aboutsummaryrefslogtreecommitdiff
path: root/cvmx-dfa-defs.h
blob: 42ee0c87bd5a13f37a5e242d25e83b1ec81eb31d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
/***********************license start***************
 * Copyright (c) 2003-2010  Cavium Networks (support@cavium.com). All rights
 * reserved.
 *
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.

 *   * Neither the name of Cavium Networks nor the names of
 *     its contributors may be used to endorse or promote products
 *     derived from this software without specific prior written
 *     permission.

 * This Software, including technical data, may be subject to U.S. export  control
 * laws, including the U.S. Export Administration Act and its  associated
 * regulations, and may be subject to export or import  regulations in other
 * countries.

 * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
 * AND WITH ALL FAULTS AND CAVIUM  NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR
 * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
 * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR
 * DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
 * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
 * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
 * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
 * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE  RISK ARISING OUT OF USE OR
 * PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
 ***********************license end**************************************/


/**
 * cvmx-dfa-defs.h
 *
 * Configuration and status register (CSR) type definitions for
 * Octeon dfa.
 *
 * This file is auto generated. Do not edit.
 *
 * <hr>$Revision$<hr>
 *
 */
#ifndef __CVMX_DFA_TYPEDEFS_H__
#define __CVMX_DFA_TYPEDEFS_H__

#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_BIST0 CVMX_DFA_BIST0_FUNC()
static inline uint64_t CVMX_DFA_BIST0_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN63XX)))
		cvmx_warn("CVMX_DFA_BIST0 not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x00011800370007F0ull);
}
#else
#define CVMX_DFA_BIST0 (CVMX_ADD_IO_SEG(0x00011800370007F0ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_BIST1 CVMX_DFA_BIST1_FUNC()
static inline uint64_t CVMX_DFA_BIST1_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN63XX)))
		cvmx_warn("CVMX_DFA_BIST1 not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x00011800370007F8ull);
}
#else
#define CVMX_DFA_BIST1 (CVMX_ADD_IO_SEG(0x00011800370007F8ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_BST0 CVMX_DFA_BST0_FUNC()
static inline uint64_t CVMX_DFA_BST0_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN31XX) || OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX)))
		cvmx_warn("CVMX_DFA_BST0 not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x00011800300007F0ull);
}
#else
#define CVMX_DFA_BST0 (CVMX_ADD_IO_SEG(0x00011800300007F0ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_BST1 CVMX_DFA_BST1_FUNC()
static inline uint64_t CVMX_DFA_BST1_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN31XX) || OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX)))
		cvmx_warn("CVMX_DFA_BST1 not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x00011800300007F8ull);
}
#else
#define CVMX_DFA_BST1 (CVMX_ADD_IO_SEG(0x00011800300007F8ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_CFG CVMX_DFA_CFG_FUNC()
static inline uint64_t CVMX_DFA_CFG_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX)))
		cvmx_warn("CVMX_DFA_CFG not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180030000000ull);
}
#else
#define CVMX_DFA_CFG (CVMX_ADD_IO_SEG(0x0001180030000000ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_CONFIG CVMX_DFA_CONFIG_FUNC()
static inline uint64_t CVMX_DFA_CONFIG_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN63XX)))
		cvmx_warn("CVMX_DFA_CONFIG not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180037000000ull);
}
#else
#define CVMX_DFA_CONFIG (CVMX_ADD_IO_SEG(0x0001180037000000ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_CONTROL CVMX_DFA_CONTROL_FUNC()
static inline uint64_t CVMX_DFA_CONTROL_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN63XX)))
		cvmx_warn("CVMX_DFA_CONTROL not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180037000020ull);
}
#else
#define CVMX_DFA_CONTROL (CVMX_ADD_IO_SEG(0x0001180037000020ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_DBELL CVMX_DFA_DBELL_FUNC()
static inline uint64_t CVMX_DFA_DBELL_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN31XX) || OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX) || OCTEON_IS_MODEL(OCTEON_CN63XX)))
		cvmx_warn("CVMX_DFA_DBELL not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001370000000000ull);
}
#else
#define CVMX_DFA_DBELL (CVMX_ADD_IO_SEG(0x0001370000000000ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_DDR2_ADDR CVMX_DFA_DDR2_ADDR_FUNC()
static inline uint64_t CVMX_DFA_DDR2_ADDR_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN31XX)))
		cvmx_warn("CVMX_DFA_DDR2_ADDR not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180030000210ull);
}
#else
#define CVMX_DFA_DDR2_ADDR (CVMX_ADD_IO_SEG(0x0001180030000210ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_DDR2_BUS CVMX_DFA_DDR2_BUS_FUNC()
static inline uint64_t CVMX_DFA_DDR2_BUS_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN31XX)))
		cvmx_warn("CVMX_DFA_DDR2_BUS not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180030000080ull);
}
#else
#define CVMX_DFA_DDR2_BUS (CVMX_ADD_IO_SEG(0x0001180030000080ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_DDR2_CFG CVMX_DFA_DDR2_CFG_FUNC()
static inline uint64_t CVMX_DFA_DDR2_CFG_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN31XX)))
		cvmx_warn("CVMX_DFA_DDR2_CFG not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180030000208ull);
}
#else
#define CVMX_DFA_DDR2_CFG (CVMX_ADD_IO_SEG(0x0001180030000208ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_DDR2_COMP CVMX_DFA_DDR2_COMP_FUNC()
static inline uint64_t CVMX_DFA_DDR2_COMP_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN31XX)))
		cvmx_warn("CVMX_DFA_DDR2_COMP not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180030000090ull);
}
#else
#define CVMX_DFA_DDR2_COMP (CVMX_ADD_IO_SEG(0x0001180030000090ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_DDR2_EMRS CVMX_DFA_DDR2_EMRS_FUNC()
static inline uint64_t CVMX_DFA_DDR2_EMRS_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN31XX)))
		cvmx_warn("CVMX_DFA_DDR2_EMRS not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180030000268ull);
}
#else
#define CVMX_DFA_DDR2_EMRS (CVMX_ADD_IO_SEG(0x0001180030000268ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_DDR2_FCNT CVMX_DFA_DDR2_FCNT_FUNC()
static inline uint64_t CVMX_DFA_DDR2_FCNT_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN31XX)))
		cvmx_warn("CVMX_DFA_DDR2_FCNT not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180030000078ull);
}
#else
#define CVMX_DFA_DDR2_FCNT (CVMX_ADD_IO_SEG(0x0001180030000078ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_DDR2_MRS CVMX_DFA_DDR2_MRS_FUNC()
static inline uint64_t CVMX_DFA_DDR2_MRS_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN31XX)))
		cvmx_warn("CVMX_DFA_DDR2_MRS not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180030000260ull);
}
#else
#define CVMX_DFA_DDR2_MRS (CVMX_ADD_IO_SEG(0x0001180030000260ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_DDR2_OPT CVMX_DFA_DDR2_OPT_FUNC()
static inline uint64_t CVMX_DFA_DDR2_OPT_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN31XX)))
		cvmx_warn("CVMX_DFA_DDR2_OPT not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180030000070ull);
}
#else
#define CVMX_DFA_DDR2_OPT (CVMX_ADD_IO_SEG(0x0001180030000070ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_DDR2_PLL CVMX_DFA_DDR2_PLL_FUNC()
static inline uint64_t CVMX_DFA_DDR2_PLL_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN31XX)))
		cvmx_warn("CVMX_DFA_DDR2_PLL not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180030000088ull);
}
#else
#define CVMX_DFA_DDR2_PLL (CVMX_ADD_IO_SEG(0x0001180030000088ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_DDR2_TMG CVMX_DFA_DDR2_TMG_FUNC()
static inline uint64_t CVMX_DFA_DDR2_TMG_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN31XX)))
		cvmx_warn("CVMX_DFA_DDR2_TMG not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180030000218ull);
}
#else
#define CVMX_DFA_DDR2_TMG (CVMX_ADD_IO_SEG(0x0001180030000218ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_DEBUG0 CVMX_DFA_DEBUG0_FUNC()
static inline uint64_t CVMX_DFA_DEBUG0_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN63XX)))
		cvmx_warn("CVMX_DFA_DEBUG0 not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180037000040ull);
}
#else
#define CVMX_DFA_DEBUG0 (CVMX_ADD_IO_SEG(0x0001180037000040ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_DEBUG1 CVMX_DFA_DEBUG1_FUNC()
static inline uint64_t CVMX_DFA_DEBUG1_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN63XX)))
		cvmx_warn("CVMX_DFA_DEBUG1 not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180037000048ull);
}
#else
#define CVMX_DFA_DEBUG1 (CVMX_ADD_IO_SEG(0x0001180037000048ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_DEBUG2 CVMX_DFA_DEBUG2_FUNC()
static inline uint64_t CVMX_DFA_DEBUG2_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN63XX)))
		cvmx_warn("CVMX_DFA_DEBUG2 not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180037000050ull);
}
#else
#define CVMX_DFA_DEBUG2 (CVMX_ADD_IO_SEG(0x0001180037000050ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_DEBUG3 CVMX_DFA_DEBUG3_FUNC()
static inline uint64_t CVMX_DFA_DEBUG3_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN63XX)))
		cvmx_warn("CVMX_DFA_DEBUG3 not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180037000058ull);
}
#else
#define CVMX_DFA_DEBUG3 (CVMX_ADD_IO_SEG(0x0001180037000058ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_DIFCTL CVMX_DFA_DIFCTL_FUNC()
static inline uint64_t CVMX_DFA_DIFCTL_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN31XX) || OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX) || OCTEON_IS_MODEL(OCTEON_CN63XX)))
		cvmx_warn("CVMX_DFA_DIFCTL not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001370600000000ull);
}
#else
#define CVMX_DFA_DIFCTL (CVMX_ADD_IO_SEG(0x0001370600000000ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_DIFRDPTR CVMX_DFA_DIFRDPTR_FUNC()
static inline uint64_t CVMX_DFA_DIFRDPTR_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN31XX) || OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX) || OCTEON_IS_MODEL(OCTEON_CN63XX)))
		cvmx_warn("CVMX_DFA_DIFRDPTR not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001370200000000ull);
}
#else
#define CVMX_DFA_DIFRDPTR (CVMX_ADD_IO_SEG(0x0001370200000000ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_DTCFADR CVMX_DFA_DTCFADR_FUNC()
static inline uint64_t CVMX_DFA_DTCFADR_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN63XX)))
		cvmx_warn("CVMX_DFA_DTCFADR not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180037000060ull);
}
#else
#define CVMX_DFA_DTCFADR (CVMX_ADD_IO_SEG(0x0001180037000060ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_ECLKCFG CVMX_DFA_ECLKCFG_FUNC()
static inline uint64_t CVMX_DFA_ECLKCFG_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN31XX)))
		cvmx_warn("CVMX_DFA_ECLKCFG not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180030000200ull);
}
#else
#define CVMX_DFA_ECLKCFG (CVMX_ADD_IO_SEG(0x0001180030000200ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_ERR CVMX_DFA_ERR_FUNC()
static inline uint64_t CVMX_DFA_ERR_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN31XX) || OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX)))
		cvmx_warn("CVMX_DFA_ERR not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180030000028ull);
}
#else
#define CVMX_DFA_ERR (CVMX_ADD_IO_SEG(0x0001180030000028ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_ERROR CVMX_DFA_ERROR_FUNC()
static inline uint64_t CVMX_DFA_ERROR_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN63XX)))
		cvmx_warn("CVMX_DFA_ERROR not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180037000028ull);
}
#else
#define CVMX_DFA_ERROR (CVMX_ADD_IO_SEG(0x0001180037000028ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_INTMSK CVMX_DFA_INTMSK_FUNC()
static inline uint64_t CVMX_DFA_INTMSK_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN63XX)))
		cvmx_warn("CVMX_DFA_INTMSK not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180037000030ull);
}
#else
#define CVMX_DFA_INTMSK (CVMX_ADD_IO_SEG(0x0001180037000030ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_MEMCFG0 CVMX_DFA_MEMCFG0_FUNC()
static inline uint64_t CVMX_DFA_MEMCFG0_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX)))
		cvmx_warn("CVMX_DFA_MEMCFG0 not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180030000008ull);
}
#else
#define CVMX_DFA_MEMCFG0 (CVMX_ADD_IO_SEG(0x0001180030000008ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_MEMCFG1 CVMX_DFA_MEMCFG1_FUNC()
static inline uint64_t CVMX_DFA_MEMCFG1_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX)))
		cvmx_warn("CVMX_DFA_MEMCFG1 not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180030000010ull);
}
#else
#define CVMX_DFA_MEMCFG1 (CVMX_ADD_IO_SEG(0x0001180030000010ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_MEMCFG2 CVMX_DFA_MEMCFG2_FUNC()
static inline uint64_t CVMX_DFA_MEMCFG2_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX)))
		cvmx_warn("CVMX_DFA_MEMCFG2 not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180030000060ull);
}
#else
#define CVMX_DFA_MEMCFG2 (CVMX_ADD_IO_SEG(0x0001180030000060ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_MEMFADR CVMX_DFA_MEMFADR_FUNC()
static inline uint64_t CVMX_DFA_MEMFADR_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN31XX) || OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX)))
		cvmx_warn("CVMX_DFA_MEMFADR not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180030000030ull);
}
#else
#define CVMX_DFA_MEMFADR (CVMX_ADD_IO_SEG(0x0001180030000030ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_MEMFCR CVMX_DFA_MEMFCR_FUNC()
static inline uint64_t CVMX_DFA_MEMFCR_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX)))
		cvmx_warn("CVMX_DFA_MEMFCR not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180030000038ull);
}
#else
#define CVMX_DFA_MEMFCR (CVMX_ADD_IO_SEG(0x0001180030000038ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_MEMHIDAT CVMX_DFA_MEMHIDAT_FUNC()
static inline uint64_t CVMX_DFA_MEMHIDAT_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN63XX)))
		cvmx_warn("CVMX_DFA_MEMHIDAT not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001370700000000ull);
}
#else
#define CVMX_DFA_MEMHIDAT (CVMX_ADD_IO_SEG(0x0001370700000000ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_MEMRLD CVMX_DFA_MEMRLD_FUNC()
static inline uint64_t CVMX_DFA_MEMRLD_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX)))
		cvmx_warn("CVMX_DFA_MEMRLD not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180030000018ull);
}
#else
#define CVMX_DFA_MEMRLD (CVMX_ADD_IO_SEG(0x0001180030000018ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_NCBCTL CVMX_DFA_NCBCTL_FUNC()
static inline uint64_t CVMX_DFA_NCBCTL_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX)))
		cvmx_warn("CVMX_DFA_NCBCTL not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180030000020ull);
}
#else
#define CVMX_DFA_NCBCTL (CVMX_ADD_IO_SEG(0x0001180030000020ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_PFC0_CNT CVMX_DFA_PFC0_CNT_FUNC()
static inline uint64_t CVMX_DFA_PFC0_CNT_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN63XX)))
		cvmx_warn("CVMX_DFA_PFC0_CNT not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180037000090ull);
}
#else
#define CVMX_DFA_PFC0_CNT (CVMX_ADD_IO_SEG(0x0001180037000090ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_PFC0_CTL CVMX_DFA_PFC0_CTL_FUNC()
static inline uint64_t CVMX_DFA_PFC0_CTL_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN63XX)))
		cvmx_warn("CVMX_DFA_PFC0_CTL not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180037000088ull);
}
#else
#define CVMX_DFA_PFC0_CTL (CVMX_ADD_IO_SEG(0x0001180037000088ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_PFC1_CNT CVMX_DFA_PFC1_CNT_FUNC()
static inline uint64_t CVMX_DFA_PFC1_CNT_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN63XX)))
		cvmx_warn("CVMX_DFA_PFC1_CNT not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x00011800370000A0ull);
}
#else
#define CVMX_DFA_PFC1_CNT (CVMX_ADD_IO_SEG(0x00011800370000A0ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_PFC1_CTL CVMX_DFA_PFC1_CTL_FUNC()
static inline uint64_t CVMX_DFA_PFC1_CTL_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN63XX)))
		cvmx_warn("CVMX_DFA_PFC1_CTL not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180037000098ull);
}
#else
#define CVMX_DFA_PFC1_CTL (CVMX_ADD_IO_SEG(0x0001180037000098ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_PFC2_CNT CVMX_DFA_PFC2_CNT_FUNC()
static inline uint64_t CVMX_DFA_PFC2_CNT_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN63XX)))
		cvmx_warn("CVMX_DFA_PFC2_CNT not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x00011800370000B0ull);
}
#else
#define CVMX_DFA_PFC2_CNT (CVMX_ADD_IO_SEG(0x00011800370000B0ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_PFC2_CTL CVMX_DFA_PFC2_CTL_FUNC()
static inline uint64_t CVMX_DFA_PFC2_CTL_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN63XX)))
		cvmx_warn("CVMX_DFA_PFC2_CTL not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x00011800370000A8ull);
}
#else
#define CVMX_DFA_PFC2_CTL (CVMX_ADD_IO_SEG(0x00011800370000A8ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_PFC3_CNT CVMX_DFA_PFC3_CNT_FUNC()
static inline uint64_t CVMX_DFA_PFC3_CNT_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN63XX)))
		cvmx_warn("CVMX_DFA_PFC3_CNT not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x00011800370000C0ull);
}
#else
#define CVMX_DFA_PFC3_CNT (CVMX_ADD_IO_SEG(0x00011800370000C0ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_PFC3_CTL CVMX_DFA_PFC3_CTL_FUNC()
static inline uint64_t CVMX_DFA_PFC3_CTL_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN63XX)))
		cvmx_warn("CVMX_DFA_PFC3_CTL not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x00011800370000B8ull);
}
#else
#define CVMX_DFA_PFC3_CTL (CVMX_ADD_IO_SEG(0x00011800370000B8ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_PFC_GCTL CVMX_DFA_PFC_GCTL_FUNC()
static inline uint64_t CVMX_DFA_PFC_GCTL_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN63XX)))
		cvmx_warn("CVMX_DFA_PFC_GCTL not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180037000080ull);
}
#else
#define CVMX_DFA_PFC_GCTL (CVMX_ADD_IO_SEG(0x0001180037000080ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_RODT_COMP_CTL CVMX_DFA_RODT_COMP_CTL_FUNC()
static inline uint64_t CVMX_DFA_RODT_COMP_CTL_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN58XX)))
		cvmx_warn("CVMX_DFA_RODT_COMP_CTL not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180030000068ull);
}
#else
#define CVMX_DFA_RODT_COMP_CTL (CVMX_ADD_IO_SEG(0x0001180030000068ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_SBD_DBG0 CVMX_DFA_SBD_DBG0_FUNC()
static inline uint64_t CVMX_DFA_SBD_DBG0_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN31XX) || OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX)))
		cvmx_warn("CVMX_DFA_SBD_DBG0 not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180030000040ull);
}
#else
#define CVMX_DFA_SBD_DBG0 (CVMX_ADD_IO_SEG(0x0001180030000040ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_SBD_DBG1 CVMX_DFA_SBD_DBG1_FUNC()
static inline uint64_t CVMX_DFA_SBD_DBG1_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN31XX) || OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX)))
		cvmx_warn("CVMX_DFA_SBD_DBG1 not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180030000048ull);
}
#else
#define CVMX_DFA_SBD_DBG1 (CVMX_ADD_IO_SEG(0x0001180030000048ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_SBD_DBG2 CVMX_DFA_SBD_DBG2_FUNC()
static inline uint64_t CVMX_DFA_SBD_DBG2_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN31XX) || OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX)))
		cvmx_warn("CVMX_DFA_SBD_DBG2 not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180030000050ull);
}
#else
#define CVMX_DFA_SBD_DBG2 (CVMX_ADD_IO_SEG(0x0001180030000050ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_DFA_SBD_DBG3 CVMX_DFA_SBD_DBG3_FUNC()
static inline uint64_t CVMX_DFA_SBD_DBG3_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN31XX) || OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX)))
		cvmx_warn("CVMX_DFA_SBD_DBG3 not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180030000058ull);
}
#else
#define CVMX_DFA_SBD_DBG3 (CVMX_ADD_IO_SEG(0x0001180030000058ull))
#endif

