//===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass implements an idiom recognizer that transforms simple loops into a // non-loop form. In cases that this kicks in, it can be a significant // performance win. // // If compiling for code size we avoid idiom recognition if the resulting // code could be larger than the code for the original loop. One way this could // happen is if the loop is not removable after idiom recognition due to the // presence of non-idiom instructions. The initial implementation of the // heuristics applies to idioms in multi-block loops. // //===----------------------------------------------------------------------===// // // TODO List: // // Future loop memory idioms to recognize: // memcmp, memmove, strlen, etc. // Future floating point idioms to recognize in -ffast-math mode: // fpowi // Future integer operation idioms to recognize: // ctpop // // Beware that isel's default lowering for ctpop is highly inefficient for // i64 and larger types when i64 is legal and the value has few bits set. It // would be good to enhance isel to emit a loop for ctpop in this case. // // This could recognize common matrix multiplies and dot product idioms and // replace them with calls to BLAS (if linked in??). // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringRef.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/LoopAccessAnalysis.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/MemoryLocation.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpander.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/Type.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/IR/ValueHandle.h" #include "llvm/IR/Verifier.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Scalar/LoopPassManager.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/BuildLibCalls.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/LoopUtils.h" #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "loop-idiom" STATISTIC(NumMemSet, "Number of memset's formed from loop stores"); STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores"); STATISTIC(NumBCmp, "Number of memcmp's formed from loop 2xload+eq-compare"); static cl::opt UseLIRCodeSizeHeurs( "use-lir-code-size-heurs", cl::desc("Use loop idiom recognition code size heuristics when compiling" "with -Os/-Oz"), cl::init(true), cl::Hidden); namespace { // FIXME: reinventing the wheel much? Is there a cleaner solution? struct PMAbstraction { virtual void markLoopAsDeleted(Loop *L) = 0; virtual ~PMAbstraction() = default; }; struct LegacyPMAbstraction : PMAbstraction { LPPassManager &LPM; LegacyPMAbstraction(LPPassManager &LPM) : LPM(LPM) {} virtual ~LegacyPMAbstraction() = default; void markLoopAsDeleted(Loop *L) override { LPM.markLoopAsDeleted(*L); } }; struct NewPMAbstraction : PMAbstraction { LPMUpdater &Updater; NewPMAbstraction(LPMUpdater &Updater) : Updater(Updater) {} virtual ~NewPMAbstraction() = default; void markLoopAsDeleted(Loop *L) override { Updater.markLoopAsDeleted(*L, L->getName()); } }; class LoopIdiomRecognize { Loop *CurLoop = nullptr; AliasAnalysis *AA; DominatorTree *DT; LoopInfo *LI; ScalarEvolution *SE; TargetLibraryInfo *TLI; const TargetTransformInfo *TTI; const DataLayout *DL; PMAbstraction &LoopDeleter; OptimizationRemarkEmitter &ORE; bool ApplyCodeSizeHeuristics; public: explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, TargetLibraryInfo *TLI, const TargetTransformInfo *TTI, const DataLayout *DL, PMAbstraction &LoopDeleter, OptimizationRemarkEmitter &ORE) : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), LoopDeleter(LoopDeleter), ORE(ORE) {} bool runOnLoop(Loop *L); private: using StoreList = SmallVector; using StoreListMap = MapVector; StoreListMap StoreRefsForMemset; StoreListMap StoreRefsForMemsetPattern; StoreList StoreRefsForMemcpy; bool HasMemset; bool HasMemsetPattern; bool HasMemcpy; bool HasMemCmp; bool HasBCmp; /// Return code for isLegalStore() enum LegalStoreKind { None = 0, Memset, MemsetPattern, Memcpy, UnorderedAtomicMemcpy, DontUse // Dummy retval never to be used. Allows catching errors in retval // handling. }; /// \name Countable Loop Idiom Handling /// @{ bool runOnCountableLoop(); bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount, SmallVectorImpl &ExitBlocks); void collectStores(BasicBlock *BB); LegalStoreKind isLegalStore(StoreInst *SI); enum class ForMemset { No, Yes }; bool processLoopStores(SmallVectorImpl &SL, const SCEV *BECount, ForMemset For); bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount); bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize, unsigned StoreAlignment, Value *StoredVal, Instruction *TheStore, SmallPtrSetImpl &Stores, const SCEVAddRecExpr *Ev, const SCEV *BECount, bool NegStride, bool IsLoopMemset = false); bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount); bool avoidLIRForMultiBlockLoop(bool IsMemset = false, bool IsLoopMemset = false); /// @} /// \name Noncountable Loop Idiom Handling /// @{ bool runOnNoncountableLoop(); struct CmpLoopStructure { Value *BCmpValue, *LatchCmpValue; BasicBlock *HeaderBrEqualBB, *HeaderBrUnequalBB; BasicBlock *LatchBrFinishBB, *LatchBrContinueBB; }; bool matchBCmpLoopStructure(CmpLoopStructure &CmpLoop) const; struct CmpOfLoads { ICmpInst::Predicate BCmpPred; Value *LoadSrcA, *LoadSrcB; Value *LoadA, *LoadB; }; bool matchBCmpOfLoads(Value *BCmpValue, CmpOfLoads &CmpOfLoads) const; bool recognizeBCmpLoopControlFlow(const CmpOfLoads &CmpOfLoads, CmpLoopStructure &CmpLoop) const; bool recognizeBCmpLoopSCEV(uint64_t BCmpTyBytes, CmpOfLoads &CmpOfLoads, const SCEV *&SrcA, const SCEV *&SrcB, const SCEV *&Iterations) const; bool detectBCmpIdiom(ICmpInst *&BCmpInst, CmpInst *&LatchCmpInst, LoadInst *&LoadA, LoadInst *&LoadB, const SCEV *&SrcA, const SCEV *&SrcB, const SCEV *&NBytes) const; BasicBlock *transformBCmpControlFlow(ICmpInst *ComparedEqual); void transformLoopToBCmp(ICmpInst *BCmpInst, CmpInst *LatchCmpInst, LoadInst *LoadA, LoadInst *LoadB, const SCEV *SrcA, const SCEV *SrcB, const SCEV *NBytes); bool recognizeBCmp(); bool recognizePopcount(); void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst, PHINode *CntPhi, Value *Var); bool recognizeAndInsertFFS(); /// Find First Set: ctlz or cttz void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB, Instruction *CntInst, PHINode *CntPhi, Value *Var, Instruction *DefX, const DebugLoc &DL, bool ZeroCheck, bool IsCntPhiUsedOutsideLoop); /// @} }; class LoopIdiomRecognizeLegacyPass : public LoopPass { public: static char ID; explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) { initializeLoopIdiomRecognizeLegacyPassPass( *PassRegistry::getPassRegistry()); } bool runOnLoop(Loop *L, LPPassManager &LPM) override { if (skipLoop(L)) return false; AliasAnalysis *AA = &getAnalysis().getAAResults(); DominatorTree *DT = &getAnalysis().getDomTree(); LoopInfo *LI = &getAnalysis().getLoopInfo(); ScalarEvolution *SE = &getAnalysis().getSE(); TargetLibraryInfo *TLI = &getAnalysis().getTLI( *L->getHeader()->getParent()); const TargetTransformInfo *TTI = &getAnalysis().getTTI( *L->getHeader()->getParent()); const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout(); LegacyPMAbstraction LoopDeleter(LPM); // For the old PM, we can't use OptimizationRemarkEmitter as an analysis // pass. Function analyses need to be preserved across loop transformations // but ORE cannot be preserved (see comment before the pass definition). OptimizationRemarkEmitter ORE(L->getHeader()->getParent()); LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, DL, LoopDeleter, ORE); return LIR.runOnLoop(L); } /// This transformation requires natural loop information & requires that /// loop preheaders be inserted into the CFG. void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); getLoopAnalysisUsage(AU); } }; } // end anonymous namespace char LoopIdiomRecognizeLegacyPass::ID = 0; PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR, LPMUpdater &Updater) { const auto *DL = &L.getHeader()->getModule()->getDataLayout(); const auto &FAM = AM.getResult(L, AR).getManager(); Function *F = L.getHeader()->getParent(); auto *ORE = FAM.getCachedResult(*F); // FIXME: This should probably be optional rather than required. if (!ORE) report_fatal_error( "LoopIdiomRecognizePass: OptimizationRemarkEmitterAnalysis not cached " "at a higher level"); NewPMAbstraction LoopDeleter(Updater); LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI, DL, LoopDeleter, *ORE); if (!LIR.runOnLoop(&L)) return PreservedAnalyses::all(); return getLoopPassPreservedAnalyses(); } INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom", "Recognize loop idioms", false, false) INITIALIZE_PASS_DEPENDENCY(LoopPass) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom", "Recognize loop idioms", false, false) Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); } static void deleteDeadInstruction(Instruction *I) { I->replaceAllUsesWith(UndefValue::get(I->getType())); I->eraseFromParent(); } //===----------------------------------------------------------------------===// // // Implementation of LoopIdiomRecognize // //===----------------------------------------------------------------------===// bool LoopIdiomRecognize::runOnLoop(Loop *L) { CurLoop = L; // If the loop could not be converted to canonical form, it must have an // indirectbr in it, just give up. if (!L->getLoopPreheader()) return false; // Disable loop idiom recognition if the function's name is a common idiom. StringRef Name = L->getHeader()->getParent()->getName(); if (Name == "memset" || Name == "memcpy" || Name == "memcmp" || Name == "bcmp") return false; // Determine if code size heuristics need to be applied. ApplyCodeSizeHeuristics = L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs; HasMemset = TLI->has(LibFunc_memset); HasMemsetPattern = TLI->has(LibFunc_memset_pattern16); HasMemcpy = TLI->has(LibFunc_memcpy); HasMemCmp = TLI->has(LibFunc_memcmp); HasBCmp = TLI->has(LibFunc_bcmp); if (HasMemset || HasMemsetPattern || HasMemcpy || HasMemCmp || HasBCmp) if (SE->hasLoopInvariantBackedgeTakenCount(L)) return runOnCountableLoop(); return runOnNoncountableLoop(); } bool LoopIdiomRecognize::runOnCountableLoop() { const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop); assert(!isa(BECount) && "runOnCountableLoop() called on a loop without a predictable" "backedge-taken count"); // If this loop executes exactly one time, then it should be peeled, not // optimized by this pass. if (const SCEVConstant *BECst = dyn_cast(BECount)) if (BECst->getAPInt() == 0) return false; SmallVector ExitBlocks; CurLoop->getUniqueExitBlocks(ExitBlocks); LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F[" << CurLoop->getHeader()->getParent()->getName() << "] Countable Loop %" << CurLoop->getHeader()->getName() << "\n"); bool MadeChange = false; // The following transforms hoist stores/memsets into the loop pre-header. // Give up if the loop has instructions may throw. SimpleLoopSafetyInfo SafetyInfo; SafetyInfo.computeLoopSafetyInfo(CurLoop); if (SafetyInfo.anyBlockMayThrow()) return MadeChange; // Scan all the blocks in the loop that are not in subloops. for (auto *BB : CurLoop->getBlocks()) { // Ignore blocks in subloops. if (LI->getLoopFor(BB) != CurLoop) continue; MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks); } return