/*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2022 Adrian Chadd . * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include "opt_platform.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef FDT #include #include #include #endif #include #include "spibus_if.h" #include #define W25N_SECTORSIZE 512 struct w25n_flash_ident { const char *name; uint8_t manufacturer_id; uint16_t device_id; unsigned int sectorsize; unsigned int sectorcount; unsigned int erasesize; unsigned int flags; }; struct w25n_softc { device_t sc_dev; device_t sc_parent; uint8_t sc_manufacturer_id; uint16_t sc_device_id; unsigned int sc_erasesize; struct mtx sc_mtx; struct disk *sc_disk; struct proc *sc_p; struct bio_queue_head sc_bio_queue; unsigned int sc_flags; unsigned int sc_taskstate; }; #define TSTATE_STOPPED 0 #define TSTATE_STOPPING 1 #define TSTATE_RUNNING 2 #define W25N_LOCK(_sc) mtx_lock(&(_sc)->sc_mtx) #define W25N_UNLOCK(_sc) mtx_unlock(&(_sc)->sc_mtx) #define W25N_LOCK_INIT(_sc) \ mtx_init(&_sc->sc_mtx, device_get_nameunit(_sc->sc_dev), \ "w25n", MTX_DEF) #define W25N_LOCK_DESTROY(_sc) mtx_destroy(&_sc->sc_mtx); #define W25N_ASSERT_LOCKED(_sc) mtx_assert(&_sc->sc_mtx, MA_OWNED); #define W25N_ASSERT_UNLOCKED(_sc) mtx_assert(&_sc->sc_mtx, MA_NOTOWNED); /* disk routines */ static int w25n_open(struct disk *dp); static int w25n_close(struct disk *dp); static int w25n_ioctl(struct disk *, u_long, void *, int, struct thread *); static void w25n_strategy(struct bio *bp); static int w25n_getattr(struct bio *bp); static void w25n_task(void *arg); #define FL_NONE 0x00000000 static struct w25n_flash_ident flash_devices[] = { { "w25n01gv", 0xef, 0xaa21, 2048, 64 * 1024, 128 * 1024, FL_NONE }, }; static int w25n_read_status_register(struct w25n_softc *sc, uint8_t reg, uint8_t *retval) { uint8_t txBuf[3], rxBuf[3]; struct spi_command cmd; int err; memset(&cmd, 0, sizeof(cmd)); txBuf[0] = CMD_READ_STATUS; txBuf[1] = reg; cmd.tx_cmd = txBuf; cmd.rx_cmd = rxBuf; cmd.rx_cmd_sz = 3; cmd.tx_cmd_sz = 3; err = SPIBUS_TRANSFER(sc->sc_parent, sc->sc_dev, &cmd); if (err != 0) return (err); *retval = rxBuf[2]; return (0); } static int w25n_wait_for_device_ready(struct w25n_softc *sc) { int err; uint8_t val; do { err = w25n_read_status_register(sc, STATUS_REG_3, &val); } while (err == 0 && (val & STATUS_REG_3_BUSY)); return (err); } static int w25n_set_page_address(struct w25n_softc *sc, uint16_t page_idx) { uint8_t txBuf[4], rxBuf[4]; struct spi_command cmd; int err; txBuf[0] = CMD_PAGE_DATA_READ; txBuf[1] = 0; /* dummy */ txBuf[2] = (page_idx >> 8) & 0xff; txBuf[3] = (page_idx >> 0) & 0xff; cmd.tx_cmd = txBuf; cmd.rx_cmd = rxBuf; cmd.rx_cmd_sz = 4; cmd.tx_cmd_sz = 4; err = SPIBUS_TRANSFER(sc->sc_parent, sc->sc_dev, &cmd); if (err != 0) return (err); return (0); } static struct w25n_flash_ident* w25n_get_device_ident(struct w25n_softc *sc) { uint8_t txBuf[8], rxBuf[8]; struct spi_command cmd; uint8_t manufacturer_id; uint16_t dev_id; int err, i; memset(&cmd, 