativeDecl(), R.getLookupNameInfo()); return true; } static bool LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R, SourceRange BaseRange, const RecordType *RTy, SourceLocation OpLoc, CXXScopeSpec &SS, bool HasTemplateArgs) { RecordDecl *RDecl = RTy->getDecl(); if (SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0), SemaRef.PDiag(diag::err_typecheck_incomplete_tag) << BaseRange)) return true; if (HasTemplateArgs) { // LookupTemplateName doesn't expect these both to exist simultaneously. QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0); bool MOUS; SemaRef.LookupTemplateName(R, 0, SS, ObjectType, false, MOUS); return false; } DeclContext *DC = RDecl; if (SS.isSet()) { // If the member name was a qualified-id, look into the // nested-name-specifier. DC = SemaRef.computeDeclContext(SS, false); if (SemaRef.RequireCompleteDeclContext(SS, DC)) { SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag) << SS.getRange() << DC; return true; } assert(DC && "Cannot handle non-computable dependent contexts in lookup"); if (!isa(DC)) { SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass) << DC << SS.getRange(); return true; } } // The record definition is complete, now look up the member. SemaRef.LookupQualifiedName(R, DC); if (!R.empty()) return false; // We didn't find anything with the given name, so try to correct // for typos. DeclarationName Name = R.getLookupName(); if (SemaRef.CorrectTypo(R, 0, &SS, DC, false, Sema::CTC_MemberLookup) && !R.empty() && (isa(*R.begin()) || isa(*R.begin()))) { SemaRef.Diag(R.getNameLoc(), diag::err_no_member_suggest) << Name << DC << R.getLookupName() << SS.getRange() << FixItHint::CreateReplacement(R.getNameLoc(), R.getLookupName().getAsString()); if (NamedDecl *ND = R.getAsSingle()) SemaRef.Diag(ND->getLocation(), diag::note_previous_decl) << ND->getDeclName(); return false; } else { R.clear(); R.setLookupName(Name); } return false; } ExprResult Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType, SourceLocation OpLoc, bool IsArrow, CXXScopeSpec &SS, NamedDecl *FirstQualifierInScope, const DeclarationNameInfo &NameInfo, const TemplateArgumentListInfo *TemplateArgs) { if (BaseType->isDependentType() || (SS.isSet() && isDependentScopeSpecifier(SS))) return ActOnDependentMemberExpr(Base, BaseType, IsArrow, OpLoc, SS, FirstQualifierInScope, NameInfo, TemplateArgs); LookupResult R(*this, NameInfo, LookupMemberName); // Implicit member accesses. if (!Base) { QualType RecordTy = BaseType; if (IsArrow) RecordTy = RecordTy->getAs()->getPointeeType(); if (LookupMemberExprInRecord(*this, R, SourceRange(), RecordTy->getAs(), OpLoc, SS, TemplateArgs != 0)) return ExprError(); // Explicit member accesses. } else { ExprResult Result = LookupMemberExpr(R, Base, IsArrow, OpLoc, SS, /*ObjCImpDecl*/ 0, TemplateArgs != 0); if (Result.isInvalid()) { Owned(Base); return ExprError(); } if (Result.get()) return move(Result); // LookupMemberExpr can modify Base, and thus change BaseType BaseType = Base->getType(); } return BuildMemberReferenceExpr(Base, BaseType, OpLoc, IsArrow, SS, FirstQualifierInScope, R, TemplateArgs); } ExprResult Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType, SourceLocation OpLoc, bool IsArrow, const CXXScopeSpec &SS, NamedDecl *FirstQualifierInScope, LookupResult &R, const TemplateArgumentListInfo *TemplateArgs, bool SuppressQualifierCheck) { QualType BaseType = BaseExprType; if (IsArrow) { assert(BaseType->isPointerType()); BaseType = BaseType->getAs()->getPointeeType(); } R.setBaseObjectType(BaseType); NestedNameSpecifier *Qualifier = SS.getScopeRep(); const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo(); DeclarationName MemberName = MemberNameInfo.getName(); SourceLocation MemberLoc = MemberNameInfo.getLoc(); if (R.isAmbiguous()) return ExprError(); if (R.empty()) { // Rederive where we looked up. DeclContext *DC = (SS.isSet() ? computeDeclContext(SS, false) : BaseType->getAs()->getDecl()); Diag(R.getNameLoc(), diag::err_no_member) << MemberName << DC << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange()); return ExprError(); } // Diagnose lookups that find only declarations from a non-base // type. This is possible for either qualified lookups (which may // have been qualified with an unrelated type) or implicit member // expressions (which were found with unqualified lookup and thus // may have come from an enclosing scope). Note that it's okay for // lookup to find declarations from a non-base type as long as those // aren't the ones picked by overload resolution. if ((SS.isSet() || !BaseExpr || (isa(BaseExpr) && cast(BaseExpr)->isImplicit())) && !SuppressQualifierCheck && CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R)) return ExprError(); // Construct an unresolved result if we in fact got an unresolved // result. if (R.isOverloadedResult() || R.isUnresolvableResult()) { // Suppress any lookup-related diagnostics; we'll do these when we // pick a member. R.suppressDiagnostics(); UnresolvedMemberExpr *MemExpr = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(), BaseExpr, BaseExprType, IsArrow, OpLoc, Qualifier, SS.getRange(), MemberNameInfo, TemplateArgs, R.begin(), R.end()); return Owned(MemExpr); } assert(R.isSingleResult()); DeclAccessPair FoundDecl = R.begin().getPair(); NamedDecl *MemberDecl = R.getFoundDecl(); // FIXME: diagnose the presence of template arguments now. // If the decl being referenced had an error, return an error for this // sub-expr without emitting another error, in order to avoid cascading // error cases. if (MemberDecl->isInvalidDecl()) return ExprError(); // Handle the implicit-member-access case. if (!BaseExpr) { // If this is not an instance member, convert to a non-member access. if (!MemberDecl->isCXXInstanceMember()) return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl); SourceLocation Loc = R.getNameLoc(); if (SS.getRange().isValid()) Loc = SS.getRange().getBegin(); BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true); } bool ShouldCheckUse = true; if (CXXMethodDecl *MD = dyn_cast(MemberDecl)) { // Don't diagnose the use of a virtual member function unless it's // explicitly qualified. if (MD->isVirtual() && !SS.isSet()) ShouldCheckUse = false; } // Check the use of this member. if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc)) { Owned(BaseExpr); return ExprError(); } // Perform a property load on the base regardless of whether we // actually need it for the declaration. if (BaseExpr->getObjectKind() == OK_ObjCProperty) ConvertPropertyForRValue(BaseExpr); if (FieldDecl *FD = dyn_cast(MemberDecl)) return BuildFieldReferenceExpr(*this, BaseExpr, IsArrow, SS, FD, FoundDecl, MemberNameInfo); if (IndirectFieldDecl *FD = dyn_cast(MemberDecl)) // We may have found a field within an anonymous union or struct // (C++ [class.union]). return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD, BaseExpr, OpLoc); if (VarDecl *Var = dyn_cast(MemberDecl)) { MarkDeclarationReferenced(MemberLoc, Var); return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS, Var, FoundDecl, MemberNameInfo, Var->getType().getNonReferenceType(), VK_LValue, OK_Ordinary)); } if (CXXMethodDecl *MemberFn = dyn_cast(MemberDecl)) { MarkDeclarationReferenced(MemberLoc, MemberDecl); return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS, MemberFn, FoundDecl, MemberNameInfo, MemberFn->getType(), MemberFn->isInstance() ? VK_RValue : VK_LValue, OK_Ordinary)); } assert(!isa(MemberDecl) && "member function not C++ method?"); if (EnumConstantDecl *Enum = dyn_cast(MemberDecl)) { MarkDeclarationReferenced(MemberLoc, MemberDecl); return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS, Enum, FoundDecl, MemberNameInfo, Enum->getType(), VK_RValue, OK_Ordinary)); } Owned(BaseExpr); // We found something that we didn't expect. Complain. if (isa(MemberDecl)) Diag(MemberLoc, diag::err_typecheck_member_reference_type) << MemberName << BaseType << int(IsArrow); else Diag(MemberLoc, diag::err_typecheck_member_reference_unknown) << MemberName << BaseType << int(IsArrow); Diag(MemberDecl->getLocation(), diag::note_member_declared_here) << MemberName; R.suppressDiagnostics(); return ExprError(); } /// Given that normal member access failed on the given expression, /// and given that the expression's type involves builtin-id or /// builtin-Class, decide whether substituting in the redefinition /// types would be profitable. The redefinition type is whatever /// this translation unit tried to typedef to id/Class; we store /// it to the side and then re-use it in places like this. static bool ShouldTryAgainWithRedefinitionType(Sema &S, Expr *&base) { const ObjCObjectPointerType *opty = base->getType()->getAs(); if (!opty) return false; const ObjCObjectType *ty = opty->getObjectType(); QualType redef; if (ty->isObjCId()) { redef = S.Context.ObjCIdRedefinitionType; } else if (ty->isObjCClass()) { redef = S.Context.ObjCClassRedefinitionType; } else { return false; } // Do the substitution as long as the redefinition type isn't just a // possibly-qualified pointer to builtin-id or builtin-Class again. opty = redef->getAs(); if (opty && !opty->getObjectType()->getInterface() != 0) return false; S.ImpCastExprToType(base, redef, CK_BitCast); return true; } /// Look up the given member of the given non-type-dependent /// expression. This can return in one of two ways: /// * If it returns a sentinel null-but-valid result, the caller will /// assume that lookup was performed and the results written into /// the provided structure. It will take over from there. /// * Otherwise, the returned expression will be produced in place of /// an ordinary member expression. /// /// The ObjCImpDecl bit is a gross hack that will need to be properly /// fixed for ObjC++. ExprResult Sema::LookupMemberExpr(LookupResult &R, Expr *&BaseExpr, bool &IsArrow, SourceLocation OpLoc, CXXScopeSpec &SS, Decl *ObjCImpDecl, bool HasTemplateArgs) { assert(BaseExpr && "no base expression"); // Perform default conversions. DefaultFunctionArrayConversion(BaseExpr); if (IsArrow) DefaultLvalueConversion(BaseExpr); QualType BaseType = BaseExpr->getType(); assert(!BaseType->isDependentType()); DeclarationName MemberName = R.getLookupName(); SourceLocation MemberLoc = R.getNameLoc(); // For later type-checking purposes, turn arrow accesses into dot // accesses. The only access type we support that doesn't follow // the C equivalence "a->b === (*a).b" is ObjC property accesses, // and those never use arrows, so this is unaffected. if (IsArrow) { if (const PointerType *Ptr = BaseType->getAs()) BaseType = Ptr->getPointeeType(); else if (const ObjCObjectPointerType *Ptr = BaseType->getAs()) BaseType = Ptr->getPointeeType(); else if (BaseType->isRecordType()) { // Recover from arrow accesses to records, e.g.: // struct MyRecord foo; // foo->bar // This is actually well-formed in C++ if MyRecord has an // overloaded operator->, but that should have been dealt with // by now. Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) << BaseType << int(IsArrow) << BaseExpr->getSourceRange() << FixItHint::CreateReplacement(OpLoc, "."); IsArrow = false; } else { Diag(MemberLoc, diag::err_typecheck_member_reference_arrow) << BaseType << BaseExpr->getSourceRange(); return ExprError(); } } // Handle field access to simple records. if (const RecordType *RTy = BaseType->getAs()) { if (LookupMemberExprInRecord(*this, R, BaseExpr->getSourceRange(), RTy, OpLoc, SS, HasTemplateArgs)) return ExprError(); // Returning valid-but-null is how we indicate to the caller that // the lookup result was filled in. return Owned((Expr*) 0); } // Handle ivar access to Objective-C objects. if (const ObjCObjectType *OTy = BaseType->getAs()) { IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); // There are three cases for the base type: // - builtin id (qualified or unqualified) // - builtin Class (qualified or unqualified) // - an interface ObjCInterfaceDecl *IDecl = OTy->getInterface(); if (!IDecl) { // There's an implicit 'isa' ivar on all objects. // But we only actually find it this way on objects of type 'id', // apparently. if (OTy->isObjCId() && Member->isStr("isa")) return Owned(new (Context) ObjCIsaExpr(BaseExpr, IsArrow, MemberLoc, Context.getObjCClassType())); if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr)) return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS, ObjCImpDecl, HasTemplateArgs); goto fail; } ObjCInterfaceDecl *ClassDeclared; ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared); if (!IV) { // Attempt to correct for typos in ivar names. LookupResult Res(*this, R.getLookupName(), R.getNameLoc(), LookupMemberName); if (CorrectTypo(Res, 0, 0, IDecl, false, IsArrow ? CTC_ObjCIvarLookup : CTC_ObjCPropertyLookup) && (IV = Res.getAsSingle())) { Diag(R.getNameLoc(), diag::err_typecheck_member_reference_ivar_suggest) << IDecl->getDeclName() << MemberName << IV->getDeclName() << FixItHint::CreateReplacement(R.getNameLoc(), IV->getNameAsString()); Diag(IV->getLocation(), diag::note_previous_decl) << IV->getDeclName(); } else { Res.clear(); Res.setLookupName(Member); Diag(MemberLoc, diag::err_typecheck_member_reference_ivar) << IDecl->getDeclName() << MemberName << BaseExpr->getSourceRange(); return ExprError(); } } // If the decl being referenced had an error, return an error for this // sub-expr without emitting another error, in order to avoid cascading // error cases. if (IV->isInvalidDecl()) return ExprError(); // Check whether we can reference this field. if (DiagnoseUseOfDecl(IV, MemberLoc)) return ExprError(); if (IV->getAccessControl() != ObjCIvarDecl::Public && IV->getAccessControl() != ObjCIvarDecl::Package) { ObjCInterfaceDecl *ClassOfMethodDecl = 0; if (ObjCMethodDecl *MD = getCurMethodDecl()) ClassOfMethodDecl = MD->getClassInterface(); else if (ObjCImpDecl && getCurFunctionDecl()) { // Case of a c-function declared inside an objc implementation. // FIXME: For a c-style function nested inside an objc implementation // class, there is no implementation context available, so we pass // down the context as argument to this routine. Ideally, this context // need be passed down in the AST node and somehow calculated from the // AST for a function decl. if (ObjCImplementationDecl *IMPD = dyn_cast(ObjCImpDecl)) ClassOfMethodDecl = IMPD->getClassInterface(); else if (ObjCCategoryImplDecl* CatImplClass = dyn_cast(ObjCImpDecl)) ClassOfMethodDecl = CatImplClass->getClassInterface(); } if (IV->getAccessControl() == ObjCIvarDecl::Private) { if (ClassDeclared != IDecl || ClassOfMethodDecl != ClassDeclared) Diag(MemberLoc, diag::error_private_ivar_access) << IV->getDeclName(); } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl)) // @protected Diag(MemberLoc, diag::error_protected_ivar_access) << IV->getDeclName(); } return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(), MemberLoc, BaseExpr, IsArrow)); } // Objective-C property access. const ObjCObjectPointerType *OPT; if (!IsArrow && (OPT = BaseType->getAs())) { // This actually uses the base as an r-value. DefaultLvalueConversion(BaseExpr); assert(Context.hasSameUnqualifiedType(BaseType, BaseExpr->getType())); IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); const ObjCObjectType *OT = OPT->getObjectType(); // id, with and without qualifiers. if (OT->isObjCId()) { // Check protocols on qualified interfaces. Selector Sel = PP.getSelectorTable().getNullarySelector(Member); if (Decl *PMDecl = FindGetterSetterNameDecl(OPT, Member, Sel, Context)) { if (ObjCPropertyDecl *PD = dyn_cast(PMDecl)) { // Check the use of this declaration if (DiagnoseUseOfDecl(PD, MemberLoc)) return ExprError(); return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(), VK_LValue, OK_ObjCProperty, MemberLoc, BaseExpr)); } if (ObjCMethodDecl *OMD = dyn_cast(PMDecl)) { // Check the use of this method. if (DiagnoseUseOfDecl(OMD, MemberLoc)) return ExprError(); Selector SetterSel = SelectorTable::constructSetterName(PP.getIdentifierTable(), PP.getSelectorTable(), Member); ObjCMethodDecl *SMD = 0; if (Decl *SDecl = FindGetterSetterNameDecl(OPT, /*Property id*/0, SetterSel, Context)) SMD = dyn_cast(SDecl); QualType PType = OMD->getSendResultType(); ExprValueKind VK = VK_LValue; if (!getLangOptions().CPlusPlus && IsCForbiddenLValueType(Context, PType)) VK = VK_RValue; ExprObjectKind OK = (VK == VK_RValue ? OK_Ordinary : OK_ObjCProperty); return Owned(new (Context) ObjCPropertyRefExpr(OMD, SMD, PType, VK, OK, MemberLoc, BaseExpr)); } } if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr)) return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS, ObjCImpDecl, HasTemplateArgs); return ExprError(Diag(MemberLoc, diag::err_property_not_found) << MemberName << BaseType); } // 'Class', unqualified only. if (OT->isObjCClass()) { // Only works in a method declaration (??!). ObjCMethodDecl *MD = getCurMethodDecl(); if (!MD) { if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr)) return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS, ObjCImpDecl, HasTemplateArgs); goto fail; } // Also must look for a getter name which uses property syntax. Selector Sel = PP.getSelectorTable().getNullarySelector(Member); ObjCInterfaceDecl *IFace = MD->getClassInterface(); ObjCMethodDecl *Getter; if ((Getter = IFace->lookupClassMethod(Sel))) { // Check the use of this method. if (DiagnoseUseOfDecl(Getter, MemberLoc)) return ExprError(); } else Getter = IFace->lookupPrivateMethod(Sel, false); // If we found a getter then this may be a valid dot-reference, we // will look for the matching setter, in case it is needed. Selector SetterSel = SelectorTable::constructSetterName(PP.getIdentifierTable(), PP.getSelectorTable(), Member); ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel); if (!Setter) { // If this reference is in an @implementation, also check for 'private' // methods. Setter = IFace->lookupPrivateMethod(SetterSel, false); } // Look through local category implementations associated with the class. if (!Setter) Setter = IFace->getCategoryClassMethod(SetterSel); if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc)) return ExprError(); if (Getter || Setter) { QualType PType; ExprValueKind VK = VK_LValue; if (Getter) { PType = Getter->getSendResultType(); if (!getLangOptions().CPlusPlus && IsCForbiddenLValueType(Context, PType)) VK = VK_RValue; } else { // Get the expression type from Setter's incoming parameter. PType = (*(Setter->param_end() -1))->getType(); } ExprObjectKind OK = (VK == VK_RValue ? OK_Ordinary : OK_ObjCProperty); // FIXME: we must check that the setter has property type. return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter, PType, VK, OK, MemberLoc, BaseExpr)); } if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr)) return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS, ObjCImpDecl, HasTemplateArgs); return ExprError(Diag(MemberLoc, diag::err_property_not_found) << MemberName << BaseType); } // Normal property access. return HandleExprPropertyRefExpr(OPT, BaseExpr, MemberName, MemberLoc, SourceLocation(), QualType(), false); } // Handle 'field access' to vectors, such as 'V.xx'. if (BaseType->isExtVectorType()) { // FIXME: this expr should store IsArrow. IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); ExprValueKind VK = (IsArrow ? VK_LValue : BaseExpr->getValueKind()); QualType ret = CheckExtVectorComponent(*this, BaseType, VK, OpLoc, Member, MemberLoc); if (ret.isNull()) return ExprError(); return Owned(new (Context) ExtVectorElementExpr(ret, VK, BaseExpr, *Member, MemberLoc)); } // Adjust builtin-sel to the appropriate redefinition type if that's // not just a pointer to builtin-sel again. if (IsArrow && BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) && !Context.ObjCSelRedefinitionType->isObjCSelType()) { ImpCastExprToType(BaseExpr, Context.ObjCSelRedefinitionType, CK_BitCast); return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS, ObjCImpDecl, HasTemplateArgs); } // Failure cases. fail: // There's a possible road to recovery for function types. const FunctionType *Fun = 0; SourceLocation ParenInsertionLoc = PP.getLocForEndOfToken(BaseExpr->getLocEnd()); if (const PointerType *Ptr = BaseType->getAs()) { if ((Fun = Ptr->getPointeeType()->getAs())) { // fall out, handled below. // Recover from dot accesses to pointers, e.g.: // type *foo; // foo.bar // This is actually well-formed in two cases: // - 'type' is an Objective C type // - 'bar' is a pseudo-destructor name which happens to refer to // the appropriate pointer type } else if (!IsArrow && Ptr->getPointeeType()->isRecordType() && MemberName.getNameKind() != DeclarationName::CXXDestructorName) { Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) << BaseType << int(IsArrow) << BaseExpr->getSourceRange() << FixItHint::CreateReplacement(OpLoc, "->"); // Recurse as an -> access. IsArrow = true; return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS, ObjCImpDecl, HasTemplateArgs); } } else { Fun = BaseType->getAs(); } // If the user is trying to apply -> or . to a function pointer // type, it's probably because they forgot parentheses to call that // function. Suggest the addition of those parentheses, build the // call, and continue on. if (Fun || BaseType == Context.OverloadTy) { bool TryCall; if (BaseType == Context.OverloadTy) { // Plunder the overload set for something that would make the member // expression valid. const OverloadExpr *Overloads = cast(BaseExpr); UnresolvedSet<4> CandidateOverloads; bool HasZeroArgCandidateOverload = false; for (OverloadExpr::decls_iterator it = Overloads->decls_begin(), DeclsEnd = Overloads->decls_end(); it != DeclsEnd; ++it) { const FunctionDecl *OverloadDecl = cast(*it); QualType ResultTy = OverloadDecl->getResultType(); if ((!IsArrow && ResultTy->isRecordType()) || (IsArrow && ResultTy->isPointerType() && ResultTy->getPointeeType()->isRecordType())) { CandidateOverloads.addDecl(*it); if (OverloadDecl->getNumParams() == 0) { HasZeroArgCandidateOverload = true; } } } if (HasZeroArgCandidateOverload && CandidateOverloads.size() == 1) { // We have one reasonable overload, and there's only one way to call it, // so emit a fixit and try to recover Diag(ParenInsertionLoc, diag::err_member_reference_needs_call) << 1 << BaseExpr->getSourceRange() << FixItHint::CreateInsertion(ParenInsertionLoc, "()"); TryCall = true; } else { Diag(BaseExpr->getExprLoc(), diag::err_member_reference_needs_call) << 0 << BaseExpr->getSourceRange(); int CandidateOverloadCount = CandidateOverloads.size(); int I; for (I = 0; I < CandidateOverloadCount; ++I) { // FIXME: Magic number for max shown overloads stolen from // OverloadCandidateSet::NoteCandidates. if (I >= 4 && Diags.getShowOverloads() == Diagnostic::Ovl_Best) { break; } Diag(CandidateOverloads[I].getDecl()->getSourceRange().getBegin(), diag::note_member_ref_possible_intended_overload); } if (I != CandidateOverloadCount) { Diag(BaseExpr->getExprLoc(), diag::note_ovl_too_many_candidates) << int(CandidateOverloadCount - I); } return ExprError(); } } else { if (const FunctionProtoType *FPT = dyn_cast(Fun)) { TryCall = (FPT->getNumArgs() == 0); } else { TryCall = true; } if (TryCall) { QualType ResultTy = Fun->getResultType(); TryCall = (!IsArrow && ResultTy->isRecordType()) || (IsArrow && ResultTy->isPointerType() && ResultTy->getAs()->getPointeeType()->isRecordType()); } } if (TryCall) { if (Fun) { Diag(BaseExpr->getExprLoc(), diag::err_member_reference_needs_call_zero_arg) << QualType(Fun, 0) << FixItHint::CreateInsertion(ParenInsertionLoc, "()"); } ExprResult NewBase = ActOnCallExpr(0, BaseExpr, ParenInsertionLoc, MultiExprArg(*this, 0, 0), ParenInsertionLoc); if (NewBase.isInvalid()) return ExprError(); BaseExpr = NewBase.takeAs(); DefaultFunctionArrayConversion(BaseExpr); BaseType = BaseExpr->getType(); return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS, ObjCImpDecl, HasTemplateArgs); } } Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union) << BaseType << BaseExpr->getSourceRange(); return ExprError(); } /// The main callback when the parser finds something like /// expression . [nested-name-specifier] identifier /// expression -> [nested-name-specifier] identifier /// where 'identifier' encompasses a fairly broad spectrum of /// possibilities, including destructor and operator references. /// /// \param OpKind either tok::arrow or tok::period /// \param HasTrailingLParen whether the next token is '(', which /// is used to diagnose mis-uses of special members that can /// only be called /// \param ObjCImpDecl the current ObjC @implementation decl; /// this is an ugly hack around the fact that ObjC @implementations /// aren't properly put in the context chain ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base, SourceLocation OpLoc, tok::TokenKind OpKind, CXXScopeSpec &SS, UnqualifiedId &Id, Decl *ObjCImpDecl, bool HasTrailingLParen) { if (SS.isSet() && SS.isInvalid()) return ExprError(); // Warn about the explicit constructor calls Microsoft extension. if (getLangOptions().Microsoft && Id.getKind() == UnqualifiedId::IK_ConstructorName) Diag(Id.getSourceRange().getBegin(), diag::ext_ms_explicit_constructor_call); TemplateArgumentListInfo TemplateArgsBuffer; // Decompose the name into its component parts. DeclarationNameInfo NameInfo; const TemplateArgumentListInfo *TemplateArgs; DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer, NameInfo, TemplateArgs); DeclarationName Name = NameInfo.getName(); bool IsArrow = (OpKind == tok::arrow); NamedDecl *FirstQualifierInScope = (!SS.isSet() ? 