MadeChange; } static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) { const SCEVConstant *ConstStride = cast(StoreEv->getOperand(1)); return ConstStride->getAPInt(); } /// getMemSetPatternValue - If a strided store of the specified value is safe to /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should /// be passed in. Otherwise, return null. /// /// Note that we don't ever attempt to use memset_pattern8 or 4, because these /// just replicate their input array and then pass on to memset_pattern16. static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) { // FIXME: This could check for UndefValue because it can be merged into any // other valid pattern. // If the value isn't a constant, we can't promote it to being in a constant // array. We could theoretically do a store to an alloca or something, but // that doesn't seem worthwhile. Constant *C = dyn_cast(V); if (!C) return nullptr; // Only handle simple values that are a power of two bytes in size. uint64_t Size = DL->getTypeSizeInBits(V->getType()); if (Size == 0 || (Size & 7) || (Size & (Size - 1))) return nullptr; // Don't care enough about darwin/ppc to implement this. if (DL->isBigEndian()) return nullptr; // Convert to size in bytes. Size /= 8; // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see // if the top and bottom are the same (e.g. for vectors and large integers). if (Size > 16) return nullptr; // If the constant is exactly 16 bytes, just use it. if (Size == 16) return C; // Otherwise, we'll use an array of the constants. unsigned ArraySize = 16 / Size; ArrayType *AT = ArrayType::get(V->getType(), ArraySize); return ConstantArray::get(AT, std::vector(ArraySize, C)); } LoopIdiomRecognize::LegalStoreKind LoopIdiomRecognize::isLegalStore(StoreInst *SI) { // Don't touch volatile stores. if (SI->isVolatile()) return LegalStoreKind::None; // We only want simple or unordered-atomic stores. if (!SI->isUnordered()) return LegalStoreKind::None; // Don't convert stores of non-integral pointer types to memsets (which stores // integers). if (DL->isNonIntegralPointerType(SI->getValueOperand()->getType())) return LegalStoreKind::None; // Avoid merging nontemporal stores. if (SI->getMetadata(LLVMContext::MD_nontemporal)) return LegalStoreKind::None; Value *StoredVal = SI->getValueOperand(); Value *StorePtr = SI->getPointerOperand(); // Reject stores that are so large that they overflow an unsigned. uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType()); if ((SizeInBits & 7) || (SizeInBits >> 32) != 0) return LegalStoreKind::None; // See if the pointer expression is an AddRec like {base,+,1} on the current // loop, which indicates a strided store. If we have something else, it's a // random store we can't handle. const SCEVAddRecExpr *StoreEv = dyn_cast(SE->getSCEV(StorePtr)); if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) return LegalStoreKind::None; // Check to see if we have a constant stride. if (!isa(StoreEv->getOperand(1))) return LegalStoreKind::None; // See if the store can be turned into a memset. // If the stored value is a byte-wise value (like i32 -1), then it may be // turned into a memset of i8 -1, assuming that all the consecutive bytes // are stored. A store of i32 0x01020304 can never be turned into a memset, // but it can be turned into memset_pattern if the target supports it. Value *SplatValue = isBytewiseValue(StoredVal, *DL); Constant *PatternValue = nullptr; // Note: memset and memset_pattern on unordered-atomic is yet not supported bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple(); // If we're allowed to form a memset, and the stored value would be // acceptable for memset, use it. if (!UnorderedAtomic && HasMemset && SplatValue && // Verify that the stored value is loop invariant. If not, we can't // promote the memset. CurLoop->isLoopInvariant(SplatValue)) { // It looks like we can use SplatValue. return LegalStoreKind::Memset; } else if (!UnorderedAtomic && HasMemsetPattern && // Don't create memset_pattern16s with address spaces. StorePtr->getType()->getPointerAddressSpace() == 0 && (PatternValue = getMemSetPatternValue(StoredVal, DL))) { // It looks like we can use PatternValue! return LegalStoreKind::MemsetPattern; } // Otherwise, see if the store can be turned into a memcpy. if (HasMemcpy) { // Check to see if the stride matches the size of the store. If so, then we // know that every byte is touched in the loop. APInt Stride = getStoreStride(StoreEv); unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); if (StoreSize != Stride && StoreSize != -Stride) return LegalStoreKind::None; // The store must be feeding a non-volatile load. LoadInst *LI = dyn_cast(SI->getValueOperand()); // Only allow non-volatile loads if (!LI || LI->isVolatile()) return LegalStoreKind::None; // Only allow simple or unordered-atomic loads if (!LI->isUnordered()) return LegalStoreKind::None; // See if the pointer expression is an AddRec like {base,+,1} on the current // loop, which indicates a strided load. If we have something else, it's a // random load we can't handle. const SCEVAddRecExpr *LoadEv = dyn_cast(SE->getSCEV(LI->getPointerOperand())); if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) return LegalStoreKind::None; // The store and load must share the same stride. if (StoreEv->getOperand(1) != LoadEv->getOperand(1)) return LegalStoreKind::None; // Success. This store can be converted into a memcpy. UnorderedAtomic = UnorderedAtomic || LI->isAtomic(); return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy : LegalStoreKind::Memcpy; } // This store can't be transformed into a memset/memcpy. return LegalStoreKind::None; } void LoopIdiomRecognize::collectStores(BasicBlock *BB) { StoreRefsForMemset.clear(); StoreRefsForMemsetPattern.clear(); StoreRefsForMemcpy.clear(); for (Instruction &I : *BB) { StoreInst *SI = dyn_cast(&I); if (!SI) continue; // Make sure this is a strided store with a constant stride. switch (isLegalStore(SI)) { case LegalStoreKind::None: // Nothing to do break; case LegalStoreKind::Memset: { // Find the base pointer. Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL); StoreRefsForMemset[Ptr].push_back(SI); } break; case LegalStoreKind::MemsetPattern: { // Find the base pointer. Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL); StoreRefsForMemsetPattern[Ptr].push_back(SI); } break; case LegalStoreKind::Memcpy: case LegalStoreKind::UnorderedAtomicMemcpy: StoreRefsForMemcpy.push_back(SI); break; default: assert(false && "unhandled return value"); break; } } } /// runOnLoopBlock - Process the specified block, which lives in a counted loop /// with the specified backedge count. This block is known to be in the current /// loop and not in any subloops. bool LoopIdiomRecognize::runOnLoopBlock( BasicBlock *BB, const SCEV *BECount, SmallVectorImpl &ExitBlocks) { // We can only promote stores in this block if they are unconditionally // executed in the loop. For a block to be unconditionally executed, it has // to dominate all the exit blocks of the loop. Verify this now. for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) if (!DT->dominates(BB, ExitBlocks[i])) return false; bool MadeChange = false; // Look for store instructions, which may be optimized to memset/memcpy. collectStores(BB); // Look for a single store or sets of stores with a common base, which can be // optimized into a memset (memset_pattern). The latter most commonly happens // with structs and handunrolled loops. for (auto &SL : StoreRefsForMemset) MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes); for (auto &SL : StoreRefsForMemsetPattern) MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No); // Optimize the store into a memcpy, if it feeds an similarly strided load. for (auto &SI : StoreRefsForMemcpy) MadeChange |= processLoopStoreOfLoopLoad(SI, BECount); for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { Instruction *Inst = &*I++; // Look for memset instructions, which may be optimized to a larger memset. if (MemSetInst *MSI = dyn_cast(Inst)) { WeakTrackingVH InstPtr(&*I); if (!processLoopMemSet(MSI, BECount)) continue; MadeChange = true; // If processing the memset invalidated our iterator, start over from the // top of the block. if (!InstPtr) I = BB->begin(); continue; } } return MadeChange; } /// See if this store(s) can be promoted to a memset. bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl &SL, const SCEV *BECount, ForMemset For) { // Try to find consecutive stores that can be transformed into memsets. SetVector Heads, Tails; SmallDenseMap ConsecutiveChain; // Do a quadratic search on all of the given stores and find // all of the pairs of stores that follow each other. SmallVector IndexQueue; for (unsigned i = 0, e = SL.size(); i < e; ++i) { assert(SL[i]->isSimple() && "Expected only non-volatile stores."); Value *FirstStoredVal = SL[i]->getValueOperand(); Value *FirstStorePtr = SL[i]->getPointerOperand(); const SCEVAddRecExpr *FirstStoreEv = cast(SE->getSCEV(FirstStorePtr)); APInt FirstStride = getStoreStride(FirstStoreEv); unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType()); // See if we can optimize just this store in isolation. if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) { Heads.insert(SL[i]); continue; } Value *FirstSplatValue = nullptr; Constant *FirstPatternValue = nullptr; if (For == ForMemset::Yes) FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL); else FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL); assert((FirstSplatValue || FirstPatternValue) && "Expected either splat value or pattern value."); IndexQueue.clear(); // If a store has multiple consecutive store candidates, search Stores // array according to the sequence: from i+1 to e, then from i-1 to 0. // This is because usually pairing with immediate succeeding or preceding // candidate create the best chance to find memset opportunity. unsigned j = 0; for (j = i + 1; j < e; ++j) IndexQueue.push_back(j); for (j = i; j > 0; --j) IndexQueue.push_back(j - 1); for (auto &k : IndexQueue) { assert(SL[k]->isSimple() && "Expected only non-volatile stores."); Value *SecondStorePtr = SL[k]->getPointerOperand(); const SCEVAddRecExpr *SecondStoreEv = cast(SE->getSCEV(SecondStorePtr)); APInt SecondStride = getStoreStride(SecondStoreEv); if (FirstStride != SecondStride) continue; Value *SecondStoredVal = SL[k]->getValueOperand(); Value *SecondSplatValue = nullptr; Constant *SecondPatternValue = nullptr; if (For == ForMemset::Yes) SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL); else SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL); assert((SecondSplatValue || SecondPatternValue) && "Expected either splat value or pattern value."); if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) { if (For == ForMemset::Yes) { if (isa(FirstSplatValue)) FirstSplatValue = SecondSplatValue; if (FirstSplatValue != SecondSplatValue) continue; } else { if (isa(FirstPatternValue)) FirstPatternValue = SecondPatternValue; if (FirstPatternValue != SecondPatternValue) continue; } Tails.insert(SL[k]); Heads.insert(SL[i]); ConsecutiveChain[SL[i]] = SL[k]; break; } } } // We may run into multiple chains that merge into a single chain. We mark the // stores that we transformed so that we don't visit the same store twice. SmallPtrSet TransformedStores; bool Changed = false; // For stores that start but don't end a link in the chain: for (SetVector::iterator it = Heads.begin(), e = Heads.end(); it != e; ++it) { if (Tails.count(*it)) continue; // We found a store instr that starts a chain. Now follow the chain and try // to transform it. SmallPtrSet AdjacentStores; StoreInst *I = *it; StoreInst *HeadStore = I; unsigned StoreSize = 0; // Collect the chain into a list. while (Tails.count(I) || Heads.count(I)) { if (TransformedStores.count(I)) break; AdjacentStores.insert(I); StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType()); // Move to the next value in the chain. I = ConsecutiveChain[I]; } Value *StoredVal = HeadStore->getValueOperand(); Value *StorePtr = HeadStore->getPointerOperand(); const SCEVAddRecExpr *StoreEv = cast(SE->getSCEV(StorePtr)); APInt Stride = getStoreStride(StoreEv); // Check to see if the stride matches the size of the stores. If so, then // we know that every byte is touched in the loop. if (StoreSize != Stride && StoreSize != -Stride) continue; bool NegStride = StoreSize == -Stride; if (processLoopStridedStore(StorePtr, StoreSize, HeadStore->getAlignment(), StoredVal, HeadStore, AdjacentStores, StoreEv, BECount, NegStride)) { TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end()); Changed = true; } } return Changed; } /// processLoopMemSet - See if this memset can be promoted to a large memset. bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI, const SCEV *BECount) { // We can only handle non-volatile memsets with a constant size. if (MSI->isVolatile() || !isa(MSI->getLength())) return false; // If we're not allowed to hack on memset, we fail. if (!HasMemset) return false; Value *Pointer = MSI->getDest(); // See if the pointer expression is an AddRec like {base,+,1} on the current // loop, which indicates a strided store. If we have something else, it's a // random store we can't handle. const SCEVAddRecExpr *Ev = dyn_cast(SE->getSCEV(Pointer)); if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine()) return false; // Reject memsets that are so large that they overflow an unsigned. uint64_t SizeInBytes = cast(MSI->getLength())->getZExtValue(); if ((SizeInBytes >> 32) != 0) return false; // Check to see if the stride matches the size of the memset. If so, then we // know that every byte is touched in the loop. const SCEVConstant *ConstStride = dyn_cast(Ev->getOperand(1)); if (!ConstStride) return false; APInt Stride = ConstStride->getAPInt(); if (SizeInBytes != Stride && SizeInBytes != -Stride) return false; // Verify that the memset value is loop invariant. If not, we can't promote // the memset. Value *SplatValue = MSI->getValue(); if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue)) return false; SmallPtrSet MSIs; MSIs.insert(MSI); bool NegStride = SizeInBytes == -Stride; return processLoopStridedStore(Pointer, (unsigned)SizeInBytes, MSI->getDestAlignment(), SplatValue, MSI, MSIs, Ev, BECount, NegStride, /*IsLoopMemset=*/true); } /// mayLoopAccessLocation - Return true if the specified loop might access the /// specified pointer location, which is a loop-strided access. The 'Access' /// argument specifies what the verboten forms of access are (read or write). static bool mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L, const SCEV *BECount, unsigned StoreSize, AliasAnalysis &AA, SmallPtrSetImpl &IgnoredStores) { // Get the location that may be stored across the loop. Since the access is // strided positively through memory, we say that the modified location starts // at the pointer and has infinite size. LocationSize AccessSize = LocationSize::unknown(); // If the loop iterates a fixed number of times, we can refine the access size // to be exactly the size of the memset, which is (BECount+1)*StoreSize if (const SCEVConstant *BECst = dyn_cast(BECount)) AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) * StoreSize); // TODO: For this to be really effective, we have to dive into the pointer // operand in the store. Store to &A[i] of 100 will always return may alias // with store of &A[100], we need to StoreLoc to be "A" with size of 100, // which will then no-alias a store to &A[100]. MemoryLocation StoreLoc(Ptr, AccessSize); for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E; ++BI) for (Instruction &I : **BI) if (IgnoredStores.count(&I) == 0 && isModOrRefSet( intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access))) return true; return false; } // If we have a negative stride, Start refers to the end of the memory location // we're trying to memset. Therefore, we need to recompute the base pointer, // which is just Start - BECount*Size. static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount, Type *IntPtr, unsigned StoreSize, ScalarEvolution *SE) { const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr); if (StoreSize != 1) Index = SE->getMulExpr(Index, SE->getConstant(IntPtr, StoreSize), SCEV::FlagNUW); return SE->getMinusSCEV(Start, Index); } /// Compute the number of bytes as a SCEV from the backedge taken count. /// /// This also maps the SCEV into the provided type and tries to handle the /// computation in a way that will fold cleanly. static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr, unsigned StoreSize, Loop *CurLoop, const DataLayout *DL, ScalarEvolution *SE) { const SCEV *NumBytesS; // The # stored bytes is (BECount+1)*Size. Expand the trip count out to // pointer size if it isn't already. // // If we're going to need to zero extend the BE count, check if we can add // one to it prior to zero extending without overflow. Provided this is safe, // it allows better simplification of the +1. if (DL->getTypeSizeInBits(BECount->getType()) < DL->getTypeSizeInBits(IntPtr) && SE->isLoopEntryGuardedByCond( CurLoop, ICmpInst::ICMP_NE, BECount, SE->getNegativeSCEV(SE->getOne(BECount->getType())))) { NumBytesS = SE->getZeroExtendExpr( SE->getAddExpr(BECount, SE->getOne(BECount->getType()), SCEV::FlagNUW), IntPtr); } else { NumBytesS = SE->getAddExpr(SE->getTruncateOrZeroExtend(BECount, IntPtr), SE->getOne(IntPtr), SCEV::FlagNUW); } // And scale it based on the store size. if (StoreSize != 1) { NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize), SCEV::FlagNUW); } return NumBytesS; } /// processLoopStridedStore - We see a strided store of some value. If we can /// transform this into a memset or memset_pattern in the loop preheader, do so. bool LoopIdiomRecognize::processLoopStridedStore( Value *DestPtr, unsigned StoreSize, unsigned StoreAlignment, Value *StoredVal, Instruction *TheStore, SmallPtrSetImpl &Stores, const SCEVAddRecExpr *Ev, const SCEV *BECount, bool NegStride, bool IsLoopMemset) { Value *SplatValue = isBytewiseValue(StoredVal, *DL); Constant *PatternValue = nullptr; if (!SplatValue) PatternValue = getMemSetPatternValue(StoredVal, DL); assert((SplatValue || PatternValue) && "Expected either splat value or pattern value."); // The trip count of the loop and the base pointer of the addrec SCEV is // guaranteed to be loop invariant, which means that it should dominate the // header. This allows us to insert code for it in the preheader. unsigned DestAS = DestPtr->getType()->getPointerAddressSpace(); BasicBlock *Preheader = CurLoop->getLoopPreheader(); IRBuilder<> Builder(Preheader->getTerminator()); SCEVExpander Expander(*SE, *DL, "loop-idiom"); Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS); Type *IntPtr = Builder.getIntPtrTy(*DL, DestAS); const SCEV *Start = Ev->getStart(); // Handle negative strided loops. if (NegStride) Start = getStartForNegStride(Start, BECount, IntPtr, StoreSize, SE); // TODO: ideally we should still be able to generate memset if SCEV expander // is taught to generate the dependencies at the latest point. if (!isSafeToExpand(Start, *SE)) return false; // Okay, we have a strided store "p[i]" of a splattable value. We can turn // this into a memset in the loop preheader now if we want. However, this // would be unsafe to do if there is anything else in the loop that may read // or write to the aliased location. Check for any overlap by generating the // base pointer and checking the region. Value *BasePtr = Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator()); if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount, StoreSize, *AA, Stores)) { Expander.clear(); // If we generated new code for the base pointer, clean up. RecursivelyDeleteTriviallyDeadInstructions(BasePtr, TLI); return false; } if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset)) return false; // Okay, everything looks good, insert the memset. const SCEV *NumBytesS = getNumBytes(BECount, IntPtr, StoreSize, CurLoop, DL, SE); // TODO: ideally we should still be able to generate memset if SCEV expander // is taught to generate the dependencies at the latest point. if (!isSafeToExpand(NumBytesS, *SE)) return false; Value *NumBytes = Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator()); CallInst *NewCall; if (SplatValue) { NewCall = Builder.CreateMemSet(BasePtr, SplatValue, NumBytes, StoreAlignment); } else { // Everything is emitted in default address space Type *Int8PtrTy = DestInt8PtrTy; Module *M = TheStore->getModule(); StringRef FuncName = "memset_pattern16"; FunctionCallee MSP = M->getOrInsertFunction(FuncName, Builder.getVoidTy(), Int8PtrTy, Int8PtrTy, IntPtr); inferLibFuncAttributes(M, FuncName, *TLI); // Otherwise we should form a memset_pattern16. PatternValue is known to be // an constant array of 16-bytes. Plop the value into a mergable global. GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true, GlobalValue::PrivateLinkage, PatternValue, ".memset_pattern"); GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these. GV->setAlignment(Align(16)); Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy); NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes}); } LLVM_DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n" << " from store to: " << *Ev << " at: " << *TheStore << "\n"); NewCall->setDebugLoc(TheStore->getDebugLoc()); ORE.emit([&]() { return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStridedStore", NewCall->getDebugLoc(), Preheader) << "Transformed loop-strided store into a call to " << ore::NV("NewFunction", NewCall->getCalledFunction()) << "() function"; }); // Okay, the memset has been formed. Zap the original store and anything that // feeds into it. for (auto *I : Stores) deleteDeadInstruction(I); ++NumMemSet; return true; } /// If the stored value is a strided load in the same loop with the same stride /// this may be transformable into a memcpy. This kicks in for stuff like /// for (i) A[i] = B[i]; bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount) { assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores."); Value *StorePtr = SI->getPointerOperand(); const SCEVAddRecExpr *StoreEv = cast(SE->getSCEV(StorePtr)); APInt Stride = getStoreStride(StoreEv); unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); bool NegStride = StoreSize == -Stride; // The store must be feeding a non-volatile load. LoadInst *LI = cast(SI->getValueOperand()); assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads."); // See if the pointer expression is an AddRec like {base,+,1} on the current // loop, which indicates a strided load. If we have something else, it's a // random load we can't