0, sizeof(cmd)); memset(txBuf, 0, sizeof(txBuf)); memset(rxBuf, 0, sizeof(rxBuf)); txBuf[0] = CMD_READ_IDENT; cmd.tx_cmd = &txBuf; cmd.rx_cmd = &rxBuf; cmd.tx_cmd_sz = 5; cmd.rx_cmd_sz = 5; err = SPIBUS_TRANSFER(sc->sc_parent, sc->sc_dev, &cmd); if (err) return (NULL); manufacturer_id = rxBuf[2]; dev_id = (rxBuf[3] << 8) | (rxBuf[4]); for (i = 0; i < nitems(flash_devices); i++) { if ((flash_devices[i].manufacturer_id == manufacturer_id) && (flash_devices[i].device_id == dev_id)) return &flash_devices[i]; } device_printf(sc->sc_dev, "Unknown SPI NAND flash device. Vendor: %02x, device id: %04x\n", manufacturer_id, dev_id); return (NULL); } static int w25n_write(struct w25n_softc *sc, off_t offset, caddr_t data, off_t count) { return (ENXIO); } static int w25n_read(struct w25n_softc *sc, off_t offset, caddr_t data, off_t count) { uint8_t txBuf[4], rxBuf[4]; struct spi_command cmd; int err; int read_size; uint16_t page_idx; uint8_t st3, ecc_status; /* * We only support reading things at multiples of the page size. */ if (count % sc->sc_disk->d_sectorsize != 0) { device_printf(sc->sc_dev, "%s: invalid count\n", __func__); return (EIO); } if (offset % sc->sc_disk->d_sectorsize != 0) { device_printf(sc->sc_dev, "%s: invalid offset\n", __func__); return (EIO); } page_idx = offset / sc->sc_disk->d_sectorsize; while (count > 0) { /* Wait until we're ready */ err = w25n_wait_for_device_ready(sc); if (err != 0) { device_printf(sc->sc_dev, "%s: failed to wait\n", __func__); return (err); } /* Issue the page change */ err = w25n_set_page_address(sc, page_idx); if (err != 0) { device_printf(sc->sc_dev, "%s: page change failed\n", __func__); return (err); } /* Wait until the page change has read in data */ err = w25n_wait_for_device_ready(sc); if (err != 0) { device_printf(sc->sc_dev, "%s: failed to wait again\n", __func__); return (err); } /* * Now we can issue a read command for the data * in the buffer. We'll read into the data buffer * until we run out of data in this page. * * To simplify things we're not starting at an * arbitrary offset; so the column address here * inside the page is 0. If we later want to support * that kind of operation then we could do the math * here. */ read_size = MIN(count, sc->sc_disk->d_sectorsize); memset(data, 0xef, read_size); txBuf[0] = CMD_FAST_READ; txBuf[1] = 0; /* column address 15:8 */ txBuf[2] = 0; /* column address 7:0 */ txBuf[3] = 0; /* dummy byte */ cmd.tx_cmd_sz = 4; cmd.rx_cmd_sz = 4; cmd.tx_cmd = txBuf; cmd.rx_cmd = rxBuf; cmd.tx_data = data; cmd.rx_data = data; cmd.tx_data_sz = read_size; cmd.rx_data_sz = read_size; err = SPIBUS_TRANSFER(sc->sc_parent, sc->sc_dev, &cmd); if (err != 0) { device_printf(sc->sc_dev, "ERROR: failed to do FAST_READ (%u)\n", err); return (err); } /* * Now, check ECC status bits, see if we had an ECC * error. */ err = w25n_read_status_register(sc, STATUS_REG_3, &st3); if (err != 0) { device_printf(sc->sc_dev, "%s: failed to wait again\n", __func__); return (err); } ecc_status = (st3 >> STATUS_REG_3_ECC_STATUS_SHIFT) & STATUS_REG_3_ECC_STATUS_MASK; if ((ecc_status != STATUS_ECC_OK) && (ecc_status != STATUS_ECC_1BIT_OK)) { device_printf(sc->sc_dev, "%s: ECC status failed\n", __func__); return (EIO); } count -= read_size; data += read_size; page_idx += 1; } return (0); } #ifdef FDT static struct ofw_compat_data compat_data[] = { { "spi-nand", 1 }, { NULL, 0 }, }; #endif static int w25n_probe(device_t dev) { #ifdef FDT int i; if (!ofw_bus_status_okay(dev)) return (ENXIO); /* First try to match the compatible property to the compat_data */ if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 1) goto found; /* * Next, try to find a compatible device using the names in the * flash_devices structure */ for (i = 0; i < nitems(flash_devices); i++) if (ofw_bus_is_compatible(dev, flash_devices[i].name)) goto found; return (ENXIO); found: #endif device_set_desc(dev, "W25N NAND Flash Family"); return (0); } static int w25n_attach(device_t dev) { struct w25n_softc *sc; struct w25n_flash_ident *ident; int err; uint8_t st1, st2, st3; sc = device_get_softc(dev); sc->sc_dev = dev; sc->sc_parent = device_get_parent(sc->sc_dev); W25N_LOCK_INIT(sc); ident = w25n_get_device_ident(sc); if (ident == NULL) return (ENXIO); if ((err = w25n_wait_for_device_ready(sc)) != 0) return (err); /* * Read the configuration, protection and status registers. * Print them out here so the initial configuration can be checked. */ err = w25n_read_status_register(sc, STATUS_REG_1, &st1); if (err != 0) return (err); err = w25n_read_status_register(sc, STATUS_REG_2, &st2); if (err != 0) return (err); err = w25n_read_status_register(sc, STATUS_REG_3, &st3); if (err != 0) return (err); device_printf(sc->sc_dev, "device type %s, size %dK in %d sectors of %dK, erase size %dK\n", ident->name, ident->sectorcount * ident->sectorsize / 1024, ident->sectorcount, ident->sectorsize / 1024, ident->erasesize / 1024); if (bootverbose) device_printf(sc->sc_dev, "status1=0x%08x, status2=0x%08x, status3=0x%08x\n", st1, st2, st3); /* * For now we're only going to support parts that have * device ECC enabled. Later on it may be interesting * to do software driven ECC and figure out how we * expose it over GEOM, but that day isn't today. */ if ((st2 & STATUS_REG_2_ECC_EN) == 0) { device_printf(sc->sc_dev, "ERROR: only ECC in HW is supported\n"); return (err); } if ((st2 & STATUS_REG_2_BUF_EN) == 0) { device_printf(sc->sc_dev, "ERROR: only BUF mode is supported\n"); return (err); } sc->sc_flags = ident->flags; sc->sc_erasesize = ident->erasesize; sc->sc_disk = disk_alloc(); sc->sc_disk->d_open = w25n_open; sc->sc_disk->d_close = w25n_close; sc->sc_disk->d_strategy = w25n_strategy; sc->sc_disk->d_getattr = w25n_getattr; sc->sc_disk->d_ioctl = w25n_ioctl; sc->sc_disk->d_name = "nand_flash/spi"; sc->sc_disk->d_drv1 = sc; sc->sc_disk->d_maxsize = DFLTPHYS; sc->sc_disk->d_sectorsize = ident->sectorsize; sc->sc_disk->d_mediasize = ident->sectorsize * ident->sectorcount; sc->sc_disk->d_stripesize = sc->sc_erasesize; sc->sc_disk->d_unit = device_get_unit(sc->sc_dev); sc->sc_disk->d_dump = NULL; /* NB: no dumps */ strlcpy(sc->sc_disk->d_descr, ident->name, sizeof(sc->sc_disk->d_descr)); disk_create(sc->sc_disk, DISK_VERSION); bioq_init(&sc->sc_bio_queue); kproc_create(&w25n_task, sc, &sc->sc_p, 0, 0, "task: w25n flash"); sc->sc_taskstate = TSTATE_RUNNING; return (0); } static int w25n_detach(device_t dev) { struct w25n_softc *sc; int err; sc = device_get_softc(dev); err = 0; W25N_LOCK(sc); if (sc->sc_taskstate == TSTATE_RUNNING) { sc->sc_taskstate = TSTATE_STOPPING; wakeup(sc); while (err == 0 && sc->sc_taskstate != TSTATE_STOPPED) { err = msleep(sc, &sc->sc_mtx, 0, "w25nd", hz * 3); if (err != 0) { sc->sc_taskstate = TSTATE_RUNNING; device_printf(sc->sc_dev, "Failed to stop queue task\n"); } } } W25N_UNLOCK(sc); if (err == 0 && sc->sc_taskstate == TSTATE_STOPPED) { disk_destroy(sc->sc_disk); bioq_flush(&sc->sc_bio_queue, NULL, ENXIO); W25N_LOCK_DESTROY(sc); } return (err); } static int w25n_open(struct disk *dp) { return (0); } static int w25n_close(struct disk *dp) { return (0); } static int w25n_ioctl(struct disk *dp, u_long cmd, void *data, int fflag, struct thread *td) { return (EINVAL); } static void w25n_strategy(struct bio *bp) { struct w25n_softc *sc; sc = (struct w25n_softc *)bp->bio_disk->d_drv1; W25N_LOCK(sc); bioq_disksort(&sc->sc_bio_queue, bp); wakeup(sc); W25N_UNLOCK(sc); } static int w25n_getattr(struct bio *bp) { struct w25n_softc *sc; device_t dev; if (bp->bio_disk == NULL || bp->bio_disk->d_drv1 == NULL) return (ENXIO); sc = bp->bio_disk->d_drv1; dev = sc->sc_dev; if (strcmp(bp->bio_attribute, "SPI::device") == 0) { if (bp->bio_length != sizeof(dev)) return (EFAULT); bcopy(&dev, bp->bio_data, sizeof(dev)); } else return (-1); return (0); } static void w25n_task(void *arg) { struct w25n_softc *sc = (struct w25n_softc*)arg; struct bio *bp; for (;;) { W25N_LOCK(sc); do { if (sc->sc_taskstate == TSTATE_STOPPING) { sc->sc_taskstate = TSTATE_STOPPED; W25N_UNLOCK(sc); wakeup(sc); kproc_exit(0); } bp = bioq_first(&sc->sc_bio_queue); if (bp == NULL) msleep(sc, &sc->sc_mtx, PRIBIO, "w25nq", 0); } while (bp == NULL); bioq_remove(&sc->sc_bio_queue, bp); W25N_UNLOCK(sc); switch (bp->bio_cmd) { case BIO_READ: bp->bio_error = w25n_read(sc, bp->bio_offset, bp->bio_data, bp->bio_bcount); break; case BIO_WRITE: bp->bio_error = w25n_write(sc, bp->bio_offset, bp->bio_data, bp->bio_bcount); break; default: bp->bio_error = EOPNOTSUPP; } biodone(bp); } } static device_method_t w25n_methods[] = { /* Device interface */ DEVMETHOD(device_probe, w25n_probe), DEVMETHOD(device_attach, w25n_attach), DEVMETHOD(device_detach, w25n_detach), { 0, 0 } }; static driver_t w25n_driver = { "w25n", w25n_methods, sizeof(struct w25n_softc), }; DRIVER_MODULE(w25n, spibus, w25n_driver, 0, 0); MODULE_DEPEND(w25n, spibus, 1, 1, 1); #ifdef FDT MODULE_DEPEND(w25n, fdt_slicer, 1, 1, 1); SPIBUS_FDT_PNP_INFO(compat_data); #endif