0 : FindFirstQualifierInScope(S, static_cast(SS.getScopeRep()))); // This is a postfix expression, so get rid of ParenListExprs. ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base); if (Result.isInvalid()) return ExprError(); Base = Result.take(); if (Base->getType()->isDependentType() || Name.isDependentName() || isDependentScopeSpecifier(SS)) { Result = ActOnDependentMemberExpr(Base, Base->getType(), IsArrow, OpLoc, SS, FirstQualifierInScope, NameInfo, TemplateArgs); } else { LookupResult R(*this, NameInfo, LookupMemberName); Result = LookupMemberExpr(R, Base, IsArrow, OpLoc, SS, ObjCImpDecl, TemplateArgs != 0); if (Result.isInvalid()) { Owned(Base); return ExprError(); } if (Result.get()) { // The only way a reference to a destructor can be used is to // immediately call it, which falls into this case. If the // next token is not a '(', produce a diagnostic and build the // call now. if (!HasTrailingLParen && Id.getKind() == UnqualifiedId::IK_DestructorName) return DiagnoseDtorReference(NameInfo.getLoc(), Result.get()); return move(Result); } Result = BuildMemberReferenceExpr(Base, Base->getType(), OpLoc, IsArrow, SS, FirstQualifierInScope, R, TemplateArgs); } return move(Result); } ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD, ParmVarDecl *Param) { if (Param->hasUnparsedDefaultArg()) { Diag(CallLoc, diag::err_use_of_default_argument_to_function_declared_later) << FD << cast(FD->getDeclContext())->getDeclName(); Diag(UnparsedDefaultArgLocs[Param], diag::note_default_argument_declared_here); return ExprError(); } if (Param->hasUninstantiatedDefaultArg()) { Expr *UninstExpr = Param->getUninstantiatedDefaultArg(); // Instantiate the expression. MultiLevelTemplateArgumentList ArgList = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true); std::pair Innermost = ArgList.getInnermost(); InstantiatingTemplate Inst(*this, CallLoc, Param, Innermost.first, Innermost.second); ExprResult Result; { // C++ [dcl.fct.default]p5: // The names in the [default argument] expression are bound, and // the semantic constraints are checked, at the point where the // default argument expression appears. ContextRAII SavedContext(*this, FD); Result = SubstExpr(UninstExpr, ArgList); } if (Result.isInvalid()) return ExprError(); // Check the expression as an initializer for the parameter. InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, Param); InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(), /*FIXME:EqualLoc*/UninstExpr->getSourceRange().getBegin()); Expr *ResultE = Result.takeAs(); InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1); Result = InitSeq.Perform(*this, Entity, Kind, MultiExprArg(*this, &ResultE, 1)); if (Result.isInvalid()) return ExprError(); // Build the default argument expression. return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param, Result.takeAs())); } // If the default expression creates temporaries, we need to // push them to the current stack of expression temporaries so they'll // be properly destroyed. // FIXME: We should really be rebuilding the default argument with new // bound temporaries; see the comment in PR5810. for (unsigned i = 0, e = Param->getNumDefaultArgTemporaries(); i != e; ++i) { CXXTemporary *Temporary = Param->getDefaultArgTemporary(i); MarkDeclarationReferenced(Param->getDefaultArg()->getLocStart(), const_cast(Temporary->getDestructor())); ExprTemporaries.push_back(Temporary); } // We already type-checked the argument, so we know it works. // Just mark all of the declarations in this potentially-evaluated expression // as being "referenced". MarkDeclarationsReferencedInExpr(Param->getDefaultArg()); return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param)); } /// ConvertArgumentsForCall - Converts the arguments specified in /// Args/NumArgs to the parameter types of the function FDecl with /// function prototype Proto. Call is the call expression itself, and /// Fn is the function expression. For a C++ member function, this /// routine does not attempt to convert the object argument. Returns /// true if the call is ill-formed. bool Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn, FunctionDecl *FDecl, const FunctionProtoType *Proto, Expr **Args, unsigned NumArgs, SourceLocation RParenLoc) { // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by // assignment, to the types of the corresponding parameter, ... unsigned NumArgsInProto = Proto->getNumArgs(); bool Invalid = false; // If too few arguments are available (and we don't have default // arguments for the remaining parameters), don't make the call. if (NumArgs < NumArgsInProto) { if (!FDecl || NumArgs < FDecl->getMinRequiredArguments()) return Diag(RParenLoc, diag::err_typecheck_call_too_few_args) << Fn->getType()->isBlockPointerType() << NumArgsInProto << NumArgs << Fn->getSourceRange(); Call->setNumArgs(Context, NumArgsInProto); } // If too many are passed and not variadic, error on the extras and drop // them. if (NumArgs > NumArgsInProto) { if (!Proto->isVariadic()) { Diag(Args[NumArgsInProto]->getLocStart(), diag::err_typecheck_call_too_many_args) << Fn->getType()->isBlockPointerType() << NumArgsInProto << NumArgs << Fn->getSourceRange() << SourceRange(Args[NumArgsInProto]->getLocStart(), Args[NumArgs-1]->getLocEnd()); // This deletes the extra arguments. Call->setNumArgs(Context, NumArgsInProto); return true; } } llvm::SmallVector AllArgs; VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply; if (Fn->getType()->isBlockPointerType()) CallType = VariadicBlock; // Block else if (isa(Fn)) CallType = VariadicMethod; Invalid = GatherArgumentsForCall(Call->getSourceRange().getBegin(), FDecl, Proto, 0, Args, NumArgs, AllArgs, CallType); if (Invalid) return true; unsigned TotalNumArgs = AllArgs.size(); for (unsigned i = 0; i < TotalNumArgs; ++i) Call->setArg(i, AllArgs[i]); return false; } bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl, const FunctionProtoType *Proto, unsigned FirstProtoArg, Expr **Args, unsigned NumArgs, llvm::SmallVector &AllArgs, VariadicCallType CallType) { unsigned NumArgsInProto = Proto->getNumArgs(); unsigned NumArgsToCheck = NumArgs; bool Invalid = false; if (NumArgs != NumArgsInProto) // Use default arguments for missing arguments NumArgsToCheck = NumArgsInProto; unsigned ArgIx = 0; // Continue to check argument types (even if we have too few/many args). for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) { QualType ProtoArgType = Proto->getArgType(i); Expr *Arg; if (ArgIx < NumArgs) { Arg = Args[ArgIx++]; if (RequireCompleteType(Arg->getSourceRange().getBegin(), ProtoArgType, PDiag(diag::err_call_incomplete_argument) << Arg->getSourceRange())) return true; // Pass the argument ParmVarDecl *Param = 0; if (FDecl && i < FDecl->getNumParams()) Param = FDecl->getParamDecl(i); InitializedEntity Entity = Param? InitializedEntity::InitializeParameter(Context, Param) : InitializedEntity::InitializeParameter(Context, ProtoArgType); ExprResult ArgE = PerformCopyInitialization(Entity, SourceLocation(), Owned(Arg)); if (ArgE.isInvalid()) return true; Arg = ArgE.takeAs(); } else { ParmVarDecl *Param = FDecl->getParamDecl(i); ExprResult ArgExpr = BuildCXXDefaultArgExpr(CallLoc, FDecl, Param); if (ArgExpr.isInvalid()) return true; Arg = ArgExpr.takeAs(); } AllArgs.push_back(Arg); } // If this is a variadic call, handle args passed through "...". if (CallType != VariadicDoesNotApply) { // Promote the arguments (C99 6.5.2.2p7). for (unsigned i = ArgIx; i != NumArgs; ++i) { Expr *Arg = Args[i]; Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType, FDecl); AllArgs.push_back(Arg); } } return Invalid; } /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments. /// This provides the location of the left/right parens and a list of comma /// locations. ExprResult Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc, MultiExprArg args, SourceLocation RParenLoc, Expr *ExecConfig) { unsigned NumArgs = args.size(); // Since this might be a postfix expression, get rid of ParenListExprs. ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn); if (Result.isInvalid()) return ExprError(); Fn = Result.take(); Expr **Args = args.release(); if (getLangOptions().CPlusPlus) { // If this is a pseudo-destructor expression, build the call immediately. if (isa(Fn)) { if (NumArgs > 0) { // Pseudo-destructor calls should not have any arguments. Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args) << FixItHint::CreateRemoval( SourceRange(Args[0]->getLocStart(), Args[NumArgs-1]->getLocEnd())); NumArgs = 0; } return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy, VK_RValue, RParenLoc)); } // Determine whether this is a dependent call inside a C++ template, // in which case we won't do any semantic analysis now. // FIXME: Will need to cache the results of name lookup (including ADL) in // Fn. bool Dependent = false; if (Fn->isTypeDependent()) Dependent = true; else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs)) Dependent = true; if (Dependent) { if (ExecConfig) { return Owned(new (Context) CUDAKernelCallExpr( Context, Fn, cast(ExecConfig), Args, NumArgs, Context.DependentTy, VK_RValue, RParenLoc)); } else { return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs, Context.DependentTy, VK_RValue, RParenLoc)); } } // Determine whether this is a call to an object (C++ [over.call.object]). if (Fn->getType()->isRecordType()) return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs, RParenLoc)); Expr *NakedFn = Fn->IgnoreParens(); // Determine whether this is a call to an unresolved member function. if (UnresolvedMemberExpr *MemE = dyn_cast(NakedFn)) { // If lookup was unresolved but not dependent (i.e. didn't find // an unresolved using declaration), it has to be an overloaded // function set, which means it must contain either multiple // declarations (all methods or method templates) or a single // method template. assert((MemE->getNumDecls() > 1) || isa( (*MemE->decls_begin())->getUnderlyingDecl())); (void)MemE; return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs, RParenLoc); } // Determine whether this is a call to a member function. if (MemberExpr *MemExpr = dyn_cast(NakedFn)) { NamedDecl *MemDecl = MemExpr->getMemberDecl(); if (isa(MemDecl)) return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs, RParenLoc); } // Determine whether this is a call to a pointer-to-member function. if (BinaryOperator *BO = dyn_cast(NakedFn)) { if (BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI) { if (const FunctionProtoType *FPT = BO->getType()->getAs()) { QualType ResultTy = FPT->getCallResultType(Context); ExprValueKind VK = Expr::getValueKindForType(FPT->getResultType()); // Check that the object type isn't more qualified than the // member function we're calling. Qualifiers FuncQuals = Qualifiers::fromCVRMask(FPT->getTypeQuals()); Qualifiers ObjectQuals = BO->getOpcode() == BO_PtrMemD ? BO->getLHS()->getType().getQualifiers() : BO->getLHS()->getType()->getAs() ->getPointeeType().getQualifiers(); Qualifiers Difference = ObjectQuals - FuncQuals; Difference.removeObjCGCAttr(); Difference.removeAddressSpace(); if (Difference) { std::string QualsString = Difference.getAsString(); Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals) << BO->getType().getUnqualifiedType() << QualsString << (QualsString.find(' ') == std::string::npos? 1 : 2); } CXXMemberCallExpr *TheCall = new (Context) CXXMemberCallExpr(Context, Fn, Args, NumArgs, ResultTy, VK, RParenLoc); if (CheckCallReturnType(FPT->getResultType(), BO->getRHS()->getSourceRange().getBegin(), TheCall, 0)) return ExprError(); if (ConvertArgumentsForCall(TheCall, BO, 0, FPT, Args, NumArgs, RParenLoc)) return ExprError(); return MaybeBindToTemporary(TheCall); } return ExprError(Diag(Fn->getLocStart(), diag::err_typecheck_call_not_function) << Fn->getType() << Fn->getSourceRange()); } } } // If we're directly calling a function, get the appropriate declaration. // Also, in C++, keep track of whether we should perform argument-dependent // lookup and whether there were any explicitly-specified template arguments. Expr *NakedFn = Fn->IgnoreParens(); if (isa(NakedFn)) { UnresolvedLookupExpr *ULE = cast(NakedFn); return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, Args, NumArgs, RParenLoc, ExecConfig); } NamedDecl *NDecl = 0; if (UnaryOperator *UnOp = dyn_cast(NakedFn)) if (UnOp->getOpcode() == UO_AddrOf) NakedFn = UnOp->getSubExpr()->IgnoreParens(); if (isa(NakedFn)) NDecl = cast(NakedFn)->getDecl(); return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc, ExecConfig); } ExprResult Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc, MultiExprArg execConfig, SourceLocation GGGLoc) { FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl(); if (!ConfigDecl) return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use) << "cudaConfigureCall"); QualType ConfigQTy = ConfigDecl->getType(); DeclRefExpr *ConfigDR = new (Context) DeclRefExpr( ConfigDecl, ConfigQTy, VK_LValue, LLLLoc); return ActOnCallExpr(S, ConfigDR, LLLLoc, execConfig, GGGLoc, 0); } /// BuildResolvedCallExpr - Build a call to a resolved expression, /// i.e. an expression not of \p OverloadTy. The expression should /// unary-convert to an expression of function-pointer or /// block-pointer type. /// /// \param NDecl the declaration being called, if available ExprResult Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl, SourceLocation LParenLoc, Expr **Args, unsigned NumArgs, SourceLocation RParenLoc, Expr *Config) { FunctionDecl *FDecl = dyn_cast_or_null(NDecl); // Promote the function operand. UsualUnaryConversions(Fn); // Make the call expr early, before semantic checks. This guarantees cleanup // of arguments and function on error. CallExpr *TheCall; if (Config) { TheCall = new (Context) CUDAKernelCallExpr(Context, Fn, cast(Config), Args, NumArgs, Context.BoolTy, VK_RValue, RParenLoc); } else { TheCall = new (Context) CallExpr(Context, Fn, Args, NumArgs, Context.BoolTy, VK_RValue, RParenLoc); } const FunctionType *FuncT; if (!Fn->getType()->isBlockPointerType()) { // C99 6.5.2.2p1 - "The expression that denotes the called function shall // have type pointer to function". const PointerType *PT = Fn->getType()->getAs(); if (PT == 0) return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function) << Fn->getType() << Fn->getSourceRange()); FuncT = PT->getPointeeType()->getAs(); } else { // This is a block call. FuncT = Fn->getType()->getAs()->getPointeeType()-> getAs(); } if (FuncT == 0) return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function) << Fn->getType() << Fn->getSourceRange()); // Check for a valid return type if (CheckCallReturnType(FuncT->getResultType(), Fn->getSourceRange().getBegin(), TheCall, FDecl)) return ExprError(); // We know the result type of the call, set it. TheCall->setType(FuncT->getCallResultType(Context)); TheCall->setValueKind(Expr::getValueKindForType(FuncT->getResultType())); if (const FunctionProtoType *Proto = dyn_cast(FuncT)) { if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, NumArgs, RParenLoc)) return ExprError(); } else { assert(isa(FuncT) && "Unknown FunctionType!"); if (FDecl) { // Check if we have too few/too many template arguments, based // on our knowledge of the function definition. const FunctionDecl *Def = 0; if (FDecl->hasBody(Def) && NumArgs != Def->param_size()) { const FunctionProtoType *Proto = Def->getType()->getAs(); if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments) << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange(); } // If the function we're calling isn't a function prototype, but we have // a function prototype from a prior declaratiom, use that prototype. if (!FDecl->hasPrototype()) Proto = FDecl->getType()->getAs(); } // Promote the arguments (C99 6.5.2.2p6). for (unsigned i = 0; i != NumArgs; i++) { Expr *Arg = Args[i]; if (Proto && i < Proto->getNumArgs()) { InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, Proto->getArgType(i)); ExprResult ArgE = PerformCopyInitialization(Entity, SourceLocation(), Owned(Arg)); if (ArgE.isInvalid()) return true; Arg = ArgE.takeAs(); } else { DefaultArgumentPromotion(Arg); } if (RequireCompleteType(Arg->getSourceRange().getBegin(), Arg->getType(), PDiag(diag::err_call_incomplete_argument) << Arg->getSourceRange())) return ExprError(); TheCall->setArg(i, Arg); } } if (CXXMethodDecl *Method = dyn_cast_or_null(FDecl)) if (!Method->isStatic()) return ExprError(Diag(LParenLoc, diag::err_member_call_without_object) << Fn->getSourceRange()); // Check for sentinels if (NDecl) DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs); // Do special checking on direct calls to functions. if (FDecl) { if (CheckFunctionCall(FDecl, TheCall)) return ExprError(); if (unsigned BuiltinID = FDecl->getBuiltinID()) return CheckBuiltinFunctionCall(BuiltinID, TheCall); } else if (NDecl) { if (CheckBlockCall(NDecl, TheCall)) return ExprError(); } return MaybeBindToTemporary(TheCall); } ExprResult Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty, SourceLocation RParenLoc, Expr *InitExpr) { assert((Ty != 0) && "ActOnCompoundLiteral(): missing type"); // FIXME: put back this assert when initializers are worked out. //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression"); TypeSourceInfo *TInfo; QualType literalType = GetTypeFromParser(Ty, &TInfo); if (!TInfo) TInfo = Context.getTrivialTypeSourceInfo(literalType); return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr); } ExprResult Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo, SourceLocation RParenLoc, Expr *literalExpr) { QualType literalType = TInfo->getType(); if (literalType->isArrayType()) { if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType), PDiag(diag::err_illegal_decl_array_incomplete_type) << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()))) return ExprError(); if (literalType->isVariableArrayType()) return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init) << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd())); } else if (!literalType->isDependentType() && RequireCompleteType(LParenLoc, literalType, PDiag(diag::err_typecheck_decl_incomplete_type) << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()))) return ExprError(); InitializedEntity Entity = InitializedEntity::InitializeTemporary(literalType); InitializationKind Kind = InitializationKind::CreateCast(SourceRange(LParenLoc, RParenLoc), /*IsCStyleCast=*/true); InitializationSequence InitSeq(*this, Entity, Kind, &literalExpr, 1); ExprResult Result = InitSeq.Perform(*this, Entity, Kind, MultiExprArg(*this, &literalExpr, 1), &literalType); if (Result.isInvalid()) return ExprError(); literalExpr = Result.get(); bool isFileScope = getCurFunctionOrMethodDecl() == 0; if (isFileScope) { // 6.5.2.5p3 if (CheckForConstantInitializer(literalExpr, literalType)) return ExprError(); } // In C, compound literals are l-values for some reason. ExprValueKind VK = getLangOptions().CPlusPlus ? VK_RValue : VK_LValue; return Owned(new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType, VK, literalExpr, isFileScope)); } ExprResult Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist, SourceLocation RBraceLoc) { unsigned NumInit = initlist.size(); Expr **InitList = initlist.release(); // Semantic analysis for initializers is done by ActOnDeclarator() and // CheckInitializer() - it requires knowledge of the object being intialized. InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitList, NumInit, RBraceLoc); E->setType(Context.VoidTy); // FIXME: just a place holder for now. return Owned(E); } /// Prepares for a scalar cast, performing all the necessary stages /// except the final cast and returning the kind required. static CastKind PrepareScalarCast(Sema &S, Expr *&Src, QualType DestTy) { // Both Src and Dest are scalar types, i.e. arithmetic or pointer. // Also, callers should have filtered out the invalid cases with // pointers. Everything else should be possible. QualType SrcTy = Src->getType(); if (S.Context.hasSameUnqualifiedType(SrcTy, DestTy)) return CK_NoOp; switch (SrcTy->getScalarTypeKind()) { case Type::STK_MemberPointer: llvm_unreachable("member pointer type in C"); case Type::STK_Pointer: switch (DestTy->getScalarTypeKind()) { case Type::STK_Pointer: return DestTy->isObjCObjectPointerType() ? CK_AnyPointerToObjCPointerCast : CK_BitCast; case Type::STK_Bool: return CK_PointerToBoolean; case Type::STK_Integral: return CK_PointerToIntegral; case Type::STK_Floating: case Type::STK_FloatingComplex: case Type::STK_IntegralComplex: case Type::STK_MemberPointer: llvm_unreachable("illegal cast from pointer"); } break; case Type::STK_Bool: // casting from bool is like casting from an integer case Type::STK_Integral: switch (DestTy->getScalarTypeKind()) { case Type::STK_Pointer: if (Src->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNull)) return CK_NullToPointer; return CK_IntegralToPointer; case Type::STK_Bool: return CK_IntegralToBoolean; case Type::STK_Integral: return CK_IntegralCast; case Type::STK_Floating: return CK_IntegralToFloating; case Type::STK_IntegralComplex: S.ImpCastExprToType(Src, DestTy->getAs()->getElementType(), CK_IntegralCast); return CK_IntegralRealToComplex; case Type::STK_FloatingComplex: S.ImpCastExprToType(Src, DestTy->getAs()->getElementType(), CK_IntegralToFloating); return CK_FloatingRealToComplex; case Type::STK_MemberPointer: llvm_unreachable("member pointer type in C"); } break; case Type::STK_Floating: switch (DestTy->getScalarTypeKind()) { case Type::STK_Floating: return CK_FloatingCast; case Type::STK_Bool: return CK_FloatingToBoolean; case Type::STK_Integral: return CK_FloatingToIntegral; case Type::STK_FloatingComplex: S.ImpCastExprToType(Src, DestTy->getAs()->getElementType(), CK_FloatingCast); return CK_FloatingRealToComplex; case Type::STK_IntegralComplex: S.ImpCastExprToType(Src, DestTy->getAs()->getElementType(), CK_FloatingToIntegral); return CK_IntegralRealToComplex; case Type::STK_Pointer: llvm_unreachable("valid float->pointer cast?"); case Type::STK_MemberPointer: llvm_unreachable("member pointer type in C"); } break; case Type::STK_FloatingComplex: switch (DestTy->getScalarTypeKind()) { case Type::STK_FloatingComplex: return CK_FloatingComplexCast; case Type::STK_IntegralComplex: return CK_FloatingComplexToIntegralComplex; case Type::STK_Floating: { QualType ET = SrcTy->getAs()->getElementType(); if (S.Context.hasSameType(ET, DestTy)) return CK_FloatingComplexToReal; S.ImpCastExprToType(Src, ET, CK_FloatingComplexToReal); return CK_FloatingCast; } case Type::STK_Bool: return CK_FloatingComplexToBoolean; case Type::STK_Integral: S.ImpCastExprToType(Src, SrcTy->getAs()->getElementType(), CK_FloatingComplexToReal); return CK_FloatingToIntegral; case Type::STK_Pointer: llvm_unreachable("valid complex float->pointer cast?"); case Type::STK_MemberPointer: llvm_unreachable("member pointer type in C"); } break; case Type::STK_IntegralComplex: switch (DestTy->getScalarTypeKind()) { case Type::STK_FloatingComplex: return CK_IntegralComplexToFloatingComplex; case Type::STK_IntegralComplex: return CK_IntegralComplexCast; case Type::STK_Integral: { QualType ET = SrcTy->getAs()->getElementType(); if (S.Context.hasSameType(ET, DestTy)) return CK_IntegralComplexToReal; S.ImpCastExprToType(Src, ET, CK_IntegralComplexToReal); return CK_IntegralCast; } case Type::STK_Bool: return CK_IntegralComplexToBoolean; case Type::STK_Floating: S.ImpCastExprToType(Src, SrcTy->getAs()->getElementType(), CK_IntegralComplexToReal); return CK_IntegralToFloating; case Type::STK_Pointer: llvm_unreachable("valid complex int->pointer cast?"); case Type::STK_MemberPointer: llvm_unreachable("member pointer type in C"); } break; } llvm_unreachable("Unhandled scalar cast"); return CK_BitCast; } /// CheckCastTypes - Check type constraints for casting between types. bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr, CastKind& Kind, ExprValueKind &VK, CXXCastPath &BasePath, bool FunctionalStyle) { if (getLangOptions().CPlusPlus) return CXXCheckCStyleCast(SourceRange(TyR.getBegin(), castExpr->getLocEnd()), castType, VK, castExpr, Kind, BasePath, FunctionalStyle); // We only support r-value casts in C. VK = VK_RValue; // C99 6.5.4p2: the cast type needs to be void or scalar and the expression // type needs to be scalar. if (castType->isVoidType()) { // We don't necessarily do lvalue-to-rvalue conversions on this. IgnoredValueConversions(castExpr); // Cast to void allows any expr type. Kind = CK_ToVoid; return false; } DefaultFunctionArrayLvalueConversion(castExpr); if (RequireCompleteType(TyR.getBegin(), castType, diag::err_typecheck_cast_to_incomplete)) return true; if (!castType->isScalarType() && !castType->isVectorType()) { if (Context.hasSameUnqualifiedType(castType, castExpr->getType()) && (castType->isStructureType() || castType->isUnionType())) { // GCC struct/union extension: allow cast to self. // FIXME: Check that the cast destination type is complete. Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar) << castType << castExpr->getSourceRange(); Kind = CK_NoOp; return false; } if (castType->isUnionType()) { // GCC cast to union extension RecordDecl *RD = castType->getAs()->getDecl(); RecordDecl::field_iterator Field, FieldEnd; for (Field = RD->field_begin(), FieldEnd = RD->field_end(); Field != FieldEnd; ++Field) { if (Context.hasSameUnqualifiedType(Field->getType(), castExpr->getType()) && !Field->isUnnamedBitfield()) { Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union) << castExpr->getSourceRange(); break; } } if (Field == FieldEnd) return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type) << castExpr->getType() << castExpr->getSourceRange(); Kind = CK_ToUnion; return false; } // Reject any other conversions to non-scalar types. return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar) << castType << castExpr->getSourceRange(); } // The type we're casting to is known to be a scalar or vector. // Require the operand to be a scalar or vector. if (!castExpr->getType()->isScalarType() && !castExpr->getType()->isVectorType()) { return Diag(castExpr->getLocStart(), diag::err_typecheck_expect_scalar_operand) << castExpr->getType() << castExpr->getSourceRange(); } if (castType->isExtVectorType()) return CheckExtVectorCast(TyR, castType, castExpr, Kind); if (castType->isVectorType()) return CheckVectorCast(TyR, castType, castExpr->getType(), Kind); if (castExpr->getType()->isVectorType()) return CheckVectorCast(TyR, castExpr->getType(), castType, Kind); // The source and target types are both scalars, i.e. // - arithmetic types (fundamental, enum, and complex) // - all kinds of pointers // Note that member pointers were filtered out with C++, above. if (isa(castExpr)) return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr); // If either type is a pointer, the other type has to be either an // integer or a pointer. if (!castType->isArithmeticType()) { QualType castExprType = castExpr->getType(); if (!castExprType->isIntegralType(Context) && castExprType->isArithmeticType()) return Diag(castExpr->getLocStart(), diag::err_cast_pointer_from_non_pointer_int) << castExprType << castExpr->getSourceRange(); } else if (!castExpr->getType()->isArithmeticType()) { if (!castType->isIntegralType(Context) && castType->isArithmeticType()) return Diag(castExpr->getLocStart(), diag::err_cast_pointer_to_non_pointer_int) << castType << castExpr->getSourceRange(); } Kind = PrepareScalarCast(*this, castExpr, castType); if (Kind == CK_BitCast) CheckCastAlign(castExpr, castType, TyR); return false; } bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty, CastKind &Kind) { assert(VectorTy->isVectorType() && "Not a vector type!"); if (Ty->isVectorType() || Ty->isIntegerType()) { if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty)) return Diag(R.getBegin(), Ty->isVectorType() ? diag::err_invalid_conversion_between_vectors : diag::err_invalid_conversion_between_vector_and_integer) << VectorTy << Ty << R; } else return Diag(R.getBegin(), diag::err_invalid_conversion_between_vector_and_scalar) << VectorTy << Ty << R; Kind = CK_BitCast; return false; } bool Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *&CastExpr, CastKind &Kind) { assert(DestTy->isExtVectorType() && "Not an extended vector type!"); QualType SrcTy = CastExpr->getType(); // If SrcTy is a VectorType, the total size must match to explicitly cast to // an ExtVectorType. if (SrcTy->isVectorType()) { if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy)) return Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors) << DestTy << SrcTy << R; Kind = CK_BitCast; return false; } // All non-pointer scalars can be cast to ExtVector type. The appropriate // conversion will take place first from scalar to elt type, and then // splat from elt type to vector. if (SrcTy->isPointerType()) return Diag(R.getBegin(), diag::err_invalid_conversion_between_vector_and_scalar) << DestTy << SrcTy << R; QualType DestElemTy = DestTy->getAs()->getElementType(); ImpCastExprToType(CastExpr, DestElemTy, PrepareScalarCast(*this, CastExpr, DestElemTy)); Kind = CK_VectorSplat; return false; } ExprResult Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, ParsedType Ty, SourceLocation RParenLoc, Expr *castExpr) { assert((Ty != 0) && (castExpr != 0) && "ActOnCastExpr(): missing type or expr"); TypeSourceInfo *castTInfo; QualType castType = GetTypeFromParser(Ty, &castTInfo); if (!castTInfo) castTInfo = Context.getTrivialTypeSourceInfo(castType); // If the Expr being casted is a ParenListExpr, handle it specially. if (isa(castExpr)) return ActOnCastOfParenListExpr(S, LParenLoc, RParenLoc, castExpr, castTInfo); return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, castExpr); } ExprResult Sema::BuildCStyleCastExpr(SourceLocation LParenLoc, TypeSourceInfo *Ty, SourceLocation RParenLoc, Expr *castExpr) { CastKind Kind = CK_Invalid; ExprValueKind VK = VK_RValue; CXXCastPath BasePath; if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), Ty->getType(), castExpr, Kind, VK, BasePath)) return ExprError(); return Owned(CStyleCastExpr::Create(Context, Ty->getType().getNonLValueExprType(Context), VK, Kind, castExpr, &BasePath, Ty, LParenLoc, RParenLoc)); } /// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence /// of comma binary operators. ExprResult Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *expr) { ParenListExpr *E = dyn_cast(expr); if (!E) return Owned(expr); ExprResult Result(E->getExpr(0)); for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i) Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(), E->getExpr(i)); if (Result.isInvalid()) return ExprError(); return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get()); } ExprResult Sema::ActOnCastOfParenListExpr(Scope *S, SourceLocation LParenLoc, SourceLocation RParenLoc, Expr *Op, TypeSourceInfo *TInfo) { ParenListExpr *PE = cast(Op); QualType Ty = TInfo->getType(); bool isAltiVecLiteral = false; // Check for an altivec literal, // i.e. all the elements are integer constants. if (getLangOptions().AltiVec && Ty->isVectorType()) { if (PE->getNumExprs() == 0) { Diag(PE->getExprLoc(), diag::err_altivec_empty_initializer); return ExprError(); } if (PE->getNumExprs() == 1) { if (!PE->getExpr(0)->getType()->isVectorType()) isAltiVecLiteral = true; } else isAltiVecLiteral = true; } // If this is an altivec initializer, '(' type ')' '(' init, ..., init ')' // then handle it as such. if (isAltiVecLiteral) { llvm::SmallVector initExprs; for (unsigned i = 0, e = PE->getNumExprs(); i != e; ++i) initExprs.push_back(PE->getExpr(i)); // FIXME: This means that pretty-printing the final AST will produce curly // braces instead of the original commas. InitListExpr *E = new (Context) InitListExpr(Context, LParenLoc, &initExprs[0], initExprs.size(), RParenLoc); E->setType(Ty); return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, E); } else { // This is not an AltiVec-style cast, so turn the ParenListExpr into a // sequence of BinOp comma operators. ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Op); if (Result.isInvalid()) return ExprError(); return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Result.take()); } } ExprResult Sema::ActOnParenOrParenListExpr(SourceLocation L, SourceLocation R, MultiExprArg Val, ParsedType TypeOfCast) { unsigned nexprs = Val.size(); Expr **exprs = reinterpret_cast(Val.release()); assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list"); Expr *expr; if (nexprs == 1 && TypeOfCast && !TypeIsVectorType(TypeOfCast)) expr = new (Context) ParenExpr(L, R, exprs[0]); else expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R); return Owned(expr); } /// \brief Emit a specialized diagnostic when one expression is a null pointer /// constant and the other is not a pointer. bool Sema::DiagnoseConditionalForNull(Expr *LHS, Expr *RHS, SourceLocation QuestionLoc) { Expr *NullExpr = LHS; Expr *NonPointerExpr = RHS; Expr::NullPointerConstantKind NullKind = NullExpr->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull); if (NullKind == Expr::NPCK_NotNull) { NullExpr = RHS; NonPointerExpr = LHS; NullKind = NullExpr->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull); } if (NullKind == Expr::NPCK_NotNull) return false; if (NullKind == Expr::NPCK_ZeroInteger) { // In this case, check to make sure that we got here from a "NULL" // string in the source code. NullExpr = NullExpr->IgnoreParenImpCasts(); SourceManager& SM = Context.getSourceManager(); SourceLocation Loc = SM.getInstantiationLoc(NullExpr->getExprLoc()); unsigned Len = Lexer::MeasureTokenLength(Loc, SM, Context.getLangOptions()); if (Len != 4 || memcmp(SM.getCharacterData(Loc), "NULL", 4)) return false; } int DiagType = (NullKind == Expr::NPCK_CXX0X_nullptr); Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null) << NonPointerExpr->getType() << DiagType << NonPointerExpr->getSourceRange(); return true; } /// Note that lhs is not null here, even if this is the gnu "x ?: y" extension. /// In that case, lhs = cond. /// C99 6.5.15 QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS, ExprValueKind &VK, ExprObjectKind &OK, SourceLocation QuestionLoc) { // If both LHS and RHS are overloaded functions, try to resolve them. if (Context.hasSameType(LHS->getType(), RHS->getType()) && LHS->getType()->isSpecificBuiltinType(BuiltinType::Overload)) { ExprResult LHSResult = CheckPlaceholderExpr(LHS, QuestionLoc); if (LHSResult.isInvalid()) return QualType(); ExprResult RHSResult = CheckPlaceholderExpr(RHS, QuestionLoc); if (RHSResult.isInvalid()) return QualType(); LHS = LHSResult.take(); RHS = RHSResult.take(); } // C++ is sufficiently different to merit its own checker. if (getLangOptions().CPlusPlus) return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc); VK = VK_RValue; OK = OK_Ordinary; UsualUnaryConversions(Cond); UsualUnaryConversions(LHS); UsualUnaryConversions(RHS); QualType CondTy = Cond->getType(); QualType LHSTy = LHS->getType(); QualType RHSTy = RHS->getType(); // first, check the condition. if (!CondTy->isScalarType()) { // C99 6.5.15p2 // OpenCL: Sec 6.3.i says the condition is allowed to be a vector or scalar. // Throw an error if its not either. if (getLangOptions().OpenCL) { if (!CondTy->isVectorType()) { Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar_or_vector) << CondTy; return QualType(); } } else { Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar) << CondTy; return QualType(); } } // Now check the two expressions. if (LHSTy->isVectorType() || RHSTy->isVectorType()) return CheckVectorOperands(QuestionLoc, LHS, RHS); // OpenCL: If the condition is a vector, and both operands are scalar, // attempt to implicity convert them to the vector type to act like the // built in select. if (getLangOptions().OpenCL && CondTy->isVectorType()) { // Both operands should be of scalar type. if (!LHSTy->isScalarType()) { Diag(LHS->getLocStart(), diag::err_typecheck_cond_expect_scalar) << CondTy; return QualType(); } if (!RHSTy->isScalarType()) { Diag(RHS->getLocStart(), diag::err_typecheck_cond_expect_scalar) << CondTy; return QualType(); } // Implicity convert these scalars to the type of the condition. ImpCastExprToType(LHS, CondTy, CK_IntegralCast); ImpCastExprToType(RHS, CondTy, CK_IntegralCast); } // If both operands have arithmetic type, do the usual arithmetic conversions // to find a common type: C99 6.5.15p3,5. if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) { UsualArithmeticConversions(LHS, RHS); return LHS->getType(); } // If both operands are the same structure or union type, the result is that // type. if (const RecordType *LHSRT = LHSTy->getAs()) { // C99 6.5.15p3 if (const RecordType *RHSRT = RHSTy->getAs()) if (LHSRT->getDecl() == RHSRT->getDecl()) // "If both the operands have structure or union type, the result has // that type." This implies that CV qualifiers are dropped. return LHSTy.getUnqualifiedType(); // FIXME: Type of conditional expression must be complete in C mode. } // C99 6.5.15p5: "If both operands have void type, the result has void type." // The following || allows only one side to be void (a GCC-ism). if (LHSTy->isVoidType() || RHSTy->isVoidType()) { if (!LHSTy->isVoidType()) Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void) << RHS->getSourceRange(); if (!RHSTy->isVoidType()) Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void) << LHS->getSourceRange(); ImpCastExprToType(LHS, Context.VoidTy, CK_ToVoid); ImpCastExprToType(RHS, Context.VoidTy, CK_ToVoid); return Context.VoidTy; } // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has // the type of the other operand." if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) && RHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { // promote the null to a pointer. ImpCastExprToType(RHS, LHSTy, CK_NullToPointer); return LHSTy; } if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) && LHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { ImpCastExprToType(LHS, RHSTy, CK_NullToPointer); return RHSTy; } // All objective-c pointer type analysis is done here. QualType compositeType = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc); if (!compositeType.isNull()) return compositeType; // Handle block pointer types. if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) { if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) { if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) { QualType destType = Context.getPointerType(Context.VoidTy); ImpCastExprToType(LHS, destType, CK_BitCast); ImpCastExprToType(RHS, destType, CK_BitCast); return destType; } Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange(); return QualType(); } // We have 2 block pointer types. if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) { // Two identical block pointer types are always compatible. return LHSTy; } // The block pointer types aren't identical, continue checking. QualType lhptee = LHSTy->getAs()->getPointeeType(); QualType rhptee = RHSTy->getAs()->getPointeeType(); if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(), rhptee.getUnqualifiedType())) { Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers) << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange(); // In this situation, we assume void* type. No especially good // reason, but this is what gcc does, and we do have to pick // to get a consistent AST. QualType incompatTy = Context.getPointerType(Context.VoidTy); ImpCastExprToType(LHS, incompatTy, CK_BitCast); ImpCastExprToType(RHS, incompatTy, CK_BitCast); return incompatTy; } // The block pointer types are compatible. ImpCastExprToType(LHS, LHSTy, CK_BitCast); ImpCastExprToType(RHS, LHSTy, CK_BitCast); return LHSTy; } // Check constraints for C object pointers types (C99 6.5.15p3,6). if (LHSTy->isPointerType() && RHSTy->isPointerType()) { // get the "pointed to" types QualType lhptee = LHSTy->getAs()->getPointeeType(); QualType rhptee = RHSTy->getAs()->getPointeeType(); // ignore qualifiers on void (C99 6.5.15p3, clause 6) if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) { // Figure out necessary qualifiers (C99 6.5.15p6) QualType destPointee = Context.getQualifiedType(lhptee, rhptee.getQualifiers()); QualType destType = Context.getPointerType(destPointee); // Add qualifiers if necessary. ImpCastExprToType(LHS, destType, CK_NoOp); // Promote to void*. ImpCastExprToType(RHS, destType, CK_BitCast); return destType; } if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) { QualType destPointee = Context.getQualifiedType(rhptee, lhptee.getQualifiers()); QualType destType = Context.getPointerType(destPointee); // Add qualifiers if necessary. ImpCastExprToType(RHS, destType, CK_NoOp); // Promote to void*. ImpCastExprToType(LHS, destType, CK_BitCast); return destType; } if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) { // Two identical pointer types are always compatible. return LHSTy; } if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(), rhptee.getUnqualifiedType())) { Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers) << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange(); // In this situation, we assume void* type. No especially good // reason, but this is what gcc does, and we do have to pick // to get a consistent AST. QualType incompatTy = Context.getPointerType(Context.VoidTy); ImpCastExprToType(LHS, incompatTy, CK_BitCast); ImpCastExprToType(RHS, incompatTy, CK_BitCast); return incompatTy; } // The pointer types are compatible. // C99 6.5.15p6: If both operands are pointers to compatible types *or* to // differently qualified versions of compatible types, the result type is // a pointer to an appropriately qualified version of the *composite* // type. // FIXME: Need to calculate the composite type. // FIXME: Need to add qualifiers ImpCastExprToType(LHS, LHSTy, CK_BitCast); ImpCastExprToType(RHS, LHSTy, CK_BitCast); return LHSTy; } // GCC compatibility: soften pointer/integer mismatch. Note that // null pointers have been filtered out by this point. if (RHSTy->isPointerType() && LHSTy->isIntegerType()) { Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch) << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange(); ImpCastExprToType(LHS, RHSTy, CK_IntegralToPointer); return RHSTy; } if (LHSTy->isPointerType() && RHSTy->isIntegerType()) { Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch) << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange(); ImpCastExprToType(RHS, LHSTy, CK_IntegralToPointer); return LHSTy; } // Emit a better diagnostic if one of the expressions is a null pointer // constant and the other is not a pointer type. In this case, the user most // likely forgot to take the address of the other expression. if (DiagnoseConditionalForNull(LHS, RHS, QuestionLoc)) return QualType(); // Otherwise, the operands are not compatible. Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange(); return QualType(); } /// FindCompositeObjCPointerType - Helper method to find composite type of /// two objective-c pointer types of the two input expressions. QualType Sema::FindCompositeObjCPointerType(Expr *&LHS, Expr *&RHS, SourceLocation QuestionLoc) { QualType LHSTy = LHS->getType(); QualType RHSTy = RHS->getType(); // Handle things like Class and struct objc_class*. Here we case the result // to the pseudo-builtin, because that will be implicitly cast back to the // redefinition type if an attempt is made to access its fields. if (LHSTy->isObjCClassType() && (Context.hasSameType(RHSTy, Context.ObjCClassRedefinitionType))) { ImpCastExprToType(RHS, LHSTy, CK_BitCast); return LHSTy; } if (RHSTy->isObjCClassType() && (Context.hasSameType(LHSTy, Context.ObjCClassRedefinitionType))) { ImpCastExprToType(LHS, RHSTy, CK_BitCast); return RHSTy; } // And the same for struct objc_object* / id if (LHSTy->isObjCIdType() && (Context.hasSameType(RHSTy, Context.ObjCIdRedefinitionType))) { ImpCastExprToType(RHS, LHSTy, CK_BitCast); return LHSTy; } if (RHSTy->isObjCIdType() && (Context.hasSameType(LHSTy, Context.ObjCIdRedefinitionType))) { ImpCastExprToType(LHS, RHSTy, CK_BitCast); return RHSTy; } // And the same for struct objc_selector* / SEL if (Context.isObjCSelType(LHSTy) && (Context.hasSameType(RHSTy, Context.ObjCSelRedefinitionType))) { ImpCastExprToType(RHS, LHSTy, CK_BitCast); return LHSTy; } if (Context.isObjCSelType(RHSTy) && (Context.hasSameType(LHSTy, Context.ObjCSelRedefinitionType))) { ImpCastExprToType(LHS, RHSTy, CK_BitCast); return RHSTy; } // Check constraints for Objective-C object pointers types. if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) { if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) { // Two identical object pointer types are always compatible. return LHSTy; } const ObjCObjectPointerType *LHSOPT = LHSTy->getAs(); const ObjCObjectPointerType *RHSOPT = RHSTy->getAs(); QualType compositeType = LHSTy; // If both operands are interfaces and either operand can be // assigned to the other, use that type as the composite // type. This allows // xxx ? (A*) a : (B*) b // where B is a subclass of A. // // Additionally, as for assignment, if either type is 'id' // allow silent coercion. Finally, if the types are // incompatible then make sure to use 'id' as the composite // type so the result is acceptable for sending messages to. // FIXME: Consider unifying with 'areComparableObjCPointerTypes'. // It could return the composite type. if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) { compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy; } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) { compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy; } else if ((LHSTy->isObjCQualifiedIdType() || RHSTy->isObjCQualifiedIdType()) && Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) { // Need to handle "id" explicitly. // GCC allows qualified id and any Objective-C type to devolve to // id. Currently localizing to here until clear this should be // part of ObjCQualifiedIdTypesAreCompatible. compositeType = Context.getObjCIdType(); } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) { compositeType = Context.getObjCIdType(); } else if (!(compositeType = Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) ; else { Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands) << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange(); QualType incompatTy = Context.getObjCIdType(); ImpCastExprToType(LHS, incompatTy, CK_BitCast); ImpCastExprToType(RHS, incompatTy, CK_BitCast); return incompatTy; } // The object pointer types are compatible. ImpCastExprToType(LHS, compositeType, CK_BitCast); ImpCastExprToType(RHS, compositeType, CK_BitCast); return compositeType; } // Check Objective-C object pointer types and 'void *' if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) { QualType lhptee = LHSTy->getAs()->getPointeeType(); QualType rhptee = RHSTy->getAs()->getPointeeType(); QualType destPointee = Context.getQualifiedType(lhptee, rhptee.getQualifiers()); QualType destType = Context.getPointerType(destPointee); // Add qualifiers if necessary. ImpCastExprToType(LHS, destType, CK_NoOp); // Promote to void*. ImpCastExprToType(RHS, destType, CK_BitCast); return destType; } if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) { QualType lhptee = LHSTy->getAs()->getPointeeType(); QualType rhptee = RHSTy->getAs()->getPointeeType(); QualType destPointee = Context.getQualifiedType(rhptee, lhptee.getQualifiers()); QualType destType = Context.getPointerType(destPointee); // Add qualifiers if necessary. ImpCastExprToType(RHS, destType, CK_NoOp); // Promote to void*. ImpCastExprToType(LHS, destType, CK_BitCast); return destType; } return QualType(); } /// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null /// in the case of a the GNU conditional expr extension. ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc, SourceLocation ColonLoc, Expr *CondExpr, Expr *LHSExpr, Expr *RHSExpr) { // If this is the gnu "x ?: y" extension, analyze the types as though the LHS // was the condition. OpaqueValueExpr *opaqueValue = 0; Expr *commonExpr = 0; if (LHSExpr == 0) { commonExpr = CondExpr; // We usually want to apply unary conversions *before* saving, except // in the special case of a C++ l-value conditional. if (!