handle. const SCEVAddRecExpr *LoadEv = cast(SE->getSCEV(LI->getPointerOperand())); // The trip count of the loop and the base pointer of the addrec SCEV is // guaranteed to be loop invariant, which means that it should dominate the // header. This allows us to insert code for it in the preheader. BasicBlock *Preheader = CurLoop->getLoopPreheader(); IRBuilder<> Builder(Preheader->getTerminator()); SCEVExpander Expander(*SE, *DL, "loop-idiom"); const SCEV *StrStart = StoreEv->getStart(); unsigned StrAS = SI->getPointerAddressSpace(); Type *IntPtrTy = Builder.getIntPtrTy(*DL, StrAS); // Handle negative strided loops. if (NegStride) StrStart = getStartForNegStride(StrStart, BECount, IntPtrTy, StoreSize, SE); // Okay, we have a strided store "p[i]" of a loaded value. We can turn // this into a memcpy in the loop preheader now if we want. However, this // would be unsafe to do if there is anything else in the loop that may read // or write the memory region we're storing to. This includes the load that // feeds the stores. Check for an alias by generating the base address and // checking everything. Value *StoreBasePtr = Expander.expandCodeFor( StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator()); SmallPtrSet Stores; Stores.insert(SI); if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount, StoreSize, *AA, Stores)) { Expander.clear(); // If we generated new code for the base pointer, clean up. RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI); return false; } const SCEV *LdStart = LoadEv->getStart(); unsigned LdAS = LI->getPointerAddressSpace(); // Handle negative strided loops. if (NegStride) LdStart = getStartForNegStride(LdStart, BECount, IntPtrTy, StoreSize, SE); // For a memcpy, we have to make sure that the input array is not being // mutated by the loop. Value *LoadBasePtr = Expander.expandCodeFor( LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator()); if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount, StoreSize, *AA, Stores)) { Expander.clear(); // If we generated new code for the base pointer, clean up. RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI); RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI); return false; } if (avoidLIRForMultiBlockLoop()) return false; // Okay, everything is safe, we can transform this! const SCEV *NumBytesS = getNumBytes(BECount, IntPtrTy, StoreSize, CurLoop, DL, SE); Value *NumBytes = Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator()); CallInst *NewCall = nullptr; // Check whether to generate an unordered atomic memcpy: // If the load or store are atomic, then they must necessarily be unordered // by previous checks. if (!SI->isAtomic() && !LI->isAtomic()) NewCall = Builder.CreateMemCpy(StoreBasePtr, SI->getAlignment(), LoadBasePtr, LI->getAlignment(), NumBytes); else { // We cannot allow unaligned ops for unordered load/store, so reject // anything where the alignment isn't at least the element size. unsigned Align = std::min(SI->getAlignment(), LI->getAlignment()); if (Align < StoreSize) return false; // If the element.atomic memcpy is not lowered into explicit // loads/stores later, then it will be lowered into an element-size // specific lib call. If the lib call doesn't exist for our store size, then // we shouldn't generate the memcpy. if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize()) return false; // Create the call. // Note that unordered atomic loads/stores are *required* by the spec to // have an alignment but non-atomic loads/stores may not. NewCall = Builder.CreateElementUnorderedAtomicMemCpy( StoreBasePtr, SI->getAlignment(), LoadBasePtr, LI->getAlignment(), NumBytes, StoreSize); } NewCall->setDebugLoc(SI->getDebugLoc()); LLVM_DEBUG(dbgs() << " Formed memcpy: " << *NewCall << "\n" << " from load ptr=" << *LoadEv << " at: " << *LI << "\n" << " from store ptr=" << *StoreEv << " at: " << *SI << "\n"); ORE.emit([&]() { return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad", NewCall->getDebugLoc(), Preheader) << "Formed a call to " << ore::NV("NewFunction", NewCall->getCalledFunction()) << "() function"; }); // Okay, the memcpy has been formed. Zap the original store and anything that // feeds into it. deleteDeadInstruction(SI); ++NumMemCpy; return true; } // When compiling for codesize we avoid idiom recognition for a multi-block loop // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop. // bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset, bool IsLoopMemset) { if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) { if (!CurLoop->getParentLoop() && (!IsMemset || !IsLoopMemset)) { LLVM_DEBUG(dbgs() << " " << CurLoop->getHeader()->getParent()->getName() << " : LIR " << (IsMemset ? "Memset" : "Memcpy") << " avoided: multi-block top-level loop\n"); return true; } } return false; } bool LoopIdiomRecognize::runOnNoncountableLoop() { LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F[" << CurLoop->getHeader()->getParent()->getName() << "] Noncountable Loop %" << CurLoop->getHeader()->getName() << "\n"); return recognizeBCmp() || recognizePopcount() || recognizeAndInsertFFS(); } /// Check if the given conditional branch is based on the comparison between /// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is /// true), the control yields to the loop entry. If the branch matches the /// behavior, the variable involved in the comparison is returned. This function /// will be called to see if the precondition and postcondition of the loop are /// in desirable form. static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry, bool JmpOnZero = false) { if (!BI || !BI->isConditional()) return nullptr; ICmpInst *Cond = dyn_cast(BI->getCondition()); if (!Cond) return nullptr; ConstantInt *CmpZero = dyn_cast(Cond->getOperand(1)); if (!CmpZero || !CmpZero->isZero()) return nullptr; BasicBlock *TrueSucc = BI->getSuccessor(0); BasicBlock *FalseSucc = BI->getSuccessor(1); if (JmpOnZero) std::swap(TrueSucc, FalseSucc); ICmpInst::Predicate Pred = Cond->getPredicate(); if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) || (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry)) return Cond->getOperand(0); return nullptr; } // Check if the recurrence variable `VarX` is in the right form to create // the idiom. Returns the value coerced to a PHINode if so. static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX, BasicBlock *LoopEntry) { auto *PhiX = dyn_cast(VarX); if (PhiX && PhiX->getParent() == LoopEntry && (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX)) return PhiX; return nullptr; } /// Return true iff the idiom is detected in the loop. /// /// Additionally: /// 1) \p CntInst is set to the instruction counting the population bit. /// 2) \p CntPhi is set to the corresponding phi node. /// 3) \p Var is set to the value whose population bits are being counted. /// /// The core idiom we are trying to detect is: /// \code /// if (x0 != 0) /// goto loop-exit // the precondition of the loop /// cnt0 = init-val; /// do { /// x1 = phi (x0, x2); /// cnt1 = phi(cnt0, cnt2); /// /// cnt2 = cnt1 + 1; /// ... /// x2 = x1 & (x1 - 1); /// ... /// } while(x != 0); /// /// loop-exit: /// \endcode static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB, Instruction *&CntInst, PHINode *&CntPhi, Value *&Var) { // step 1: Check to see if the look-back branch match this pattern: // "if (a!=0) goto loop-entry". BasicBlock *LoopEntry; Instruction *DefX2, *CountInst; Value *VarX1, *VarX0; PHINode *PhiX, *CountPhi; DefX2 = CountInst = nullptr; VarX1 = VarX0 = nullptr; PhiX = CountPhi = nullptr; LoopEntry = *(CurLoop->block_begin()); // step 1: Check if the loop-back branch is in desirable form. { if (Value *T = matchCondition( dyn_cast(LoopEntry->getTerminator()), LoopEntry)) DefX2 = dyn_cast(T); else return false; } // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)" { if (!DefX2 || DefX2->getOpcode() != Instruction::And) return false; BinaryOperator *SubOneOp; if ((SubOneOp = dyn_cast(DefX2->getOperand(0)))) VarX1 = DefX2->getOperand(1); else { VarX1 = DefX2->getOperand(0); SubOneOp = dyn_cast(DefX2->getOperand(1)); } if (!SubOneOp || SubOneOp->getOperand(0) != VarX1) return false; ConstantInt *Dec = dyn_cast(SubOneOp->getOperand(1)); if (!Dec || !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) || (SubOneOp->getOpcode() == Instruction::Add && Dec->isMinusOne()))) { return false; } } // step 3: Check the recurrence of variable X PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry); if (!PhiX) return false; // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1 { CountInst = nullptr; for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(), IterE = LoopEntry->end(); Iter != IterE; Iter++) { Instruction *Inst = &*Iter; if (Inst->getOpcode() != Instruction::Add) continue; ConstantInt *Inc = dyn_cast(Inst->getOperand(1)); if (!Inc || !Inc->isOne()) continue; PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry); if (!Phi) continue; // Check if the result of the instruction is live of the loop. bool LiveOutLoop = false; for (User *U : Inst->users()) { if ((cast(U))->getParent() != LoopEntry) { LiveOutLoop = true; break; } } if (LiveOutLoop) { CountInst = Inst; CountPhi = Phi; break; } } if (!CountInst) return false; } // step 5: check if the precondition is in this form: // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;" { auto *PreCondBr = dyn_cast(PreCondBB->getTerminator()); Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader()); if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1)) return false; CntInst = CountInst; CntPhi = CountPhi; Var = T; } return true; } /// Return true if the idiom is detected in the loop. /// /// Additionally: /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ) /// or nullptr if there is no such. /// 2) \p CntPhi is set to the corresponding phi node /// or nullptr if there is no such. /// 3) \p Var is set to the value whose CTLZ could be used. /// 4) \p DefX is set to the instruction calculating Loop exit condition. /// /// The core idiom we are trying to detect is: /// \code /// if (x0 == 0) /// goto loop-exit // the precondition of the loop /// cnt0 = init-val; /// do { /// x = phi (x0, x.next); //PhiX /// cnt = phi(cnt0, cnt.next); /// /// cnt.next = cnt + 1; /// ... /// x.next = x >> 1; // DefX /// ... /// } while(x.next != 0); /// /// loop-exit: /// \endcode static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL, Intrinsic::ID &IntrinID, Value *&InitX, Instruction *&CntInst, PHINode *&CntPhi, Instruction *&DefX) { BasicBlock *LoopEntry; Value *VarX = nullptr; DefX = nullptr; CntInst = nullptr; CntPhi = nullptr; LoopEntry = *(CurLoop->block_begin()); // step 1: Check if the loop-back branch is in desirable form. if (Value *T = matchCondition( dyn_cast(LoopEntry->getTerminator()), LoopEntry)) DefX = dyn_cast(T); else return false; // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1" if (!DefX || !DefX->isShift()) return false; IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz : Intrinsic::ctlz; ConstantInt *Shft = dyn_cast(DefX->getOperand(1)); if (!Shft || !Shft->isOne()) return false; VarX = DefX->getOperand(0); // step 3: Check the recurrence of variable X PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry); if (!PhiX) return false; InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader()); // Make