/**
 * cvmx_dfa_bist0
 *
 * DFA_BIST0 = DFA Bist Status (per-DTC)
 *
 * Description:
 */
union cvmx_dfa_bist0
{
	uint64_t u64;
	struct cvmx_dfa_bist0_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_29_63               : 35;
	uint64_t mwb                          : 1;  /**< Bist Results for MWB RAM(s)
                                                         - 0: GOOD (or bist in progress/never run)
                                                         - 1: BAD */
	uint64_t reserved_25_27               : 3;
	uint64_t gfb                          : 1;  /**< Bist Results for GFB RAM(s)
                                                         - 0: GOOD (or bist in progress/never run)
                                                         - 1: BAD */
	uint64_t reserved_18_23               : 6;
	uint64_t stx                          : 2;  /**< Bist Results for STX RAM(s)
                                                         - 0: GOOD (or bist in progress/never run)
                                                         - 1: BAD */
	uint64_t reserved_10_15               : 6;
	uint64_t dtx                          : 2;  /**< Bist Results for DTX RAM(s)
                                                         - 0: GOOD (or bist in progress/never run)
                                                         - 1: BAD */
	uint64_t reserved_5_7                 : 3;
	uint64_t rdf                          : 1;  /**< Bist Results for RWB[3:0] RAM(s)
                                                         - 0: GOOD (or bist in progress/never run)
                                                         - 1: BAD */
	uint64_t reserved_1_3                 : 3;
	uint64_t pdb                          : 1;  /**< Bist Results for PDB RAM(s)
                                                         - 0: GOOD (or bist in progress/never run)
                                                         - 1: BAD */
#else
	uint64_t pdb                          : 1;
	uint64_t reserved_1_3                 : 3;
	uint64_t rdf                          : 1;
	uint64_t reserved_5_7                 : 3;
	uint64_t dtx                          : 2;
	uint64_t reserved_10_15               : 6;
	uint64_t stx                          : 2;
	uint64_t reserved_18_23               : 6;
	uint64_t gfb                          : 1;
	uint64_t reserved_25_27               : 3;
	uint64_t mwb                          : 1;
	uint64_t reserved_29_63               : 35;
#endif
	} s;
	struct cvmx_dfa_bist0_s               cn63xx;
	struct cvmx_dfa_bist0_s               cn63xxp1;
};
typedef union cvmx_dfa_bist0 cvmx_dfa_bist0_t;

/**
 * cvmx_dfa_bist1
 *
 * DFA_BIST1 = DFA Bist Status (Globals)
 *
 * Description:
 */
union cvmx_dfa_bist1
{
	uint64_t u64;
	struct cvmx_dfa_bist1_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_13_63               : 51;
	uint64_t ram3                         : 1;  /**< Bist Results for RAM3 RAM
                                                         - 0: GOOD (or bist in progress/never run)
                                                         - 1: BAD */
	uint64_t ram2                         : 1;  /**< Bist Results for RAM2 RAM
                                                         - 0: GOOD (or bist in progress/never run)
                                                         - 1: BAD */
	uint64_t ram1                         : 1;  /**< Bist Results for RAM1 RAM
                                                         - 0: GOOD (or bist in progress/never run)
                                                         - 1: BAD */
	uint64_t crq                          : 1;  /**< Bist Results for CRQ RAM
                                                         - 0: GOOD (or bist in progress/never run)
                                                         - 1: BAD */
	uint64_t gutv                         : 1;  /**< Bist Results for GUTV RAM
                                                         - 0: GOOD (or bist in progress/never run)
                                                         - 1: BAD */
	uint64_t reserved_5_7                 : 3;
	uint64_t gutp                         : 1;  /**< Bist Results for NCD RAM
                                                         - 0: GOOD (or bist in progress/never run)
                                                         - 1: BAD */
	uint64_t ncd                          : 1;  /**< Bist Results for NCD RAM
                                                         - 0: GOOD (or bist in progress/never run)
                                                         - 1: BAD */
	uint64_t gif                          : 1;  /**< Bist Results for GIF RAM
                                                         - 0: GOOD (or bist in progress/never run)
                                                         - 1: BAD */
	uint64_t gib                          : 1;  /**< Bist Results for GIB RAM
                                                         - 0: GOOD (or bist in progress/never run)
                                                         - 1: BAD */
	uint64_t gfu                          : 1;  /**< Bist Results for GFU RAM
                                                         - 0: GOOD (or bist in progress/never run)
                                                         - 1: BAD */
#else
	uint64_t gfu                          : 1;
	uint64_t gib                          : 1;
	uint64_t gif                          : 1;
	uint64_t ncd                          : 1;
	uint64_t gutp                         : 1;
	uint64_t reserved_5_7                 : 3;
	uint64_t gutv                         : 1;
	uint64_t crq                          : 1;
	uint64_t ram1                         : 1;
	uint64_t ram2                         : 1;
	uint64_t ram3                         : 1;
	uint64_t reserved_13_63               : 51;
#endif
	} s;
	struct cvmx_dfa_bist1_s               cn63xx;
	struct cvmx_dfa_bist1_s               cn63xxp1;
};
typedef union cvmx_dfa_bist1 cvmx_dfa_bist1_t;

/**
 * cvmx_dfa_bst0
 *
 * DFA_BST0 = DFA Bist Status
 *
 * Description:
 */
union cvmx_dfa_bst0
{
	uint64_t u64;
	struct cvmx_dfa_bst0_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_32_63               : 32;
	uint64_t rdf                          : 16; /**< Bist Results for RDF[3:0] RAM(s)
                                                         - 0: GOOD (or bist in progress/never run)
                                                         - 1: BAD */
	uint64_t pdf                          : 16; /**< Bist Results for PDF[3:0] RAM(s)
                                                         - 0: GOOD (or bist in progress/never run)
                                                         - 1: BAD */
#else
	uint64_t pdf                          : 16;
	uint64_t rdf                          : 16;
	uint64_t reserved_32_63               : 32;
#endif
	} s;
	struct cvmx_dfa_bst0_s                cn31xx;
	struct cvmx_dfa_bst0_s                cn38xx;
	struct cvmx_dfa_bst0_s                cn38xxp2;
	struct cvmx_dfa_bst0_cn58xx
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_20_63               : 44;
	uint64_t rdf                          : 4;  /**< Bist Results for RDF[3:0] RAM(s)
                                                         - 0: GOOD (or bist in progress/never run)
                                                         - 1: BAD */
	uint64_t reserved_4_15                : 12;
	uint64_t pdf                          : 4;  /**< Bist Results for PDF[3:0] RAM(s)
                                                         - 0: GOOD (or bist in progress/never run)
                                                         - 1: BAD */
#else
	uint64_t pdf                          : 4;
	uint64_t reserved_4_15                : 12;
	uint64_t rdf                          : 4;
	uint64_t reserved_20_63               : 44;
#endif
	} cn58xx;
	struct cvmx_dfa_bst0_cn58xx           cn58xxp1;
};
typedef union cvmx_dfa_bst0 cvmx_dfa_bst0_t;