(getLangOptions().CPlusPlus && !commonExpr->isTypeDependent() && commonExpr->getValueKind() == RHSExpr->getValueKind() && commonExpr->isGLValue() && commonExpr->isOrdinaryOrBitFieldObject() && RHSExpr->isOrdinaryOrBitFieldObject() && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) { UsualUnaryConversions(commonExpr); } opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(), commonExpr->getType(), commonExpr->getValueKind(), commonExpr->getObjectKind()); LHSExpr = CondExpr = opaqueValue; } ExprValueKind VK = VK_RValue; ExprObjectKind OK = OK_Ordinary; QualType result = CheckConditionalOperands(CondExpr, LHSExpr, RHSExpr, VK, OK, QuestionLoc); if (result.isNull()) return ExprError(); if (!commonExpr) return Owned(new (Context) ConditionalOperator(CondExpr, QuestionLoc, LHSExpr, ColonLoc, RHSExpr, result, VK, OK)); return Owned(new (Context) BinaryConditionalOperator(commonExpr, opaqueValue, CondExpr, LHSExpr, RHSExpr, QuestionLoc, ColonLoc, result, VK, OK)); } // checkPointerTypesForAssignment - This is a very tricky routine (despite // being closely modeled after the C99 spec:-). The odd characteristic of this // routine is it effectively iqnores the qualifiers on the top level pointee. // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3]. // FIXME: add a couple examples in this comment. static Sema::AssignConvertType checkPointerTypesForAssignment(Sema &S, QualType lhsType, QualType rhsType) { assert(lhsType.isCanonical() && "LHS not canonicalized!"); assert(rhsType.isCanonical() && "RHS not canonicalized!"); // get the "pointed to" type (ignoring qualifiers at the top level) const Type *lhptee, *rhptee; Qualifiers lhq, rhq; llvm::tie(lhptee, lhq) = cast(lhsType)->getPointeeType().split(); llvm::tie(rhptee, rhq) = cast(rhsType)->getPointeeType().split(); Sema::AssignConvertType ConvTy = Sema::Compatible; // C99 6.5.16.1p1: This following citation is common to constraints // 3 & 4 (below). ...and the type *pointed to* by the left has all the // qualifiers of the type *pointed to* by the right; Qualifiers lq; if (!lhq.compatiblyIncludes(rhq)) { // Treat address-space mismatches as fatal. TODO: address subspaces if (lhq.getAddressSpace() != rhq.getAddressSpace()) ConvTy = Sema::IncompatiblePointerDiscardsQualifiers; // For GCC compatibility, other qualifier mismatches are treated // as still compatible in C. else ConvTy = Sema::CompatiblePointerDiscardsQualifiers; } // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or // incomplete type and the other is a pointer to a qualified or unqualified // version of void... if (lhptee->isVoidType()) { if (rhptee->isIncompleteOrObjectType()) return ConvTy; // As an extension, we allow cast to/from void* to function pointer. assert(rhptee->isFunctionType()); return Sema::FunctionVoidPointer; } if (rhptee->isVoidType()) { if (lhptee->isIncompleteOrObjectType()) return ConvTy; // As an extension, we allow cast to/from void* to function pointer. assert(lhptee->isFunctionType()); return Sema::FunctionVoidPointer; } // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or // unqualified versions of compatible types, ... QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0); if (!S.Context.typesAreCompatible(ltrans, rtrans)) { // Check if the pointee types are compatible ignoring the sign. // We explicitly check for char so that we catch "char" vs // "unsigned char" on systems where "char" is unsigned. if (lhptee->isCharType()) ltrans = S.Context.UnsignedCharTy; else if (lhptee->hasSignedIntegerRepresentation()) ltrans = S.Context.getCorrespondingUnsignedType(ltrans); if (rhptee->isCharType()) rtrans = S.Context.UnsignedCharTy; else if (rhptee->hasSignedIntegerRepresentation()) rtrans = S.Context.getCorrespondingUnsignedType(rtrans); if (ltrans == rtrans) { // Types are compatible ignoring the sign. Qualifier incompatibility // takes priority over sign incompatibility because the sign // warning can be disabled. if (ConvTy != Sema::Compatible) return ConvTy; return Sema::IncompatiblePointerSign; } // If we are a multi-level pointer, it's possible that our issue is simply // one of qualification - e.g. char ** -> const char ** is not allowed. If // the eventual target type is the same and the pointers have the same // level of indirection, this must be the issue. if (isa(lhptee) && isa(rhptee)) { do { lhptee = cast(lhptee)->getPointeeType().getTypePtr(); rhptee = cast(rhptee)->getPointeeType().getTypePtr(); } while (isa(lhptee) && isa(rhptee)); if (lhptee == rhptee) return Sema::IncompatibleNestedPointerQualifiers; } // General pointer incompatibility takes priority over qualifiers. return Sema::IncompatiblePointer; } return ConvTy; } /// checkBlockPointerTypesForAssignment - This routine determines whether two /// block pointer types are compatible or whether a block and normal pointer /// are compatible. It is more restrict than comparing two function pointer // types. static Sema::AssignConvertType checkBlockPointerTypesForAssignment(Sema &S, QualType lhsType, QualType rhsType) { assert(lhsType.isCanonical() && "LHS not canonicalized!"); assert(rhsType.isCanonical() && "RHS not canonicalized!"); QualType lhptee, rhptee; // get the "pointed to" type (ignoring qualifiers at the top level) lhptee = cast(lhsType)->getPointeeType(); rhptee = cast(rhsType)->getPointeeType(); // In C++, the types have to match exactly. if (S.getLangOptions().CPlusPlus) return Sema::IncompatibleBlockPointer; Sema::AssignConvertType ConvTy = Sema::Compatible; // For blocks we enforce that qualifiers are identical. if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers()) ConvTy = Sema::CompatiblePointerDiscardsQualifiers; if (!S.Context.typesAreBlockPointerCompatible(lhsType, rhsType)) return Sema::IncompatibleBlockPointer; return ConvTy; } /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types /// for assignment compatibility. static Sema::AssignConvertType checkObjCPointerTypesForAssignment(Sema &S, QualType lhsType, QualType rhsType) { assert(lhsType.isCanonical() && "LHS was not canonicalized!"); assert(rhsType.isCanonical() && "RHS was not canonicalized!"); if (lhsType->isObjCBuiltinType()) { // Class is not compatible with ObjC object pointers. if (lhsType->isObjCClassType() && !rhsType->isObjCBuiltinType() && !rhsType->isObjCQualifiedClassType()) return Sema::IncompatiblePointer; return Sema::Compatible; } if (rhsType->isObjCBuiltinType()) { // Class is not compatible with ObjC object pointers. if (rhsType->isObjCClassType() && !lhsType->isObjCBuiltinType() && !lhsType->isObjCQualifiedClassType()) return Sema::IncompatiblePointer; return Sema::Compatible; } QualType lhptee = lhsType->getAs()->getPointeeType(); QualType rhptee = rhsType->getAs()->getPointeeType(); if (!lhptee.isAtLeastAsQualifiedAs(rhptee)) return Sema::CompatiblePointerDiscardsQualifiers; if (S.Context.typesAreCompatible(lhsType, rhsType)) return Sema::Compatible; if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) return Sema::IncompatibleObjCQualifiedId; return Sema::IncompatiblePointer; } Sema::AssignConvertType Sema::CheckAssignmentConstraints(SourceLocation Loc, QualType lhsType, QualType rhsType) { // Fake up an opaque expression. We don't actually care about what // cast operations are required, so if CheckAssignmentConstraints // adds casts to this they'll be wasted, but fortunately that doesn't // usually happen on valid code. OpaqueValueExpr rhs(Loc, rhsType, VK_RValue); Expr *rhsPtr = &rhs; CastKind K = CK_Invalid; return CheckAssignmentConstraints(lhsType, rhsPtr, K); } /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently /// has code to accommodate several GCC extensions when type checking /// pointers. Here are some objectionable examples that GCC considers warnings: /// /// int a, *pint; /// short *pshort; /// struct foo *pfoo; /// /// pint = pshort; // warning: assignment from incompatible pointer type /// a = pint; // warning: assignment makes integer from pointer without a cast /// pint = a; // warning: assignment makes pointer from integer without a cast /// pint = pfoo; // warning: assignment from incompatible pointer type /// /// As a result, the code for dealing with pointers is more complex than the /// C99 spec dictates. /// /// Sets 'Kind' for any result kind except Incompatible. Sema::AssignConvertType Sema::CheckAssignmentConstraints(QualType lhsType, Expr *&rhs, CastKind &Kind) { QualType rhsType = rhs->getType(); // Get canonical types. We're not formatting these types, just comparing // them. lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType(); rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType(); // Common case: no conversion required. if (lhsType == rhsType) { Kind = CK_NoOp; return Compatible; } // If the left-hand side is a reference type, then we are in a // (rare!) case where we've allowed the use of references in C, // e.g., as a parameter type in a built-in function. In this case, // just make sure that the type referenced is compatible with the // right-hand side type. The caller is responsible for adjusting // lhsType so that the resulting expression does not have reference // type. if (const ReferenceType *lhsTypeRef = lhsType->getAs()) { if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType)) { Kind = CK_LValueBitCast; return Compatible; } return Incompatible; } // Allow scalar to ExtVector assignments, and assignments of an ExtVector type // to the same ExtVector type. if (lhsType->isExtVectorType()) { if (rhsType->isExtVectorType()) return Incompatible; if (rhsType->isArithmeticType()) { // CK_VectorSplat does T -> vector T, so first cast to the // element type. QualType elType = cast(lhsType)->getElementType(); if (elType != rhsType) { Kind = PrepareScalarCast(*this, rhs, elType); ImpCastExprToType(rhs, elType, Kind); } Kind = CK_VectorSplat; return Compatible; } } // Conversions to or from vector type. if (lhsType->isVectorType() || rhsType->isVectorType()) { if (lhsType->isVectorType() && rhsType->isVectorType()) { // Allow assignments of an AltiVec vector type to an equivalent GCC // vector type and vice versa if (Context.areCompatibleVectorTypes(lhsType, rhsType)) { Kind = CK_BitCast; return Compatible; } // If we are allowing lax vector conversions, and LHS and RHS are both // vectors, the total size only needs to be the same. This is a bitcast; // no bits are changed but the result type is different. if (getLangOptions().LaxVectorConversions && (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))) { Kind = CK_BitCast; return IncompatibleVectors; } } return Incompatible; } // Arithmetic conversions. if (lhsType->isArithmeticType() && rhsType->isArithmeticType() && !(getLangOptions().CPlusPlus && lhsType->isEnumeralType())) { Kind = PrepareScalarCast(*this, rhs, lhsType); return Compatible; } // Conversions to normal pointers. if (const PointerType *lhsPointer = dyn_cast(lhsType)) { // U* -> T* if (isa(rhsType)) { Kind = CK_BitCast; return checkPointerTypesForAssignment(*this, lhsType, rhsType); } // int -> T* if (rhsType->isIntegerType()) { Kind = CK_IntegralToPointer; // FIXME: null? return IntToPointer; } // C pointers are not compatible with ObjC object pointers, // with two exceptions: if (isa(rhsType)) { // - conversions to void* if (lhsPointer->getPointeeType()->isVoidType()) { Kind = CK_AnyPointerToObjCPointerCast; return Compatible; } // - conversions from 'Class' to the redefinition type if (rhsType->isObjCClassType() && Context.hasSameType(lhsType, Context.ObjCClassRedefinitionType)) { Kind = CK_BitCast; return Compatible; } Kind = CK_BitCast; return IncompatiblePointer; } // U^ -> void* if (rhsType->getAs()) { if (lhsPointer->getPointeeType()->isVoidType()) { Kind = CK_BitCast; return Compatible; } } return Incompatible; } // Conversions to block pointers. if (isa(lhsType)) { // U^ -> T^ if (rhsType->isBlockPointerType()) { Kind = CK_AnyPointerToBlockPointerCast; return checkBlockPointerTypesForAssignment(*this, lhsType, rhsType); } // int or null -> T^ if (rhsType->isIntegerType()) { Kind = CK_IntegralToPointer; // FIXME: null return IntToBlockPointer; } // id -> T^ if (getLangOptions().ObjC1 && rhsType->isObjCIdType()) { Kind = CK_AnyPointerToBlockPointerCast; return Compatible; } // void* -> T^ if (const PointerType *RHSPT = rhsType->getAs()) if (RHSPT->getPointeeType()->isVoidType()) { Kind = CK_AnyPointerToBlockPointerCast; return Compatible; } return Incompatible; } // Conversions to Objective-C pointers. if (isa(lhsType)) { // A* -> B* if (rhsType->isObjCObjectPointerType()) { Kind = CK_BitCast; return checkObjCPointerTypesForAssignment(*this, lhsType, rhsType); } // int or null -> A* if (rhsType->isIntegerType()) { Kind = CK_IntegralToPointer; // FIXME: null return IntToPointer; } // In general, C pointers are not compatible with ObjC object pointers, // with two exceptions: if (isa(rhsType)) { // - conversions from 'void*' if (rhsType->isVoidPointerType()) { Kind = CK_AnyPointerToObjCPointerCast; return Compatible; } // - conversions to 'Class' from its redefinition type if (lhsType->isObjCClassType() && Context.hasSameType(rhsType, Context.ObjCClassRedefinitionType)) { Kind = CK_BitCast; return Compatible; } Kind = CK_AnyPointerToObjCPointerCast; return IncompatiblePointer; } // T^ -> A* if (rhsType->isBlockPointerType()) { Kind = CK_AnyPointerToObjCPointerCast; return Compatible; } return Incompatible; } // Conversions from pointers that are not covered by the above. if (isa(rhsType)) { // T* -> _Bool if (lhsType == Context.BoolTy) { Kind = CK_PointerToBoolean; return Compatible; } // T* -> int if (lhsType->isIntegerType()) { Kind = CK_PointerToIntegral; return PointerToInt; } return Incompatible; } // Conversions from Objective-C pointers that are not covered by the above. if (isa(rhsType)) { // T* -> _Bool if (lhsType == Context.BoolTy) { Kind = CK_PointerToBoolean; return Compatible; } // T* -> int if (lhsType->isIntegerType()) { Kind = CK_PointerToIntegral; return PointerToInt; } return Incompatible; } // struct A -> struct B if (isa(lhsType) && isa(rhsType)) { if (Context.typesAreCompatible(lhsType, rhsType)) { Kind = CK_NoOp; return Compatible; } } return Incompatible; } /// \brief Constructs a transparent union from an expression that is /// used to initialize the transparent union. static void ConstructTransparentUnion(ASTContext &C, Expr *&E, QualType UnionType, FieldDecl *Field) { // Build an initializer list that designates the appropriate member // of the transparent union. InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(), &E, 1, SourceLocation()); Initializer->setType(UnionType); Initializer->setInitializedFieldInUnion(Field); // Build a compound literal constructing a value of the transparent // union type from this initializer list. TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType); E = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType, VK_RValue, Initializer, false); } Sema::AssignConvertType Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) { QualType FromType = rExpr->getType(); // If the ArgType is a Union type, we want to handle a potential // transparent_union GCC extension. const RecordType *UT = ArgType->getAsUnionType(); if (!UT || !UT->getDecl()->hasAttr()) return Incompatible; // The field to initialize within the transparent union. RecordDecl *UD = UT->getDecl(); FieldDecl *InitField = 0; // It's compatible if the expression matches any of the fields. for (RecordDecl::field_iterator it = UD->field_begin(), itend = UD->field_end(); it != itend; ++it) { if (it->getType()->isPointerType()) { // If the transparent union contains a pointer type, we allow: // 1) void pointer // 2) null pointer constant if (FromType->isPointerType()) if (FromType->getAs()->getPointeeType()->isVoidType()) { ImpCastExprToType(rExpr, it->getType(), CK_BitCast); InitField = *it; break; } if (rExpr->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { ImpCastExprToType(rExpr, it->getType(), CK_NullToPointer); InitField = *it; break; } } Expr *rhs = rExpr; CastKind Kind = CK_Invalid; if (CheckAssignmentConstraints(it->getType(), rhs, Kind) == Compatible) { ImpCastExprToType(rhs, it->getType(), Kind); rExpr = rhs; InitField = *it; break; } } if (!InitField) return Incompatible; ConstructTransparentUnion(Context, rExpr, ArgType, InitField); return Compatible; } Sema::AssignConvertType Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) { if (getLangOptions().CPlusPlus) { if (!lhsType->isRecordType()) { // C++ 5.17p3: If the left operand is not of class type, the // expression is implicitly converted (C++ 4) to the // cv-unqualified type of the left operand. if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(), AA_Assigning)) return Incompatible; return Compatible; } // FIXME: Currently, we fall through and treat C++ classes like C // structures. } // C99 6.5.16.1p1: the left operand is a pointer and the right is // a null pointer constant. if ((lhsType->isPointerType() || lhsType->isObjCObjectPointerType() || lhsType->isBlockPointerType()) && rExpr->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { ImpCastExprToType(rExpr, lhsType, CK_NullToPointer); return Compatible; } // This check seems unnatural, however it is necessary to ensure the proper // conversion of functions/arrays. If the conversion were done for all // DeclExpr's (created by ActOnIdExpression), it would mess up the unary // expressions that suppress this implicit conversion (&, sizeof). // // Suppress this for references: C++ 8.5.3p5. if (!lhsType->isReferenceType()) DefaultFunctionArrayLvalueConversion(rExpr); CastKind Kind = CK_Invalid; Sema::AssignConvertType result = CheckAssignmentConstraints(lhsType, rExpr, Kind); // C99 6.5.16.1p2: The value of the right operand is converted to the // type of the assignment expression. // CheckAssignmentConstraints allows the left-hand side to be a reference, // so that we can use references in built-in functions even in C. // The getNonReferenceType() call makes sure that the resulting expression // does not have reference type. if (result != Incompatible && rExpr->getType() != lhsType) ImpCastExprToType(rExpr, lhsType.getNonLValueExprType(Context), Kind); return result; } QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) { Diag(Loc, diag::err_typecheck_invalid_operands) << lex->getType() << rex->getType() << lex->getSourceRange() << rex->getSourceRange(); return QualType(); } QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) { // For conversion purposes, we ignore any qualifiers. // For example, "const float" and "float" are equivalent. QualType lhsType = Context.getCanonicalType(lex->getType()).getUnqualifiedType(); QualType rhsType = Context.getCanonicalType(rex->getType()).getUnqualifiedType(); // If the vector types are identical, return. if (lhsType == rhsType) return lhsType; // Handle the case of a vector & extvector type of the same size and element // type. It would be nice if we only had one vector type someday. if (getLangOptions().LaxVectorConversions) { if (const VectorType *LV = lhsType->getAs()) { if (const VectorType *RV = rhsType->getAs()) { if (LV->getElementType() == RV->getElementType() && LV->getNumElements() == RV->getNumElements()) { if (lhsType->isExtVectorType()) { ImpCastExprToType(rex, lhsType, CK_BitCast); return lhsType; } ImpCastExprToType(lex, rhsType, CK_BitCast); return rhsType; } else if (Context.getTypeSize(lhsType) ==Context.getTypeSize(rhsType)){ // If we are allowing lax vector conversions, and LHS and RHS are both // vectors, the total size only needs to be the same. This is a // bitcast; no bits are changed but the result type is different. ImpCastExprToType(rex, lhsType, CK_BitCast); return lhsType; } } } } // Handle the case of equivalent AltiVec and GCC vector types if (lhsType->isVectorType() && rhsType->isVectorType() && Context.areCompatibleVectorTypes(lhsType, rhsType)) { ImpCastExprToType(lex, rhsType, CK_BitCast); return rhsType; } // Canonicalize the ExtVector to the LHS, remember if we swapped so we can // swap back (so that we don't reverse the inputs to a subtract, for instance. bool swapped = false; if (rhsType->isExtVectorType()) { swapped = true; std::swap(rex, lex); std::swap(rhsType, lhsType); } // Handle the case of an ext vector and scalar. if (const ExtVectorType *LV = lhsType->getAs()) { QualType EltTy = LV->getElementType(); if (EltTy->isIntegralType(Context) && rhsType->isIntegralType(Context)) { int order = Context.getIntegerTypeOrder(EltTy, rhsType); if (order > 0) ImpCastExprToType(rex, EltTy, CK_IntegralCast); if (order >= 0) { ImpCastExprToType(rex, lhsType, CK_VectorSplat); if (swapped) std::swap(rex, lex); return lhsType; } } if (EltTy->isRealFloatingType() && rhsType->isScalarType() && rhsType->isRealFloatingType()) { int order = Context.getFloatingTypeOrder(EltTy, rhsType); if (order > 0) ImpCastExprToType(rex, EltTy, CK_FloatingCast); if (order >= 0) { ImpCastExprToType(rex, lhsType, CK_VectorSplat); if (swapped) std::swap(rex, lex); return lhsType; } } } // Vectors of different size or scalar and non-ext-vector are errors. Diag(Loc, diag::err_typecheck_vector_not_convertable) << lex->getType() << rex->getType() << lex->getSourceRange() << rex->getSourceRange(); return QualType(); } QualType Sema::CheckMultiplyDivideOperands( Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign, bool isDiv) { if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) return CheckVectorOperands(Loc, lex, rex); QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign); if (!lex->getType()->isArithmeticType() || !rex->getType()->isArithmeticType()) return InvalidOperands(Loc, lex, rex); // Check for division by zero. if (isDiv && rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull)) DiagRuntimeBehavior(Loc, PDiag(diag::warn_division_by_zero) << rex->getSourceRange()); return compType; } QualType Sema::CheckRemainderOperands( Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) { if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) { if (lex->getType()->hasIntegerRepresentation() && rex->getType()->hasIntegerRepresentation()) return CheckVectorOperands(Loc, lex, rex); return InvalidOperands(Loc, lex, rex); } QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign); if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType()) return InvalidOperands(Loc, lex, rex); // Check for remainder by zero. if (rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull)) DiagRuntimeBehavior(Loc, PDiag(diag::warn_remainder_by_zero) << rex->getSourceRange()); return compType; } QualType Sema::CheckAdditionOperands( // C99 6.5.6 Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy) { if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) { QualType compType = CheckVectorOperands(Loc, lex, rex); if (CompLHSTy) *CompLHSTy = compType; return compType; } QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy); // handle the common case first (both operands are arithmetic). if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType()) { if (CompLHSTy) *CompLHSTy = compType; return compType; } // Put any potential pointer into PExp Expr* PExp = lex, *IExp = rex; if (IExp->getType()->isAnyPointerType()) std::swap(PExp, IExp); if (PExp->getType()->isAnyPointerType()) { if (IExp->getType()->isIntegerType()) { QualType PointeeTy = PExp->getType()->getPointeeType(); // Check for arithmetic on pointers to incomplete types. if (PointeeTy->isVoidType()) { if (getLangOptions().CPlusPlus) { Diag(Loc, diag::err_typecheck_pointer_arith_void_type) << lex->getSourceRange() << rex->getSourceRange(); return QualType(); } // GNU extension: arithmetic on pointer to void Diag(Loc, diag::ext_gnu_void_ptr) << lex->getSourceRange() << rex->getSourceRange(); } else if (PointeeTy->isFunctionType()) { if (getLangOptions().CPlusPlus) { Diag(Loc, diag::err_typecheck_pointer_arith_function_type) << lex->getType() << lex->getSourceRange(); return QualType(); } // GNU extension: arithmetic on pointer to function Diag(Loc, diag::ext_gnu_ptr_func_arith) << lex->getType() << lex->getSourceRange(); } else { // Check if we require a complete type. if (((PExp->getType()->isPointerType() && !PExp->getType()->isDependentType()) || PExp->getType()->isObjCObjectPointerType()) && RequireCompleteType(Loc, PointeeTy, PDiag(diag::err_typecheck_arithmetic_incomplete_type) << PExp->getSourceRange() << PExp->getType())) return QualType(); } // Diagnose bad cases where we step over interface counts. if (PointeeTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) { Diag(Loc, diag::err_arithmetic_nonfragile_interface) << PointeeTy << PExp->getSourceRange(); return QualType(); } if (CompLHSTy) { QualType LHSTy = Context.isPromotableBitField(lex); if (LHSTy.isNull()) { LHSTy = lex->getType(); if (LHSTy->isPromotableIntegerType()) LHSTy = Context.getPromotedIntegerType(LHSTy); } *CompLHSTy = LHSTy; } return PExp->getType(); } } return InvalidOperands(Loc, lex, rex); } // C99 6.5.6 QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy) { if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) { QualType compType = CheckVectorOperands(Loc, lex, rex); if (CompLHSTy) *CompLHSTy = compType; return compType; } QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy); // Enforce type constraints: C99 6.5.6p3. // Handle the common case first (both operands are arithmetic). if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType()) { if (CompLHSTy) *CompLHSTy = compType; return compType; } // Either ptr - int or ptr - ptr. if (lex->getType()->isAnyPointerType()) { QualType lpointee = lex->getType()->getPointeeType(); // The LHS must be an completely-defined object type. bool ComplainAboutVoid = false; Expr *ComplainAboutFunc = 0; if (lpointee->isVoidType()) { if (getLangOptions().CPlusPlus) { Diag(Loc, diag::err_typecheck_pointer_arith_void_type) << lex->getSourceRange() << rex->getSourceRange(); return QualType(); } // GNU C extension: arithmetic on pointer to void ComplainAboutVoid = true; } else if (lpointee->isFunctionType()) { if (getLangOptions().CPlusPlus) { Diag(Loc, diag::err_typecheck_pointer_arith_function_type) << lex->getType() << lex->getSourceRange(); return QualType(); } // GNU C extension: arithmetic on pointer to function ComplainAboutFunc = lex; } else if (!lpointee->isDependentType() && RequireCompleteType(Loc, lpointee, PDiag(diag::err_typecheck_sub_ptr_object) << lex->getSourceRange() << lex->getType())) return QualType(); // Diagnose bad cases where we step over interface counts. if (lpointee->isObjCObjectType() && LangOpts.ObjCNonFragileABI) { Diag(Loc, diag::err_arithmetic_nonfragile_interface) << lpointee << lex->getSourceRange(); return QualType(); } // The result type of a pointer-int computation is the pointer type. if (rex->getType()->isIntegerType()) { if (ComplainAboutVoid) Diag(Loc, diag::ext_gnu_void_ptr) << lex->getSourceRange() << rex->getSourceRange(); if (ComplainAboutFunc) Diag(Loc, diag::ext_gnu_ptr_func_arith) << ComplainAboutFunc->getType() << ComplainAboutFunc->getSourceRange(); if (CompLHSTy) *CompLHSTy = lex->getType(); return lex->getType(); } // Handle pointer-pointer subtractions. if (const PointerType *RHSPTy = rex->getType()->getAs()) { QualType rpointee = RHSPTy->getPointeeType(); // RHS must be a completely-type object type. // Handle the GNU void* extension. if (rpointee->isVoidType()) { if (getLangOptions().CPlusPlus) { Diag(Loc, diag::err_typecheck_pointer_arith_void_type) << lex->getSourceRange() << rex->getSourceRange(); return QualType(); } ComplainAboutVoid = true; } else if (rpointee->isFunctionType()) { if (getLangOptions().CPlusPlus) { Diag(Loc, diag::err_typecheck_pointer_arith_function_type) << rex->getType() << rex->getSourceRange(); return QualType(); } // GNU extension: arithmetic on pointer to function if (!ComplainAboutFunc) ComplainAboutFunc = rex; } else if (!rpointee->isDependentType() && RequireCompleteType(Loc, rpointee, PDiag(diag::err_typecheck_sub_ptr_object) << rex->getSourceRange() << rex->getType())) return QualType(); if (getLangOptions().CPlusPlus) { // Pointee types must be the same: C++ [expr.add] if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) { Diag(Loc, diag::err_typecheck_sub_ptr_compatible) << lex->getType() << rex->getType() << lex->getSourceRange() << rex->getSourceRange(); return QualType(); } } else { // Pointee types must be compatible C99 6.5.6p3 if (!Context.typesAreCompatible( Context.getCanonicalType(lpointee).getUnqualifiedType(), Context.getCanonicalType(rpointee).getUnqualifiedType())) { Diag(Loc, diag::err_typecheck_sub_ptr_compatible) << lex->getType() << rex->getType() << lex->getSourceRange() << rex->getSourceRange(); return QualType(); } } if (ComplainAboutVoid) Diag(Loc, diag::ext_gnu_void_ptr) << lex->getSourceRange() << rex->getSourceRange(); if (ComplainAboutFunc) Diag(Loc, diag::ext_gnu_ptr_func_arith) << ComplainAboutFunc->getType() << ComplainAboutFunc->getSourceRange(); if (CompLHSTy) *CompLHSTy = lex->getType(); return Context.getPointerDiffType(); } } return InvalidOperands(Loc, lex, rex); } static bool isScopedEnumerationType(QualType T) { if (const EnumType *ET = dyn_cast(T)) return ET->getDecl()->isScoped(); return false; } // C99 6.5.7 QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) { // C99 6.5.7p2: Each of the operands shall have integer type. if (!lex->getType()->hasIntegerRepresentation() || !rex->getType()->hasIntegerRepresentation()) return InvalidOperands(Loc, lex, rex); // C++0x: Don't allow scoped enums. FIXME: Use something better than // hasIntegerRepresentation() above instead of this. if (isScopedEnumerationType(lex->getType()) || isScopedEnumerationType(rex->getType())) { return InvalidOperands(Loc, lex, rex); } // Vector shifts promote their scalar inputs to vector type. if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) return CheckVectorOperands(Loc, lex, rex); // Shifts don't perform usual arithmetic conversions, they just do integer // promotions on each operand. C99 6.5.7p3 // For the LHS, do usual unary conversions, but then reset them away // if this is a compound assignment. Expr *old_lex = lex; UsualUnaryConversions(lex); QualType LHSTy = lex->getType(); if (isCompAssign) lex = old_lex; // The RHS is simpler. UsualUnaryConversions(rex); // Sanity-check shift operands llvm::APSInt Right; // Check right/shifter operand if (!rex->isValueDependent() && rex->isIntegerConstantExpr(Right, Context)) { if (Right.isNegative()) Diag(Loc, diag::warn_shift_negative) << rex->getSourceRange(); else { llvm::APInt LeftBits(Right.getBitWidth(), Context.getTypeSize(lex->getType())); if (Right.uge(LeftBits)) Diag(Loc, diag::warn_shift_gt_typewidth) << rex->getSourceRange(); } } // "The type of the result is that of the promoted left operand." return LHSTy; } static bool IsWithinTemplateSpecialization(Decl *D) { if (DeclContext *DC = D->getDeclContext()) { if (isa(DC)) return true; if (FunctionDecl *FD = dyn_cast(DC)) return FD->isFunctionTemplateSpecialization(); } return false; } // C99 6.5.8, C++ [expr.rel] QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc, unsigned OpaqueOpc, bool isRelational) { BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc; // Handle vector comparisons separately. if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) return CheckVectorCompareOperands(lex, rex, Loc, isRelational); QualType lType = lex->getType(); QualType rType = rex->getType(); Expr *LHSStripped = lex->IgnoreParenImpCasts(); Expr *RHSStripped = rex->IgnoreParenImpCasts(); QualType LHSStrippedType = LHSStripped->getType(); QualType RHSStrippedType = RHSStripped->getType(); // Two different enums will raise a warning when compared. if (const EnumType *LHSEnumType = LHSStrippedType->getAs()) { if (const EnumType *RHSEnumType = RHSStrippedType->getAs()) { if (LHSEnumType->getDecl()->getIdentifier() && RHSEnumType->getDecl()->getIdentifier() && !Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) { Diag(Loc, diag::warn_comparison_of_mixed_enum_types) << LHSStrippedType << RHSStrippedType << lex->getSourceRange() << rex->getSourceRange(); } } } if (!lType->hasFloatingRepresentation() && !(lType->isBlockPointerType() && isRelational) && !lex->getLocStart().isMacroID() && !rex->getLocStart().isMacroID()) { // For non-floating point types, check for self-comparisons of the form // x == x, x != x, x < x, etc. These always evaluate to a constant, and // often indicate logic errors in the program. // // NOTE: Don't warn about comparison expressions resulting from macro // expansion. Also don't warn about comparisons which are only self // comparisons within a template specialization. The warnings should catch // obvious cases in the definition of the template anyways. The idea is to // warn when the typed comparison operator will always evaluate to the same // result. if (DeclRefExpr* DRL = dyn_cast(LHSStripped)) { if (DeclRefExpr* DRR = dyn_cast(RHSStripped)) { if (DRL->getDecl() == DRR->getDecl() && !IsWithinTemplateSpecialization(DRL->getDecl())) { DiagRuntimeBehavior(Loc, PDiag(diag::warn_comparison_always) << 0 // self- << (Opc == BO_EQ || Opc == BO_LE || Opc == BO_GE)); } else if (lType->isArrayType() && rType->isArrayType() && !DRL->getDecl()->getType()->isReferenceType() && !DRR->getDecl()->getType()->isReferenceType()) { // what is it always going to eval to? char always_evals_to; switch(Opc) { case BO_EQ: // e.g. array1 == array2 always_evals_to = 0; // false break; case BO_NE: // e.g. array1 != array2 always_evals_to = 1; // true break; default: // best we can say is 'a constant' always_evals_to = 2; // e.g. array1 <= array2 break; } DiagRuntimeBehavior(Loc, PDiag(diag::warn_comparison_always) << 1 // array << always_evals_to); } } } if (isa(LHSStripped)) LHSStripped = LHSStripped->IgnoreParenCasts(); if (isa(RHSStripped)) RHSStripped = RHSStripped->IgnoreParenCasts(); // Warn about comparisons against a string constant (unless the other // operand is null), the user probably wants strcmp. Expr *literalString = 0; Expr *literalStringStripped = 0; if ((isa(LHSStripped) || isa(LHSStripped)) && !RHSStripped->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { literalString = lex; literalStringStripped = LHSStripped; } else if ((isa(RHSStripped) || isa(RHSStripped)) && !LHSStripped->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { literalString = rex; literalStringStripped = RHSStripped; } if (literalString) { std::string resultComparison; switch (Opc) { case BO_LT: resultComparison = ") < 0"; break; case BO_GT: resultComparison = ") > 0"; break; case BO_LE: resultComparison = ") <= 0"; break; case BO_GE: resultComparison = ") >= 0"; break; case BO_EQ: resultComparison = ") == 0"; break; case BO_NE: resultComparison = ") != 0"; break; default: assert(false && "Invalid comparison operator"); } DiagRuntimeBehavior(Loc, PDiag(diag::warn_stringcompare) << isa(literalStringStripped) << literalString->getSourceRange()); } } // C99 6.5.8p3 / C99 6.5.9p4 if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType()) UsualArithmeticConversions(lex, rex); else { UsualUnaryConversions(lex); UsualUnaryConversions(rex); } lType = lex->getType(); rType = rex->getType(); // The result of comparisons is 'bool' in C++, 'int' in C. QualType ResultTy = Context.getLogicalOperationType(); if (isRelational) { if (lType->isRealType() && rType->isRealType()) return ResultTy; } else { // Check for comparisons of floating point operands using != and ==. if (lType->hasFloatingRepresentation()) CheckFloatComparison(Loc,lex,rex); if (lType->isArithmeticType() && rType->isArithmeticType()) return ResultTy; } bool LHSIsNull = lex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull); bool RHSIsNull = rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull); // All of the following pointer-related warnings are GCC extensions, except // when handling null pointer constants. if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2 QualType LCanPointeeTy = Context.getCanonicalType(lType->getAs()->getPointeeType()); QualType RCanPointeeTy = Context.getCanonicalType(rType->getAs()->getPointeeType()); if (getLangOptions().CPlusPlus) { if (LCanPointeeTy == RCanPointeeTy) return ResultTy; if (!isRelational && (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) { // Valid unless comparison between non-null pointer and function pointer // This is a gcc extension compatibility comparison. // In a SFINAE context, we treat this as a hard error to maintain // conformance with the C++ standard. if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType()) && !LHSIsNull && !RHSIsNull) { Diag(Loc, isSFINAEContext()? diag::err_typecheck_comparison_of_fptr_to_void : diag::ext_typecheck_comparison_of_fptr_to_void) << lType << rType << lex->getSourceRange() << rex->getSourceRange(); if (isSFINAEContext()) return QualType(); ImpCastExprToType(rex, lType, CK_BitCast); return ResultTy; } } // C++ [expr.rel]p2: // [...] Pointer conversions (4.10) and qualification // conversions (4.4) are performed on pointer operands (or on // a pointer operand and a null pointer constant) to bring // them to their composite pointer type. [...] // // C++ [expr.eq]p1 uses the same notion for (in)equality // comparisons of pointers. bool NonStandardCompositeType = false; QualType T = FindCompositePointerType(Loc, lex, rex, isSFINAEContext()? 0 : &NonStandardCompositeType); if (T.isNull()) { Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers) << lType << rType << lex->getSourceRange() << rex->getSourceRange(); return QualType(); } else if (NonStandardCompositeType) { Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard) << lType << rType << T << lex->getSourceRange() << rex->getSourceRange(); } ImpCastExprToType(lex, T, CK_BitCast); ImpCastExprToType(rex, T, CK_BitCast); return ResultTy; } // C99 6.5.9p2 and C99 6.5.8p2 if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(), RCanPointeeTy.getUnqualifiedType())) { // Valid unless a relational comparison of function pointers if (isRelational && LCanPointeeTy->isFunctionType()) { Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers) << lType << rType << lex->getSourceRange() << rex->getSourceRange(); } } else if (!isRelational && (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) { // Valid unless comparison between non-null pointer and function pointer if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType()) && !LHSIsNull && !RHSIsNull) { Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void) << lType << rType << lex->getSourceRange() << rex->getSourceRange(); } } else { // Invalid Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers) << lType << rType << lex->getSourceRange() << rex->getSourceRange(); } if (LCanPointeeTy != RCanPointeeTy) ImpCastExprToType(rex, lType, CK_BitCast); return ResultTy; } if (getLangOptions().CPlusPlus) { // Comparison of nullptr_t with itself. if (lType->isNullPtrType() && rType->isNullPtrType()) return ResultTy; // Comparison of pointers with null pointer constants and equality // comparisons of member pointers to null pointer constants. if (RHSIsNull && ((lType->isPointerType() || lType->isNullPtrType()) || (!isRelational && lType->isMemberPointerType()))) { ImpCastExprToType(rex, lType, lType->isMemberPointerType() ? CK_NullToMemberPointer : CK_NullToPointer); return ResultTy; } if (LHSIsNull && ((rType->isPointerType() || rType->isNullPtrType()) || (!isRelational && rType->isMemberPointerType()))) { ImpCastExprToType(lex, rType, rType->isMemberPointerType() ? CK_NullToMemberPointer : CK_NullToPointer); return ResultTy; } // Comparison of member pointers. if (!isRelational && lType->isMemberPointerType() && rType->isMemberPointerType()) { // C++ [expr.eq]p2: // In addition, pointers to members can be compared, or a pointer to // member and a null pointer constant. Pointer to member conversions // (4.11) and qualification conversions (4.4) are performed to bring // them to a common type. If one operand is a null pointer constant, // the common type is the type of the other operand. Otherwise, the // common type is a pointer to member type similar (4.4) to the type // of one of the operands, with a cv-qualification signature (4.4) // that is the union of the cv-qualification signatures of the operand // types. bool NonStandardCompositeType = false; QualType T = FindCompositePointerType(Loc, lex, rex, isSFINAEContext()? 0 : &NonStandardCompositeType); if (T.isNull()) { Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers) << lType << rType << lex->getSourceRange() << rex->getSourceRange(); return QualType(); } else if (NonStandardCompositeType) { Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard) << lType << rType << T << lex->getSourceRange() << rex->getSourceRange(); } ImpCastExprToType(lex, T, CK_BitCast); ImpCastExprToType(rex, T, CK_BitCast); return ResultTy; } } // Handle block pointer types. if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) { QualType lpointee = lType->getAs()->getPointeeType(); QualType rpointee = rType->getAs()->getPointeeType(); if (!LHSIsNull && !RHSIsNull && !Context.typesAreCompatible(lpointee, rpointee)) { Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks) << lType << rType << lex->getSourceRange() << rex->getSourceRange(); } ImpCastExprToType(rex, lType, CK_BitCast); return ResultTy; } // Allow block pointers to be compared with null pointer constants. if (!isRelational && ((lType->isBlockPointerType() && rType->isPointerType()) || (lType->isPointerType() && rType->isBlockPointerType()))) { if (!LHSIsNull && !RHSIsNull) { if (!((rType->isPointerType() && rType->getAs() ->getPointeeType()->isVoidType()) || (lType->isPointerType() && lType->getAs() ->getPointeeType()->isVoidType()))) Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks) << lType << rType << lex->getSourceRange() << rex->getSourceRange(); } ImpCastExprToType(rex, lType, CK_BitCast); return ResultTy; } if ((lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType())) { if (lType->isPointerType() || rType->isPointerType()) { const PointerType *LPT = lType->getAs(); const PointerType *RPT = rType->getAs(); bool LPtrToVoid = LPT ? Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false; bool RPtrToVoid = RPT ? Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false; if (!LPtrToVoid && !RPtrToVoid && !Context.typesAreCompatible(lType, rType)) { Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers) << lType << rType << lex->getSourceRange() << rex->getSourceRange(); } ImpCastExprToType(rex, lType, CK_BitCast); return ResultTy; } if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) { if (!Context.areComparableObjCPointerTypes(lType, rType)) Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers) << lType << rType << lex->getSourceRange() << rex->getSourceRange(); ImpCastExprToType(rex, lType, CK_BitCast); return ResultTy; } } if ((lType->isAnyPointerType() && rType->isIntegerType()) || (lType->isIntegerType() && rType->isAnyPointerType())) { unsigned DiagID = 0; bool isError = false; if ((LHSIsNull && lType->isIntegerType()) || (RHSIsNull && rType->isIntegerType())) { if (isRelational && !getLangOptions().CPlusPlus) DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero; } else if (isRelational && !getLangOptions().CPlusPlus) DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer; else if (getLangOptions().CPlusPlus) { DiagID = diag::err_typecheck_comparison_of_pointer_integer; isError = true; } else DiagID = diag::ext_typecheck_comparison_of_pointer_integer; if (DiagID) { Diag(Loc, DiagID) << lType << rType << lex->getSourceRange() << rex->getSourceRange(); if (isError) return QualType(); } if (lType->isIntegerType()) ImpCastExprToType(lex, rType, LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer); else ImpCastExprToType(rex, lType, RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer); return ResultTy; } // Handle block pointers. if (!isRelational && RHSIsNull && lType->isBlockPointerType() && rType->isIntegerType()) { ImpCastExprToType(rex, lType, CK_NullToPointer); return ResultTy; } if (!isRelational && LHSIsNull && lType->isIntegerType() && rType->isBlockPointerType()) { ImpCastExprToType(lex, rType, CK_NullToPointer); return ResultTy; } return InvalidOperands(Loc, lex, rex); } /// CheckVectorCompareOperands - vector comparisons are a clang extension that /// operates on extended vector types. Instead of producing an IntTy result, /// like a scalar comparison, a vector comparison produces a vector of integer /// types. QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc, bool isRelational) { // Check to make sure we're operating on vectors of the same type and width, // Allowing one side to be a scalar of element type. QualType vType = CheckVectorOperands(Loc, lex, rex); if (vType.isNull()) return vType; // If AltiVec, the comparison results in a numeric type, i.e. // bool for C++, int for C if (getLangOptions().AltiVec) return Context.getLogicalOperationType(); QualType lType = lex->getType(); QualType rType = rex->getType(); // For non-floating point types, check for self-comparisons of the form // x == x, x != x, x < x, etc. These always evaluate to a constant, and // often indicate logic errors in the program. if (!lType->hasFloatingRepresentation()) { if (DeclRefExpr* DRL = dyn_cast(lex->IgnoreParens())) if (DeclRefExpr* DRR = dyn_cast(rex->IgnoreParens())) if (DRL->getDecl() == DRR->getDecl()) DiagRuntimeBehavior(Loc, PDiag(diag::warn_comparison_always) << 0 // self- << 2 // "a constant" ); } // Check for comparisons of floating point operands using != and ==. if (!isRelational && lType->hasFloatingRepresentation()) { assert (rType->hasFloatingRepresentation()); CheckFloatComparison(Loc,lex,rex); } // Return the type for the comparison, which is the same as vector type for // integer vectors, or an integer type of identical size and number of // elements for floating point vectors. if (lType->hasIntegerRepresentation()) return lType; const VectorType *VTy = lType->getAs(); unsigned TypeSize = Context.getTypeSize(VTy->getElementType()); if (TypeSize == Context.getTypeSize(Context.IntTy)) return Context.getExtVectorType(Context.IntTy, VTy->getNumElements()); if (TypeSize == Context.getTypeSize(Context.LongTy)) return Context.getExtVectorType(Context.LongTy, VTy->getNumElements()); assert(TypeSize == Context.getTypeSize(Context.LongLongTy) && "Unhandled vector element size in vector compare"); return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements()); } inline QualType Sema::CheckBitwiseOperands( Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) { if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) { if (lex->getType()->hasIntegerRepresentation() && rex->getType()->hasIntegerRepresentation()) return CheckVectorOperands(Loc, lex, rex); return InvalidOperands(Loc, lex, rex); } QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign); if (lex->getType()->isIntegralOrUnscopedEnumerationType() && rex->getType()->isIntegralOrUnscopedEnumerationType()) return compType; return InvalidOperands(Loc, lex, rex); } inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14] Expr *&lex, Expr *&rex, SourceLocation Loc, unsigned Opc) { // Diagnose cases where the user write a logical and/or but probably meant a // bitwise one. We do this when the LHS is a non-bool integer and the RHS // is a constant. if (lex->getType()->isIntegerType() && !lex->getType()->isBooleanType() && rex->getType()->isIntegerType() && !rex->isValueDependent() && // Don't warn in macros. !Loc.isMacroID()) { // If the RHS can be constant folded, and if it constant folds to something // that isn't 0 or 1 (which indicate a potential logical operation that // happened to fold to true/false) then warn. Expr::EvalResult Result; if (rex->Evaluate(Result, Context) && !Result.HasSideEffects && Result.Val.getInt() != 0 && Result.Val.getInt() != 1) { Diag(Loc, diag::warn_logical_instead_of_bitwise) << rex->getSourceRange() << (Opc == BO_LAnd ? "&&" : "||") << (Opc == BO_LAnd ? "&" : "|"); } } if (!Context.getLangOptions().CPlusPlus) { UsualUnaryConversions(lex); UsualUnaryConversions(rex); if (!lex->getType()->isScalarType() || !rex->getType()->isScalarType()) return InvalidOperands(Loc, lex, rex); return Context.IntTy; } // The following is safe because we only use this method for // non-overloadable operands. // C++ [expr.log.and]p1 // C++ [expr.log.or]p1 // The operands are both contextually converted to type bool. if (PerformContextuallyConvertToBool(lex) || PerformContextuallyConvertToBool(rex)) return InvalidOperands(Loc, lex, rex); // C++ [expr.log.and]p2 // C++ [expr.log.or]p2 // The result is a bool. return Context.BoolTy; } /// IsReadonlyProperty - Verify that otherwise a valid l-value expression /// is a read-only property; return true if so. A readonly property expression /// depends on various declarations and thus must be treated specially. /// static bool IsReadonlyProperty(Expr *E, Sema &S) { if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) { const ObjCPropertyRefExpr* PropExpr = cast(E); if (PropExpr->isImplicitProperty()) return false; ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty(); QualType BaseType = PropExpr->isSuperReceiver() ? PropExpr->getSuperReceiverType() : PropExpr->getBase()->getType(); if (const ObjCObjectPointerType *OPT = BaseType->getAsObjCInterfacePointerType()) if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl()) if (S.isPropertyReadonly(PDecl, IFace)) return true; } return false; } /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not, /// emit an error and return true. If so, return false. static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) { SourceLocation OrigLoc = Loc; Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context, &Loc); if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S)) IsLV = Expr::MLV_ReadonlyProperty; if (IsLV == Expr::MLV_Valid) return false; unsigned Diag = 0; bool NeedType = false; switch (IsLV) { // C99 6.5.16p2 case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break; case Expr::MLV_ArrayType: Diag = diag::err_typecheck_array_not_modifiable_lvalue; NeedType = true; break; case Expr::MLV_NotObjectType: Diag = diag::err_typecheck_non_object_not_modifiable_lvalue; NeedType = true; break; case Expr::MLV_LValueCast: Diag = diag::err_typecheck_lvalue_casts_not_supported; break; case Expr::MLV_Valid: llvm_unreachable("did not take early return for MLV_Valid"); case Expr::MLV_InvalidExpression: case Expr::MLV_MemberFunction: case Expr::MLV_ClassTemporary: Diag = diag::err_typecheck_expression_not_modifiable_lvalue; break; case Expr::MLV_IncompleteType: case Expr::MLV_IncompleteVoidType: return S.RequireCompleteType(Loc, E->getType(), S.PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue) << E->getSourceRange()); case Expr::MLV_DuplicateVectorComponents: Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue; break; case Expr::MLV_NotBlockQualified: Diag = diag::err_block_decl_ref_not_modifiable_lvalue; break; case Expr::MLV_ReadonlyProperty: Diag = diag::error_readonly_property_assignment; break; case Expr::MLV_NoSetterProperty: Diag = diag::error_nosetter_property_assignment; break; case Expr::MLV_SubObjCPropertySetting: Diag = diag::error_no_subobject_property_setting; break; } SourceRange Assign; if (Loc != OrigLoc) Assign = SourceRange(OrigLoc, OrigLoc); if (NeedType) S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign; else S.Diag(Loc, Diag) << E->getSourceRange() << Assign; return true; } // C99 6.5.16.1 QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc, QualType CompoundType) { // Verify that LHS is a modifiable lvalue, and emit error if not. if (CheckForModifiableLvalue(LHS, Loc, *this)) return QualType(); QualType LHSType = LHS->getType(); QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType; AssignConvertType ConvTy; if (CompoundType.isNull()) { QualType LHSTy(LHSType); // Simple assignment "x = y". if (LHS->getObjectKind() == OK_ObjCProperty) ConvertPropertyForLValue(LHS, RHS, LHSTy); ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS); // Special case of NSObject attributes on c-style pointer types. if (ConvTy == IncompatiblePointer && ((Context.isObjCNSObjectType(LHSType) && RHSType->isObjCObjectPointerType()) || (Context.isObjCNSObjectType(RHSType) && LHSType->isObjCObjectPointerType()))) ConvTy = Compatible; if (ConvTy == Compatible && getLangOptions().ObjCNonFragileABI && LHSType->isObjCObjectType()) Diag(Loc, diag::err_assignment_requires_nonfragile_object) << LHSType; // If the RHS is a unary plus or minus, check to see if they = and + are // right next to each other. If so, the user may have typo'd "x =+ 4" // instead of "x += 4". Expr *RHSCheck = RHS; if (ImplicitCastExpr *ICE = dyn_cast(RHSCheck)) RHSCheck = ICE->getSubExpr(); if (UnaryOperator *UO = dyn_cast(RHSCheck)) { if ((UO->getOpcode() == UO_Plus || UO->getOpcode() == UO_Minus) && Loc.isFileID() && UO->getOperatorLoc().isFileID() && // Only if the two operators are exactly adjacent. Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() && // And there is a space or other character before the subexpr of the // unary +/-. We don't want to warn on "x=-1". Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() && UO->getSubExpr()->getLocStart().isFileID()) { Diag(Loc, diag::warn_not_compound_assign) << (UO->getOpcode() == UO_Plus ? "+" : "-") << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc()); } } } else { // Compound assignment "x += y" ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType); } if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType, RHS, AA_Assigning)) return QualType(); // Check to see if the destination operand is a dereferenced null pointer. If // so, and if not volatile-qualified, this is undefined behavior that the // optimizer will delete, so warn about it. People sometimes try to use this // to get a deterministic trap and are surprised by clang's behavior. This // only handles the pattern "*null = whatever", which is a very syntactic // check. if (UnaryOperator *UO = dyn_cast(LHS->IgnoreParenCasts())) if (UO->getOpcode() == UO_Deref && UO->getSubExpr()->IgnoreParenCasts()-> isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) && !UO->getType().isVolatileQualified()) { Diag(UO->getOperatorLoc(), diag::warn_indirection_through_null) << UO->getSubExpr()->getSourceRange(); Diag(UO->getOperatorLoc(), diag::note_indirection_through_null); } // Check for trivial buffer overflows. if (const ArraySubscriptExpr *ae = dyn_cast(LHS->IgnoreParenCasts())) CheckArrayAccess(ae); // C99 6.5.16p3: The type of an assignment expression is the type of the // left operand unless the left operand has qualified type, in which case // it is the unqualified version of the type of the left operand. // C99 6.5.16.1p2: In simple assignment, the value of the right operand // is converted to the type of the assignment expression (above). // C++ 5.17p1: the type of the assignment expression is that of its left // operand. return (getLangOptions().CPlusPlus ? LHSType : LHSType.getUnqualifiedType()); } // C99 6.5.17 static QualType CheckCommaOperands(Sema &S, Expr *&LHS, Expr *&RHS, SourceLocation Loc) { S.DiagnoseUnusedExprResult(LHS); ExprResult LHSResult = S.CheckPlaceholderExpr(LHS, Loc); if (LHSResult.isInvalid()) return QualType(); ExprResult RHSResult = S.CheckPlaceholderExpr(RHS, Loc); if (RHSResult.isInvalid()) return QualType(); RHS = RHSResult.take(); // C's comma performs lvalue conversion (C99 6.3.2.1) on both its // operands, but not unary promotions. // C++'s comma does not do any conversions at all (C++ [expr.comma]p1). // So we treat the LHS as a ignored value, and in C++ we allow the // containing site to determine what should be done with the RHS. S.IgnoredValueConversions(LHS); if (!S.getLangOptions().CPlusPlus) { S.DefaultFunctionArrayLvalueConversion(RHS); if (!RHS->getType()->isVoidType()) S.RequireCompleteType(Loc, RHS->getType(), diag::err_incomplete_type); } return RHS->getType(); } /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions. static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op, ExprValueKind &VK, SourceLocation OpLoc, bool isInc, bool isPrefix) { if (Op->isTypeDependent()) return S.Context.DependentTy; QualType ResType = Op->getType(); assert(!ResType.isNull() && "no type for increment/decrement expression"); if (S.getLangOptions().CPlusPlus && ResType->isBooleanType()) { // Decrement of bool is not allowed. if (!isInc) { S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange(); return QualType(); } // Increment of bool sets it to true, but is deprecated. S.Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange(); } else if (ResType->isRealType()) { // OK! } else if (ResType->isAnyPointerType()) { QualType PointeeTy = ResType->getPointeeType(); // C99 6.5.2.4p2, 6.5.6p2 if (PointeeTy->isVoidType()) { if (S.getLangOptions().CPlusPlus) { S.Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type) << Op->getSourceRange(); return QualType(); } // Pointer to void is a GNU extension in C. S.Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange(); } else if (PointeeTy->isFunctionType()) { if (S.getLangOptions().CPlusPlus) { S.Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type) << Op->getType() << Op->getSourceRange(); return QualType(); } S.Diag(OpLoc, diag::ext_gnu_ptr_func_arith) << ResType << Op->getSourceRange(); } else if (S.RequireCompleteType(OpLoc, PointeeTy, S.PDiag(diag::err_typecheck_arithmetic_incomplete_type) << Op->getSourceRange() << ResType)) return QualType(); // Diagnose bad cases where we step over interface counts. else if (PointeeTy->isObjCObjectType() && S.LangOpts.ObjCNonFragileABI) { S.Diag(OpLoc, diag::err_arithmetic_nonfragile_interface) << PointeeTy << Op->getSourceRange(); return QualType(); } } else if (ResType->isAnyComplexType()) { // C99 does not support ++/-- on complex types, we allow as an extension. S.Diag(OpLoc, diag::ext_integer_increment_complex) << ResType << Op->getSourceRange(); } else if (ResType->isPlaceholderType()) { ExprResult PR = S.CheckPlaceholderExpr(Op, OpLoc); if (PR.isInvalid()) return QualType(); return CheckIncrementDecrementOperand(S, PR.take(), VK, OpLoc, isInc, isPrefix); } else if (S.getLangOptions().AltiVec && ResType->isVectorType()) { // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 ) } else { S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement) << ResType << int(isInc) << Op->getSourceRange(); return QualType(); } // At this point, we know we have a real, complex or pointer type. // Now make sure the operand is a modifiable lvalue. if (CheckForModifiableLvalue(Op, OpLoc, S)) return QualType(); // In C++, a prefix increment is the same type as the operand. Otherwise // (in C or with postfix), the increment is the unqualified type of the // operand. if (isPrefix && S.getLangOptions().CPlusPlus) { VK = VK_LValue; return ResType; } else { VK = VK_RValue; return ResType.getUnqualifiedType(); } } void Sema::ConvertPropertyForRValue(Expr *&E) { assert(E->getValueKind() == VK_LValue && E->getObjectKind() == OK_ObjCProperty); const ObjCPropertyRefExpr *PRE = E->getObjCProperty(); ExprValueKind VK = VK_RValue; if (PRE->isImplicitProperty()) { if (const ObjCMethodDecl *GetterMethod = PRE->getImplicitPropertyGetter()) { QualType Result = GetterMethod->getResultType(); VK = Expr::getValueKindForType(Result); } else { Diag(PRE->getLocation(), diag::err_getter_not_found) << PRE->getBase()->getType(); } } E = ImplicitCastExpr::Create(Context, E->getType(), CK_GetObjCProperty, E, 0, VK); ExprResult Result = MaybeBindToTemporary(E); if (!Result.isInvalid()) E = Result.take(); } void Sema::ConvertPropertyForLValue(Expr *&LHS, Expr *&RHS, QualType &LHSTy) { assert(LHS->getValueKind() == VK_LValue && LHS->getObjectKind() == OK_ObjCProperty); const ObjCPropertyRefExpr *PRE = LHS->getObjCProperty(); if (PRE->isImplicitProperty()) { // If using property-dot syntax notation for assignment, and there is a // setter, RHS expression is being passed to the setter argument. So, // type conversion (and comparison) is RHS to setter's argument type. if (const ObjCMethodDecl *SetterMD = PRE->getImplicitPropertySetter()) { ObjCMethodDecl::param_iterator P = SetterMD->param_begin(); LHSTy = (*P)->getType(); // Otherwise, if the getter returns an l-value, just call that. } else { QualType Result = PRE->getImplicitPropertyGetter()->getResultType(); ExprValueKind VK = Expr::getValueKindForType(Result); if (VK == VK_LValue) { LHS = ImplicitCastExpr::Create(Context, LHS->getType(), CK_GetObjCProperty, LHS, 0, VK); return; } } } if (getLangOptions().CPlusPlus && LHSTy->isRecordType()) { InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, LHSTy); Expr *Arg = RHS; ExprResult ArgE = PerformCopyInitialization(Entity, SourceLocation(), Owned(Arg)); if (!ArgE.isInvalid()) RHS = ArgE.takeAs(); } } /// getPrimaryDecl - Helper function for CheckAddressOfOperand(). /// This routine allows us to typecheck complex/recursive expressions /// where the declaration is needed for type checking. We only need to /// handle cases when the expression references a function designator /// or is an lvalue. Here are some examples: /// - &(x) => x /// - &*****f => f for f a function designator. /// - &s.xx => s /// - &s.zz[1].yy -> s, if zz is an array /// - *(x + 1) -> x, if x is an array /// - &"123"[2] -> 0 /// - & __real__ x -> x static ValueDecl *getPrimaryDecl(Expr *E) { switch (E->getStmtClass()) { case Stmt::DeclRefExprClass: return cast(E)->getDecl(); case Stmt::MemberExprClass: // If this is an arrow operator, the address is an offset from // the base's value, so the object the base refers to is // irrelevant. if (cast(E)->isArrow()) return 0; // Otherwise, the expression refers to a part of the base return getPrimaryDecl(cast(E)->getBase()); case Stmt::ArraySubscriptExprClass: { // FIXME: This code shouldn't be necessary! We should catch the implicit // promotion of register arrays earlier. Expr* Base = cast(E)->getBase(); if (ImplicitCastExpr* ICE = dyn_cast(Base)) { if (ICE->getSubExpr()->getType()->isArrayType()) return getPrimaryDecl(ICE->getSubExpr()); } return 0; } case Stmt::UnaryOperatorClass: { UnaryOperator *UO = cast(E); switch(UO->getOpcode()) { case UO_Real: case UO_Imag: case UO_Extension: return getPrimaryDecl(UO->getSubExpr()); default: return 0; } } case Stmt::ParenExprClass: return getPrimaryDecl(cast(E)->getSubExpr()); case Stmt::ImplicitCastExprClass: // If the result of an implicit cast is an l-value, we care about // the sub-expression; otherwise, the result here doesn't matter. return getPrimaryDecl(cast(E)->getSubExpr()); default: return 0; } } /// CheckAddressOfOperand - The operand of & must be either a function /// designator or an lvalue designating an object. If it is an lvalue, the /// object cannot be declared with storage class register or be a bit field. /// Note: The usual conversions are *not* applied to the operand of the & /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue. /// In C++, the operand might be an overloaded function name, in which case /// we allow the '&' but retain the overloaded-function type. static QualType CheckAddressOfOperand(Sema &S, Expr *OrigOp, SourceLocation OpLoc) { if (OrigOp->isTypeDependent()) return S.Context.DependentTy; if (OrigOp->getType() == S.Context.OverloadTy) return S.Context.OverloadTy; ExprResult PR = S.CheckPlaceholderExpr(OrigOp, OpLoc); if (PR.isInvalid()) return QualType(); OrigOp = PR.take(); // Make sure to ignore parentheses in subsequent checks Expr *op = OrigOp->IgnoreParens(); if (S.getLangOptions().C99) { // Implement C99-only parts of addressof rules. if (UnaryOperator* uOp = dyn_cast(op)) { if (uOp->getOpcode() == UO_Deref) // Per C99 6.5.3.2, the address of a deref always returns a valid result // (assuming the deref expression is valid). return uOp->getSubExpr()->getType(); } // Technically, there should be a check for array subscript // expressions here, but the result of one is always an lvalue anyway. } ValueDecl *dcl = getPrimaryDecl(op); Expr::LValueClassification lval = op->ClassifyLValue(S.Context); if (lval == Expr::LV_ClassTemporary) { bool sfinae = S.isSFINAEContext(); S.Diag(OpLoc, sfinae ? diag::err_typecheck_addrof_class_temporary : diag::ext_typecheck_addrof_class_temporary) << op->getType() << op->getSourceRange(); if (sfinae) return QualType(); } else if (isa(op)) { return S.Context.getPointerType(op->getType()); } else if (lval == Expr::LV_MemberFunction) { // If it's an instance method, make a member pointer. // The expression must have exactly the form &A::foo. // If the underlying expression isn't a decl ref, give up. if (!isa(op)) { S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function) << OrigOp->getSourceRange(); return QualType(); } DeclRefExpr *DRE = cast(op); CXXMethodDecl *MD = cast(DRE->getDecl()); // The id-expression was parenthesized. if (OrigOp != DRE) { S.Diag(OpLoc, diag::err_parens_pointer_member_function) << OrigOp->getSourceRange(); // The method was named without a qualifier. } else if (!DRE->getQualifier()) { S.Diag(OpLoc, diag::err_unqualified_pointer_member_function) << op->getSourceRange(); } return S.Context.getMemberPointerType(op->getType(), S.Context.getTypeDeclType(MD->getParent()).getTypePtr()); } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) { // C99 6.5.3.2p1 // The operand must be either an l-value or a function designator if (!op->getType()->isFunctionType()) { // FIXME: emit more specific diag... S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof) << op->getSourceRange(); return QualType(); } } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1 // The operand cannot be a bit-field S.Diag(OpLoc, diag::err_typecheck_address_of) << "bit-field" << op->getSourceRange(); return QualType(); } else if (op->getObjectKind() == OK_VectorComponent) { // The operand cannot be an element of a vector S.Diag(OpLoc, diag::err_typecheck_address_of) << "vector element" << op->getSourceRange(); return QualType(); } else if (op->getObjectKind() == OK_ObjCProperty) { // cannot take address of a property expression. S.Diag(OpLoc, diag::err_typecheck_address_of) << "property expression" << op->getSourceRange(); return QualType(); } else if (dcl) { // C99 6.5.3.2p1 // We have an lvalue with a decl. Make sure the decl is not declared // with the register storage-class specifier. if (const VarDecl *vd = dyn_cast(dcl)) { // in C++ it is not error to take address of a register // variable (c++03 7.1.1P3) if (vd->getStorageClass() == SC_Register && !S.getLangOptions().CPlusPlus) { S.Diag(OpLoc, diag::err_typecheck_address_of) << "register variable" << op->getSourceRange(); return QualType(); } } else if (isa(dcl)) { return S.Context.OverloadTy; } else if (isa(dcl) || isa(dcl)) { // Okay: we can take the address of a field. // Could be a pointer to member, though, if there is an explicit // scope qualifier for the class. if (isa(op) && cast(op)->getQualifier()) { DeclContext *Ctx = dcl->getDeclContext(); if (Ctx && Ctx->isRecord()) { if (dcl->getType()->isReferenceType()) { S.Diag(OpLoc, diag::err_cannot_form_pointer_to_member_of_reference_type) << dcl->getDeclName() << dcl->getType(); return QualType(); } while (cast(Ctx)->isAnonymousStructOrUnion()) Ctx = Ctx->getParent(); return S.Context.getMemberPointerType(op->getType(), S.Context.getTypeDeclType(cast(Ctx)).getTypePtr()); } } } else if (!isa(dcl)) assert(0 && "Unknown/unexpected decl type"); } if (lval == Expr::LV_IncompleteVoidType) { // Taking the address of a void variable is technically illegal, but we // allow it in cases which are otherwise valid. // Example: "extern void x; void* y = &x;". S.Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange(); } // If the operand has type "type", the result has type "pointer to type". if (op->getType()->isObjCObjectType()) return S.Context.getObjCObjectPointerType(op->getType()); return S.Context.getPointerType(op->getType()); } /// CheckIndirectionOperand - Type check unary indirection (prefix '*'). static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK, SourceLocation OpLoc) { if (Op->isTypeDependent()) return S.Context.DependentTy; S.UsualUnaryConversions(Op); QualType OpTy = Op->getType(); QualType Result; // Note that per both C89 and C99, indirection is always legal, even if OpTy // is an incomplete type or void. It would be possible to warn about // dereferencing a void pointer, but it's completely well-defined, and such a // warning is unlikely to catch any mistakes. if (const PointerType *PT = OpTy->getAs()) Result = PT->getPointeeType(); else if (const ObjCObjectPointerType *OPT = OpTy->getAs()) Result = OPT->getPointeeType(); else { ExprResult PR = S.CheckPlaceholderExpr(Op, OpLoc); if (PR.isInvalid()) return QualType(); if (PR.take() != Op) return CheckIndirectionOperand(S, PR.take(), VK, OpLoc); } if (Result.isNull()) { S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer) << OpTy << Op->getSourceRange(); return QualType(); } // Dereferences are usually l-values... VK = VK_LValue; // ...except that certain expressions are never l-values in C. if (!S.getLangOptions().CPlusPlus && IsCForbiddenLValueType(S.Context, Result)) VK = VK_RValue; return Result; } static inline BinaryOperatorKind ConvertTokenKindToBinaryOpcode( tok::TokenKind Kind) { BinaryOperatorKind Opc; switch (Kind) { default: assert(0 && "Unknown binop!"); case tok::periodstar: Opc = BO_PtrMemD; break; case tok::arrowstar: Opc = BO_PtrMemI; break; case tok::star: Opc = BO_Mul; break; case tok::slash: Opc = BO_Div; break; case tok::percent: Opc = BO_Rem; break; case tok::plus: Opc = BO_Add; break; case tok::minus: Opc = BO_Sub; break; case tok::lessless: Opc = BO_Shl; break; case tok::greatergreater: Opc = BO_Shr; break; case tok::lessequal: Opc = BO_LE; break; case tok::less: Opc = BO_LT; break; case tok::greaterequal: Opc = BO_GE; break; case tok::greater: Opc = BO_GT; break; case tok::exclaimequal: Opc = BO_NE; break; case tok::equalequal: Opc = BO_EQ; break; case tok::amp: Opc = BO_And; break; case tok::caret: Opc = BO_Xor; break; case tok::pipe: Opc = BO_Or; break; case tok::ampamp: Opc = BO_LAnd; break; case tok::pipepipe: Opc = BO_LOr; break; case tok::equal: Opc = BO_Assign; break; case tok::starequal: Opc = BO_MulAssign; break; case tok::slashequal: Opc = BO_DivAssign; break; case tok::percentequal: Opc = BO_RemAssign; break; case tok::plusequal: Opc = BO_AddAssign; break; case tok::minusequal: Opc = BO_SubAssign; break; case tok::lesslessequal: Opc = BO_ShlAssign; break; case tok::greatergreaterequal: Opc = BO_ShrAssign; break; case tok::ampequal: Opc = BO_AndAssign; break; case tok::caretequal: Opc = BO_XorAssign; break; case tok::pipeequal: Opc = BO_OrAssign; break; case tok::comma: Opc = BO_Comma; break; } return Opc; } static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode( tok::TokenKind Kind) { UnaryOperatorKind Opc; switch (Kind) { default: assert(0 && "Unknown unary op!"); case tok::plusplus: Opc = UO_PreInc; break; case tok::minusminus: Opc = UO_PreDec; break; case tok::amp: Opc = UO_AddrOf; break; case tok::star: Opc = UO_Deref; break; case tok::plus: Opc = UO_Plus; break; case tok::minus: Opc = UO_Minus; break; case tok::tilde: Opc = UO_Not; break; case tok::exclaim: Opc = UO_LNot; break; case tok::kw___real: Opc = UO_Real; break; case tok::kw___imag: Opc = UO_Imag; break; case tok::kw___extension__: Opc = UO_Extension; break; } return Opc; } /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself. /// This warning is only emitted for builtin assignment operations. It is also /// suppressed in the event of macro expansions. static void DiagnoseSelfAssignment(Sema &S, Expr *lhs, Expr *rhs, SourceLocation OpLoc) { if (!S.ActiveTemplateInstantiations.empty()) return; if (OpLoc.isInvalid() || OpLoc.isMacroID()) return; lhs = lhs->IgnoreParenImpCasts(); rhs = rhs->IgnoreParenImpCasts(); const DeclRefExpr *LeftDeclRef = dyn_cast(lhs); const DeclRefExpr *RightDeclRef = dyn_cast(rhs); if (!LeftDeclRef || !RightDeclRef || LeftDeclRef->getLocation().isMacroID() || RightDeclRef->getLocation().isMacroID()) return; const ValueDecl *LeftDecl = cast(LeftDeclRef->getDecl()->getCanonicalDecl()); const ValueDecl *RightDecl = cast(RightDeclRef->getDecl()->getCanonicalDecl()); if (LeftDecl != RightDecl) return; if (LeftDecl->getType().isVolatileQualified()) return; if (const ReferenceType *RefTy = LeftDecl->getType()->getAs()) if (RefTy->getPointeeType().isVolatileQualified()) return; S.Diag(OpLoc, diag::warn_self_assignment) << LeftDeclRef->getType() << lhs->getSourceRange() << rhs->getSourceRange(); } /// CreateBuiltinBinOp - Creates a new built-in binary operation with /// operator @p Opc at location @c TokLoc. This routine only supports /// built-in operations; ActOnBinOp handles overloaded operators. ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc, BinaryOperatorKind Opc, Expr *lhs, Expr *rhs) { QualType ResultTy; // Result type of the binary operator. // The following two variables are used for compound assignment operators QualType CompLHSTy; // Type of LHS after promotions for computation QualType CompResultTy; // Type of computation result ExprValueKind VK = VK_RValue; ExprObjectKind OK = OK_Ordinary; switch (Opc) { case BO_Assign: ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType()); if (getLangOptions().CPlusPlus && lhs->getObjectKind() != OK_ObjCProperty) { VK = lhs->getValueKind(); OK = lhs->getObjectKind(); } if (!ResultTy.isNull()) DiagnoseSelfAssignment(*this, lhs, rhs, OpLoc); break; case BO_PtrMemD: case BO_PtrMemI: ResultTy = CheckPointerToMemberOperands(lhs, rhs, VK, OpLoc, Opc == BO_PtrMemI); break; case BO_Mul: case BO_Div: ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, false, Opc == BO_Div); break; case BO_Rem: ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc); break; case BO_Add: ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc); break; case BO_Sub: ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc); break; case BO_Shl: case BO_Shr: ResultTy = CheckShiftOperands(lhs, rhs, OpLoc); break; case BO_LE: case BO_LT: case BO_GE: case BO_GT: ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true); break; case BO_EQ: case BO_NE: ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false); break; case BO_And: case BO_Xor: case BO_Or: ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc); break; case BO_LAnd: case BO_LOr: ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc, Opc); break; case BO_MulAssign: case BO_DivAssign: CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true, Opc == BO_DivAssign); CompLHSTy = CompResultTy; if (!CompResultTy.isNull()) ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy); break; case BO_RemAssign: CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true); CompLHSTy = CompResultTy; if (!CompResultTy.isNull()) ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy); break; case BO_AddAssign: CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy); if (!CompResultTy.isNull()) ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy); break; case BO_SubAssign: CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy); if (!CompResultTy.isNull()) ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy); break; case BO_ShlAssign: case BO_ShrAssign: CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true); CompLHSTy = CompResultTy; if (!CompResultTy.isNull()) ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy); break; case BO_AndAssign: case BO_XorAssign: case BO_OrAssign: CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true); CompLHSTy = CompResultTy; if (!CompResultTy.isNull()) ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy); break; case BO_Comma: ResultTy = CheckCommaOperands(*this, lhs, rhs, OpLoc); if (getLangOptions().CPlusPlus) { VK = rhs->getValueKind(); OK = rhs->getObjectKind(); } break; } if (ResultTy.isNull()) return ExprError(); if (CompResultTy.isNull()) return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, VK, OK, OpLoc)); if (getLangOptions().CPlusPlus && lhs->getObjectKind() != OK_ObjCProperty) { VK = VK_LValue; OK = lhs->getObjectKind(); } return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy, VK, OK, CompLHSTy, CompResultTy, OpLoc)); } /// SuggestParentheses - Emit a diagnostic together with a fixit hint that wraps /// ParenRange in parentheses. static void SuggestParentheses(Sema &Self, SourceLocation Loc, const PartialDiagnostic &PD, const PartialDiagnostic &FirstNote, SourceRange FirstParenRange, const PartialDiagnostic &SecondNote, SourceRange SecondParenRange) { Self.Diag(Loc, PD); if (!FirstNote.getDiagID()) return; SourceLocation EndLoc = Self.PP.getLocForEndOfToken(FirstParenRange.getEnd()); if (!FirstParenRange.getEnd().isFileID() || EndLoc.isInvalid()) { // We can't display the parentheses, so just return. return; } Self.Diag(Loc, FirstNote) << FixItHint::CreateInsertion(FirstParenRange.getBegin(), "(") << FixItHint::CreateInsertion(EndLoc, ")"); if (!SecondNote.getDiagID()) return; EndLoc = Self.PP.getLocForEndOfToken(SecondParenRange.getEnd()); if (!SecondParenRange.getEnd().isFileID() || EndLoc.isInvalid()) { // We can't display the