sure the initial value can't be negative otherwise the ashr in the // loop might never reach zero which would make the loop infinite. if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL)) return false; // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1 // TODO: We can skip the step. If loop trip count is known (CTLZ), // then all uses of "cnt.next" could be optimized to the trip count // plus "cnt0". Currently it is not optimized. // This step could be used to detect POPCNT instruction: // cnt.next = cnt + (x.next & 1) for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(), IterE = LoopEntry->end(); Iter != IterE; Iter++) { Instruction *Inst = &*Iter; if (Inst->getOpcode() != Instruction::Add) continue; ConstantInt *Inc = dyn_cast(Inst->getOperand(1)); if (!Inc || !Inc->isOne()) continue; PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry); if (!Phi) continue; CntInst = Inst; CntPhi = Phi; break; } if (!CntInst) return false; return true; } /// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop /// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new /// trip count returns true; otherwise, returns false. bool LoopIdiomRecognize::recognizeAndInsertFFS() { // Give up if the loop has multiple blocks or multiple backedges. if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) return false; Intrinsic::ID IntrinID; Value *InitX; Instruction *DefX = nullptr; PHINode *CntPhi = nullptr; Instruction *CntInst = nullptr; // Help decide if transformation is profitable. For ShiftUntilZero idiom, // this is always 6. size_t IdiomCanonicalSize = 6; if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX, CntInst, CntPhi, DefX)) return false; bool IsCntPhiUsedOutsideLoop = false; for (User *U : CntPhi->users()) if (!CurLoop->contains(cast(U))) { IsCntPhiUsedOutsideLoop = true; break; } bool IsCntInstUsedOutsideLoop = false; for (User *U : CntInst->users()) if (!CurLoop->contains(cast(U))) { IsCntInstUsedOutsideLoop = true; break; } // If both CntInst and CntPhi are used outside the loop the profitability // is questionable. if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop) return false; // For some CPUs result of CTLZ(X) intrinsic is undefined // when X is 0. If we can not guarantee X != 0, we need to check this // when expand. bool ZeroCheck = false; // It is safe to assume Preheader exist as it was checked in // parent function RunOnLoop. BasicBlock *PH = CurLoop->getLoopPreheader(); // If we are using the count instruction outside the loop, make sure we // have a zero check as a precondition. Without the check the loop would run // one iteration for before any check of the input value. This means 0 and 1 // would have identical behavior in the original loop and thus if (!IsCntPhiUsedOutsideLoop) { auto *PreCondBB = PH->getSinglePredecessor(); if (!PreCondBB) return false; auto *PreCondBI = dyn_cast(PreCondBB->getTerminator()); if (!PreCondBI) return false; if (matchCondition(PreCondBI, PH) != InitX) return false; ZeroCheck = true; } // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always // profitable if we delete the loop. // the loop has only 6 instructions: // %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ] // %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ] // %shr = ashr %n.addr.0, 1 // %tobool = icmp eq %shr, 0 // %inc = add nsw %i.0, 1 // br i1 %tobool const Value *Args[] = {InitX, ZeroCheck ? ConstantInt::getTrue(InitX->getContext()) : ConstantInt::getFalse(InitX->getContext())}; // @llvm.dbg doesn't count as they have no semantic effect. auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug(); uint32_t HeaderSize = std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end()); if (HeaderSize != IdiomCanonicalSize && TTI->getIntrinsicCost(IntrinID, InitX->getType(), Args) > TargetTransformInfo::TCC_Basic) return false; transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX, DefX->getDebugLoc(), ZeroCheck, IsCntPhiUsedOutsideLoop); return true; } /// Recognizes a population count idiom in a non-countable loop. /// /// If detected, transforms the relevant code to issue the popcount intrinsic /// function call, and returns true; otherwise, returns false. bool LoopIdiomRecognize::recognizePopcount() { if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware) return false; // Counting population are usually conducted by few arithmetic instructions. // Such instructions can be easily "absorbed" by vacant slots in a // non-compact loop. Therefore, recognizing popcount idiom only makes sense // in a compact loop. // Give up if the loop has multiple blocks or multiple backedges. if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) return false; BasicBlock *LoopBody = *(CurLoop->block_begin()); if (LoopBody->size() >= 20) { // The loop is too big, bail out. return false; } // It should have a preheader containing nothing but an unconditional branch. BasicBlock *PH = CurLoop->getLoopPreheader(); if (!PH || &PH->front() != PH->getTerminator()) return false; auto *EntryBI = dyn_cast(PH->getTerminator()); if (!EntryBI || EntryBI->isConditional()) return false; // It should have a precondition block where the generated popcount intrinsic // function can be inserted. auto *PreCondBB = PH->getSinglePredecessor(); if (!PreCondBB) return false; auto *PreCondBI = dyn_cast(PreCondBB->getTerminator()); if (!PreCondBI || PreCondBI->isUnconditional()) return false; Instruction *CntInst; PHINode *CntPhi; Value *Val; if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val)) return false; transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val); return true; } static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val, const DebugLoc &DL) { Value *Ops[] = {Val}; Type *Tys[] = {Val->getType()}; Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); Function *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys); CallInst *CI = IRBuilder.CreateCall(Func, Ops); CI->setDebugLoc(DL); return CI; } static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val, const DebugLoc &DL, bool ZeroCheck, Intrinsic::ID IID) { Value *Ops[] = {Val, ZeroCheck ? IRBuilder.getTrue() : IRBuilder.getFalse()}; Type *Tys[] = {Val->getType()}; Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); Function *Func = Intrinsic::getDeclaration(M, IID, Tys); CallInst *CI = IRBuilder.CreateCall(Func, Ops); CI->setDebugLoc(DL); return CI; } /// Transform the following loop (Using CTLZ, CTTZ is similar): /// loop: /// CntPhi = PHI [Cnt0, CntInst] /// PhiX = PHI [InitX, DefX] /// CntInst = CntPhi + 1 /// DefX = PhiX >> 1 /// LOOP_BODY /// Br: loop if (DefX != 0) /// Use(CntPhi) or Use(CntInst) /// /// Into: /// If CntPhi used outside the loop: /// CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1) /// Count = CountPrev + 1 /// else /// Count = BitWidth(InitX) - CTLZ(InitX) /// loop: /// CntPhi = PHI [Cnt0, CntInst] /// PhiX = PHI [InitX, DefX] /// PhiCount = PHI [Count, Dec] /// CntInst = CntPhi + 1 /// DefX = PhiX >> 1 /// Dec = PhiCount - 1 /// LOOP_BODY /// Br: loop if (Dec != 0) /// Use(CountPrev + Cnt0) // Use(CntPhi) /// or /// Use(Count + Cnt0) // Use(CntInst) /// /// If LOOP_BODY is empty the loop will be deleted. /// If CntInst and DefX are not used in LOOP_BODY they will be removed. void LoopIdiomRecognize::transformLoopToCountable( Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst, PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL, bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) { BranchInst *PreheaderBr = cast(Preheader->getTerminator()); // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block IRBuilder<> Builder(PreheaderBr); Builder.SetCurrentDebugLocation(DL); Value *FFS, *Count, *CountPrev, *NewCount, *InitXNext; // Count = BitWidth - CTLZ(InitX); // If there are uses of CntPhi create: // CountPrev = BitWidth - CTLZ(InitX >> 1); if (IsCntPhiUsedOutsideLoop) { if (DefX->getOpcode() == Instruction::AShr) InitXNext = Builder.CreateAShr(InitX, ConstantInt::get(InitX->getType(), 1)); else if (DefX->getOpcode() == Instruction::LShr) InitXNext = Builder.CreateLShr(InitX, ConstantInt::get(InitX->getType(), 1)); else if (DefX->getOpcode() == Instruction::Shl) // cttz InitXNext = Builder.CreateShl(InitX, ConstantInt::get(InitX->getType(), 1)); else llvm_unreachable("Unexpected opcode!"); } else InitXNext = InitX; FFS = createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID); Count = Builder.CreateSub( ConstantInt::get(FFS->getType(), FFS->getType()->getIntegerBitWidth()), FFS); if (IsCntPhiUsedOutsideLoop) { CountPrev = Count; Count = Builder.CreateAdd( CountPrev, ConstantInt::get(CountPrev->getType(), 1)); } NewCount = Builder.CreateZExtOrTrunc( IsCntPhiUsedOutsideLoop ? CountPrev : Count, cast(CntInst->getType())); // If the counter's initial value is not zero, insert Add Inst. Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader); ConstantInt *InitConst = dyn_cast(CntInitVal); if (!InitConst || !InitConst->isZero()) NewCount = Builder.CreateAdd(NewCount, CntInitVal); // Step 2: Insert new IV and loop condition: // loop: // ... // PhiCount = PHI [Count, Dec] // ... // Dec = PhiCount - 1 // ... // Br: loop if (Dec != 0) BasicBlock *Body = *(CurLoop->block_begin()); auto *LbBr = cast(Body->getTerminator()); ICmpInst *LbCond = cast(LbBr->getCondition()); Type *Ty = Count->getType(); PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front()); Builder.SetInsertPoint(LbCond); Instruction *TcDec = cast( Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1), "tcdec", false, true)); TcPhi->addIncoming(Count, Preheader); TcPhi->addIncoming(TcDec, Body); CmpInst::Predicate Pred = (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; LbCond->setPredicate(Pred); LbCond->setOperand(0, TcDec); LbCond->setOperand(1, ConstantInt::get(Ty, 0)); // Step 3: All the references to the original counter outside // the loop are replaced with the NewCount if (IsCntPhiUsedOutsideLoop) CntPhi->replaceUsesOutsideBlock(NewCount, Body); else CntInst->replaceUsesOutsideBlock(NewCount, Body); // step 4: Forget the "non-computable" trip-count SCEV associated with the // loop. The loop would otherwise not be deleted even if it becomes empty. SE->forgetLoop(CurLoop); } void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst, PHINode *CntPhi, Value *Var) { BasicBlock *PreHead = CurLoop->getLoopPreheader(); auto *PreCondBr = cast(PreCondBB->getTerminator()); const DebugLoc &DL = CntInst->getDebugLoc(); // Assuming before transformation, the loop is following: // if (x) // the precondition // do { cnt++; x &= x - 1; } while(x); // Step 1: Insert the ctpop instruction at the end of the precondition block IRBuilder<> Builder(PreCondBr); Value *PopCnt, *PopCntZext, *NewCount, *TripCnt; { PopCnt = createPopcntIntrinsic(Builder, Var, DL); NewCount = PopCntZext = Builder.CreateZExtOrTrunc(PopCnt, cast(CntPhi->getType())); if (NewCount != PopCnt) (cast(NewCount))->setDebugLoc(DL); // TripCnt is exactly the number of iterations the loop has TripCnt = NewCount; // If the population counter's initial value is not zero, insert Add Inst. Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead); ConstantInt *InitConst = dyn_cast(CntInitVal); if (!InitConst || !InitConst->isZero()) { NewCount = Builder.CreateAdd(NewCount, CntInitVal); (cast(NewCount))->setDebugLoc(DL); } } // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to // "if (NewCount == 0) loop-exit". Without this change, the intrinsic // function would be partial dead code, and downstream passes will drag // it back from the precondition block to the preheader. { ICmpInst *PreCond = cast(PreCondBr->getCondition()); Value *Opnd0 = PopCntZext; Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0); if (PreCond->getOperand(0) != Var) std::swap(Opnd0, Opnd1); ICmpInst *NewPreCond = cast( Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1)); PreCondBr->setCondition(NewPreCond); RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI); } // Step 3: Note that the population count is exactly the trip count of the // loop in question, which enable us to convert the loop from noncountable // loop into a countable one. The benefit is twofold: // // - If the loop only counts population, the entire loop becomes dead after // the transformation. It is a lot easier to prove a countable loop dead // than to prove a noncountable one. (In some C dialects, an infinite loop // isn't dead even if it computes nothing useful. In general, DCE needs // to prove a noncountable loop finite before safely delete it.) // // - If the loop also performs something else, it remains alive. // Since it is transformed to countable form, it can be aggressively // optimized by some optimizations which are in general not applicable // to a noncountable loop. // // After this step, this loop (conceptually) would look like following: // newcnt = __builtin_ctpop(x); // t = newcnt; // if (x) // do { cnt++; x &= x-1; t--) } while (t > 0); BasicBlock *Body = *(CurLoop->block_begin()); { auto *LbBr = cast(Body->getTerminator()); ICmpInst *LbCond = cast(LbBr->getCondition()); Type *Ty = TripCnt->getType(); PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front()); Builder.SetInsertPoint(LbCond); Instruction *TcDec = cast( Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1), "tcdec", false, true)); TcPhi->addIncoming(TripCnt, PreHead); TcPhi->addIncoming(TcDec, Body); CmpInst::Predicate Pred = (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE; LbCond->setPredicate(Pred); LbCond->setOperand(0, TcDec); LbCond->setOperand(1, ConstantInt::get(Ty, 0)); } // Step 4: All the references to the original population counter outside // the loop are replaced with the NewCount -- the value returned from // __builtin_ctpop(). CntInst->replaceUsesOutsideBlock(NewCount, Body); // step 5: Forget the "non-computable" trip-count SCEV associated with the // loop. The loop would otherwise not be deleted even if it becomes empty. SE->forgetLoop(CurLoop); } bool LoopIdiomRecognize::matchBCmpLoopStructure( CmpLoopStructure &CmpLoop) const { ICmpInst::Predicate BCmpPred; // We are looking for the following basic layout: // PreheaderBB: ; preds = ??? // <...> // br label %LoopHeaderBB // LoopHeaderBB: ; preds = %PreheaderBB,%LoopLatchBB // <...> // %BCmpValue = icmp <...> // br i1 %BCmpValue, label %LoopLatchBB, label %Successor0 // LoopLatchBB: ; preds = %LoopHeaderBB // <...> // %LatchCmpValue = // br i1 %LatchCmpValue, label %Successor1, label %LoopHeaderBB // Successor0: ; preds = %LoopHeaderBB // <...> // Successor1: ; preds = %LoopLatchBB // <...> // // Successor0 and Successor1 may or may not be the same basic block. // Match basic frame-work of this supposedly-comparison loop. using namespace PatternMatch; if (!match(CurLoop->getHeader()->getTerminator(), m_Br(m_CombineAnd(m_ICmp(BCmpPred, m_Value(), m_Value()), m_Value(CmpLoop.BCmpValue)), CmpLoop.HeaderBrEqualBB, CmpLoop.HeaderBrUnequalBB)) || !match(CurLoop->getLoopLatch()->getTerminator(), m_Br(m_CombineAnd(m_Cmp(), m_Value(CmpLoop.LatchCmpValue)), CmpLoop.LatchBrFinishBB, CmpLoop.LatchBrContinueBB))) { LLVM_DEBUG(dbgs() << "Basic control-flow layout unrecognized.\n"); return false; } LLVM_DEBUG(dbgs() << "Recognized basic control-flow layout.\n"); return true; } bool LoopIdiomRecognize::matchBCmpOfLoads(Value *BCmpValue, CmpOfLoads &CmpOfLoads) const { using namespace PatternMatch; LLVM_DEBUG(dbgs() << "Analyzing header icmp " << *BCmpValue << " as bcmp pattern.\n"); // Match bcmp-style loop header cmp. It must be an eq-icmp of loads. Example: // %v0 = load <...>, <...>* %LoadSrcA // %v1 = load <...>, <...>* %LoadSrcB // %CmpLoop.BCmpValue = icmp eq <...> %v0, %v1 // There won't be any no-op bitcasts between load and icmp, // they would have been transformed into a load of bitcast. // FIXME: {b,mem}cmp() calls have the same semantics as icmp. Match them too. if (!match(BCmpValue, m_ICmp(CmpOfLoads.BCmpPred, m_CombineAnd(m_Load(m_Value(CmpOfLoads.LoadSrcA)), m_Value(CmpOfLoads.LoadA)), m_CombineAnd(m_Load(m_Value(CmpOfLoads.LoadSrcB)), m_Value(CmpOfLoads.LoadB)))) || !ICmpInst::isEquality(CmpOfLoads.BCmpPred)) { LLVM_DEBUG(dbgs() << "Loop header icmp did not match bcmp pattern.\n"); return false; } LLVM_DEBUG(dbgs() << "Recognized header icmp as bcmp pattern with loads:\n\t" << *CmpOfLoads.LoadA << "\n\t" << *CmpOfLoads.LoadB << "\n"); // FIXME: handle memcmp pattern? return true; } bool LoopIdiomRecognize::recognizeBCmpLoopControlFlow( const CmpOfLoads &CmpOfLoads, CmpLoopStructure &CmpLoop) const { BasicBlock *LoopHeaderBB = CurLoop->getHeader(); BasicBlock *LoopLatchBB = CurLoop->getLoopLatch(); // Be wary, comparisons can be inverted, canonicalize order. // If this 'element' comparison passed, we expect to proceed to the next elt. if (CmpOfLoads.BCmpPred != ICmpInst::Predicate::ICMP_EQ) std::swap(CmpLoop.HeaderBrEqualBB, CmpLoop.HeaderBrUnequalBB); // The predicate on loop latch does not matter, just canonicalize some order. if (CmpLoop.LatchBrContinueBB != LoopHeaderBB) std::swap(CmpLoop.LatchBrFinishBB, CmpLoop.LatchBrContinueBB); SmallVector ExitBlocks; CurLoop->getUniqueExitBlocks(ExitBlocks); assert(ExitBlocks.size() <= 2U && "Can't have more than two exit blocks."); // Check that control-flow between blocks is as expected. if (CmpLoop.HeaderBrEqualBB != LoopLatchBB || CmpLoop.LatchBrContinueBB != LoopHeaderBB || !is_contained(ExitBlocks, CmpLoop.HeaderBrUnequalBB) || !is_contained(ExitBlocks, CmpLoop.LatchBrFinishBB)) { LLVM_DEBUG(dbgs() << "Loop control-flow not recognized.\n"); return false; } assert(!is_contained(ExitBlocks, CmpLoop.HeaderBrEqualBB) && !is_contained(ExitBlocks, CmpLoop.LatchBrContinueBB) && "Unexpected exit edges."); LLVM_DEBUG(dbgs() << "Recognized loop control-flow.\n"); LLVM_DEBUG(dbgs() << "Performing side-effect analysis on the loop.\n"); assert(CurLoop->isLCSSAForm(*DT) && "Should only get LCSSA-form loops here."); // No loop instructions must be used outside of the loop. Since we are in // LCSSA form, we only need to check successor block's PHI nodes's incoming // values for incoming blocks that are the loop basic blocks. for (const BasicBlock *ExitBB : ExitBlocks) { for (const PHINode &PHI : ExitBB->phis()) { for (const BasicBlock *LoopBB : make_filter_range(PHI.blocks(), [this](BasicBlock *PredecessorBB) { return CurLoop->contains(PredecessorBB); })) { const auto *I = dyn_cast(PHI.getIncomingValueForBlock(LoopBB)); if (I && CurLoop->contains(I)) { LLVM_DEBUG(dbgs() << "Loop contains instruction " << *I << " which is used outside of the loop in basic block " << ExitBB->getName() << " in phi node " << PHI << "\n"); return false; } } } } // Similarly, the loop should not have any other observable side-effects // other than the final comparison result. for (BasicBlock *LoopBB : CurLoop->blocks()) { for (Instruction &I : *LoopBB) { if (isa(I)) // Ignore dbginfo. continue; // FIXME: anything else? lifetime info? if ((I.mayHaveSideEffects() || I.isAtomic() || I.isFenceLike()) && &I != CmpOfLoads.LoadA && &I != CmpOfLoads.LoadB) { LLVM_DEBUG( dbgs() << "Loop contains instruction with potential side-effects: " << I << "\n"); return false; } } } LLVM_DEBUG(dbgs() << "No loop instructions deemed to have side-effects.\n"); return true; } bool LoopIdiomRecognize::recognizeBCmpLoopSCEV(uint64_t BCmpTyBytes, CmpOfLoads &CmpOfLoads, const SCEV *&SrcA, const SCEV *&SrcB, const SCEV *&Iterations) const { // Try to compute SCEV of the loads, for this loop's scope. const auto *ScevForSrcA = dyn_cast( SE->getSCEVAtScope(CmpOfLoads.LoadSrcA, CurLoop)); const auto *ScevForSrcB = dyn_cast( SE->getSCEVAtScope(CmpOfLoads.LoadSrcB, CurLoop)); if (!ScevForSrcA || !ScevForSrcB) { LLVM_DEBUG(dbgs() << "Failed to get SCEV expressions for load sources.\n"); return false; } LLVM_DEBUG(dbgs() << "Got SCEV expressions (at loop scope) for loads:\n\t" << *ScevForSrcA << "\n\t" << *ScevForSrcB << "\n"); // Loads must have folloving SCEV exprs: {%ptr,+,BCmpTyBytes}<%LoopHeaderBB> const SCEV *RecStepForA = ScevForSrcA->getStepRecurrence(*SE); const SCEV *RecStepForB = ScevForSrcB->getStepRecurrence(*SE); if (!ScevForSrcA->isAffine() || !ScevForSrcB->isAffine() || ScevForSrcA->getLoop() != CurLoop || ScevForSrcB->getLoop() != CurLoop || RecStepForA != RecStepForB || !isa(RecStepForA) || cast(RecStepForA)->getAPInt() != BCmpTyBytes) { LLVM_DEBUG(dbgs() << "Unsupported SCEV expressions for loads. Only support " "affine SCEV expressions originating in the loop we " "are analysing with identical constant positive step, " "equal to the count of bytes compared. Got:\n\t" << *RecStepForA << "\n\t" << *RecStepForB << "\n"); return false; // FIXME: can support BCmpTyBytes > Step. // But will need to account for the extra bytes compared at the end. } SrcA = ScevForSrcA->getStart(); SrcB = ScevForSrcB->getStart(); LLVM_DEBUG(dbgs() << "Got SCEV expressions for load sources:\n\t" << *SrcA << "\n\t" << *SrcB << "\n"); // The load sources must be loop-invants that dominate the loop header. if (SrcA == SE->getCouldNotCompute() || SrcB == SE->getCouldNotCompute() || !SE->isAvailableAtLoopEntry(SrcA, CurLoop) || !SE->isAvailableAtLoopEntry(SrcB, CurLoop)) { LLVM_DEBUG(dbgs() << "Unsupported SCEV expressions for loads, unavaliable " "prior to loop header.\n"); return false; } LLVM_DEBUG(dbgs() << "SCEV expressions for loads are acceptable.\n"); // bcmp / memcmp take length argument as size_t, so let's conservatively // assume that the iteration count should be not wider than that. Type *CmpFuncSizeTy = DL->getIntPtrType(SE->getContext()); // For how many iterations is loop guaranteed not to exit via LoopLatch? // This is one less than the maximal number of comparisons,and is: n + -1 const SCEV *LoopExitCount = SE->getExitCount(CurLoop, CurLoop->getLoopLatch()); LLVM_DEBUG(dbgs() << "Got SCEV expression for loop latch exit count: " << *LoopExitCount << "\n"); // Exit count, similarly, must be loop-invant that dominates the loop header. if (LoopExitCount == SE->getCouldNotCompute() || !LoopExitCount->getType()->isIntOrPtrTy() || LoopExitCount->getType()->getScalarSizeInBits() > CmpFuncSizeTy->getScalarSizeInBits() || !SE->isAvailableAtLoopEntry(LoopExitCount, CurLoop)) { LLVM_DEBUG(dbgs() << "Unsupported SCEV expression for loop latch exit.