/**
 * cvmx_dfa_bst1
 *
 * DFA_BST1 = DFA Bist Status
 *
 * Description:
 */
union cvmx_dfa_bst1
{
	uint64_t u64;
	struct cvmx_dfa_bst1_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_23_63               : 41;
	uint64_t crq                          : 1;  /**< Bist Results for CRQ RAM
                                                         - 0: GOOD (or bist in progress/never run)
                                                         - 1: BAD */
	uint64_t ifu                          : 1;  /**< Bist Results for IFU RAM
                                                         - 0: GOOD (or bist in progress/never run)
                                                         - 1: BAD */
	uint64_t gfu                          : 1;  /**< Bist Results for GFU RAM
                                                         - 0: GOOD (or bist in progress/never run)
                                                         - 1: BAD */
	uint64_t drf                          : 1;  /**< Bist Results for DRF RAM
                                                         - 0: GOOD (or bist in progress/never run)
                                                         - 1: BAD */
	uint64_t crf                          : 1;  /**< Bist Results for CRF RAM
                                                         - 0: GOOD (or bist in progress/never run)
                                                         - 1: BAD */
	uint64_t p0_bwb                       : 1;  /**< Bist Results for P0_BWB RAM
                                                         - 0: GOOD (or bist in progress/never run)
                                                         - 1: BAD */
	uint64_t p1_bwb                       : 1;  /**< Bist Results for P1_BWB RAM
                                                         - 0: GOOD (or bist in progress/never run)
                                                         - 1: BAD */
	uint64_t p0_brf                       : 8;  /**< Bist Results for P0_BRF RAM
                                                         - 0: GOOD (or bist in progress/never run)
                                                         - 1: BAD */
	uint64_t p1_brf                       : 8;  /**< Bist Results for P1_BRF RAM
                                                         - 0: GOOD (or bist in progress/never run)
                                                         - 1: BAD */
#else
	uint64_t p1_brf                       : 8;
	uint64_t p0_brf                       : 8;
	uint64_t p1_bwb                       : 1;
	uint64_t p0_bwb                       : 1;
	uint64_t crf                          : 1;
	uint64_t drf                          : 1;
	uint64_t gfu                          : 1;
	uint64_t ifu                          : 1;
	uint64_t crq                          : 1;
	uint64_t reserved_23_63               : 41;
#endif
	} s;
	struct cvmx_dfa_bst1_cn31xx
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_23_63               : 41;
	uint64_t crq                          : 1;  /**< Bist Results for CRQ RAM
                                                         - 0: GOOD (or bist in progress/never run)
                                                         - 1: BAD */
	uint64_t ifu                          : 1;  /**< Bist Results for IFU RAM
                                                         - 0: GOOD (or bist in progress/never run)
                                                         - 1: BAD */
	uint64_t gfu                          : 1;  /**< Bist Results for GFU RAM
                                                         - 0: GOOD (or bist in progress/never run)
                                                         - 1: BAD */
	uint64_t drf                          : 1;  /**< Bist Results for DRF RAM
                                                         - 0: GOOD (or bist in progress/never run)
                                                         - 1: BAD */
	uint64_t crf                          : 1;  /**< Bist Results for CRF RAM
                                                         - 0: GOOD (or bist in progress/never run)
                                                         - 1: BAD */
	uint64_t reserved_0_17                : 18;
#else
	uint64_t reserved_0_17                : 18;
	uint64_t crf                          : 1;
	uint64_t drf                          : 1;
	uint64_t gfu                          : 1;
	uint64_t ifu                          : 1;
	uint64_t crq                          : 1;
	uint64_t reserved_23_63               : 41;
#endif
	} cn31xx;
	struct cvmx_dfa_bst1_s                cn38xx;
	struct cvmx_dfa_bst1_s                cn38xxp2;
	struct cvmx_dfa_bst1_cn58xx
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_23_63               : 41;
	uint64_t crq                          : 1;  /**< Bist Results for CRQ RAM
                                                         - 0: GOOD (or bist in progress/never run)
                                                         - 1: BAD */
	uint64_t ifu                          : 1;  /**< Bist Results for IFU RAM
                                                         - 0: GOOD (or bist in progress/never run)
                                                         - 1: BAD */
	uint64_t gfu                          : 1;  /**< Bist Results for GFU RAM
                                                         - 0: GOOD (or bist in progress/never run)
                                                         - 1: BAD */
	uint64_t reserved_19_19               : 1;
	uint64_t crf                          : 1;  /**< Bist Results for CRF RAM
                                                         - 0: GOOD (or bist in progress/never run)
                                                         - 1: BAD */
	uint64_t p0_bwb                       : 1;  /**< Bist Results for P0_BWB RAM
                                                         - 0: GOOD (or bist in progress/never run)
                                                         - 1: BAD */
	uint64_t p1_bwb                       : 1;  /**< Bist Results for P1_BWB RAM
                                                         - 0: GOOD (or bist in progress/never run)
                                                         - 1: BAD */
	uint64_t p0_brf                       : 8;  /**< Bist Results for P0_BRF RAM
                                                         - 0: GOOD (or bist in progress/never run)
                                                         - 1: BAD */
	uint64_t p1_brf                       : 8;  /**< Bist Results for P1_BRF RAM
                                                         - 0: GOOD (or bist in progress/never run)
                                                         - 1: BAD */
#else
	uint64_t p1_brf                       : 8;
	uint64_t p0_brf                       : 8;
	uint64_t p1_bwb                       : 1;
	uint64_t p0_bwb                       : 1;
	uint64_t crf                          : 1;
	uint64_t reserved_19_19               : 1;
	uint64_t gfu                          : 1;
	uint64_t ifu                          : 1;
	uint64_t crq                          : 1;
	uint64_t reserved_23_63               : 41;
#endif
	} cn58xx;
	struct cvmx_dfa_bst1_cn58xx           cn58xxp1;
};
typedef union cvmx_dfa_bst1 cvmx_dfa_bst1_t;

/**
 * cvmx_dfa_cfg
 *
 * Specify the RSL base addresses for the block
 *
 *                  DFA_CFG = DFA Configuration
 *
 * Description:
 */
union cvmx_dfa_cfg
{
	uint64_t u64;
	struct cvmx_dfa_cfg_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_4_63                : 60;
	uint64_t nrpl_ena                     : 1;  /**< When set, allows the per-node replication feature to be
                                                         enabled.
                                                         In 36-bit mode: The IWORD0[31:30]=SNREPL field AND
                                                         bits [21:20] of the Next Node ptr are used in generating
                                                         the next node address (see OCTEON HRM - DFA Chapter for
                                                         psuedo-code of DTE next node address generation).
                                                         NOTE: When NRPL_ENA=1 and IWORD0[TY]=1(36b mode),
                                                         (regardless of IWORD0[NRPLEN]), the Resultant Word1+
                                                         [[47:44],[23:20]] = Next Node's [27:20] bits. This allows
                                                         SW to use the RESERVED bits of the final node for SW
                                                         caching. Also, if required, SW will use [22:21]=Node
                                                         Replication to re-start the same graph walk(if graph
                                                         walk prematurely terminated (ie: DATA_GONE).
                                                         In 18-bit mode: The IWORD0[31:30]=SNREPL field AND
                                                         bit [16:14] of the Next Node ptr are used in generating
                                                         the next node address (see OCTEON HRM - DFA Chapter for
                                                         psuedo-code of DTE next node address generation).
                                                         If (IWORD0[NREPLEN]=1 and DFA_CFG[NRPL_ENA]=1) [
                                                            If next node ptr[16] is set [
                                                              next node ptr[15:14] indicates the next node repl
                                                              next node ptr[13:0]  indicates the position of the
                                                                 node relative to the first normal node (i.e.
                                                                 IWORD3[Msize] must be added to get the final node)
                                                            ]
                                                            else If next node ptr[16] is not set [
                                                              next node ptr[15:0] indicates the next node id
                                                              next node repl = 0
                                                            ]
                                                         ]
                                                         NOTE: For 18b node replication, MAX node space=64KB(2^16)
                                                         is used in detecting terminal node space(see HRM for full
                                                         description).
                                                         NOTE: The DFA graphs MUST BE built/written to DFA LLM memory
                                                         aware of the "per-node" replication. */
	uint64_t nxor_ena                     : 1;  /**< When set, allows the DTE Instruction IWORD0[NXOREN]
                                                         to be used to enable/disable the per-node address 'scramble'
                                                         of the LLM address to lessen the effects of bank conflicts.
                                                         If IWORD0[NXOREN] is also set, then:
                                                         In 36-bit mode: The node_Id[7:0] 8-bit value is XORed
                                                         against the LLM address addr[9:2].
                                                         In 18-bit mode: The node_id[6:0] 7-bit value is XORed
                                                         against the LLM address addr[8:2]. (note: we don't address
                                                         scramble outside the mode's node space).
                                                         NOTE: The DFA graphs MUST BE built/written to DFA LLM memory
                                                         aware of the "per-node" address scramble.
                                                         NOTE: The address 'scramble' ocurs for BOTH DFA LLM graph
                                                         read/write operations. */
	uint64_t gxor_ena                     : 1;  /**< When set, the DTE Instruction IWORD0[GXOR]
                                                         field is used to 'scramble' the LLM address
                                                         to lessen the effects of bank conflicts.
                                                         In 36-bit mode: The GXOR[7:0] 8-bit value is XORed
                                                         against the LLM address addr[9:2].
                                                         In 18-bit mode: GXOR[6:0] 7-bit value is XORed against
                                                         the LLM address addr[8:2]. (note: we don't address
                                                         scramble outside the mode's node space)
                                                         NOTE: The DFA graphs MUST BE built/written to DFA LLM memory
                                                         aware of the "per-graph" address scramble.
                                                         NOTE: The address 'scramble' ocurs for BOTH DFA LLM graph
                                                         read/write operations. */
	uint64_t sarb                         : 1;  /**< DFA Source Arbiter Mode
                                                         Selects the arbitration mode used to select DFA
                                                         requests issued from either CP2 or the DTE (NCB-CSR
                                                         or DFA HW engine).
                                                            - 0: Fixed Priority [Highest=CP2, Lowest=DTE]
                                                            - 1: Round-Robin
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
#else
	uint64_t sarb                         : 1;
	uint64_t gxor_ena                     : 1;
	uint64_t nxor_ena                     : 1;
	uint64_t nrpl_ena                     : 1;
	uint64_t reserved_4_63                : 60;
#endif
	} s;
	struct cvmx_dfa_cfg_s                 cn38xx;
	struct cvmx_dfa_cfg_cn38xxp2
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_1_63                : 63;
	uint64_t sarb                         : 1;  /**< DFA Source Arbiter Mode
                                                         Selects the arbitration mode used to select DFA
                                                         requests issued from either CP2 or the DTE (NCB-CSR
                                                         or DFA HW engine).
                                                            - 0: Fixed Priority [Highest=CP2, Lowest=DTE]
                                                            - 1: Round-Robin
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
#else
	uint64_t sarb                         : 1;
	uint64_t reserved_1_63                : 63;
#endif
	} cn38xxp2;
	struct cvmx_dfa_cfg_s                 cn58xx;
	struct cvmx_dfa_cfg_s                 cn58xxp1;
};
typedef union cvmx_dfa_cfg cvmx_dfa_cfg_t;