parentheses, so just dig the // warning/error and return. Self.Diag(Loc, SecondNote); return; } Self.Diag(Loc, SecondNote) << FixItHint::CreateInsertion(SecondParenRange.getBegin(), "(") << FixItHint::CreateInsertion(EndLoc, ")"); } /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison /// operators are mixed in a way that suggests that the programmer forgot that /// comparison operators have higher precedence. The most typical example of /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1". static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc, SourceLocation OpLoc,Expr *lhs,Expr *rhs){ typedef BinaryOperator BinOp; BinOp::Opcode lhsopc = static_cast(-1), rhsopc = static_cast(-1); if (BinOp *BO = dyn_cast(lhs)) lhsopc = BO->getOpcode(); if (BinOp *BO = dyn_cast(rhs)) rhsopc = BO->getOpcode(); // Subs are not binary operators. if (lhsopc == -1 && rhsopc == -1) return; // Bitwise operations are sometimes used as eager logical ops. // Don't diagnose this. if ((BinOp::isComparisonOp(lhsopc) || BinOp::isBitwiseOp(lhsopc)) && (BinOp::isComparisonOp(rhsopc) || BinOp::isBitwiseOp(rhsopc))) return; if (BinOp::isComparisonOp(lhsopc)) SuggestParentheses(Self, OpLoc, Self.PDiag(diag::warn_precedence_bitwise_rel) << SourceRange(lhs->getLocStart(), OpLoc) << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(lhsopc), Self.PDiag(diag::note_precedence_bitwise_first) << BinOp::getOpcodeStr(Opc), SourceRange(cast(lhs)->getRHS()->getLocStart(), rhs->getLocEnd()), Self.PDiag(diag::note_precedence_bitwise_silence) << BinOp::getOpcodeStr(lhsopc), lhs->getSourceRange()); else if (BinOp::isComparisonOp(rhsopc)) SuggestParentheses(Self, OpLoc, Self.PDiag(diag::warn_precedence_bitwise_rel) << SourceRange(OpLoc, rhs->getLocEnd()) << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(rhsopc), Self.PDiag(diag::note_precedence_bitwise_first) << BinOp::getOpcodeStr(Opc), SourceRange(lhs->getLocEnd(), cast(rhs)->getLHS()->getLocStart()), Self.PDiag(diag::note_precedence_bitwise_silence) << BinOp::getOpcodeStr(rhsopc), rhs->getSourceRange()); } /// \brief It accepts a '&&' expr that is inside a '||' one. /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression /// in parentheses. static void EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc, Expr *E) { assert(isa(E) && cast(E)->getOpcode() == BO_LAnd); SuggestParentheses(Self, OpLoc, Self.PDiag(diag::warn_logical_and_in_logical_or) << E->getSourceRange(), Self.PDiag(diag::note_logical_and_in_logical_or_silence), E->getSourceRange(), Self.PDiag(0), SourceRange()); } /// \brief Returns true if the given expression can be evaluated as a constant /// 'true'. static bool EvaluatesAsTrue(Sema &S, Expr *E) { bool Res; return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res; } /// \brief Returns true if the given expression can be evaluated as a constant /// 'false'. static bool EvaluatesAsFalse(Sema &S, Expr *E) { bool Res; return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res; } /// \brief Look for '&&' in the left hand of a '||' expr. static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc, Expr *OrLHS, Expr *OrRHS) { if (BinaryOperator *Bop = dyn_cast(OrLHS)) { if (Bop->getOpcode() == BO_LAnd) { // If it's "a && b || 0" don't warn since the precedence doesn't matter. if (EvaluatesAsFalse(S, OrRHS)) return; // If it's "1 && a || b" don't warn since the precedence doesn't matter. if (!EvaluatesAsTrue(S, Bop->getLHS())) return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop); } else if (Bop->getOpcode() == BO_LOr) { if (BinaryOperator *RBop = dyn_cast(Bop->getRHS())) { // If it's "a || b && 1 || c" we didn't warn earlier for // "a || b && 1", but warn now. if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS())) return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop); } } } } /// \brief Look for '&&' in the right hand of a '||' expr. static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc, Expr *OrLHS, Expr *OrRHS) { if (BinaryOperator *Bop = dyn_cast(OrRHS)) { if (Bop->getOpcode() == BO_LAnd) { // If it's "0 || a && b" don't warn since the precedence doesn't matter. if (EvaluatesAsFalse(S, OrLHS)) return; // If it's "a || b && 1" don't warn since the precedence doesn't matter. if (!EvaluatesAsTrue(S, Bop->getRHS())) return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop); } } } /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky /// precedence. static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc, SourceLocation OpLoc, Expr *lhs, Expr *rhs){ // Diagnose "arg1 'bitwise' arg2 'eq' arg3". if (BinaryOperator::isBitwiseOp(Opc)) return DiagnoseBitwisePrecedence(Self, Opc, OpLoc, lhs, rhs); // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does. // We don't warn for 'assert(a || b && "bad")' since this is safe. if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) { DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, lhs, rhs); DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, lhs, rhs); } } // Binary Operators. 'Tok' is the token for the operator. ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc, tok::TokenKind Kind, Expr *lhs, Expr *rhs) { BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind); assert((lhs != 0) && "ActOnBinOp(): missing left expression"); assert((rhs != 0) && "ActOnBinOp(): missing right expression"); // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0" DiagnoseBinOpPrecedence(*this, Opc, TokLoc, lhs, rhs); return BuildBinOp(S, TokLoc, Opc, lhs, rhs); } ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc, Expr *lhs, Expr *rhs) { if (getLangOptions().CPlusPlus) { bool UseBuiltinOperator; if (lhs->isTypeDependent() || rhs->isTypeDependent()) { UseBuiltinOperator = false; } else if (Opc == BO_Assign && lhs->getObjectKind() == OK_ObjCProperty) { UseBuiltinOperator = true; } else { UseBuiltinOperator = !lhs->getType()->isOverloadableType() && !rhs->getType()->isOverloadableType(); } if (!UseBuiltinOperator) { // Find all of the overloaded operators visible from this // point. We perform both an operator-name lookup from the local // scope and an argument-dependent lookup based on the types of // the arguments. UnresolvedSet<16> Functions; OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc); if (S && OverOp != OO_None) LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(), Functions); // Build the (potentially-overloaded, potentially-dependent) // binary operation. return CreateOverloadedBinOp(OpLoc, Opc, Functions, lhs, rhs); } } // Build a built-in binary operation. return CreateBuiltinBinOp(OpLoc, Opc, lhs, rhs); } ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc, Expr *Input) { ExprValueKind VK = VK_RValue; ExprObjectKind OK = OK_Ordinary; QualType resultType; switch (Opc) { case UO_PreInc: case UO_PreDec: case UO_PostInc: case UO_PostDec: resultType = CheckIncrementDecrementOperand(*this, Input, VK, OpLoc, Opc == UO_PreInc || Opc == UO_PostInc, Opc == UO_PreInc || Opc == UO_PreDec); break; case UO_AddrOf: resultType = CheckAddressOfOperand(*this, Input, OpLoc); break; case UO_Deref: DefaultFunctionArrayLvalueConversion(Input); resultType = CheckIndirectionOperand(*this, Input, VK, OpLoc); break; case UO_Plus: case UO_Minus: UsualUnaryConversions(Input); resultType = Input->getType(); if (resultType->isDependentType()) break; if (resultType->isArithmeticType() || // C99 6.5.3.3p1 resultType->isVectorType()) break; else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7 resultType->isEnumeralType()) break; else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6 Opc == UO_Plus && resultType->isPointerType()) break; else if (resultType->isPlaceholderType()) { ExprResult PR = CheckPlaceholderExpr(Input, OpLoc); if (PR.isInvalid()) return ExprError(); return CreateBuiltinUnaryOp(OpLoc, Opc, PR.take()); } return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) << resultType << Input->getSourceRange()); case UO_Not: // bitwise complement UsualUnaryConversions(Input); resultType = Input->getType(); if (resultType->isDependentType()) break; // C99 6.5.3.3p1. We allow complex int and float as a GCC extension. if (resultType->isComplexType() || resultType->isComplexIntegerType()) // C99 does not support '~' for complex conjugation. Diag(OpLoc, diag::ext_integer_complement_complex) << resultType << Input->getSourceRange(); else if (resultType->hasIntegerRepresentation()) break; else if (resultType->isPlaceholderType()) { ExprResult PR = CheckPlaceholderExpr(Input, OpLoc); if (PR.isInvalid()) return ExprError(); return CreateBuiltinUnaryOp(OpLoc, Opc, PR.take()); } else { return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) << resultType << Input->getSourceRange()); } break; case UO_LNot: // logical negation // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5). DefaultFunctionArrayLvalueConversion(Input); resultType = Input->getType(); if (resultType->isDependentType()) break; if (resultType->isScalarType()) { // C99 6.5.3.3p1 // ok, fallthrough } else if (resultType->isPlaceholderType()) { ExprResult PR = CheckPlaceholderExpr(Input, OpLoc); if (PR.isInvalid()) return ExprError(); return CreateBuiltinUnaryOp(OpLoc, Opc, PR.take()); } else { return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) << resultType << Input->getSourceRange()); } // LNot always has type int. C99 6.5.3.3p5. // In C++, it's bool. C++ 5.3.1p8 resultType = Context.getLogicalOperationType(); break; case UO_Real: case UO_Imag: resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real); // _Real and _Imag map ordinary l-values into ordinary l-values. if (Input->getValueKind() != VK_RValue && Input->getObjectKind() == OK_Ordinary) VK = Input->getValueKind(); break; case UO_Extension: resultType = Input->getType(); VK = Input->getValueKind(); OK = Input->getObjectKind(); break; } if (resultType.isNull()) return ExprError(); return Owned(new (Context) UnaryOperator(Input, Opc, resultType, VK, OK, OpLoc)); } ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc, UnaryOperatorKind Opc, Expr *Input) { if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType() && UnaryOperator::getOverloadedOperator(Opc) != OO_None) { // Find all of the overloaded operators visible from this // point. We perform both an operator-name lookup from the local // scope and an argument-dependent lookup based on the types of // the arguments. UnresolvedSet<16> Functions; OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc); if (S && OverOp != OO_None) LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(), Functions); return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input); } return CreateBuiltinUnaryOp(OpLoc, Opc, Input); } // Unary Operators. 'Tok' is the token for the operator. ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Op, Expr *Input) { return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input); } /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo". ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc, LabelDecl *TheDecl) { TheDecl->setUsed(); // Create the AST node. The address of a label always has type 'void*'. return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl, Context.getPointerType(Context.VoidTy))); } ExprResult Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt, SourceLocation RPLoc) { // "({..})" assert(SubStmt && isa(SubStmt) && "Invalid action invocation!"); CompoundStmt *Compound = cast(SubStmt); bool isFileScope = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0); if (isFileScope) return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope)); // FIXME: there are a variety of strange constraints to enforce here, for // example, it is not possible to goto into a stmt expression apparently. // More semantic analysis is needed. // If there are sub stmts in the compound stmt, take the type of the last one // as the type of the stmtexpr. QualType Ty = Context.VoidTy; bool StmtExprMayBindToTemp = false; if (!Compound->body_empty()) { Stmt *LastStmt = Compound->body_back(); LabelStmt *LastLabelStmt = 0; // If LastStmt is a label, skip down through into the body. while (LabelStmt *Label = dyn_cast(LastStmt)) { LastLabelStmt = Label; LastStmt = Label->getSubStmt(); } if (Expr *LastExpr = dyn_cast(LastStmt)) { // Do function/array conversion on the last expression, but not // lvalue-to-rvalue. However, initialize an unqualified type. DefaultFunctionArrayConversion(LastExpr); Ty = LastExpr->getType().getUnqualifiedType(); if (!Ty->isDependentType() && !LastExpr->isTypeDependent()) { ExprResult Res = PerformCopyInitialization( InitializedEntity::InitializeResult(LPLoc, Ty, false), SourceLocation(), Owned(LastExpr)); if (Res.isInvalid()) return ExprError(); if ((LastExpr = Res.takeAs())) { if (!LastLabelStmt) Compound->setLastStmt(LastExpr); else LastLabelStmt->setSubStmt(LastExpr); StmtExprMayBindToTemp = true; } } } } // FIXME: Check that expression type is complete/non-abstract; statement // expressions are not lvalues. Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc); if (StmtExprMayBindToTemp) return MaybeBindToTemporary(ResStmtExpr); return Owned(ResStmtExpr); } ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc, TypeSourceInfo *TInfo, OffsetOfComponent *CompPtr, unsigned NumComponents, SourceLocation RParenLoc) { QualType ArgTy = TInfo->getType(); bool Dependent = ArgTy->isDependentType(); SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange(); // We must have at least one component that refers to the type, and the first // one is known to be a field designator. Verify that the ArgTy represents // a struct/union/class. if (!Dependent && !ArgTy->isRecordType()) return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type) << ArgTy << TypeRange); // Type must be complete per C99 7.17p3 because a declaring a variable // with an incomplete type would be ill-formed. if (!Dependent && RequireCompleteType(BuiltinLoc, ArgTy, PDiag(diag::err_offsetof_incomplete_type) << TypeRange)) return ExprError(); // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a // GCC extension, diagnose them. // FIXME: This diagnostic isn't actually visible because the location is in // a system header! if (NumComponents != 1) Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator) << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd); bool DidWarnAboutNonPOD = false; QualType CurrentType = ArgTy; typedef OffsetOfExpr::OffsetOfNode OffsetOfNode; llvm::SmallVector Comps; llvm::SmallVector Exprs; for (unsigned i = 0; i != NumComponents; ++i) { const OffsetOfComponent &OC = CompPtr[i]; if (OC.isBrackets) { // Offset of an array sub-field. TODO: Should we allow vector elements? if (!CurrentType->isDependentType()) { const ArrayType *AT = Context.getAsArrayType(CurrentType); if(!AT) return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type) << CurrentType); CurrentType = AT->getElementType(); } else CurrentType = Context.DependentTy; // The expression must be an integral expression. // FIXME: An integral constant expression? Expr *Idx = static_cast(OC.U.E); if (!Idx->isTypeDependent() && !Idx->isValueDependent() && !Idx->getType()->isIntegerType()) return ExprError(Diag(Idx->getLocStart(), diag::err_typecheck_subscript_not_integer) << Idx->getSourceRange()); // Record this array index. Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd)); Exprs.push_back(Idx); continue; } // Offset of a field. if (CurrentType->isDependentType()) { // We have the offset of a field, but we can't look into the dependent // type. Just record the identifier of the field. Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd)); CurrentType = Context.DependentTy; continue; } // We need to have a complete type to look into. if (RequireCompleteType(OC.LocStart, CurrentType, diag::err_offsetof_incomplete_type)) return ExprError(); // Look for the designated field. const RecordType *RC = CurrentType->getAs(); if (!RC) return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type) << CurrentType); RecordDecl *RD = RC->getDecl(); // C++ [lib.support.types]p5: // The macro offsetof accepts a restricted set of type arguments in this // International Standard. type shall be a POD structure or a POD union // (clause 9). if (CXXRecordDecl *CRD = dyn_cast(RD)) { if (!CRD->isPOD() && !DidWarnAboutNonPOD && DiagRuntimeBehavior(BuiltinLoc, PDiag(diag::warn_offsetof_non_pod_type) << SourceRange(CompPtr[0].LocStart, OC.LocEnd) << CurrentType)) DidWarnAboutNonPOD = true; } // Look for the field. LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName); LookupQualifiedName(R, RD); FieldDecl *MemberDecl = R.getAsSingle(); IndirectFieldDecl *IndirectMemberDecl = 0; if (!MemberDecl) { if ((IndirectMemberDecl = R.getAsSingle())) MemberDecl = IndirectMemberDecl->getAnonField(); } if (!MemberDecl) return ExprError(Diag(BuiltinLoc, diag::err_no_member) << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, OC.LocEnd)); // C99 7.17p3: // (If the specified member is a bit-field, the behavior is undefined.) // // We diagnose this as an error. if (MemberDecl->getBitWidth()) { Diag(OC.LocEnd, diag::err_offsetof_bitfield) << MemberDecl->getDeclName() << SourceRange(BuiltinLoc, RParenLoc); Diag(MemberDecl->getLocation(), diag::note_bitfield_decl); return ExprError(); } RecordDecl *Parent = MemberDecl->getParent(); if (IndirectMemberDecl) Parent = cast(IndirectMemberDecl->getDeclContext()); // If the member was found in a base class, introduce OffsetOfNodes for // the base class indirections. CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, /*DetectVirtual=*/false); if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) { CXXBasePath &Path = Paths.front(); for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end(); B != BEnd; ++B) Comps.push_back(OffsetOfNode(B->Base)); } if (IndirectMemberDecl) { for (IndirectFieldDecl::chain_iterator FI = IndirectMemberDecl->chain_begin(), FEnd = IndirectMemberDecl->chain_end(); FI != FEnd; FI++) { assert(isa(*FI)); Comps.push_back(OffsetOfNode(OC.LocStart, cast(*FI), OC.LocEnd)); } } else Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd)); CurrentType = MemberDecl->getType().getNonReferenceType(); } return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo, Comps.data(), Comps.size(), Exprs.data(), Exprs.size(), RParenLoc)); } ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S, SourceLocation BuiltinLoc, SourceLocation TypeLoc, ParsedType argty, OffsetOfComponent *CompPtr, unsigned NumComponents, SourceLocation RPLoc) { TypeSourceInfo *ArgTInfo; QualType ArgTy = GetTypeFromParser(argty, &ArgTInfo); if (ArgTy.isNull()) return ExprError(); if (!ArgTInfo) ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc); return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents, RPLoc); } ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, Expr *CondExpr, Expr *LHSExpr, Expr *RHSExpr, SourceLocation RPLoc) { assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)"); ExprValueKind VK = VK_RValue; ExprObjectKind OK = OK_Ordinary; QualType resType; bool ValueDependent = false; if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) { resType = Context.DependentTy; ValueDependent = true; } else { // The conditional expression is required to be a constant expression. llvm::APSInt condEval(32); SourceLocation ExpLoc; if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc)) return ExprError(Diag(ExpLoc, diag::err_typecheck_choose_expr_requires_constant) << CondExpr->getSourceRange()); // If the condition is > zero, then the AST type is the same as the LSHExpr. Expr *ActiveExpr = condEval.getZExtValue() ? LHSExpr : RHSExpr; resType = ActiveExpr->getType(); ValueDependent = ActiveExpr->isValueDependent(); VK = ActiveExpr->getValueKind(); OK = ActiveExpr->getObjectKind(); } return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, VK, OK, RPLoc, resType->isDependentType(), ValueDependent)); } //===----------------------------------------------------------------------===// // Clang Extensions. //===----------------------------------------------------------------------===// /// ActOnBlockStart - This callback is invoked when a block literal is started. void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) { BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc); PushBlockScope(BlockScope, Block); CurContext->addDecl(Block); if (BlockScope) PushDeclContext(BlockScope, Block); else CurContext = Block; } void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) { assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!"); assert(ParamInfo.getContext() == Declarator::BlockLiteralContext); BlockScopeInfo *CurBlock = getCurBlock(); TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope); QualType T = Sig->getType(); // GetTypeForDeclarator always produces a function type for a block // literal signature. Furthermore, it is always a FunctionProtoType // unless the function was written with a typedef. assert(T->isFunctionType() && "GetTypeForDeclarator made a non-function block signature"); // Look for an explicit signature in that function type. FunctionProtoTypeLoc ExplicitSignature; TypeLoc tmp = Sig->getTypeLoc().IgnoreParens(); if (isa(tmp)) { ExplicitSignature = cast(tmp); // Check whether that explicit signature was synthesized by // GetTypeForDeclarator. If so, don't save that as part of the // written signature. if (ExplicitSignature.getLParenLoc() == ExplicitSignature.getRParenLoc()) { // This would be much cheaper if we stored TypeLocs instead of // TypeSourceInfos. TypeLoc Result = ExplicitSignature.getResultLoc(); unsigned Size = Result.getFullDataSize(); Sig = Context.CreateTypeSourceInfo(Result.getType(), Size); Sig->getTypeLoc().initializeFullCopy(Result, Size); ExplicitSignature = FunctionProtoTypeLoc(); } } CurBlock->TheDecl->setSignatureAsWritten(Sig); CurBlock->FunctionType = T; const FunctionType *Fn = T->getAs(); QualType RetTy = Fn->getResultType(); bool isVariadic = (isa(Fn) && cast(Fn)->isVariadic()); CurBlock->TheDecl->setIsVariadic(isVariadic); // Don't allow returning a objc interface by value. if (RetTy->isObjCObjectType()) { Diag(ParamInfo.getSourceRange().getBegin(), diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy; return; } // Context.DependentTy is used as a placeholder for a missing block // return type. TODO: what should we do with declarators like: // ^ * { ... } // If the answer is "apply template argument deduction".... if (RetTy != Context.DependentTy) CurBlock->ReturnType = RetTy; // Push block parameters from the declarator if we had them. llvm::SmallVector Params; if (ExplicitSignature) { for (unsigned I = 0, E = ExplicitSignature.getNumArgs(); I != E; ++I) { ParmVarDecl *Param = ExplicitSignature.getArg(I); if (Param->getIdentifier() == 0 && !Param->isImplicit() && !Param->isInvalidDecl() && !getLangOptions().CPlusPlus) Diag(Param->getLocation(), diag::err_parameter_name_omitted); Params.push_back(Param); } // Fake up parameter variables if we have a typedef, like // ^ fntype { ... } } else if (const FunctionProtoType *Fn = T->getAs()) { for (FunctionProtoType::arg_type_iterator I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) { ParmVarDecl *Param = BuildParmVarDeclForTypedef(CurBlock->TheDecl, ParamInfo.getSourceRange().getBegin(), *I); Params.push_back(Param); } } // Set the parameters on the block decl. if (!Params.empty()) { CurBlock->TheDecl->setParams(Params.data(), Params.size()); CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(), CurBlock->TheDecl->param_end(), /*CheckParameterNames=*/false); } // Finally we can process decl attributes. ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo); if (!isVariadic && CurBlock->TheDecl->getAttr()) { Diag(ParamInfo.getAttributes()->getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1; // FIXME: remove the attribute. } // Put the parameter variables in scope. We can bail out immediately // if we don't have any. if (Params.empty()) return; for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(), E = CurBlock->TheDecl->param_end(); AI != E; ++AI) { (*AI)->setOwningFunction(CurBlock->TheDecl); // If this has an identifier, add it to the scope stack. if ((*AI)->getIdentifier()) { CheckShadow(CurBlock->TheScope, *AI); PushOnScopeChains(*AI, CurBlock->TheScope); } } } /// ActOnBlockError - If there is an error parsing a block, this callback /// is invoked to pop the information about the block from the action impl. void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) { // Pop off CurBlock, handle nested blocks. PopDeclContext(); PopFunctionOrBlockScope(); } /// ActOnBlockStmtExpr - This is called when the body of a block statement /// literal was successfully completed. ^(int x){...} ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc, Stmt *Body, Scope *CurScope) { // If blocks are disabled, emit an error. if (!LangOpts.Blocks) Diag(CaretLoc, diag::err_blocks_disable); BlockScopeInfo *BSI = cast(FunctionScopes.back()); PopDeclContext(); QualType RetTy = Context.VoidTy; if (!BSI->ReturnType.isNull()) RetTy = BSI->ReturnType; bool NoReturn = BSI->TheDecl->getAttr(); QualType BlockTy; // Set the captured variables on the block. BSI->TheDecl->setCaptures(Context, BSI->Captures.begin(), BSI->Captures.end(), BSI->CapturesCXXThis); // If the user wrote a function type in some form, try to use that. if (!BSI->FunctionType.isNull()) { const FunctionType *FTy = BSI->FunctionType->getAs(); FunctionType::ExtInfo Ext = FTy->getExtInfo(); if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true); // Turn protoless block types into nullary block types. if (isa(FTy)) { FunctionProtoType::ExtProtoInfo EPI; EPI.ExtInfo = Ext; BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI); // Otherwise, if we don't need to change anything about the function type, // preserve its sugar structure. } else if (FTy->getResultType() == RetTy && (!NoReturn || FTy->getNoReturnAttr())) { BlockTy = BSI->FunctionType; // Otherwise, make the minimal modifications to the function type. } else { const FunctionProtoType *FPT = cast(FTy); FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); EPI.TypeQuals = 0; // FIXME: silently? EPI.ExtInfo = Ext; BlockTy = Context.getFunctionType(RetTy, FPT->arg_type_begin(), FPT->getNumArgs(), EPI); } // If we don't have a function type, just build one from nothing. } else { FunctionProtoType::ExtProtoInfo EPI; EPI.ExtInfo = FunctionType::ExtInfo(NoReturn, 0, CC_Default); BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI); } DiagnoseUnusedParameters(BSI->TheDecl->param_begin(), BSI->TheDecl->param_end()); BlockTy = Context.getBlockPointerType(BlockTy); // If needed, diagnose invalid gotos and switches in the block. if (getCurFunction()->NeedsScopeChecking() && !hasAnyErrorsInThisFunction()) DiagnoseInvalidJumps(cast(Body)); BSI->TheDecl->setBody(cast(Body)); BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy); // Issue any analysis-based warnings. const sema::AnalysisBasedWarnings::Policy &WP = AnalysisWarnings.getDefaultPolicy(); AnalysisWarnings.IssueWarnings(WP, Result); PopFunctionOrBlockScope(); return Owned(Result); } ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, Expr *expr, ParsedType type, SourceLocation RPLoc) { TypeSourceInfo *TInfo; GetTypeFromParser(type, &TInfo); return BuildVAArgExpr(BuiltinLoc, expr, TInfo, RPLoc); } ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc, Expr *E, TypeSourceInfo *TInfo, SourceLocation RPLoc) { Expr *OrigExpr = E; // Get the va_list type QualType VaListType = Context.getBuiltinVaListType(); if (VaListType->isArrayType()) { // Deal with implicit array decay; for example, on x86-64, // va_list is an array, but it's supposed to decay to // a pointer for va_arg. VaListType = Context.getArrayDecayedType(VaListType); // Make sure the input expression also decays appropriately. UsualUnaryConversions(E); } else { // Otherwise, the va_list argument must be an l-value because // it is modified by va_arg. if (!E->isTypeDependent() && CheckForModifiableLvalue(E, BuiltinLoc, *this)) return ExprError(); } if (!E->isTypeDependent() && !Context.hasSameType(VaListType, E->getType())) { return ExprError(Diag(E->getLocStart(), diag::err_first_argument_to_va_arg_not_of_type_va_list) << OrigExpr->getType() << E->getSourceRange()); } // FIXME: Check that type is complete/non-abstract // FIXME: Warn if a non-POD type is passed in. QualType T = TInfo->getType().getNonLValueExprType(Context); return Owned(new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T)); } ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) { // The type of __null will be int or long, depending on the size of // pointers on the target. QualType Ty; unsigned pw = Context.Target.getPointerWidth(0); if (pw == Context.Target.getIntWidth()) Ty = Context.IntTy; else if (pw == Context.Target.getLongWidth()) Ty = Context.LongTy; else if (pw == Context.Target.getLongLongWidth()) Ty = Context.LongLongTy; else { assert(!"I don't know size of pointer!"); Ty = Context.IntTy; } return Owned(new (Context) GNUNullExpr(Ty, TokenLoc)); } static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType, Expr *SrcExpr, FixItHint &Hint) { if (!SemaRef.getLangOptions().ObjC1) return; const ObjCObjectPointerType *PT = DstType->getAs(); if (!PT) return; // Check if the destination is of type 'id'. if (!PT->isObjCIdType()) { // Check if the destination is the 'NSString' interface. const ObjCInterfaceDecl *ID = PT->getInterfaceDecl(); if (!ID || !ID->getIdentifier()->isStr("NSString")) return; } // Strip off any parens and casts. StringLiteral *SL = dyn_cast(SrcExpr->IgnoreParenCasts()); if (!SL || SL->isWide()) return; Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@"); } bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy, SourceLocation Loc, QualType DstType, QualType SrcType, Expr *SrcExpr, AssignmentAction Action, bool *Complained) { if (Complained) *Complained = false; // Decode the result (notice that AST's are still created for extensions). bool isInvalid = false; unsigned DiagKind; FixItHint Hint; switch (ConvTy) { default: assert(0 && "Unknown conversion type"); case Compatible: return false; case PointerToInt: DiagKind = diag::ext_typecheck_convert_pointer_int; break; case IntToPointer: DiagKind = diag::ext_typecheck_convert_int_pointer; break; case IncompatiblePointer: MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint); DiagKind = diag::ext_typecheck_convert_incompatible_pointer; break; case IncompatiblePointerSign: DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign; break; case FunctionVoidPointer: DiagKind = diag::ext_typecheck_convert_pointer_void_func; break; case IncompatiblePointerDiscardsQualifiers: { // Perform array-to-pointer decay if necessary. if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType); Qualifiers lhq = SrcType->getPointeeType().getQualifiers(); Qualifiers rhq = DstType->getPointeeType().getQualifiers(); if (lhq.getAddressSpace() != rhq.getAddressSpace()) { DiagKind = diag::err_typecheck_incompatible_address_space; break; } llvm_unreachable("unknown error case for discarding qualifiers!"); // fallthrough } case CompatiblePointerDiscardsQualifiers: // If the qualifiers lost were because we were applying the // (deprecated) C++ conversion from a string literal to a char* // (or wchar_t*), then there was no error (C++ 4.2p2). FIXME: // Ideally, this check would be performed in // checkPointerTypesForAssignment. However, that would require a // bit of refactoring (so that the second argument is an // expression, rather than a type), which should be done as part // of a larger effort to fix checkPointerTypesForAssignment for // C++ semantics. if (getLangOptions().CPlusPlus && IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType)) return false; DiagKind = diag::ext_typecheck_convert_discards_qualifiers; break; case IncompatibleNestedPointerQualifiers: DiagKind = diag::ext_nested_pointer_qualifier_mismatch; break; case IntToBlockPointer: DiagKind = diag::err_int_to_block_pointer; break; case IncompatibleBlockPointer: DiagKind = diag::err_typecheck_convert_incompatible_block_pointer; break; case IncompatibleObjCQualifiedId: // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since // it can give a more specific diagnostic. DiagKind = diag::warn_incompatible_qualified_id; break; case IncompatibleVectors: DiagKind = diag::warn_incompatible_vectors; break; case Incompatible: DiagKind = diag::err_typecheck_convert_incompatible; isInvalid = true; break; } QualType FirstType, SecondType; switch (Action) { case AA_Assigning: case AA_Initializing: // The destination type comes first. FirstType = DstType; SecondType = SrcType; break; case AA_Returning: case AA_Passing: case AA_Converting: case AA_Sending: case AA_Casting: // The source type comes first. FirstType = SrcType; SecondType = DstType; break; } Diag(Loc, DiagKind) << FirstType << SecondType << Action << SrcExpr->getSourceRange() << Hint; if (Complained) *Complained = true; return isInvalid; } bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){ llvm::APSInt ICEResult; if (E->isIntegerConstantExpr(ICEResult, Context)) { if (Result) *Result = ICEResult; return false; } Expr::EvalResult EvalResult; if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() || EvalResult.HasSideEffects) { Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange(); if (EvalResult.Diag) { // We only show the note if it's not the usual "invalid subexpression" // or if it's actually in a subexpression. if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice || E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens()) Diag(EvalResult.DiagLoc, EvalResult.Diag); } return true; } Diag(E->getExprLoc(), diag::ext_expr_not_ice) << E->getSourceRange(); if (EvalResult.Diag && Diags.getDiagnosticLevel(diag::ext_expr_not_ice, EvalResult.DiagLoc) != Diagnostic::Ignored) Diag(EvalResult.DiagLoc, EvalResult.Diag); if (Result) *Result = EvalResult.Val.getInt(); return false; } void Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) { ExprEvalContexts.push_back( ExpressionEvaluationContextRecord(NewContext, ExprTemporaries.size())); } void Sema::PopExpressionEvaluationContext() { // Pop the current expression evaluation context off the stack. ExpressionEvaluationContextRecord Rec = ExprEvalContexts.back(); ExprEvalContexts.pop_back(); if (Rec.Context == PotentiallyPotentiallyEvaluated) { if (Rec.PotentiallyReferenced) { // Mark any remaining declarations in the current position of the stack // as "referenced". If they were not meant to be referenced, semantic // analysis would have eliminated them (e.g., in ActOnCXXTypeId). for (PotentiallyReferencedDecls::iterator I = Rec.PotentiallyReferenced->begin(), IEnd = Rec.PotentiallyReferenced->end(); I != IEnd; ++I) MarkDeclarationReferenced(I->first, I->second); } if (Rec.PotentiallyDiagnosed) { // Emit any pending diagnostics. for (PotentiallyEmittedDiagnostics::iterator I = Rec.PotentiallyDiagnosed->begin(), IEnd = Rec.PotentiallyDiagnosed->end(); I != IEnd; ++I) Diag(I->first, I->second); } } // When are coming out of an unevaluated context, clear out any // temporaries that we may have created as part of the evaluation of // the expression in that context: they aren't relevant because they // will never be constructed. if (Rec.Context == Unevaluated && ExprTemporaries.size() > Rec.NumTemporaries) ExprTemporaries.erase(ExprTemporaries.begin() + Rec.NumTemporaries, ExprTemporaries.end()); // Destroy the popped expression evaluation record. Rec.Destroy(); } /// \brief Note that the given declaration was referenced in the source code. /// /// This routine should be invoke whenever a given declaration is referenced /// in the source code, and where that reference occurred. If this declaration /// reference means that the the declaration is used (C++ [basic.def.odr]p2, /// C99 6.9p3), then the declaration will be marked as used. /// /// \param Loc the location where the declaration was referenced. /// /// \param D the declaration that has been referenced by the source code. void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) { assert(D && "No declaration?"); if (D->isUsed(false)) return; // Mark a parameter or variable declaration "used", regardless of whether we're in a // template or not. The reason for this is that unevaluated expressions // (e.g. (void)sizeof()) constitute a use for warning purposes (-Wunused-variables and // -Wunused-parameters) if (isa(D) || (isa(D) && D->getDeclContext()->isFunctionOrMethod())) { D->setUsed(); return; } if (!isa(D) && !isa(D)) return; // Do not mark anything as "used" within a dependent context; wait for // an instantiation. if (CurContext->isDependentContext()) return; switch (ExprEvalContexts.back().Context) { case Unevaluated: // We are in an expression that is not potentially evaluated; do nothing. return; case PotentiallyEvaluated: // We are in a potentially-evaluated expression, so this declaration is // "used"; handle this below. break; case PotentiallyPotentiallyEvaluated: // We are in an expression that may be potentially evaluated; queue this // declaration reference until we know whether the expression is // potentially evaluated. ExprEvalContexts.back().addReferencedDecl(Loc, D); return; case PotentiallyEvaluatedIfUsed: // Referenced declarations will only be used if the construct in the // containing expression is used. return; } // Note that this declaration has been used. if (CXXConstructorDecl *Constructor = dyn_cast(D)) { unsigned TypeQuals; if (Constructor->isImplicit() && Constructor->isDefaultConstructor()) { if (Constructor->getParent()->hasTrivialConstructor()) return; if (!Constructor->isUsed(false)) DefineImplicitDefaultConstructor(Loc, Constructor); } else if (Constructor->isImplicit() && Constructor->isCopyConstructor(TypeQuals)) { if (!Constructor->isUsed(false)) DefineImplicitCopyConstructor(Loc, Constructor, TypeQuals); } MarkVTableUsed(Loc, Constructor->getParent()); } else if (CXXDestructorDecl *Destructor = dyn_cast(D)) { if (Destructor->isImplicit() && !Destructor->isUsed(false)) DefineImplicitDestructor(Loc, Destructor); if (Destructor->isVirtual()) MarkVTableUsed(Loc, Destructor->getParent()); } else if (CXXMethodDecl *MethodDecl = dyn_cast(D)) { if (MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() && MethodDecl->getOverloadedOperator() == OO_Equal) { if (!MethodDecl->isUsed(false)) DefineImplicitCopyAssignment(Loc, MethodDecl); } else if (MethodDecl->isVirtual()) MarkVTableUsed(Loc, MethodDecl->getParent()); } if (FunctionDecl *Function = dyn_cast(D)) { // Recursive functions should be marked when used from another function. if (CurContext == Function) return; // Implicit instantiation of function templates and member functions of // class templates. if (Function->isImplicitlyInstantiable()) { bool AlreadyInstantiated = false; if (FunctionTemplateSpecializationInfo *SpecInfo = Function->getTemplateSpecializationInfo()) { if (SpecInfo->getPointOfInstantiation().isInvalid()) SpecInfo->setPointOfInstantiation(Loc); else if (SpecInfo->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) AlreadyInstantiated = true; } else if (MemberSpecializationInfo *MSInfo = Function->getMemberSpecializationInfo()) { if (MSInfo->getPointOfInstantiation().isInvalid()) MSInfo->setPointOfInstantiation(Loc); else if (MSInfo->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) AlreadyInstantiated = true; } if (!AlreadyInstantiated) { if (isa(Function->getDeclContext()) && cast(Function->getDeclContext())->isLocalClass()) PendingLocalImplicitInstantiations.push_back(std::make_pair(Function, Loc)); else PendingInstantiations.push_back(std::make_pair(Function, Loc)); } } else { // Walk redefinitions, as some of them may be instantiable. for (FunctionDecl::redecl_iterator i(Function->redecls_begin()), e(Function->redecls_end()); i != e; ++i) { if (!i->isUsed(false) && i->isImplicitlyInstantiable()) MarkDeclarationReferenced(Loc, *i); } } // Keep track of used but undefined functions. if (!Function->isPure() && !Function->hasBody() && Function->getLinkage() != ExternalLinkage) { SourceLocation &old = UndefinedInternals[Function->getCanonicalDecl()]; if (old.isInvalid()) old = Loc; } Function->setUsed(true); return; } if (VarDecl *Var = dyn_cast(D)) { // Implicit instantiation of static data members of class templates. if (Var->isStaticDataMember() && Var->getInstantiatedFromStaticDataMember()) { MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo(); assert(MSInfo && "Missing member specialization information?"); if (MSInfo->getPointOfInstantiation().isInvalid() && MSInfo->getTemplateSpecializationKind()== TSK_ImplicitInstantiation) { MSInfo->setPointOfInstantiation(Loc); PendingInstantiations.push_back(std::make_pair(Var, Loc)); } } // Keep track of used but undefined variables. if (Var->hasDefinition() == VarDecl::DeclarationOnly && Var->getLinkage() != ExternalLinkage) { SourceLocation &old = UndefinedInternals[Var->getCanonicalDecl()]; if (old.isInvalid()) old = Loc; } D->setUsed(true); return; } } namespace { // Mark all of the declarations referenced // FIXME: Not fully implemented yet! We need to have a better understanding // of when we're entering class MarkReferencedDecls : public RecursiveASTVisitor { Sema &S; SourceLocation Loc; public: typedef RecursiveASTVisitor Inherited; MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { } bool TraverseTemplateArgument(const TemplateArgument &Arg); bool TraverseRecordType(RecordType *T); }; } bool MarkReferencedDecls::TraverseTemplateArgument( const TemplateArgument &Arg) { if (Arg.getKind() == TemplateArgument::Declaration) { S.MarkDeclarationReferenced(Loc, Arg.getAsDecl()); } return Inherited::TraverseTemplateArgument(Arg); } bool MarkReferencedDecls::TraverseRecordType(RecordType *T) { if (ClassTemplateSpecializationDecl *Spec = dyn_cast(T->getDecl())) { const TemplateArgumentList &Args = Spec->getTemplateArgs(); return TraverseTemplateArguments(Args.data(), Args.size()); } return true; } void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) { MarkReferencedDecls Marker(*this, Loc); Marker.TraverseType(Context.getCanonicalType(T)); } namespace { /// \brief Helper class that marks all of the declarations referenced by /// potentially-evaluated subexpressions as "referenced". class EvaluatedExprMarker : public EvaluatedExprVisitor { Sema &S; public: typedef EvaluatedExprVisitor Inherited; explicit EvaluatedExprMarker(Sema &S) : Inherited(S.Context), S(S) { } void VisitDeclRefExpr(DeclRefExpr *E) { S.MarkDeclarationReferenced(E->getLocation(), E->getDecl()); } void VisitMemberExpr(MemberExpr *E) { S.MarkDeclarationReferenced(E->getMemberLoc(), E->getMemberDecl()); Inherited::VisitMemberExpr(E); } void VisitCXXNewExpr(CXXNewExpr *E) { if (E->getConstructor()) S.MarkDeclarationReferenced(E->getLocStart(), E->getConstructor()); if (E->getOperatorNew()) S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorNew()); if (E->getOperatorDelete()) S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorDelete()); Inherited::VisitCXXNewExpr(E); } void VisitCXXDeleteExpr(CXXDeleteExpr *E) { if (E->getOperatorDelete()) S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorDelete()); QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType()); if (const RecordType *DestroyedRec = Destroyed->getAs()) { CXXRecordDecl *Record = cast(DestroyedRec->getDecl()); S.MarkDeclarationReferenced(E->getLocStart(), S.LookupDestructor(Record)); } Inherited::VisitCXXDeleteExpr(E); } void VisitCXXConstructExpr(CXXConstructExpr *E) { S.MarkDeclarationReferenced(E->getLocStart(), E->getConstructor()); Inherited::VisitCXXConstructExpr(E); } void VisitBlockDeclRefExpr(BlockDeclRefExpr *E) { S.MarkDeclarationReferenced(E->getLocation(), E->getDecl()); } void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) { Visit(E->getExpr()); } }; } /// \brief Mark any declarations that appear within this expression or any /// potentially-evaluated subexpressions as "referenced". void Sema::MarkDeclarationsReferencedInExpr(Expr *E) { EvaluatedExprMarker(*this).Visit(E); } /// \brief Emit a diagnostic that describes an effect on the run-time behavior /// of the program being compiled. /// /// This routine emits the given diagnostic when the code currently being /// type-checked is "potentially evaluated", meaning that there is a /// possibility that the code will actually be executable. Code in sizeof() /// expressions, code used only during overload resolution, etc., are not /// potentially evaluated. This routine will suppress such diagnostics or, /// in the absolutely nutty case of potentially potentially evaluated /// expressions (C++ typeid), queue the diagnostic to potentially emit it /// later. /// /// This routine should be used for all diagnostics that describe the run-time /// behavior of a program, such as passing a non-POD value through an ellipsis. /// Failure to do so will likely result in spurious diagnostics or failures /// during overload resolution or within sizeof/alignof/typeof/typeid. bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const PartialDiagnostic &PD) { switch (ExprEvalContexts.back().Context ) { case Unevaluated: // The argument will never be evaluated, so don't complain. break; case PotentiallyEvaluated: case PotentiallyEvaluatedIfUsed: Diag(Loc, PD); return true; case PotentiallyPotentiallyEvaluated: ExprEvalContexts.back().addDiagnostic(Loc, PD); break; } return false; } bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc, CallExpr *CE, FunctionDecl *FD) { if (ReturnType->isVoidType() || !ReturnType->isIncompleteType()) return false; PartialDiagnostic Note = FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here) << FD->getDeclName() : PDiag(); SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation(); if (RequireCompleteType(Loc, ReturnType, FD ? PDiag(diag::err_call_function_incomplete_return) << CE->getSourceRange() << FD->getDeclName() : PDiag(diag::err_call_incomplete_return) << CE->getSourceRange(), std::make_pair(NoteLoc, Note))) return true; return false; } // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses // will prevent this condition from triggering, which is what we want. void Sema::DiagnoseAssignmentAsCondition(Expr *E) { SourceLocation Loc; unsigned diagnostic = diag::warn_condition_is_assignment; bool IsOrAssign = false; if (isa(E)) { BinaryOperator *Op = cast(E); if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign) return; IsOrAssign = Op->getOpcode() == BO_OrAssign; // Greylist some idioms by putting them into a warning subcategory. if (ObjCMessageExpr *ME = dyn_cast(Op->getRHS()->IgnoreParenCasts())) { Selector Sel = ME->getSelector(); // self = [ init...] if (isSelfExpr(Op->getLHS()) && Sel.getNameForSlot(0).startswith("init")) diagnostic = diag::warn_condition_is_idiomatic_assignment; // = [ nextObject] else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject") diagnostic = diag::warn_condition_is_idiomatic_assignment; } Loc = Op->getOperatorLoc(); } else if (isa(E)) { CXXOperatorCallExpr *Op = cast(E); if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual) return; IsOrAssign = Op->getOperator() == OO_PipeEqual; Loc = Op->getOperatorLoc(); } else { // Not an assignment. return; } SourceLocation Open = E->getSourceRange().getBegin(); SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd()); Diag(Loc, diagnostic) << E->getSourceRange(); if (IsOrAssign) Diag(Loc, diag::note_condition_or_assign_to_comparison) << FixItHint::CreateReplacement(Loc, "!="); else Diag(Loc, diag::note_condition_assign_to_comparison) << FixItHint::CreateReplacement(Loc, "=="); Diag(Loc, diag::note_condition_assign_silence) << FixItHint::CreateInsertion(Open, "(") << FixItHint::CreateInsertion(Close, ")"); } /// \brief Redundant parentheses over an equality comparison can indicate /// that the user intended an assignment used as condition. void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *parenE) { // Don't warn if the parens came from a macro. SourceLocation parenLoc = parenE->getLocStart(); if (parenLoc.isInvalid() || parenLoc.isMacroID()) return; Expr *E = parenE->IgnoreParens(); if (BinaryOperator *opE = dyn_cast(E)) if (opE->getOpcode() == BO_EQ && opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context) == Expr::MLV_Valid) { SourceLocation Loc = opE->getOperatorLoc(); Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange(); Diag(Loc, diag::note_equality_comparison_to_assign) << FixItHint::CreateReplacement(Loc, "="); Diag(Loc, diag::note_equality_comparison_silence) << FixItHint::CreateRemoval(parenE->getSourceRange().getBegin()) << FixItHint::CreateRemoval(parenE->getSourceRange().getEnd()); } } bool Sema::CheckBooleanCondition(Expr *&E, SourceLocation Loc) { DiagnoseAssignmentAsCondition(E); if (ParenExpr *parenE = dyn_cast(E)) DiagnoseEqualityWithExtraParens(parenE); if (!E->isTypeDependent()) { if (E->isBoundMemberFunction(Context)) return Diag(E->getLocStart(), diag::err_invalid_use_of_bound_member_func) << E->getSourceRange(); if (getLangOptions().CPlusPlus) return CheckCXXBooleanCondition(E); // C++ 6.4p4 DefaultFunctionArrayLvalueConversion(E); QualType T = E->getType(); if (!T->isScalarType()) // C99 6.8.4.1p1 return Diag(Loc, diag::err_typecheck_statement_requires_scalar) << T << E->getSourceRange(); } return false; } ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc, Expr *Sub) { if (!Sub) return ExprError(); if (CheckBooleanCondition(Sub, Loc)) return ExprError(); return Owned(Sub); } /// Check for operands with placeholder types and complain if found. /// Returns true if there was an error and no recovery was possible. ExprResult Sema::CheckPlaceholderExpr(Expr *E, SourceLocation Loc) { const BuiltinType *BT = E->getType()->getAs(); if (!BT || !BT->isPlaceholderType()) return Owned(E); // If this is overload, check for a single overload. assert(BT->getKind() == BuiltinType::Overload); if (FunctionDecl *Specialization = ResolveSingleFunctionTemplateSpecialization(E)) { // The access doesn't really matter in this case. DeclAccessPair Found = DeclAccessPair::make(Specialization, Specialization->getAccess()); E = FixOverloadedFunctionReference(E, Found, Specialization); if (!E) return ExprError(); return Owned(E); } Diag(Loc, diag::err_ovl_unresolvable) << E->getSourceRange(); return ExprError(); }