\n"); return false; } // LoopExitCount is always one less than the actual count of iterations. // Do this before cast, else we will be stuck with 1 + zext(-1 + n) Iterations = SE->getAddExpr( LoopExitCount, SE->getOne(LoopExitCount->getType()), SCEV::FlagNUW); assert(Iterations != SE->getCouldNotCompute() && "Shouldn't fail to increment by one."); LLVM_DEBUG(dbgs() << "Computed iteration count: " << *Iterations << "\n"); return true; } /// Return true iff the bcmp idiom is detected in the loop. /// /// Additionally: /// 1) \p BCmpInst is set to the root byte-comparison instruction. /// 2) \p LatchCmpInst is set to the comparison that controls the latch. /// 3) \p LoadA is set to the first LoadInst. /// 4) \p LoadB is set to the second LoadInst. /// 5) \p SrcA is set to the first source location that is being compared. /// 6) \p SrcB is set to the second source location that is being compared. /// 7) \p NBytes is set to the number of bytes to compare. bool LoopIdiomRecognize::detectBCmpIdiom(ICmpInst *&BCmpInst, CmpInst *&LatchCmpInst, LoadInst *&LoadA, LoadInst *&LoadB, const SCEV *&SrcA, const SCEV *&SrcB, const SCEV *&NBytes) const { LLVM_DEBUG(dbgs() << "Recognizing bcmp idiom\n"); // Give up if the loop is not in normal form, or has more than 2 blocks. if (!CurLoop->isLoopSimplifyForm() || CurLoop->getNumBlocks() > 2) { LLVM_DEBUG(dbgs() << "Basic loop structure unrecognized.\n"); return false; } LLVM_DEBUG(dbgs() << "Recognized basic loop structure.\n"); CmpLoopStructure CmpLoop; if (!matchBCmpLoopStructure(CmpLoop)) return false; CmpOfLoads CmpOfLoads; if (!matchBCmpOfLoads(CmpLoop.BCmpValue, CmpOfLoads)) return false; if (!recognizeBCmpLoopControlFlow(CmpOfLoads, CmpLoop)) return false; BCmpInst = cast(CmpLoop.BCmpValue); // FIXME: is there no LatchCmpInst = cast(CmpLoop.LatchCmpValue); // way to combine LoadA = cast(CmpOfLoads.LoadA); // these cast with LoadB = cast(CmpOfLoads.LoadB); // m_Value() matcher? Type *BCmpValTy = BCmpInst->getOperand(0)->getType(); LLVMContext &Context = BCmpValTy->getContext(); uint64_t BCmpTyBits = DL->getTypeSizeInBits(BCmpValTy); static constexpr uint64_t ByteTyBits = 8; LLVM_DEBUG(dbgs() << "Got comparison between values of type " << *BCmpValTy << " of size " << BCmpTyBits << " bits (while byte = " << ByteTyBits << " bits).\n"); // bcmp()/memcmp() minimal unit of work is a byte. Therefore we must check // that we are dealing with a multiple of a byte here. if (BCmpTyBits % ByteTyBits != 0) { LLVM_DEBUG(dbgs() << "Value size is not a multiple of byte.\n"); return false; // FIXME: could still be done under a run-time check that the total bit // count is a multiple of a byte i guess? Or handle remainder separately? } // Each comparison is done on this many bytes. uint64_t BCmpTyBytes = BCmpTyBits / ByteTyBits; LLVM_DEBUG(dbgs() << "Size is exactly " << BCmpTyBytes << " bytes, eligible for bcmp conversion.\n"); const SCEV *Iterations; if (!recognizeBCmpLoopSCEV(BCmpTyBytes, CmpOfLoads, SrcA, SrcB, Iterations)) return false; // bcmp / memcmp take length argument as size_t, do promotion now. Type *CmpFuncSizeTy = DL->getIntPtrType(Context); Iterations = SE->getNoopOrZeroExtend(Iterations, CmpFuncSizeTy); assert(Iterations != SE->getCouldNotCompute() && "Promotion failed."); // Note that it didn't do ptrtoint cast, we will need to do it manually. // We will be comparing *bytes*, not BCmpTy, we need to recalculate size. // It's a multiplication, and it *could* overflow. But for it to overflow // we'd want to compare more bytes than could be represented by size_t, But // allocation functions also take size_t. So how'd you produce such buffer? // FIXME: we likely need to actually check that we know this won't overflow, // via llvm::computeOverflowForUnsignedMul(). NBytes = SE->getMulExpr( Iterations, SE->getConstant(CmpFuncSizeTy, BCmpTyBytes), SCEV::FlagNUW); assert(NBytes != SE->getCouldNotCompute() && "Shouldn't fail to increment by one."); LLVM_DEBUG(dbgs() << "Computed total byte count: " << *NBytes << "\n"); if (LoadA->getPointerAddressSpace() != LoadB->getPointerAddressSpace() || LoadA->getPointerAddressSpace() != 0 || !LoadA->isSimple() || !LoadB->isSimple()) { StringLiteral L("Unsupported loads in idiom - only support identical, " "simple loads from address space 0.\n"); LLVM_DEBUG(dbgs() << L); ORE.emit([&]() { return OptimizationRemarkMissed(DEBUG_TYPE, "BCmpIdiomUnsupportedLoads", BCmpInst->getDebugLoc(), CurLoop->getHeader()) << L; }); return false; // FIXME: support non-simple loads. } LLVM_DEBUG(dbgs() << "Recognized bcmp idiom\n"); ORE.emit([&]() { return OptimizationRemarkAnalysis(DEBUG_TYPE, "RecognizedBCmpIdiom", CurLoop->getStartLoc(), CurLoop->getHeader()) << "Loop recognized as a bcmp idiom"; }); return true; } BasicBlock * LoopIdiomRecognize::transformBCmpControlFlow(ICmpInst *ComparedEqual) { LLVM_DEBUG(dbgs() << "Transforming control-flow.\n"); SmallVector DTUpdates; BasicBlock *PreheaderBB = CurLoop->getLoopPreheader(); BasicBlock *HeaderBB = CurLoop->getHeader(); BasicBlock *LoopLatchBB = CurLoop->getLoopLatch(); SmallString<32> LoopName = CurLoop->getName(); Function *Func = PreheaderBB->getParent(); LLVMContext &Context = Func->getContext(); // Before doing anything, drop SCEV info. SE->forgetLoop(CurLoop); // Here we start with: (0/6) // PreheaderBB: ; preds = ??? // <...> // %memcmp = call i32 @memcmp(i8* %LoadSrcA, i8* %LoadSrcB, i64 %Nbytes) // %ComparedEqual = icmp eq <...> %memcmp, 0 // br label %LoopHeaderBB // LoopHeaderBB: ; preds = %PreheaderBB,%LoopLatchBB // <...> // br i1 %<...>, label %LoopLatchBB, label %Successor0BB // LoopLatchBB: ; preds = %LoopHeaderBB // <...> // br i1 %<...>, label %Successor1BB, label %LoopHeaderBB // Successor0BB: ; preds = %LoopHeaderBB // %S0PHI = phi <...> [ <...>, %LoopHeaderBB ] // <...> // Successor1BB: ; preds = %LoopLatchBB // %S1PHI = phi <...> [ <...>, %LoopLatchBB ] // <...> // // Successor0 and Successor1 may or may not be the same basic block. // Decouple the edge between loop preheader basic block and loop header basic // block. Thus the loop has become unreachable. assert(cast(PreheaderBB->getTerminator())->isUnconditional() && PreheaderBB->getTerminator()->getSuccessor(0) == HeaderBB && "Preheader bb must end with an unconditional branch to header bb."); PreheaderBB->getTerminator()->eraseFromParent(); DTUpdates.push_back({DominatorTree::Delete, PreheaderBB, HeaderBB}); // Create a new preheader basic block before loop header basic block. auto *PhonyPreheaderBB = BasicBlock::Create( Context, LoopName + ".phonypreheaderbb", Func, HeaderBB); // And insert an unconditional branch from phony preheader basic block to // loop header basic block. IRBuilder<>(PhonyPreheaderBB).CreateBr(HeaderBB); DTUpdates.push_back({DominatorTree::Insert, PhonyPreheaderBB, HeaderBB}); // Create a *single* new empty block that we will substitute as a // successor basic block for the loop's exits. This one is temporary. // Much like phony preheader basic block, it is not connected. auto *PhonySuccessorBB = BasicBlock::Create(Context, LoopName + ".phonysuccessorbb", Func, LoopLatchBB->getNextNode()); // That block must have *some* non-PHI instruction, or else deleteDeadLoop() // will mess up cleanup of dbginfo, and verifier will complain. IRBuilder<>(PhonySuccessorBB).CreateUnreachable(); // Create two new empty blocks that we will use to preserve the original // loop exit control-flow, and preserve the incoming values in the PHI nodes // in loop's successor exit blocks. These will live one. auto *ComparedUnequalBB = BasicBlock::Create(Context, ComparedEqual->getName() + ".unequalbb", Func, PhonySuccessorBB->getNextNode()); auto *ComparedEqualBB = BasicBlock::Create(Context, ComparedEqual->getName() + ".equalbb", Func, PhonySuccessorBB->getNextNode()); // By now we have: (1/6) // PreheaderBB: ; preds = ??? // <...> // %memcmp = call i32 @memcmp(i8* %LoadSrcA, i8* %LoadSrcB, i64 %Nbytes) // %ComparedEqual = icmp eq <...> %memcmp, 0 // [no terminator instruction!] // PhonyPreheaderBB: ; No preds, UNREACHABLE! // br label %LoopHeaderBB // LoopHeaderBB: ; preds = %PhonyPreheaderBB, %LoopLatchBB // <...> // br i1 %<...>, label %LoopLatchBB, label %Successor0BB // LoopLatchBB: ; preds = %LoopHeaderBB // <...> // br i1 %<...>, label %Successor1BB, label %LoopHeaderBB // PhonySuccessorBB: ; No preds, UNREACHABLE! // unreachable // EqualBB: ; No preds, UNREACHABLE! // [no terminator instruction!] // UnequalBB: ; No preds, UNREACHABLE! // [no terminator instruction!] // Successor0BB: ; preds = %LoopHeaderBB // %S0PHI = phi <...> [ <...>, %LoopHeaderBB ] // <...> // Successor1BB: ; preds = %LoopLatchBB // %S1PHI = phi <...> [ <...>, %LoopLatchBB ] // <...> // What is the mapping/replacement basic block for exiting out of the loop // from either of old's loop basic blocks? auto GetReplacementBB = [this, ComparedEqualBB, ComparedUnequalBB](const BasicBlock *OldBB) { assert(CurLoop->contains(OldBB) && "Only for loop's basic blocks."); if (OldBB == CurLoop->getLoopLatch()) // "all elements compared equal". return ComparedEqualBB; if (OldBB == CurLoop->getHeader()) // "element compared unequal". return ComparedUnequalBB; llvm_unreachable("Only had two basic blocks in loop."); }; // What are the exits out of this loop? SmallVector LoopExitEdges; CurLoop->getExitEdges(LoopExitEdges); assert(LoopExitEdges.size() == 2 && "Should have only to two exit edges."); // Populate new basic blocks, update the exiting control-flow, PHI nodes. for (const Loop::Edge &Edge : LoopExitEdges) { auto *OldLoopBB = const_cast(Edge.first); auto *SuccessorBB = const_cast(Edge.second); assert(CurLoop->contains(OldLoopBB) && !CurLoop->contains(SuccessorBB) && "Unexpected edge."); // If we would exit the loop from this loop's basic block, // what semantically would that mean? Did comparison succeed or fail? BasicBlock *NewBB = GetReplacementBB(OldLoopBB); assert(NewBB->empty() && "Should not get same new basic block here twice."); IRBuilder<> Builder(NewBB); Builder.SetCurrentDebugLocation(OldLoopBB->getTerminator()->getDebugLoc()); Builder.CreateBr(SuccessorBB); DTUpdates.push_back({DominatorTree::Insert, NewBB, SuccessorBB}); // Also, be *REALLY* careful with PHI nodes in successor basic block, // update them to recieve the same input value, but not from current loop's // basic block, but from new basic block instead. SuccessorBB->replacePhiUsesWith(OldLoopBB, NewBB); // Also, change loop control-flow. This loop's basic block shall no longer // exit from the loop to it's original successor basic block, but to our new // phony successor basic block. Note that new successor will be unique exit. OldLoopBB->getTerminator()->replaceSuccessorWith(SuccessorBB, PhonySuccessorBB); DTUpdates.push_back({DominatorTree::Delete, OldLoopBB, SuccessorBB}); DTUpdates.push_back({DominatorTree::Insert, OldLoopBB, PhonySuccessorBB}); } // Inform DomTree about edge changes. Note that LoopInfo is still out-of-date. assert(DTUpdates.size() == 8 && "Update count prediction failed."); DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); DTU.applyUpdates(DTUpdates); DTUpdates.clear(); // By now we have: (2/6) // PreheaderBB: ; preds = ??? // <...> // %memcmp = call i32 @memcmp(i8* %LoadSrcA, i8* %LoadSrcB, i64 %Nbytes) // %ComparedEqual = icmp eq <...> %memcmp, 0 // [no terminator instruction!] // PhonyPreheaderBB: ; No preds, UNREACHABLE! // br label %LoopHeaderBB // LoopHeaderBB: ; preds = %PhonyPreheaderBB, %LoopLatchBB // <...> // br i1 %<...>, label %LoopLatchBB, label %PhonySuccessorBB // LoopLatchBB: ; preds = %LoopHeaderBB // <...> // br i1 %<...