/**
 * cvmx_dfa_config
 *
 * Specify the RSL base addresses for the block
 *
 *                  DFA_CONFIG = DFA Configuration Register
 *
 * Description:
 */
union cvmx_dfa_config
{
	uint64_t u64;
	struct cvmx_dfa_config_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_9_63                : 55;
	uint64_t repl_ena                     : 1;  /**< Replication Mode Enable
                                                         *** o63-P2 NEW ***
                                                         When set, enables replication mode performance enhancement
                                                         feature. This enables the DFA to communicate address
                                                         replication information during memory references to the DFM
                                                         (memory controller). This in turn is used by the DFM to support
                                                         graph data in multiple banks (or bank sets), so that the least
                                                         full bank can be selected to minimize the effects of DDR3 bank
                                                         conflicts (ie: tRC=row cycle time).
                                                         SWNOTE: Using this mode requires the DFA SW compiler and DFA
                                                         driver to be aware of the o63-P2 address replication changes.
                                                         This involves changes to the MLOAD/GWALK DFA instruction format
                                                         (see: IWORD2.SREPL), as well as changes to node arc and metadata
                                                         definitions which now support an additional REPL field.
                                                         When clear, replication mode is disabled, and DFA will interpret
                                                         o63-P1 DFA instructions and node-arc formats which DO NOT have
                                                         address replication information. */
	uint64_t clmskcrip                    : 4;  /**< Cluster Cripple Mask
                                                         A one in each bit of the mask represents which DTE cluster to
                                                         cripple.
                                                         NOTE: o63 has only a single Cluster (therefore CLMSKCRIP[0]
                                                         is the only bit used.
                                                         o2 has 4 clusters, where all CLMSKCRIP mask bits are used.
                                                         SWNOTE: The MIO_FUS___DFA_CLMASK_CRIPPLE[3:0] fuse bits will
                                                         be forced into this register at reset. Any fuse bits that
                                                         contain '1' will be disallowed during a write and will always
                                                         be read as '1'. */
	uint64_t cldtecrip                    : 3;  /**< Encoding which represents \#of DTEs to cripple for each
                                                         cluster. Typically DTE_CLCRIP=0 which enables all DTEs
                                                         within each cluster. However, when the DFA performance
                                                         counters are used, SW may want to limit the \#of DTEs
                                                         per cluster available, as there are only 4 parallel
                                                         performance counters.
                                                            DTE_CLCRIP | \#DTEs crippled(per cluster)
                                                         ------------+-----------------------------
                                                                0    |  0      DTE[15:0]:ON
                                                                1    |  1/2    DTE[15:8]:OFF  /DTE[7:0]:ON
                                                                2    |  1/4    DTE[15:12]:OFF /DTE[11:0]:ON
                                                                3    |  3/4    DTE[15:4]:OFF  /DTE[3:0]:ON
                                                                4    |  1/8    DTE[15:14]:OFF /DTE[13:0]:ON
                                                                5    |  5/8    DTE[15:6]:OFF  /DTE[5:0]:ON
                                                                6    |  3/8    DTE[15:10]:OFF /DTE[9:0]:ON
                                                                7    |  7/8    DTE[15:2]:OFF  /DTE[1:0]:ON
                                                         NOTE: Higher numbered DTEs are crippled first. For instance,
                                                         on o63 (with 16 DTEs/cluster), if DTE_CLCRIP=1(1/2), then
                                                         DTE#s [15:8] within the cluster are crippled and only
                                                         DTE#s [7:0] are available.
                                                         IMPNOTE: The encodings are done in such a way as to later
                                                         be used with fuses (for future o2 revisions which will disable
                                                         some \#of DTEs). Blowing a fuse has the effect that there will
                                                         always be fewer DTEs available. [ie: we never want a customer
                                                         to blow additional fuses to get more DTEs].
                                                         SWNOTE: The MIO_FUS___DFA_NUMDTE_CRIPPLE[2:0] fuse bits will
                                                         be forced into this register at reset. Any fuse bits that
                                                         contain '1' will be disallowed during a write and will always
                                                         be read as '1'. */
	uint64_t dteclkdis                    : 1;  /**< DFA Clock Disable Source
                                                         When SET, the DFA clocks for DTE(thread engine)
                                                         operation are disabled (to conserve overall chip clocking
                                                         power when the DFA function is not used).
                                                         NOTE: When SET, SW MUST NEVER issue NCB-Direct CSR
                                                         operations to the DFA (will result in NCB Bus Timeout
                                                         errors).
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization.
                                                         SWNOTE: The MIO_FUS___DFA_DTE_DISABLE fuse bit will
                                                         be forced into this register at reset. If the fuse bit
                                                         contains '1', writes to DTECLKDIS are disallowed and
                                                         will always be read as '1'. */
#else
	uint64_t dteclkdis                    : 1;
	uint64_t cldtecrip                    : 3;
	uint64_t clmskcrip                    : 4;
	uint64_t repl_ena                     : 1;
	uint64_t reserved_9_63                : 55;
#endif
	} s;
	struct cvmx_dfa_config_s              cn63xx;
	struct cvmx_dfa_config_cn63xxp1
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_8_63                : 56;
	uint64_t clmskcrip                    : 4;  /**< Cluster Cripple Mask
                                                         A one in each bit of the mask represents which DTE cluster to
                                                         cripple.
                                                         NOTE: o63 has only a single Cluster (therefore CLMSKCRIP[0]
                                                         is the only bit used.
                                                         o2 has 4 clusters, where all CLMSKCRIP mask bits are used.
                                                         SWNOTE: The MIO_FUS___DFA_CLMASK_CRIPPLE[3:0] fuse bits will
                                                         be forced into this register at reset. Any fuse bits that
                                                         contain '1' will be disallowed during a write and will always
                                                         be read as '1'. */
	uint64_t cldtecrip                    : 3;  /**< Encoding which represents \#of DTEs to cripple for each
                                                         cluster. Typically DTE_CLCRIP=0 which enables all DTEs
                                                         within each cluster. However, when the DFA performance
                                                         counters are used, SW may want to limit the \#of DTEs
                                                         per cluster available, as there are only 4 parallel
                                                         performance counters.
                                                            DTE_CLCRIP | \#DTEs crippled(per cluster)
                                                         ------------+-----------------------------
                                                                0    |  0      DTE[15:0]:ON
                                                                1    |  1/2    DTE[15:8]:OFF  /DTE[7:0]:ON
                                                                2    |  1/4    DTE[15:12]:OFF /DTE[11:0]:ON
                                                                3    |  3/4    DTE[15:4]:OFF  /DTE[3:0]:ON
                                                                4    |  1/8    DTE[15:14]:OFF /DTE[13:0]:ON
                                                                5    |  5/8    DTE[15:6]:OFF  /DTE[5:0]:ON
                                                                6    |  3/8    DTE[15:10]:OFF /DTE[9:0]:ON
                                                                7    |  7/8    DTE[15:2]:OFF  /DTE[1:0]:ON
                                                         NOTE: Higher numbered DTEs are crippled first. For instance,
                                                         on o63 (with 16 DTEs/cluster), if DTE_CLCRIP=1(1/2), then
                                                         DTE#s [15:8] within the cluster are crippled and only
                                                         DTE#s [7:0] are available.
                                                         IMPNOTE: The encodings are done in such a way as to later
                                                         be used with fuses (for future o2 revisions which will disable
                                                         some \#of DTEs). Blowing a fuse has the effect that there will
                                                         always be fewer DTEs available. [ie: we never want a customer
                                                         to blow additional fuses to get more DTEs].
                                                         SWNOTE: The MIO_FUS___DFA_NUMDTE_CRIPPLE[2:0] fuse bits will
                                                         be forced into this register at reset. Any fuse bits that
                                                         contain '1' will be disallowed during a write and will always
                                                         be read as '1'. */
	uint64_t dteclkdis                    : 1;  /**< DFA Clock Disable Source
                                                         When SET, the DFA clocks for DTE(thread engine)
                                                         operation are disabled (to conserve overall chip clocking
                                                         power when the DFA function is not used).
                                                         NOTE: When SET, SW MUST NEVER issue NCB-Direct CSR
                                                         operations to the DFA (will result in NCB Bus Timeout
                                                         errors).
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization.
                                                         SWNOTE: The MIO_FUS___DFA_DTE_DISABLE fuse bit will
                                                         be forced into this register at reset. If the fuse bit
                                                         contains '1', writes to DTECLKDIS are disallowed and
                                                         will always be read as '1'. */
#else
	uint64_t dteclkdis                    : 1;
	uint64_t cldtecrip                    : 3;
	uint64_t clmskcrip                    : 4;
	uint64_t reserved_8_63                : 56;
#endif
	} cn63xxp1;
};
typedef union cvmx_dfa_config cvmx_dfa_config_t;

/**
 * cvmx_dfa_control
 *
 * DFA_CONTROL = DFA Control Register
 *
 * Description:
 */
union cvmx_dfa_control
{
	uint64_t u64;
	struct cvmx_dfa_control_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_10_63               : 54;
	uint64_t sbdnum                       : 4;  /**< SBD Debug Entry#
                                                         *FOR INTERNAL USE ONLY*
                                                         DFA Scoreboard debug control
                                                         Selects which one of 8 DFA Scoreboard entries is
                                                         latched into the DFA_SBD_DBG[0-3] registers. */
	uint64_t sbdlck                       : 1;  /**< DFA Scoreboard LOCK Strobe
                                                         *FOR INTERNAL USE ONLY*
                                                         DFA Scoreboard debug control
                                                         When written with a '1', the DFA Scoreboard Debug
                                                         registers (DFA_SBD_DBG[0-3]) are all locked down.
                                                         This allows SW to lock down the contents of the entire
                                                         SBD for a single instant in time. All subsequent reads
                                                         of the DFA scoreboard registers will return the data
                                                         from that instant in time. */
	uint64_t reserved_3_4                 : 2;
	uint64_t pmode                        : 1;  /**< NCB-NRP Arbiter Mode
                                                         (0=Fixed Priority [LP=WQF,DFF,HP=RGF]/1=RR
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
	uint64_t qmode                        : 1;  /**< NCB-NRQ Arbiter Mode
                                                         (0=Fixed Priority [LP=IRF,RWF,PRF,HP=GRF]/1=RR
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
	uint64_t imode                        : 1;  /**< NCB-Inbound Arbiter
                                                         (0=FP [LP=NRQ,HP=NRP], 1=RR)
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
#else
	uint64_t imode                        : 1;
	uint64_t qmode                        : 1;
	uint64_t pmode                        : 1;
	uint64_t reserved_3_4                 : 2;
	uint64_t sbdlck                       : 1;
	uint64_t sbdnum                       : 4;
	uint64_t reserved_10_63               : 54;
#endif
	} s;
	struct cvmx_dfa_control_s             cn63xx;
	struct cvmx_dfa_control_s             cn63xxp1;
};
typedef union cvmx_dfa_control cvmx_dfa_control_t;

/**
 * cvmx_dfa_dbell
 *
 * DFA_DBELL = DFA Doorbell Register
 *
 * Description:
 *  NOTE: To write to the DFA_DBELL register, a device would issue an IOBST directed at the DFA with addr[34:33]=2'b00.
 *        To read the DFA_DBELL register, a device would issue an IOBLD64 directed at the DFA with addr[34:33]=2'b00.
 *
 *  NOTE: If DFA_CONFIG[DTECLKDIS]=1 (DFA-DTE clocks disabled), reads/writes to the DFA_DBELL register do not take effect.
 *  NOTE: If FUSE[TBD]="DFA DTE disable" is blown, reads/writes to the DFA_DBELL register do not take effect.
 */
union cvmx_dfa_dbell
{
	uint64_t u64;
	struct cvmx_dfa_dbell_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_20_63               : 44;
	uint64_t dbell                        : 20; /**< Represents the cumulative total of pending
                                                         DFA instructions which SW has previously written
                                                         into the DFA Instruction FIFO (DIF) in main memory.
                                                         Each DFA instruction contains a fixed size 32B
                                                         instruction word which is executed by the DFA HW.
                                                         The DBL register can hold up to 1M-1 (2^20-1)
                                                         pending DFA instruction requests.
                                                         During a read (by SW), the 'most recent' contents
                                                         of the DFA_DBELL register are returned at the time
                                                         the NCB-INB bus is driven.
                                                         NOTE: Since DFA HW updates this register, its
                                                         contents are unpredictable in SW. */
#else
	uint64_t dbell                        : 20;
	uint64_t reserved_20_63               : 44;
#endif
	} s;
	struct cvmx_dfa_dbell_s               cn31xx;
	struct cvmx_dfa_dbell_s               cn38xx;
	struct cvmx_dfa_dbell_s               cn38xxp2;
	struct cvmx_dfa_dbell_s               cn58xx;
	struct cvmx_dfa_dbell_s               cn58xxp1;
	struct cvmx_dfa_dbell_s               cn63xx;
	struct cvmx_dfa_dbell_s               cn63xxp1;
};
typedef union cvmx_dfa_dbell cvmx_dfa_dbell_t;

/**
 * cvmx_dfa_ddr2_addr
 *
 * DFA_DDR2_ADDR = DFA DDR2  fclk-domain Memory Address Config Register
 *
 *
 * Description: The following registers are used to compose the DFA's DDR2 address into ROW/COL/BNK
 *              etc.
 */
union cvmx_dfa_ddr2_addr
{
	uint64_t u64;
	struct cvmx_dfa_ddr2_addr_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_9_63                : 55;
	uint64_t rdimm_ena                    : 1;  /**< If there is a need to insert a register chip on the
                                                         system (the equivalent of a registered DIMM) to
                                                         provide better setup for the command and control bits
                                                         turn this mode on.
                                                             RDIMM_ENA
                                                                0           Registered Mode OFF
                                                                1           Registered Mode ON */
	uint64_t num_rnks                     : 2;  /**< NUM_RNKS is programmed based on how many ranks there
                                                         are in the system. This needs to be programmed correctly
                                                         regardless of whether we are in RNK_LO mode or not.
                                                            NUM_RNKS     \# of Ranks
                                                              0              1
                                                              1              2
                                                              2              4
                                                              3              RESERVED */
	uint64_t rnk_lo                       : 1;  /**< When this mode is turned on, consecutive addresses
                                                         outside the bank boundary
                                                         are programmed to go to different ranks in order to
                                                         minimize bank conflicts. It is useful in 4-bank DDR2
                                                         parts based memory to extend out the \#physical banks
                                                         available and minimize bank conflicts.
                                                         On 8 bank ddr2 parts, this mode is not very useful
                                                         because this mode does come with
                                                         a penalty which is that every successive reads that
                                                         cross rank boundary will need a 1 cycle bubble
                                                         inserted to prevent bus turnaround conflicts.
                                                            RNK_LO
                                                             0      - OFF
                                                             1      - ON */
	uint64_t num_colrows                  : 3;  /**< NUM_COLROWS    is used to set the MSB of the ROW_ADDR
                                                         and the LSB of RANK address when not in RNK_LO mode.
                                                         Calculate the sum of \#COL and \#ROW and program the
                                                         controller appropriately
                                                            RANK_LSB        \#COLs + \#ROWs
                                                            ------------------------------
                                                             - 000:                   22
                                                             - 001:                   23
                                                             - 010:                   24
                                                             - 011:                   25
                                                            - 100-111:             RESERVED */
	uint64_t num_cols                     : 2;  /**< The Long word address that the controller receives
                                                         needs to be converted to Row, Col, Rank and Bank
                                                         addresses depending on the memory part's micro arch.
                                                         NUM_COL tells the controller how many colum bits
                                                         there are and the controller uses this info to map
                                                         the LSB of the row address
                                                             - 00: num_cols = 9
                                                             - 01: num_cols = 10
                                                             - 10: num_cols = 11
                                                             - 11: RESERVED */
#else
	uint64_t num_cols                     : 2;
	uint64_t num_colrows                  : 3;
	uint64_t rnk_lo                       : 1;
	uint64_t num_rnks                     : 2;
	uint64_t rdimm_ena                    : 1;
	uint64_t reserved_9_63                : 55;
#endif
	} s;
	struct cvmx_dfa_ddr2_addr_s           cn31xx;
};
typedef union cvmx_dfa_ddr2_addr cvmx_dfa_ddr2_addr_t;

