/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (C) 2018 The FreeBSD Foundation. All rights reserved. * Copyright (C) 2018, 2019 Andrew Turner * * This software was developed by Mitchell Horne under sponsorship of * the FreeBSD Foundation. * * This software was developed by SRI International and the University of * Cambridge Computer Laboratory under DARPA/AFRL contract FA8750-10-C-0237 * ("CTSRD"), as part of the DARPA CRASH research programme. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ /* Interceptors are required for KMSAN. */ #if defined(KASAN) || defined(KCSAN) #define SAN_RUNTIME #endif #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include MALLOC_DEFINE(M_KCOV_INFO, "kcovinfo", "KCOV info type"); #define KCOV_ELEMENT_SIZE sizeof(uint64_t) /* * To know what the code can safely perform at any point in time we use a * state machine. In the normal case the state transitions are: * * OPEN -> READY -> RUNNING -> DYING * | | ^ | ^ ^ * | | +--------+ | | * | +-------------------+ | * +-----------------------------+ * * The states are: * OPEN: The kcov fd has been opened, but no buffer is available to store * coverage data. * READY: The buffer to store coverage data has been allocated. Userspace * can set this by using ioctl(fd, KIOSETBUFSIZE, entries);. When * this has been set the buffer can be written to by the kernel, * and mmaped by userspace. * RUNNING: The coverage probes are able to store coverage data in the buffer. * This is entered with ioctl(fd, KIOENABLE, mode);. The READY state * can be exited by ioctl(fd, KIODISABLE); or exiting the thread to * return to the READY state to allow tracing to be reused, or by * closing the kcov fd to enter the DYING state. * DYING: The fd has been closed. All states can enter into this state when * userspace closes the kcov fd. * * We need to be careful when moving into and out of the RUNNING state. As * an interrupt may happen while this is happening the ordering of memory * operations is important so struct kcov_info is valid for the tracing * functions. * * When moving into the RUNNING state prior stores to struct kcov_info need * to be observed before the state is set. This allows for interrupts that * may call into one of the coverage functions to fire at any point while * being enabled and see a consistent struct kcov_info. * * When moving out of the RUNNING state any later stores to struct kcov_info * need to be observed after the state is set. As with entering this is to * present a consistent struct kcov_info to interrupts. */ typedef enum { KCOV_STATE_INVALID, KCOV_STATE_OPEN, /* The device is open, but with no buffer */ KCOV_STATE_READY, /* The buffer has been allocated */ KCOV_STATE_RUNNING, /* Recording trace data */ KCOV_STATE_DYING, /* The fd was closed */ } kcov_state_t; /* * (l) Set while holding the kcov_lock mutex and not in the RUNNING state. * (o) Only set once while in the OPEN state. Cleaned up while in the DYING * state, and with no thread associated with the struct kcov_info. * (s) Set atomically to enter or exit the RUNNING state, non-atomically * otherwise. See above for a description of the other constraints while * moving into or out of the RUNNING state. */ struct kcov_info { struct thread *thread; /* (l) */ vm_object_t bufobj; /* (o) */ vm_offset_t kvaddr; /* (o) */ size_t entries; /* (o) */ size_t bufsize; /* (o) */ kcov_state_t state; /* (s) */ int mode; /* (l) */ }; /* Prototypes */ static d_open_t kcov_open; static d_close_t kcov_close; static d_mmap_single_t kcov_mmap_single; static d_ioctl_t kcov_ioctl; static int kcov_alloc(struct kcov_info *info, size_t entries); static void kcov_free(struct kcov_info *info); static void kcov_init(const void *unused); static struct cdevsw kcov_cdevsw = { .d_version = D_VERSION, .d_open = kcov_open, .d_close = kcov_close, .d_mmap_single = kcov_mmap_single, .d_ioctl = kcov_ioctl, .d_name = "kcov", }; SYSCTL_NODE(_kern, OID_AUTO, kcov, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "Kernel coverage"); static u_int kcov_max_entries = KCOV_MAXENTRIES; SYSCTL_UINT(_kern_kcov, OID_AUTO, max_entries, CTLFLAG_RW, &kcov_max_entries, 0, "Maximum number of entries in the kcov buffer"); static struct mtx kcov_lock; static int active_count; static struct kcov_info * __nosanitizeaddress __nosanitizememory get_kinfo(struct thread *td) { struct kcov_info *info; /* We might have a NULL thread when releasing the secondary