>, label %PhonySuccessorBB, label %LoopHeaderBB // PhonySuccessorBB: ; preds = %LoopHeaderBB, %LoopLatchBB // unreachable // EqualBB: ; No preds, UNREACHABLE! // br label %Successor1BB // UnequalBB: ; No preds, UNREACHABLE! // br label %Successor0BB // Successor0BB: ; preds = %UnequalBB // %S0PHI = phi <...> [ <...>, %UnequalBB ] // <...> // Successor1BB: ; preds = %EqualBB // %S0PHI = phi <...> [ <...>, %EqualBB ] // <...> // *Finally*, zap the original loop. Record it's parent loop though. Loop *ParentLoop = CurLoop->getParentLoop(); LLVM_DEBUG(dbgs() << "Deleting old loop.\n"); LoopDeleter.markLoopAsDeleted(CurLoop); // Mark as deleted *BEFORE* deleting! deleteDeadLoop(CurLoop, DT, SE, LI); // And actually delete the loop. CurLoop = nullptr; // By now we have: (3/6) // PreheaderBB: ; preds = ??? // <...> // %memcmp = call i32 @memcmp(i8* %LoadSrcA, i8* %LoadSrcB, i64 %Nbytes) // %ComparedEqual = icmp eq <...> %memcmp, 0 // [no terminator instruction!] // PhonyPreheaderBB: ; No preds, UNREACHABLE! // br label %PhonySuccessorBB // PhonySuccessorBB: ; preds = %PhonyPreheaderBB // unreachable // EqualBB: ; No preds, UNREACHABLE! // br label %Successor1BB // UnequalBB: ; No preds, UNREACHABLE! // br label %Successor0BB // Successor0BB: ; preds = %UnequalBB // %S0PHI = phi <...> [ <...>, %UnequalBB ] // <...> // Successor1BB: ; preds = %EqualBB // %S0PHI = phi <...> [ <...>, %EqualBB ] // <...> // Now, actually restore the CFG. // Insert an unconditional branch from an actual preheader basic block to // phony preheader basic block. IRBuilder<>(PreheaderBB).CreateBr(PhonyPreheaderBB); DTUpdates.push_back({DominatorTree::Insert, PhonyPreheaderBB, HeaderBB}); // Insert proper conditional branch from phony successor basic block to the // "dispatch" basic blocks, which were used to preserve incoming values in // original loop's successor basic blocks. assert(isa(PhonySuccessorBB->getTerminator()) && "Yep, that's the one we created to keep deleteDeadLoop() happy."); PhonySuccessorBB->getTerminator()->eraseFromParent(); { IRBuilder<> Builder(PhonySuccessorBB); Builder.SetCurrentDebugLocation(ComparedEqual->getDebugLoc()); Builder.CreateCondBr(ComparedEqual, ComparedEqualBB, ComparedUnequalBB); } DTUpdates.push_back( {DominatorTree::Insert, PhonySuccessorBB, ComparedEqualBB}); DTUpdates.push_back( {DominatorTree::Insert, PhonySuccessorBB, ComparedUnequalBB}); BasicBlock *DispatchBB = PhonySuccessorBB; DispatchBB->setName(LoopName + ".bcmpdispatchbb"); assert(DTUpdates.size() == 3 && "Update count prediction failed."); DTU.applyUpdates(DTUpdates); DTUpdates.clear(); // By now we have: (4/6) // PreheaderBB: ; preds = ??? // <...> // %memcmp = call i32 @memcmp(i8* %LoadSrcA, i8* %LoadSrcB, i64 %Nbytes) // %ComparedEqual = icmp eq <...> %memcmp, 0 // br label %PhonyPreheaderBB // PhonyPreheaderBB: ; preds = %PreheaderBB // br label %DispatchBB // DispatchBB: ; preds = %PhonyPreheaderBB // br i1 %ComparedEqual, label %EqualBB, label %UnequalBB // EqualBB: ; preds = %DispatchBB // br label %Successor1BB // UnequalBB: ; preds = %DispatchBB // br label %Successor0BB // Successor0BB: ; preds = %UnequalBB // %S0PHI = phi <...> [ <...>, %UnequalBB ] // <...> // Successor1BB: ; preds = %EqualBB // %S0PHI = phi <...> [ <...>, %EqualBB ] // <...> // The basic CFG has been restored! Now let's merge redundant basic blocks. // Merge phony successor basic block into it's only predecessor, // phony preheader basic block. It is fully pointlessly redundant. MergeBasicBlockIntoOnlyPred(DispatchBB, &DTU); // By now we have: (5/6) // PreheaderBB: ; preds = ??? // <...> // %memcmp = call i32 @memcmp(i8* %LoadSrcA, i8* %LoadSrcB, i64 %Nbytes) // %ComparedEqual = icmp eq <...> %memcmp, 0 // br label %DispatchBB // DispatchBB: ; preds = %PreheaderBB // br i1 %ComparedEqual, label %EqualBB, label %UnequalBB // EqualBB: ; preds = %DispatchBB // br label %Successor1BB // UnequalBB: ; preds = %DispatchBB // br label %Successor0BB // Successor0BB: ; preds = %UnequalBB // %S0PHI = phi <...> [ <...>, %UnequalBB ] // <...> // Successor1BB: ; preds = %EqualBB // %S0PHI = phi <...> [ <...>, %EqualBB ] // <...> // Was this loop nested? if (!ParentLoop) { // If the loop was *NOT* nested, then let's also merge phony successor // basic block into it's only predecessor, preheader basic block. // Also, here we need to update LoopInfo. LI->removeBlock(PreheaderBB); MergeBasicBlockIntoOnlyPred(DispatchBB, &DTU); // By now we have: (6/6) // DispatchBB: ; preds = ??? // <...> // %memcmp = call i32 @memcmp(i8* %LoadSrcA, i8* %LoadSrcB, i64 %Nbytes) // %ComparedEqual = icmp eq <...> %memcmp, 0 // br i1 %ComparedEqual, label %EqualBB, label %UnequalBB // EqualBB: ; preds = %DispatchBB // br label %Successor1BB // UnequalBB: ; preds = %DispatchBB // br label %Successor0BB // Successor0BB: ; preds = %UnequalBB // %S0PHI = phi <...> [ <...>, %UnequalBB ] // <...> // Successor1BB: ; preds = %EqualBB // %S0PHI = phi <...> [ <...>, %EqualBB ] // <...> return DispatchBB; } // Otherwise, we need to "preserve" the LoopSimplify form of the deleted loop. // To achieve that, we shall keep the preheader basic block (mainly so that // the loop header block will be guaranteed to have a predecessor outside of // the loop), and create a phony loop with all these new three basic blocks. Loop *PhonyLoop = LI->AllocateLoop(); ParentLoop->addChildLoop(PhonyLoop); PhonyLoop->addBasicBlockToLoop(DispatchBB, *LI); PhonyLoop->addBasicBlockToLoop(ComparedEqualBB, *LI); PhonyLoop->addBasicBlockToLoop(ComparedUnequalBB, *LI); // But we only have a preheader basic block, a header basic block block and // two exiting basic blocks. For a proper loop we also need a backedge from // non-header basic block to header bb. // Let's just add a never-taken branch from both of the exiting basic blocks. for (BasicBlock *BB : {ComparedEqualBB, ComparedUnequalBB}) { BranchInst *OldTerminator = cast(BB->getTerminator()); assert(OldTerminator->isUnconditional() && "That's the one we created."); BasicBlock *SuccessorBB = OldTerminator->getSuccessor(0); IRBuilder<> Builder(OldTerminator); Builder.SetCurrentDebugLocation(OldTerminator->getDebugLoc()); Builder.CreateCondBr(ConstantInt::getTrue(Context), SuccessorBB, DispatchBB); OldTerminator->eraseFromParent(); // Yes, the backedge will never be taken. The control-flow is redundant. // If it can be simplified further, other passes will take care. DTUpdates.push_back({DominatorTree::Delete, BB, SuccessorBB}); DTUpdates.push_back({DominatorTree::Insert, BB, SuccessorBB}); DTUpdates.push_back({DominatorTree::Insert, BB, DispatchBB}); } assert(DTUpdates.size() == 6 && "Update count prediction failed."); DTU.applyUpdates(DTUpdates); DTUpdates.clear(); // By now we have: (6/6) // PreheaderBB: ; preds = ??? // <...> // %memcmp = call i32 @memcmp(i8* %LoadSrcA, i8* %LoadSrcB, i64 %Nbytes) // %ComparedEqual = icmp eq <...> %memcmp, 0 // br label %BCmpDispatchBB // BCmpDispatchBB:
; preds = %PreheaderBB // br i1 %ComparedEqual, label %EqualBB, label %UnequalBB // EqualBB: ; preds = %BCmpDispatchBB // br i1 %true, label %Successor1BB, label %BCmpDispatchBB // UnequalBB: ; preds = %BCmpDispatchBB // br i1 %true, label %Successor0BB, label %BCmpDispatchBB // Successor0BB: ; preds = %UnequalBB // %S0PHI = phi <...> [ <...>, %UnequalBB ] // <...> // Successor1BB: ; preds = %EqualBB // %S0PHI = phi <...> [ <...>, %EqualBB ] // <...> // Finally fully DONE! return DispatchBB; } void LoopIdiomRecognize::transformLoopToBCmp(ICmpInst *BCmpInst, CmpInst *LatchCmpInst, LoadInst *LoadA, LoadInst *LoadB, const SCEV *SrcA, const SCEV *SrcB, const SCEV *NBytes) { // We will be inserting before the terminator instruction of preheader block. IRBuilder<> Builder(CurLoop->getLoopPreheader()->getTerminator()); LLVM_DEBUG(dbgs() << "Transforming bcmp loop idiom into a call.\n"); LLVM_DEBUG(dbgs() << "Emitting new instructions.\n"); // Expand the SCEV expressions for both sources to compare, and produce value // for the byte len (beware of Iterations potentially being a pointer, and // account for element size being BCmpTyBytes bytes, which may be not 1 byte) Value *PtrA, *PtrB, *Len; { SCEVExpander SExp(*SE, *DL, "LoopToBCmp"); SExp.setInsertPoint(&*Builder.GetInsertPoint()); auto HandlePtr = [&SExp](LoadInst *Load, const SCEV *Src) { SExp.SetCurrentDebugLocation(DebugLoc()); // If the pointer operand of original load had dbgloc - use it. if (const auto *I = dyn_cast(Load->getPointerOperand())) SExp.SetCurrentDebugLocation(I->getDebugLoc()); return SExp.expandCodeFor(Src); }; PtrA = HandlePtr(LoadA, SrcA); PtrB = HandlePtr(LoadB, SrcB); // For len calculation let's use dbgloc for the loop's latch condition. Builder.SetCurrentDebugLocation(LatchCmpInst->getDebugLoc()); SExp.SetCurrentDebugLocation(LatchCmpInst->getDebugLoc()); Len = SExp.expandCodeFor(NBytes); Type *CmpFuncSizeTy = DL->getIntPtrType(Builder.getContext()); assert(SE->getTypeSizeInBits(Len->getType()) == DL->getTypeSizeInBits(CmpFuncSizeTy) && "Len should already have the correct size."); // Make sure that iteration count is a number, insert ptrtoint cast if not. if (Len->getType()->isPointerTy()) Len = Builder.CreatePtrToInt(Len, CmpFuncSizeTy); assert(Len->getType() == CmpFuncSizeTy && "Should have correct type now."); Len->setName(Len->getName() + ".bytecount"); // There is no legality check needed. We want to compare that the memory // regions [PtrA, PtrA+Len) and [PtrB, PtrB+Len) are fully identical, equal. // For them to be fully equal, they must match bit-by-bit. And likewise, // for them to *NOT* be fully equal, they have to differ just by one bit. // The step of comparison (bits compared at once) simply does not matter. } // For the rest of new instructions, dbgloc should point at the value cmp. Builder.SetCurrentDebugLocation(BCmpInst->getDebugLoc()); // Emit the comparison itself. auto *CmpCall = cast(HasBCmp ? emitBCmp(PtrA, PtrB, Len, Builder, *DL, TLI) : emitMemCmp(PtrA, PtrB, Len, Builder, *DL, TLI)); // FIXME: add {B,Mem}CmpInst with MemoryCompareInst // (based on MemIntrinsicBase) as base? // FIXME: propagate metadata from loads? (alignments, AS, TBAA, ...) // {b,mem}cmp returned 0 if they were equal, or non-zero if not equal. auto *ComparedEqual = cast(Builder.CreateICmpEQ( CmpCall, ConstantInt::get(CmpCall->getType(), 0), PtrA->getName() + ".vs." + PtrB->getName() + ".eqcmp")); BasicBlock *BB = transformBCmpControlFlow(ComparedEqual); Builder.ClearInsertionPoint(); // We're done. LLVM_DEBUG(dbgs() << "Transformed loop bcmp idiom into a call.\n"); ORE.emit([&]() { return OptimizationRemark(DEBUG_TYPE, "TransformedBCmpIdiomToCall", CmpCall->getDebugLoc(), BB) << "Transformed bcmp idiom into a call to " << ore::NV("NewFunction", CmpCall->getCalledFunction()) << "() function"; }); ++NumBCmp; } /// Recognizes a bcmp idiom in a non-countable loop. /// /// If detected, transforms the relevant code to issue the bcmp (or memcmp) /// intrinsic function call, and returns true; otherwise, returns false. bool LoopIdiomRecognize::recognizeBCmp() { if (!HasMemCmp && !HasBCmp) return false; ICmpInst *BCmpInst; CmpInst *LatchCmpInst; LoadInst *LoadA, *LoadB; const SCEV *SrcA, *SrcB, *NBytes; if (!detectBCmpIdiom(BCmpInst, LatchCmpInst, LoadA, LoadB, SrcA, SrcB, NBytes)) { LLVM_DEBUG(dbgs() << "bcmp idiom recognition failed.\n"); return false; } transformLoopToBCmp(BCmpInst, LatchCmpInst, LoadA, LoadB, SrcA, SrcB, NBytes); return true; }