/**
 * cvmx_dfa_ddr2_bus
 *
 * DFA_DDR2_BUS = DFA DDR Bus Activity Counter
 *
 *
 * Description: This counter counts \# cycles that the memory bus is doing a read/write/command
 *              Useful to benchmark the bus utilization as a ratio of
 *              \#Cycles of Data Transfer/\#Cycles since init or
 *              \#Cycles of Data Transfer/\#Cycles that memory controller is active
 */
union cvmx_dfa_ddr2_bus
{
	uint64_t u64;
	struct cvmx_dfa_ddr2_bus_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_47_63               : 17;
	uint64_t bus_cnt                      : 47; /**< Counter counts the \# cycles of Data transfer */
#else
	uint64_t bus_cnt                      : 47;
	uint64_t reserved_47_63               : 17;
#endif
	} s;
	struct cvmx_dfa_ddr2_bus_s            cn31xx;
};
typedef union cvmx_dfa_ddr2_bus cvmx_dfa_ddr2_bus_t;

/**
 * cvmx_dfa_ddr2_cfg
 *
 * DFA_DDR2_CFG = DFA DDR2 fclk-domain Memory Configuration \#0 Register
 *
 * Description:
 */
union cvmx_dfa_ddr2_cfg
{
	uint64_t u64;
	struct cvmx_dfa_ddr2_cfg_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_41_63               : 23;
	uint64_t trfc                         : 5;  /**< Establishes tRFC(from DDR2 data sheets) in \# of
                                                         4 fclk intervals.
                                                         General Equation:
                                                         TRFC(csr) = ROUNDUP[tRFC(data-sheet-ns)/(4 * fclk(ns))]
                                                         Example:
                                                            tRFC(data-sheet-ns) = 127.5ns
                                                            Operational Frequency: 533MHz DDR rate
                                                                [fclk=266MHz(3.75ns)]
                                                         Then:
                                                            TRFC(csr) = ROUNDUP[127.5ns/(4 * 3.75ns)]
                                                                      = 9 */
	uint64_t mrs_pgm                      : 1;  /**< When clear, the HW initialization sequence fixes
                                                         some of the *MRS register bit definitions.
                                                            EMRS:
                                                              A[14:13] = 0 RESERVED
                                                              A[12] = 0    Output Buffers Enabled (FIXED)
                                                              A[11] = 0    RDQS Disabled (FIXED)
                                                              A[10] = 0    DQSn Enabled (FIXED)
                                                              A[9:7] = 0   OCD Not supported (FIXED)
                                                              A[6] = 0     RTT Disabled (FIXED)
                                                              A[5:3]=DFA_DDR2_TMG[ADDLAT] (if DFA_DDR2_TMG[POCAS]=1)
                                                                            Additive LATENCY (Programmable)
                                                              A[2]=0       RTT Disabled (FIXED)
                                                              A[1]=DFA_DDR2_TMG[DIC] (Programmable)
                                                              A[0] = 0     DLL Enabled (FIXED)
                                                            MRS:
                                                              A[14:13] = 0 RESERVED
                                                              A[12] = 0    Fast Active Power Down Mode (FIXED)
                                                              A[11:9] = DFA_DDR2_TMG[TWR](Programmable)
                                                              A[8] = 1     DLL Reset (FIXED)
                                                              A[7] = 0     Test Mode (FIXED)
                                                              A[6:4]=DFA_DDR2_TMG[CASLAT] CAS LATENCY (Programmable)
                                                              A[3] = 0     Burst Type(must be 0:Sequential) (FIXED)
                                                              A[2:0] = 2   Burst Length=4 (must be 0:Sequential) (FIXED)
                                                         When set, the HW initialization sequence sources
                                                         the DFA_DDR2_MRS, DFA_DDR2_EMRS registers which are
                                                         driven onto the DFA_A[] pins. (this allows the MRS/EMRS
                                                         fields to be completely programmable - however care
                                                         must be taken by software).
                                                         This mode is useful for customers who wish to:
                                                            1) override the FIXED definitions(above), or
                                                            2) Use a "clamshell mode" of operation where the
                                                               address bits(per rank) are swizzled on the
                                                               board to reduce stub lengths for optimal
                                                               frequency operation.
                                                         Use this in combination with DFA_DDR2_CFG[RNK_MSK]
                                                         to specify the INIT sequence for each of the 4
                                                         supported ranks. */
	uint64_t fpip                         : 3;  /**< Early Fill Programmable Pipe [\#fclks]
                                                         This field dictates the \#fclks prior to the arrival
                                                         of fill data(in fclk domain), to start the 'early' fill
                                                         command pipe (in the eclk domain) so as to minimize the
                                                         overall fill latency.
                                                         The programmable early fill command signal is synchronized
                                                         into the eclk domain, where it is used to pull data out of
                                                         asynchronous RAM as fast as possible.
                                                         NOTE: A value of FPIP=0 is the 'safest' setting and will
                                                         result in the early fill command pipe starting in the
                                                         same cycle as the fill data.
                                                         General Equation: (for FPIP)
                                                             FPIP <= MIN[6, (ROUND_DOWN[6/EF_RATIO] + 1)]
                                                         where:
                                                           EF_RATIO = ECLK/FCLK Ratio [eclk(MHz)/fclk(MHz)]
                                                         Example: FCLK=200MHz/ECLK=600MHz
                                                            FPIP = MIN[6, (ROUND_DOWN[6/(600/200))] + 1)]
                                                            FPIP <= 3 */
	uint64_t reserved_29_31               : 3;
	uint64_t ref_int                      : 13; /**< Refresh Interval (represented in \#of fclk
                                                         increments).
                                                         Each refresh interval will generate a single
                                                         auto-refresh command sequence which implicitly targets
                                                         all banks within the device:
                                                         Example: For fclk=200MHz(5ns)/400MHz(DDR):
                                                           trefint(ns) = [tREFI(max)=3.9us = 3900ns [datasheet]
                                                           REF_INT = ROUND_DOWN[(trefint/fclk)]
                                                                   = ROUND_DOWN[(3900ns/5ns)]
                                                                   = 780 fclks (0x30c)
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
	uint64_t reserved_14_15               : 2;
	uint64_t tskw                         : 2;  /**< Board Skew (represented in \#fclks)
                                                         Represents additional board skew of DQ/DQS.
                                                             - 00: board-skew = 0 fclk
                                                             - 01: board-skew = 1 fclk
                                                             - 10: board-skew = 2 fclk
                                                             - 11: board-skew = 3 fclk
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
	uint64_t rnk_msk                      : 4;  /**< Controls the CS_N[3:0] during a) a HW Initialization
                                                         sequence (triggered by DFA_DDR2_CFG[INIT]) or
                                                         b) during a normal refresh sequence. If
                                                         the RNK_MSK[x]=1, the corresponding CS_N[x] is driven.
                                                         NOTE: This is required for DRAM used in a
                                                         clamshell configuration, since the address lines
                                                         carry Mode Register write data that is unique
                                                         per rank(or clam). In a clamshell configuration,
                                                         the N3K DFA_A[x] pin may be tied into Clam#0's A[x]
                                                         and also into Clam#1's 'mirrored' address bit A[y]
                                                         (eg: Clam0 sees A[5] and Clam1 sees A[15]).
                                                         To support clamshell designs, SW must initiate
                                                         separate HW init sequences each unique rank address
                                                         mapping. Before each HW init sequence is triggered,
                                                         SW must preload the DFA_DDR2_MRS/EMRS registers with
                                                         the data that will be driven onto the A[14:0] wires
                                                         during the EMRS/MRS mode register write(s).
                                                         NOTE: After the final HW initialization sequence has
                                                         been triggered, SW must wait 64K eclks before writing
                                                         the RNK_MSK[3:0] field = 3'b1111 (so that CS_N[3:0]
                                                         is driven during refresh sequences in normal operation.
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
	uint64_t silo_qc                      : 1;  /**< Enables Quarter Cycle move of the Rd sampling window */
	uint64_t silo_hc                      : 1;  /**< A combination of SILO_HC, SILO_QC and TSKW
                                                         specifies the positioning of the sampling strobe
                                                         when receiving read data back from DDR2. This is
                                                         done to offset any board trace induced delay on
                                                         the DQ and DQS which inherently makes these
                                                         asynchronous with respect to the internal clk of
                                                         controller. TSKW moves this sampling window by
                                                         integer cycles. SILO_QC and HC move this quarter
                                                         and half a cycle respectively. */
	uint64_t sil_lat                      : 2;  /**< Silo Latency (\#fclks): On reads, determines how many
                                                         additional fclks to wait (on top of CASLAT+1) before
                                                         pulling data out of the padring silos used for time
                                                         domain boundary crossing.
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
	uint64_t bprch                        : 1;  /**< Tristate Enable (back porch) (\#fclks)
                                                         On reads, allows user to control the shape of the
                                                         tristate disable back porch for the DQ data bus.
                                                         This parameter is also very dependent on the
                                                         RW_DLY and WR_DLY parameters and care must be
                                                         taken when programming these parameters to avoid
                                                         data bus contention. Valid range [0..2]
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
	uint64_t fprch                        : 1;  /**< Tristate Enable (front porch) (\#fclks)
                                                         On reads, allows user to control the shape of the
                                                         tristate disable front porch for the DQ data bus.
                                                         This parameter is also very dependent on the
                                                         RW_DLY and WR_DLY parameters and care must be
                                                         taken when programming these parameters to avoid
                                                         data bus contention. Valid range [0..2]
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
	uint64_t init                         : 1;  /**< When a '1' is written (and the previous value was '0'),
                                                         the HW init sequence(s) for the LLM Memory Port is
                                                         initiated.
                                                         NOTE: To initialize memory, SW must:
                                                           1) Enable memory port
                                                               a) PRTENA=1
                                                           2) Wait 200us (to ensure a stable clock
                                                              to the DDR2) - as per DDR2 spec.
                                                           3) Write a '1' to the INIT which
                                                              will initiate a hardware initialization
                                                              sequence.
                                                         NOTE: After writing a '1', SW must wait 64K eclk
                                                         cycles to ensure the HW init sequence has completed
                                                         before writing to ANY of the DFA_DDR2* registers.
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
	uint64_t prtena                       : 1;  /**< Enable DFA Memory
                                                         When enabled, this bit lets N3K be the default
                                                         driver for DFA-LLM memory port. */
#else
	uint64_t prtena                       : 1;
	uint64_t init                         : 1;
	uint64_t fprch                        : 1;
	uint64_t bprch                        : 1;
	uint64_t sil_lat                      : 2;
	uint64_t silo_hc                      : 1;
	uint64_t silo_qc                      : 1;
	uint64_t rnk_msk                      : 4;
	uint64_t tskw                         : 2;
	uint64_t reserved_14_15               : 2;
	uint64_t ref_int                      : 13;
	uint64_t reserved_29_31               : 3;
	uint64_t fpip                         : 3;
	uint64_t mrs_pgm                      : 1;
	uint64_t trfc                         : 5;
	uint64_t reserved_41_63               : 23;
#endif
	} s;
	struct cvmx_dfa_ddr2_cfg_s            cn31xx;
};
typedef union cvmx_dfa_ddr2_cfg cvmx_dfa_ddr2_cfg_t;

/**
 * cvmx_dfa_ddr2_comp
 *
 * DFA_DDR2_COMP = DFA DDR2 I/O PVT Compensation Configuration
 *
 *
 * Description: The following are registers to program the DDR2 PLL and DLL
 */
union cvmx_dfa_ddr2_comp
{
	uint64_t u64;
	struct cvmx_dfa_ddr2_comp_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t dfa__pctl                    : 4;  /**< DFA DDR pctl from compensation circuit
                                                         Internal DBG only */
	uint64_t dfa__nctl                    : 4;  /**< DFA DDR nctl from compensation circuit
                                                         Internal DBG only */
	uint64_t reserved_9_55                : 47;
	uint64_t pctl_csr                     : 4;  /**< Compensation control bits */
	uint64_t nctl_csr                     : 4;  /**< Compensation control bits */
	uint64_t comp_bypass                  : 1;  /**< Compensation Bypass */
#else
	uint64_t comp_bypass                  : 1;
	uint64_t nctl_csr                     : 4;
	uint64_t pctl_csr                     : 4;
	uint64_t reserved_9_55                : 47;
	uint64_t dfa__nctl                    : 4;
	uint64_t dfa__pctl                    : 4;
#endif
	} s;
	struct cvmx_dfa_ddr2_comp_s           cn31xx;
};
typedef union cvmx_dfa_ddr2_comp cvmx_dfa_ddr2_comp_t;