CPUs */ if (td == NULL) return (NULL); /* * We are in an interrupt, stop tracing as it is not explicitly * part of a syscall. */ if (td->td_intr_nesting_level > 0 || td->td_intr_frame != NULL) return (NULL); /* * If info is NULL or the state is not running we are not tracing. */ info = td->td_kcov_info; if (info == NULL || atomic_load_acq_int(&info->state) != KCOV_STATE_RUNNING) return (NULL); return (info); } static void __nosanitizeaddress __nosanitizememory trace_pc(uintptr_t ret) { struct thread *td; struct kcov_info *info; uint64_t *buf, index; td = curthread; info = get_kinfo(td); if (info == NULL) return; /* * Check we are in the PC-trace mode. */ if (info->mode != KCOV_MODE_TRACE_PC) return; KASSERT(info->kvaddr != 0, ("%s: NULL buf while running", __func__)); buf = (uint64_t *)info->kvaddr; /* The first entry of the buffer holds the index */ index = buf[0]; if (index + 2 > info->entries) return; buf[index + 1] = ret; buf[0] = index + 1; } static bool __nosanitizeaddress __nosanitizememory trace_cmp(uint64_t type, uint64_t arg1, uint64_t arg2, uint64_t ret) { struct thread *td; struct kcov_info *info; uint64_t *buf, index; td = curthread; info = get_kinfo(td); if (info == NULL) return (false); /* * Check we are in the comparison-trace mode. */ if (info->mode != KCOV_MODE_TRACE_CMP) return (false); KASSERT(info->kvaddr != 0, ("%s: NULL buf while running", __func__)); buf = (uint64_t *)info->kvaddr; /* The first entry of the buffer holds the index */ index = buf[0]; /* Check we have space to store all elements */ if (index * 4 + 4 + 1 > info->entries) return (false); while (1) { buf[index * 4 + 1] = type; buf[index * 4 + 2] = arg1; buf[index * 4 + 3] = arg2; buf[index * 4 + 4] = ret; if (atomic_cmpset_64(&buf[0], index, index + 1)) break; buf[0] = index; } return (true); } /* * The fd is being closed, cleanup everything we can. */ static void kcov_mmap_cleanup(void *arg) { struct kcov_info *info = arg; struct thread *thread; mtx_lock_spin(&kcov_lock); /* * Move to KCOV_STATE_DYING to stop adding new entries. * * If the thread is running we need to wait until thread exit to * clean up as it may currently be adding a new entry. If this is * the case being in KCOV_STATE_DYING will signal that the buffer * needs to be cleaned up. */ atomic_store_int(&info->state, KCOV_STATE_DYING); atomic_thread_fence_seq_cst(); thread = info->thread; mtx_unlock_spin(&kcov_lock); if (thread != NULL) return; /* * We can safely clean up the info struct as it is in the * KCOV_STATE_DYING state with no thread associated. * * The KCOV_STATE_DYING stops new threads from using it. * The lack of a thread means nothing is currently using the buffers. */ kcov_free(info); } static int kcov_open(struct cdev *dev, int oflags, int devtype, struct thread *td) { struct kcov_info *info; int error; info = malloc(sizeof(struct kcov_info), M_KCOV_INFO, M_ZERO | M_WAITOK); info->state = KCOV_STATE_OPEN; info->thread = NULL; info->mode = -1; if ((error = devfs_set_cdevpriv(info, kcov_mmap_cleanup)) != 0) kcov_mmap_cleanup(info); return (error); } static int kcov_close(struct cdev *dev, int fflag, int devtype, struct thread *td) { struct kcov_info *info; int error; if ((error = devfs_get_cdevpriv((void **)&info)) != 0) return (error); KASSERT(info != NULL, ("kcov_close with no kcov_info structure")); /* Trying to close, but haven't disabled */ if (info->state == KCOV_STATE_RUNNING) return (EBUSY); return (0); } static int kcov_mmap_single(struct cdev *dev, vm_ooffset_t *offset, vm_size_t size, struct vm_object **object, int nprot) { struct kcov_info *info; int error; if ((nprot & (PROT_EXEC | PROT_READ | PROT_WRITE)) != (PROT_READ | PROT_WRITE)) return (EINVAL); if ((error = devfs_get_cdevpriv((void **)&info)) != 0) return (error); if (info->kvaddr == 0 || size / KCOV_ELEMENT_SIZE != info->entries) return (EINVAL); vm_object_reference(info->bufobj); *offset = 0; *object = info->bufobj; return (0); } static int kcov_alloc(struct kcov_info *info, size_t entries) { size_t n, pages; vm_page_t m; KASSERT(info->kvaddr == 0, ("kcov_alloc: Already have a buffer")); KASSERT(info->state == KCOV_STATE_OPEN, ("kcov_alloc: Not in open state (%x)", info->state)); if (entries < 2 || entries > kcov_max_entries) return (EINVAL); /* Align to page size so mmap can't access other kernel memory */ info->bufsize = roundup2(entries * KCOV_ELEMENT_SIZE, PAGE_SIZE); pages = info->bufsize / PAGE_SIZE; if ((info->kvaddr = kva_alloc(info->bufsize)) == 0) return (ENOMEM); info->bufobj = vm_pager_allocate(OBJT_PHYS, 0, info->bufsize, PROT_READ | PROT_WRITE, 0, curthread->td_ucred); VM_OBJECT_WLOCK(info->bufobj); for (n = 0; n < pages; n++) { m = vm_page_grab(info->bufobj, n, VM_ALLOC_ZERO | VM_ALLOC_WIRED); vm_page_valid(m); vm_page_xunbusy(m); pmap_qenter(info->kvaddr + n * PAGE_SIZE, &m, 1); } VM_OBJECT_WUNLOCK(info->bufobj); info->entries = entries; return (0); } static void kcov_free(struct kcov_info *info) { vm_page_t m; size_t i; if (info->kvaddr != 0) { pmap_qremove(info->kvaddr, info->bufsize / PAGE_SIZE); kva_free(info->kvaddr, info->bufsize); } if (info->bufobj != NULL) { VM_OBJECT_WLOCK(info->bufobj); m = vm_page_lookup(info->bufobj, 0); for (i = 0; i < info->bufsize / PAGE_SIZE; i++) { vm_page_unwire_noq(m); m = vm_page_next(m); } VM_OBJECT_WUNLOCK(info->bufobj); vm_object_deallocate(info->bufobj); } free(info, M_KCOV_INFO); } static int kcov_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag __unused, struct thread *td) { struct kcov_info *info; int mode, error; if ((error = devfs_get_cdevpriv((void **)&info)) != 0) return (error); if (cmd == KIOSETBUFSIZE) { /* * Set the size of the coverage buffer. Should be called * before enabling coverage collection for that thread. */ if (info->state != KCOV_STATE_OPEN) { return (EBUSY); } error = kcov_alloc(info, *(u_int *)data); if (error == 0) info->state = KCOV_STATE_READY; return (error); } mtx_lock_spin(&kcov_lock); switch (cmd) { case KIOENABLE: if (info->state != KCOV_STATE_READY) { error = EBUSY; break; } if (td->td_kcov_info != NULL) { error = EINVAL; break; } mode = *(int *)data; if (mode != KCOV_MODE_TRACE_PC && mode != KCOV_MODE_TRACE_CMP) { error = EINVAL; break; } /* Lets hope nobody opens this 2 billion times */ KASSERT(active_count < INT_MAX, ("%s: Open too many times", __func__)); active_count++; if (active_count == 1) { cov_register_pc(&trace_pc); cov_register_cmp(&trace_cmp); } KASSERT(info->thread == NULL, ("Enabling kcov when already enabled")); info->thread = td; info->mode = mode; /* * Ensure the mode has been set before starting coverage * tracing. */ atomic_store_rel_int(&info->state, KCOV_STATE_RUNNING); td->td_kcov_info = info; break; case KIODISABLE: /* Only the currently enabled thread may disable itself */ if (info->state != KCOV_STATE_RUNNING || info != td->td_kcov_info) { error = EINVAL; break; } KASSERT(active_count > 0, ("%s: Open count is zero", __func__)); active_count--; if (active_count == 0) { cov_unregister_pc(); cov_unregister_cmp(); } td->td_kcov_info = NULL; atomic_store_int(&info->state, KCOV_STATE_READY); /* * Ensure we have exited the READY state before clearing the * rest of the info struct. */ atomic_thread_fence_rel(); info->mode = -1; info->thread = NULL; break; default: error = EINVAL; break; } mtx_unlock_spin(&kcov_lock); return (error); } static void kcov_thread_dtor(void *arg __unused, struct thread *td) { struct kcov_info *info; info = td->td_kcov_info; if (info == NULL) return; mtx_lock_spin(&kcov_lock); KASSERT(active_count > 0, ("%s: Open count is zero", __func__)); active_count--; if (active_count == 0) { cov_unregister_pc(); cov_unregister_cmp(); } td->td_kcov_info = NULL; if (info->state != KCOV_STATE_DYING) { /* * The kcov file is still open. Mark it as unused and * wait for it to be closed before cleaning up. */ atomic_store_int(&info->state, KCOV_STATE_READY); atomic_thread_fence_seq_cst(); /* This info struct is unused */ info->thread = NULL; mtx_unlock_spin(&kcov_lock); return; } mtx_unlock_spin(&kcov_lock); /* * We can safely clean up the info struct as it is in the * KCOV_STATE_DYING state where the info struct is associated with * the current thread that's about to exit. * * The KCOV_STATE_DYING stops new threads from using it. * It also stops the current thread from trying to use the info struct. */ kcov_free(info); } static void kcov_init(const void *unused) { struct make_dev_args args; struct cdev *dev; mtx_init(&kcov_lock, "kcov lock", NULL, MTX_SPIN); make_dev_args_init(&args); args.mda_devsw = &kcov_cdevsw; args.mda_uid = UID_ROOT; args.mda_gid = GID_WHEEL; args.mda_mode = 0600; if (make_dev_s(&args, &dev, "kcov") != 0) { printf("%s", "Failed to create kcov device"); return; } EVENTHANDLER_REGISTER(thread_dtor, kcov_thread_dtor, NULL, EVENTHANDLER_PRI_ANY); } SYSINIT(kcovdev, SI_SUB_LAST, SI_ORDER_ANY, kcov_init, NULL);