/**
 * cvmx_dfa_ddr2_emrs
 *
 * DFA_DDR2_EMRS = DDR2 EMRS Register(s) EMRS1[14:0], EMRS1_OCD[14:0]
 * Description: This register contains the data driven onto the Address[14:0] lines during  DDR INIT
 * To support Clamshelling (where N3K DFA_A[] pins are not 1:1 mapped to each clam(or rank), a HW init
 * sequence is allowed on a "per-rank" basis. Care must be taken in the values programmed into these
 * registers during the HW initialization sequence (see N3K specific restrictions in notes below).
 * DFA_DDR2_CFG[MRS_PGM] must be 1 to support this feature.
 *
 * Notes:
 * For DDR-II please consult your device's data sheet for further details:
 *
 */
union cvmx_dfa_ddr2_emrs
{
	uint64_t u64;
	struct cvmx_dfa_ddr2_emrs_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_31_63               : 33;
	uint64_t emrs1_ocd                    : 15; /**< Memory Address[14:0] during "EMRS1 (OCD Calibration)"
                                                         step \#12a "EMRS OCD Default Command" A[9:7]=111
                                                         of DDR2 HW initialization sequence.
                                                         (See JEDEC DDR2 specification (JESD79-2):
                                                         Power Up and initialization sequence).
                                                            A[14:13] = 0, RESERVED
                                                            A[12] = 0, Output Buffers Enabled
                                                            A[11] = 0, RDQS Disabled (we do not support RDQS)
                                                            A[10] = 0, DQSn Enabled
                                                            A[9:7] = 7, OCD Calibration Mode Default
                                                            A[6] = 0, ODT Disabled
                                                            A[5:3]=DFA_DDR2_TMG[ADDLAT]  Additive LATENCY (Default 0)
                                                            A[2]=0    Termination Res RTT (ODT off Default)
                                                            [A6,A2] = 0 -> ODT Disabled
                                                                      1 -> 75 ohm; 2 -> 150 ohm; 3 - Reserved
                                                            A[1]=0  Normal Output Driver Imp mode
                                                                    (1 - weak ie., 60% of normal drive strength)
                                                            A[0] = 0 DLL Enabled */
	uint64_t reserved_15_15               : 1;
	uint64_t emrs1                        : 15; /**< Memory Address[14:0] during:
                                                           a) Step \#7 "EMRS1 to enable DLL (A[0]=0)"
                                                           b) Step \#12b "EMRS OCD Calibration Mode Exit"
                                                         steps of DDR2 HW initialization sequence.
                                                         (See JEDEC DDR2 specification (JESD79-2): Power Up and
                                                         initialization sequence).
                                                           A[14:13] = 0, RESERVED
                                                           A[12] = 0, Output Buffers Enabled
                                                           A[11] = 0, RDQS Disabled (we do not support RDQS)
                                                           A[10] = 0, DQSn Enabled
                                                           A[9:7] = 0, OCD Calibration Mode exit/maintain
                                                           A[6] = 0, ODT Disabled
                                                           A[5:3]=DFA_DDR2_TMG[ADDLAT]  Additive LATENCY (Default 0)
                                                           A[2]=0    Termination Res RTT (ODT off Default)
                                                           [A6,A2] = 0 -> ODT Disabled
                                                                     1 -> 75 ohm; 2 -> 150 ohm; 3 - Reserved
                                                           A[1]=0  Normal Output Driver Imp mode
                                                                   (1 - weak ie., 60% of normal drive strength)
                                                           A[0] = 0 DLL Enabled */
#else
	uint64_t emrs1                        : 15;
	uint64_t reserved_15_15               : 1;
	uint64_t emrs1_ocd                    : 15;
	uint64_t reserved_31_63               : 33;
#endif
	} s;
	struct cvmx_dfa_ddr2_emrs_s           cn31xx;
};
typedef union cvmx_dfa_ddr2_emrs cvmx_dfa_ddr2_emrs_t;

/**
 * cvmx_dfa_ddr2_fcnt
 *
 * DFA_DDR2_FCNT = DFA FCLK Counter
 *
 *
 * Description: This FCLK cycle counter gets going after memory has been initialized
 */
union cvmx_dfa_ddr2_fcnt
{
	uint64_t u64;
	struct cvmx_dfa_ddr2_fcnt_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_47_63               : 17;
	uint64_t fcyc_cnt                     : 47; /**< Counter counts FCLK cycles or \# cycles that the memory
                                                         controller has requests queued up depending on FCNT_MODE
                                                         If FCNT_MODE = 0, this counter counts the \# FCLK cycles
                                                         If FCNT_MODE = 1, this counter counts the \# cycles the
                                                         controller is active with memory requests. */
#else
	uint64_t fcyc_cnt                     : 47;
	uint64_t reserved_47_63               : 17;
#endif
	} s;
	struct cvmx_dfa_ddr2_fcnt_s           cn31xx;
};
typedef union cvmx_dfa_ddr2_fcnt cvmx_dfa_ddr2_fcnt_t;

/**
 * cvmx_dfa_ddr2_mrs
 *
 * DFA_DDR2_MRS = DDR2 MRS Register(s) MRS_DLL[14:0], MRS[14:0]
 * Description: This register contains the data driven onto the Address[14:0] lines during DDR INIT
 * To support Clamshelling (where N3K DFA_A[] pins are not 1:1 mapped to each clam(or rank), a HW init
 * sequence is allowed on a "per-rank" basis. Care must be taken in the values programmed into these
 * registers during the HW initialization sequence (see N3K specific restrictions in notes below).
 * DFA_DDR2_CFG[MRS_PGM] must be 1 to support this feature.
 *
 * Notes:
 * For DDR-II please consult your device's data sheet for further details:
 *
 */
union cvmx_dfa_ddr2_mrs
{
	uint64_t u64;
	struct cvmx_dfa_ddr2_mrs_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_31_63               : 33;
	uint64_t mrs                          : 15; /**< Memory Address[14:0] during "MRS without resetting
                                                         DLL A[8]=0" step of HW initialization sequence.
                                                         (See JEDEC DDR2 specification (JESD79-2): Power Up
                                                         and initialization sequence - Step \#11).
                                                           A[14:13] = 0, RESERVED
                                                           A[12] = 0, Fast Active Power Down Mode
                                                           A[11:9] = DFA_DDR2_TMG[TWR]
                                                           A[8] = 0, for DLL Reset
                                                           A[7] =0  Test Mode (must be 0 for normal operation)
                                                           A[6:4]=DFA_DDR2_TMG[CASLAT] CAS LATENCY (default 4)
                                                           A[3]=0    Burst Type(must be 0:Sequential)
                                                           A[2:0]=2  Burst Length=4(default) */
	uint64_t reserved_15_15               : 1;
	uint64_t mrs_dll                      : 15; /**< Memory Address[14:0] during "MRS for DLL_RESET A[8]=1"
                                                         step of HW initialization sequence.
                                                         (See JEDEC DDR2 specification (JESD79-2): Power Up
                                                         and initialization sequence - Step \#8).
                                                           A[14:13] = 0, RESERVED
                                                           A[12] = 0, Fast Active Power Down Mode
                                                           A[11:9] = DFA_DDR2_TMG[TWR]
                                                           A[8] = 1, for DLL Reset
                                                           A[7] = 0  Test Mode (must be 0 for normal operation)
                                                           A[6:4]=DFA_DDR2_TMG[CASLAT]    CAS LATENCY (default 4)
                                                           A[3] = 0    Burst Type(must be 0:Sequential)
                                                           A[2:0] = 2  Burst Length=4(default) */
#else
	uint64_t mrs_dll                      : 15;
	uint64_t reserved_15_15               : 1;
	uint64_t mrs                          : 15;
	uint64_t reserved_31_63               : 33;
#endif
	} s;
	struct cvmx_dfa_ddr2_mrs_s            cn31xx;
};
typedef union cvmx_dfa_ddr2_mrs cvmx_dfa_ddr2_mrs_t;

/**
 * cvmx_dfa_ddr2_opt
 *
 * DFA_DDR2_OPT = DFA DDR2 Optimization Registers
 *
 *
 * Description: The following are registers to tweak certain parameters to boost performance
 */
union cvmx_dfa_ddr2_opt
{
	uint64_t u64;
	struct cvmx_dfa_ddr2_opt_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_10_63               : 54;
	uint64_t max_read_batch               : 5;  /**< Maximum number of consecutive read to service before
                                                         allowing write to interrupt. */
	uint64_t max_write_batch              : 5;  /**< Maximum number of consecutive writes to service before
                                                         allowing reads to interrupt. */
#else
	uint64_t max_write_batch              : 5;
	uint64_t max_read_batch               : 5;
	uint64_t reserved_10_63               : 54;
#endif
	} s;
	struct cvmx_dfa_ddr2_opt_s            cn31xx;
};
typedef union cvmx_dfa_ddr2_opt cvmx_dfa_ddr2_opt_t;

/**
 * cvmx_dfa_ddr2_pll
 *
 * DFA_DDR2_PLL = DFA DDR2 PLL and DLL Configuration
 *
 *
 * Description: The following are registers to program the DDR2 PLL and DLL
 */
union cvmx_dfa_ddr2_pll
{
	uint64_t u64;
	struct cvmx_dfa_ddr2_pll_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t pll_setting                  : 17; /**< Internal Debug Use Only */
	uint64_t reserved_32_46               : 15;
	uint64_t setting90                    : 5;  /**< Contains the setting of DDR DLL; Internal DBG only */
	uint64_t reserved_21_26               : 6;
	uint64_t dll_setting                  : 5;  /**< Contains the open loop setting value for the DDR90 delay
                                                         line. */
	uint64_t dll_byp                      : 1;  /**< DLL Bypass. When set, the DDR90 DLL is bypassed and
                                                         the DLL behaves in Open Loop giving a fixed delay
                                                         set by DLL_SETTING */
	uint64_t qdll_ena                     : 1;  /**< DDR Quad DLL Enable: A 0->1 transition on this bit after
                                                         erst deassertion will reset the DDR 90 DLL. Allow
                                                         200 micro seconds for Lock before DDR Init. */
	uint64_t bw_ctl                       : 4;  /**< Internal Use Only - for Debug */
	uint64_t bw_upd                       : 1;  /**< Internal Use Only - for Debug */
	uint64_t pll_div2                     : 1;  /**< PLL Output is further divided by 2. Useful for slow
                                                         fclk frequencies where the PLL may be out of range. */
	uint64_t reserved_7_7                 : 1;
	uint64_t pll_ratio                    : 5;  /**< Bits <6:2> sets the clk multiplication ratio
                                                         If the fclk frequency desired is less than 260MHz
                                                         (lower end saturation point of the pll), write 2x
                                                         the ratio desired in this register and set PLL_DIV2 */
	uint64_t pll_bypass                   : 1;  /**< PLL Bypass. Uses the ref_clk without multiplication. */
	uint64_t pll_init                     : 1;  /**< Need a 0 to 1 pulse on this CSR to get the DFA
                                                         Clk Generator Started. Write this register before
                                                         starting anything. Allow 200 uS for PLL Lock before
                                                         doing anything. */
#else
	uint64_t pll_init                     : 1;
	uint64_t pll_bypass                   : 1;
	uint64_t pll_ratio                    : 5;
	uint64_t reserved_7_7                 : 1;
	uint64_t pll_div2                     : 1;
	uint64_t bw_upd                       : 1;
	uint64_t bw_ctl                       : 4;
	uint64_t qdll_ena                     : 1;
	uint64_t dll_byp                      : 1;
	uint64_t dll_setting                  : 5;
	uint64_t reserved_21_26               : 6;
	uint64_t setting90                    : 5;
	uint64_t reserved_32_46               : 15;
	uint64_t pll_setting                  : 17;
#endif
	} s;
	struct cvmx_dfa_ddr2_pll_s            cn31xx;
};
typedef union cvmx_dfa_ddr2_pll cvmx_dfa_ddr2_pll_t;

/**
 * cvmx_dfa_ddr2_tmg
 *
 * DFA_DDR2_TMG = DFA DDR2 Memory Timing Config Register
 *
 *
 * Description: The following are registers to program the DDR2 memory timing parameters.
 */
union cvmx_dfa_ddr2_tmg
{
	uint64_t u64;
	struct cvmx_dfa_ddr2_tmg_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_47_63               : 17;
	uint64_t fcnt_mode                    : 1;  /**< If FCNT_MODE = 0, this counter counts the \# FCLK cycles
                                                         If FCNT_MODE = 1, this counter counts the \# cycles the
                                                         controller is active with memory requests. */
	uint64_t cnt_clr                      : 1;  /**< Clears the FCLK Cyc & Bus Util counter */
	uint64_t cavmipo                      : 1;  /**< RESERVED */
	uint64_t ctr_rst                      : 1;  /**< Reset oneshot pulse for refresh counter & Perf counters
                                                         SW should first write this field to a one to clear
                                                         & then write to a zero for normal operation */
	uint64_t odt_rtt                      : 2;  /**< DDR2 Termination Resistor Setting
                                                         These two bits are loaded into the RTT
                                                         portion of the EMRS register bits A6 & A2. If DDR2's
                                                         termination (for the memory's DQ/DQS/DM pads) is not
                                                         desired, set it to 00. If it is, chose between
                                                         01 for 75 ohm and 10 for 150 ohm termination.
                                                              00 = ODT Disabled
                                                              01 = 75 ohm Termination
                                                              10 = 150 ohm Termination
                                                              11 = 50 ohm Termination */
	uint64_t dqsn_ena                     : 1;  /**< For DDR-II Mode, DIC[1] is used to load into EMRS
                                                         bit 10 - DQSN Enable/Disable field. By default, we
                                                         program the DDR's to drive the DQSN also. Set it to
                                                         1 if DQSN should be Hi-Z.
                                                              0 - DQSN Enable
                                                              1 - DQSN Disable */
	uint64_t dic                          : 1;  /**< Drive Strength Control:
                                                         For DDR-I/II Mode, DIC[0] is
                                                         loaded into the Extended Mode Register (EMRS) A1 bit
                                                         during initialization. (see DDR-I data sheet EMRS
                                                         description)
                                                              0 = Normal
                                                              1 = Reduced */
	uint64_t r2r_slot                     : 1;  /**< A 1 on this register will force the controller to
                                                         slot a bubble between every reads */
	uint64_t tfaw                         : 5;  /**< tFAW - Cycles = RNDUP[tFAW(ns)/tcyc(ns)] - 1
                                                         Four Access Window time. Relevant only in
                                                         8-bank parts.
                                                              TFAW = 5'b0 for DDR2-4bank
                                                              TFAW = RNDUP[tFAW(ns)/tcyc(ns)] - 1 in DDR2-8bank */
	uint64_t twtr                         : 4;  /**< tWTR Cycles = RNDUP[tWTR(ns)/tcyc(ns)]
                                                         Last Wr Data to Rd Command time.
                                                         (Represented in fclk cycles)
                                                         TYP=15ns
                                                              - 0000: RESERVED
                                                              - 0001: 1
                                                              - ...
                                                              - 0111: 7
                                                              - 1000-1111: RESERVED */
	uint64_t twr                          : 3;  /**< DDR Write Recovery time (tWR). Last Wr Brst to Prech
                                                         This is not a direct encoding of the value. Its
                                                         programmed as below per DDR2 spec. The decimal number
                                                         on the right is RNDUP(tWR(ns) / clkFreq)
                                                         TYP=15ns
                                                              - 000: RESERVED
                                                              - 001: 2
                                                              - 010: 3
                                                              - 011: 4
                                                              - 100: 5
                                                              - 101: 6
                                                              - 110-111: RESERVED */
	uint64_t trp                          : 4;  /**< tRP Cycles = RNDUP[tRP(ns)/tcyc(ns)]
                                                         (Represented in fclk cycles)
                                                         TYP=15ns
                                                              - 0000: RESERVED
                                                              - 0001: 1
                                                              - ...
                                                              - 0111: 7
                                                              - 1000-1111: RESERVED
                                                         When using parts with 8 banks (DFA_CFG->MAX_BNK
                                                         is 1), load tRP cycles + 1 into this register. */
	uint64_t tras                         : 5;  /**< tRAS Cycles = RNDUP[tRAS(ns)/tcyc(ns)]
                                                         (Represented in fclk cycles)
                                                         TYP=45ns
                                                              - 00000-0001: RESERVED
                                                              - 00010: 2
                                                              - ...
                                                              - 10100: 20
                                                              - 10101-11111: RESERVED */
	uint64_t trrd                         : 3;  /**< tRRD cycles: ACT-ACT timing parameter for different
                                                         banks. (Represented in fclk cycles)
                                                         For DDR2, TYP=7.5ns
                                                             - 000: RESERVED
                                                             - 001: 1 tCYC
                                                             - 010: 2 tCYC
                                                             - 011: 3 tCYC
                                                             - 100: 4 tCYC
                                                             - 101: 5 tCYC
                                                             - 110-111: RESERVED */
	uint64_t trcd                         : 4;  /**< tRCD Cycles = RNDUP[tRCD(ns)/tcyc(ns)]
                                                         (Represented in fclk cycles)
                                                         TYP=15ns
                                                              - 0000: RESERVED
                                                              - 0001: 2 (2 is the smallest value allowed)
                                                              - 0002: 2
                                                              - ...
                                                              - 0111: 7
                                                              - 1110-1111: RESERVED */
	uint64_t addlat                       : 3;  /**< When in Posted CAS mode ADDLAT needs to be programmed
                                                         to tRCD-1
                                                               ADDLAT         \#additional latency cycles
                                                                000              0
                                                                001              1 (tRCD = 2 fclk's)
                                                                010              2 (tRCD = 3 fclk's)
                                                                011              3 (tRCD = 4 fclk's)
                                                                100              4 (tRCD = 5 fclk's)
                                                                101              5 (tRCD = 6 fclk's)
                                                                110              6 (tRCD = 7 fclk's)
                                                                111              7 (tRCD = 8 fclk's) */
	uint64_t pocas                        : 1;  /**< Posted CAS mode. When 1, we use DDR2's Posted CAS
                                                         feature. When using this mode, ADDLAT needs to be
                                                         programmed as well */
	uint64_t caslat                       : 3;  /**< CAS Latency in \# fclk Cycles
                                                         CASLAT           \#  CAS latency cycles
                                                          000 - 010           RESERVED
                                                          011                    3
                                                          100                    4
                                                          101                    5
                                                          110                    6
                                                          111                    7 */
	uint64_t tmrd                         : 2;  /**< tMRD Cycles
                                                         (Represented in fclk tCYC)
                                                         For DDR2, its TYP 2*tCYC)
                                                             - 000: RESERVED
                                                             - 001: 1
                                                             - 010: 2
                                                             - 011: 3 */
	uint64_t ddr2t                        : 1;  /**< When 2T mode is turned on, command signals are
                                                         setup a cycle ahead of when the CS is enabled
                                                         and kept for a total of 2 cycles. This mode is
                                                         enabled in higher speeds when there is difficulty
                                                         meeting setup. Performance could
                                                         be negatively affected in 2T mode */
#else
	uint64_t ddr2t                        : 1;
	uint64_t tmrd                         : 2;
	uint64_t caslat                       : 3;
	uint64_t pocas                        : 1;
	uint64_t addlat                       : 3;
	uint64_t trcd                         : 4;
	uint64_t trrd                         : 3;
	uint64_t tras                         : 5;
	uint64_t trp                          : 4;
	uint64_t twr                          : 3;
	uint64_t twtr                         : 4;
	uint64_t tfaw                         : 5;
	uint64_t r2r_slot                     : 1;
	uint64_t dic                          : 1;
	uint64_t dqsn_ena                     : 1;
	uint64_t odt_rtt                      : 2;
	uint64_t ctr_rst                      : 1;
	uint64_t cavmipo                      : 1;
	uint64_t cnt_clr                      : 1;
	uint64_t fcnt_mode                    : 1;
	uint64_t reserved_47_63               : 17;
#endif
	} s;
	struct cvmx_dfa_ddr2_tmg_s            cn31xx;
};
typedef union cvmx_dfa_ddr2_tmg cvmx_dfa_ddr2_tmg_t;

/**
 * cvmx_dfa_debug0
 *
 * DFA_DEBUG0 = DFA Scoreboard Debug \#0 Register
 * *FOR INTERNAL USE ONLY*
 * Description: When the DFA_CONTROL[SBDLCK] bit is written '1', the contents of this register are locked down.
 * Otherwise, the contents of this register are the 'active' contents of the DFA Scoreboard at the time of the
 * CSR read.
 * VERIFICATION NOTE: Read data is unsafe. X's(undefined data) can propagate (in the behavioral model)
 * on the reads unless the DTE Engine specified by DFA_CONTROL[SBDNUM] has previously been assigned an
 * instruction.
 */
union cvmx_dfa_debug0
{
	uint64_t u64;
	struct cvmx_dfa_debug0_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t sbd0                         : 64; /**< DFA ScoreBoard \#0 Data
                                                         (DFA Scoreboard Debug)
                                                            [63:38]   (26) rptr[28:3]: Result Base Pointer (QW-aligned)
                                                            [37:22]   (16) Cumulative Result Write Counter (for HDR write)
                                                            [21]       (1) Waiting for GRdRsp EOT
                                                            [20]       (1) Waiting for GRdReq Issue (to NRQ)
                                                            [19]       (1) GLPTR/GLCNT Valid
                                                            [18]       (1) Completion Mark Detected
                                                            [17:15]    (3) Completion Code [0=PDGONE/1=PERR/2=RFULL/3=TERM]
                                                            [14]       (1) Completion Detected
                                                            [13]       (1) Waiting for HDR RWrCmtRsp
                                                            [12]       (1) Waiting for LAST RESULT RWrCmtRsp
                                                            [11]       (1) Waiting for HDR RWrReq
                                                            [10]        (1) Waiting for RWrReq
                                                            [9]        (1) Waiting for WQWrReq issue
                                                            [8]        (1) Waiting for PRdRsp EOT
                                                            [7]        (1) Waiting for PRdReq Issue (to NRQ)
                                                            [6]        (1) Packet Data Valid
                                                            [5]        (1) WQVLD
                                                            [4]        (1) WQ Done Point (either WQWrReq issued (for WQPTR<>0) OR HDR RWrCmtRsp)
                                                            [3]        (1) Resultant write STF/P Mode
                                                            [2]        (1) Packet Data LDT mode
                                                            [1]        (1) Gather Mode
                                                            [0]        (1) Valid */
#else
	uint64_t sbd0                         : 64;
#endif
	} s;
	struct cvmx_dfa_debug0_s              cn63xx;
	struct cvmx_dfa_debug0_s              cn63xxp1;
};
typedef union cvmx_dfa_debug0 cvmx_dfa_debug0_t;

/**
 * cvmx_dfa_debug1
 *
 * DFA_DEBUG1 = DFA Scoreboard Debug \#1 Register
 * *FOR INTERNAL USE ONLY*
 * Description: When the DFA_CONTROL[SBDLCK] bit is written '1', the contents of this register are locked down.
 * Otherwise, the contents of this register are the 'active' contents of the DFA Scoreboard at the time of the
 * CSR read.
 * VERIFICATION NOTE: Read data is unsafe. X's(undefined data) can propagate (in the behavioral model)
 * on the reads unless the DTE Engine specified by DFA_CONTROL[SBDNUM] has previously been assigned an
 * instruction.
 */
union cvmx_dfa_debug1
{
	uint64_t u64;
	struct cvmx_dfa_debug1_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t sbd1                         : 64; /**< DFA ScoreBoard \#1 Data
                                                         DFA Scoreboard Debug Data
                                                            [63:56]   (8) UNUSED
                                                            [55:16]  (40) Packet Data Pointer
                                                            [15:0]   (16) Packet Data Counter */
#else
	uint64_t sbd1                         : 64;
#endif
	} s;
	struct cvmx_dfa_debug1_s              cn63xx;
	struct cvmx_dfa_debug1_s              cn63xxp1;
};
typedef union cvmx_dfa_debug1 cvmx_dfa_debug1_t;

/**
 * cvmx_dfa_debug2
 *
 * DFA_DEBUG2 = DFA Scoreboard Debug \#2 Register
 *
 * Description: When the DFA_CONTROL[SBDLCK] bit is written '1', the contents of this register are locked down.
 * Otherwise, the contents of this register are the 'active' contents of the DFA Scoreboard at the time of the
 * CSR read.
 * VERIFICATION NOTE: Read data is unsafe. X's(undefined data) can propagate (in the behavioral model)
 * on the reads unless the DTE Engine specified by DFA_CONTROL[SBDNUM] has previously been assigned an
 * instruction.
 */
union cvmx_dfa_debug2
{
	uint64_t u64;
	struct cvmx_dfa_debug2_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t sbd2                         : 64; /**< DFA ScoreBoard \#2 Data
                                                         [63:45] (19) UNUSED
                                                         [44:42]  (3) Instruction Type
                                                         [41:5]  (37) rwptr[39:3]: Result Write Pointer
                                                         [4:0]    (5) prwcnt[4:0]: Pending Result Write Counter */
#else
	uint64_t sbd2                         : 64;
#endif
	} s;
	struct cvmx_dfa_debug2_s              cn63xx;
	struct cvmx_dfa_debug2_s              cn63xxp1;
};
typedef union cvmx_dfa_debug2 cvmx_dfa_debug2_t;

/**
 * cvmx_dfa_debug3
 *
 * DFA_DEBUG3 = DFA Scoreboard Debug \#3 Register
 *
 * Description: When the DFA_CONTROL[SBDLCK] bit is written '1', the contents of this register are locked down.
 * Otherwise, the contents of this register are the 'active' contents of the DFA Scoreboard at the time of the
 * CSR read.
 * VERIFICATION NOTE: Read data is unsafe. X's(undefined data) can propagate (in the behavioral model)
 * on the reads unless the DTE Engine specified by DFA_CONTROL[SBDNUM] has previously been assigned an
 * instruction.
 */
union cvmx_dfa_debug3
{
	uint64_t u64;
	struct cvmx_dfa_debug3_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t sbd3                         : 64; /**< DFA ScoreBoard \#3 Data
                                                         [63:52] (11) rptr[39:29]: Result Base Pointer (QW-aligned)
                                                         [52:16] (37) glptr[39:3]: Gather List Pointer
                                                         [15:0]  (16) glcnt Gather List Counter */
#else
	uint64_t sbd3                         : 64;
#endif
	} s;
	struct cvmx_dfa_debug3_s              cn63xx;
	struct cvmx_dfa_debug3_s              cn63xxp1;
};
typedef union cvmx_dfa_debug3 cvmx_dfa_debug3_t;

/**
 * cvmx_dfa_difctl
 *
 * DFA_DIFCTL = DFA Instruction FIFO (DIF) Control Register
 *
 * Description:
 *  NOTE: To write to the DFA_DIFCTL register, a device would issue an IOBST directed at the DFA with addr[34:32]=3'b110.
 *        To read the DFA_DIFCTL register, a device would issue an IOBLD64 directed at the DFA with addr[34:32]=3'b110.
 *
 *  NOTE: This register is intended to ONLY be written once (at power-up). Any future writes could
 *  cause the DFA and FPA HW to become unpredictable.
 *
 *  NOTE: If DFA_CONFIG[DTECLKDIS]=1 (DFA-DTE clocks disabled), reads/writes to the DFA_DIFCTL register do not take effect.
 *  NOTE: If FUSE[TBD]="DFA DTE disable" is blown, reads/writes to the DFA_DIFCTL register do not take effect.
 */
union cvmx_dfa_difctl
{
	uint64_t u64;
	struct cvmx_dfa_difctl_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_20_63               : 44;
	uint64_t dwbcnt                       : 8;  /**< Represents the \# of cache lines in the instruction
                                                         buffer that may be dirty and should not be
                                                         written-back to memory when the instruction
                                                         chunk is returned to the Free Page list.
                                                         NOTE: Typically SW will want to mark all DFA
                                                         Instruction memory returned to the Free Page list
                                                         as DWB (Don't WriteBack), therefore SW should
                                                         seed this register as:
                                                           DFA_DIFCTL[DWBCNT] = (DFA_DIFCTL[SIZE] + 4)/4 */
	uint64_t pool                         : 3;  /**< Represents the 3bit buffer pool-id  used by DFA HW
                                                         when the DFA instruction chunk is recycled back
                                                         to the Free Page List maintained by the FPA HW
                                                         (once the DFA instruction has been issued). */
	uint64_t size                         : 9;  /**< Represents the \# of 32B instructions contained
                                                         within each DFA instruction chunk. At Power-on,
                                                         SW will seed the SIZE register with a fixed
                                                         chunk-size. (Must be at least 3)
                                                         DFA HW uses this field to determine the size
                                                         of each DFA instruction chunk, in order to:
                                                            a) determine when to read the next DFA
                                                               instruction chunk pointer which is
                                                               written by SW at the end of the current
                                                               DFA instruction chunk (see DFA description
                                                               of next chunk buffer Ptr for format).
                                                            b) determine when a DFA instruction chunk
                                                               can be returned to the Free Page List
                                                               maintained by the FPA HW. */
#else
	uint64_t size                         : 9;
	uint64_t pool                         : 3;
	uint64_t dwbcnt                       : 8;
	uint64_t reserved_20_63               : 44;
#endif
	} s;
	struct cvmx_dfa_difctl_s              cn31xx;
	struct cvmx_dfa_difctl_s              cn38xx;
	struct cvmx_dfa_difctl_s              cn38xxp2;
	struct cvmx_dfa_difctl_s              cn58xx;
	struct cvmx_dfa_difctl_s              cn58xxp1;
	struct cvmx_dfa_difctl_s              cn63xx;
	struct cvmx_dfa_difctl_s              cn63xxp1;
};
typedef union cvmx_dfa_difctl cvmx_dfa_difctl_t;

/**
 * cvmx_dfa_difrdptr
 *
 * DFA_DIFRDPTR = DFA Instruction FIFO (DIF) RDPTR Register
 *
 * Description:
 *  NOTE: To write to the DFA_DIFRDPTR register, a device would issue an IOBST directed at the DFA with addr[34:33]=2'b01.
 *        To read the DFA_DIFRDPTR register, a device would issue an IOBLD64 directed at the DFA with addr[34:33]=2'b01.
 *
 *  NOTE: If DFA_CONFIG[DTECLKDIS]=1 (DFA-DTE clocks disabled), reads/writes to the DFA_DIFRDPTR register do not take effect.
 *  NOTE: If FUSE[TBD]="DFA DTE disable" is blown, reads/writes to the DFA_DIFRDPTR register do not take effect.
 */
union cvmx_dfa_difrdptr
{
	uint64_t u64;
	struct cvmx_dfa_difrdptr_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_40_63               : 24;
	uint64_t rdptr                        : 35; /**< Represents the 32B-aligned address of the current
                                                         instruction in the DFA Instruction FIFO in main
                                                         memory. The RDPTR must be seeded by software at
                                                         boot time, and is then maintained thereafter
                                                         by DFA HW.
                                                         During the seed write (by SW), RDPTR[6:5]=0,
                                                         since DFA instruction chunks must be 128B aligned.
                                                         During a read (by SW), the 'most recent' contents
                                                         of the RDPTR register are returned at the time
                                                         the NCB-INB bus is driven.
                                                         NOTE: Since DFA HW updates this register, its
                                                         contents are unpredictable in SW (unless
                                                         its guaranteed that no new DoorBell register
                                                         writes have occurred and the DoorBell register is
                                                         read as zero). */
	uint64_t reserved_0_4                 : 5;
#else
	uint64_t reserved_0_4                 : 5;
	uint64_t rdptr                        : 35;
	uint64_t reserved_40_63               : 24;
#endif
	} s;
	struct cvmx_dfa_difrdptr_cn31xx
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_36_63               : 28;
	uint64_t rdptr                        : 31; /**< Represents the 32B-aligned address of the current
                                                         instruction in the DFA Instruction FIFO in main
                                                         memory. The RDPTR must be seeded by software at
                                                         boot time, and is then maintained thereafter
                                                         by DFA HW.
                                                         During the seed write (by SW), RDPTR[6:5]=0,
                                                         since DFA instruction chunks must be 128B aligned.
                                                         During a read (by SW), the 'most recent' contents
                                                         of the RDPTR register are returned at the time
                                                         the NCB-INB bus is driven.
                                                         NOTE: Since DFA HW updates this register, its
                                                         contents are unpredictable in SW (unless
                                                         its guaranteed that no new DoorBell register
                                                         writes have occurred and the DoorBell register is
                                                         read as zero). */
	uint64_t reserved_0_4                 : 5;
#else
	uint64_t reserved_0_4                 : 5;
	uint64_t rdptr                        : 31;
	uint64_t reserved_36_63               : 28;
#endif
	} cn31xx;
	struct cvmx_dfa_difrdptr_cn31xx       cn38xx;
	struct cvmx_dfa_difrdptr_cn31xx       cn38xxp2;
	struct cvmx_dfa_difrdptr_cn31xx       cn58xx;
	struct cvmx_dfa_difrdptr_cn31xx       cn58xxp1;
	struct cvmx_dfa_difrdptr_s            cn63xx;
	struct cvmx_dfa_difrdptr_s            cn63xxp1;
};
typedef union cvmx_dfa_difrdptr cvmx_dfa_difrdptr_t;

/**
 * cvmx_dfa_dtcfadr
 *
 * DFA_DTCFADR = DFA DTC Failing Address Register
 *
 * Description: DFA Node Cache Failing Address/Control Error Capture information
 * This register contains useful information to help in isolating a Node Cache RAM failure.
 * NOTE: The first detected PERR failure is captured in DFA_DTCFADR (locked down), until the
 * corresponding PERR Interrupt is cleared by writing one (W1C). (see: DFA_ERR[DC0PERR[2:0]]).
 */
union cvmx_dfa_dtcfadr
{
	uint64_t u64;
	struct cvmx_dfa_dtcfadr_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_44_63               : 20;
	uint64_t ram3fadr                     : 12; /**< DFA RAM3 Failing Address
                                                         If DFA_ERR[DC0PERR<2>]=1, this field indicates the
                                                         failing RAM3 Address. The failing address is locked
                                                         down until the DC0PERR<2> W1C occurs. */
	uint64_t reserved_25_31               : 7;
	uint64_t ram2fadr                     : 9;  /**< DFA RAM2 Failing Address
                                                         If DFA_ERR[DC0PERR<1>]=1, this field indicates the
                                                         failing RAM2 Address. The failing address is locked
                                                         down until the DC0PERR<1> W1C occurs. */
	uint64_t reserved_14_15               : 2;
	uint64_t ram1fadr                     : 14; /**< DFA RAM1 Failing Address
                                                         If DFA_ERR[DC0PERR<0>]=1, this field indicates the
                                                         failing RAM1 Address. The failing address is locked
                                                         down until the DC0PERR<0> W1C occurs. */
#else
	uint64_t ram1fadr                     : 14;
	uint64_t reserved_14_15               : 2;
	uint64_t ram2fadr                     : 9;
	uint64_t reserved_25_31               : 7;
	uint64_t ram3fadr                     : 12;
	uint64_t reserved_44_63               : 20;
#endif
	} s;
	struct cvmx_dfa_dtcfadr_s             cn63xx;
	struct cvmx_dfa_dtcfadr_s             cn63xxp1;
};
typedef union cvmx_dfa_dtcfadr cvmx_dfa_dtcfadr_t;

/**
 * cvmx_dfa_eclkcfg
 *
 * Specify the RSL base addresses for the block
 *
 *                  DFA_ECLKCFG = DFA eclk-domain Configuration Registers
 *
 * Description:
 */
union cvmx_dfa_eclkcfg
{
	uint64_t u64;
	struct cvmx_dfa_eclkcfg_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_19_63               : 45;
	uint64_t sbdnum                       : 3;  /**< SBD Debug Entry#
                                                         For internal use only. (DFA Scoreboard debug)
                                                         Selects which one of 8 DFA Scoreboard entries is
                                                         latched into the DFA_SBD_DBG[0-3] registers. */
	uint64_t reserved_15_15               : 1;
	uint64_t sbdlck                       : 1;  /**< DFA Scoreboard LOCK Strobe
                                                         For internal use only. (DFA Scoreboard debug)
                                                         When written with a '1', the DFA Scoreboard Debug
                                                         registers (DFA_SBD_DBG[0-3]) are all locked down.
                                                         This allows SW to lock down the contents of the entire
                                                         SBD for a single instant in time. All subsequent reads
                                                         of the DFA scoreboard registers will return the data
                                                         from that instant in time. */
	uint64_t dcmode                       : 1;  /**< DRF-CRQ/DTE Arbiter Mode
                                                         DTE-DRF Arbiter (0=FP [LP=CRQ/HP=DTE],1=RR)
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
	uint64_t dtmode                       : 1;  /**< DRF-DTE Arbiter Mode
                                                         DTE-DRF Arbiter (0=FP [LP=DTE[15],...,HP=DTE[0]],1=RR)
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
	uint64_t pmode                        : 1;  /**< NCB-NRP Arbiter Mode
                                                         (0=Fixed Priority [LP=WQF,DFF,HP=RGF]/1=RR
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
	uint64_t qmode                        : 1;  /**< NCB-NRQ Arbiter Mode
                                                         (0=Fixed Priority [LP=IRF,RWF,PRF,HP=GRF]/1=RR
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
	uint64_t imode                        : 1;  /**< NCB-Inbound Arbiter
                                                         (0=FP [LP=NRQ,HP=NRP], 1=RR)
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
	uint64_t sarb                         : 1;  /**< DFA Source Arbiter Mode
                                                         Selects the arbitration mode used to select DFA requests
                                                         issued from either CP2 or the DTE (NCB-CSR or DFA HW engine).
                                                          - 0: Fixed Priority [Highest=CP2, Lowest=DTE]
                                                          - 1: Round-Robin
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
	uint64_t reserved_3_7                 : 5;
	uint64_t dteclkdis                    : 1;  /**< DFA DTE Clock Disable
                                                         When SET, the DFA clocks for DTE(thread engine)
                                                         operation are disabled.
                                                         NOTE: When SET, SW MUST NEVER issue ANY operations to
                                                         the DFA via the NCB Bus. All DFA Operations must be
                                                         issued solely through the CP2 interface. */
	uint64_t maxbnk                       : 1;  /**< Maximum Banks per-device (used by the address mapper
                                                         when extracting address bits for the memory bank#.
                                                                 - 0: 4 banks/device
                                                                 - 1: 8 banks/device */
	uint64_t dfa_frstn                    : 1;  /**< Hold this 0 until the DFA DDR PLL and DLL lock
                                                         and then write a 1. A 1 on this register deasserts
                                                         the internal frst_n. Refer to DFA_DDR2_PLL registers for more
                                                         startup information.
                                                         Startup sequence if DFA interface needs to be ON:
                                                          After valid power up,
                                                          Write DFA_DDR2_PLL-> PLL_RATIO & PLL_DIV2 & PLL_BYPASS
                                                          to the appropriate values
                                                          Wait a few cycles
                                                          Write a 1 DFA_DDR2_PLL -> PLL_INIT
                                                          Wait 100 microseconds
                                                          Write a 1 to DFA_DDR2_PLL -> QDLL_ENA
                                                          Wait 10 microseconds
                                                          Write a 1 to this register DFA_FRSTN to pull DFA out of
                                                          reset
                                                          Now the DFA block is ready to be initialized (follow the
                                                          DDR init sequence). */
#else
	uint64_t dfa_frstn                    : 1;
	uint64_t maxbnk                       : 1;
	uint64_t dteclkdis                    : 1;
	uint64_t reserved_3_7                 : 5;
	uint64_t sarb                         : 1;
	uint64_t imode                        : 1;
	uint64_t qmode                        : 1;
	uint64_t pmode                        : 1;
	uint64_t dtmode                       : 1;
	uint64_t dcmode                       : 1;
	uint64_t sbdlck                       : 1;
	uint64_t reserved_15_15               : 1;
	uint64_t sbdnum                       : 3;
	uint64_t reserved_19_63               : 45;
#endif
	} s;
	struct cvmx_dfa_eclkcfg_s             cn31xx;
};
typedef union cvmx_dfa_eclkcfg cvmx_dfa_eclkcfg_t;

/**
 * cvmx_dfa_err
 *
 * DFA_ERR = DFA ERROR Register
 *
 * Description:
 */
union cvmx_dfa_err
{
	uint64_t u64;
	struct cvmx_dfa_err_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_33_63               : 31;
	uint64_t dblina                       : 1;  /**< Doorbell Overflow Interrupt Enable bit.
                                                         When set, doorbell overflow conditions are reported. */
	uint64_t dblovf                       : 1;  /**< Doorbell Overflow detected - Status bit
                                                         When set, the 20b accumulated doorbell register
                                                         had overflowed (SW wrote too many doorbell requests).
                                                         If the DBLINA had previously been enabled(set),
                                                         an interrupt will be posted. Software can clear
                                                         the interrupt by writing a 1 to this register bit.
                                                         NOTE: Detection of a Doorbell Register overflow
                                                         is a catastrophic error which may leave the DFA
                                                         HW in an unrecoverable state. */
	uint64_t cp2pina                      : 1;  /**< CP2 LW Mode Parity Error Interrupt Enable bit.
                                                         When set, all PP-generated LW Mode read
                                                         transactions which encounter a parity error (across
                                                         the 36b of data) are reported. */
	uint64_t cp2perr                      : 1;  /**< PP-CP2 Parity Error Detected - Status bit
                                                         When set, a parity error had been detected for a
                                                         PP-generated LW Mode read transaction.
                                                         If the CP2PINA had previously been enabled(set),
                                                         an interrupt will be posted. Software can clear
                                                         the interrupt by writing a 1 to this register bit.
                                                         See also: DFA_MEMFADR CSR which contains more data
                                                         about the memory address/control to help isolate
                                                         the failure. */
	uint64_t cp2parena                    : 1;  /**< CP2 LW Mode Parity Error Enable
                                                         When set, all PP-generated LW Mode read
                                                         transactions which encounter a parity error (across
                                                         the 36b of data) are reported.
                                                         NOTE: This signal must only be written to a different
                                                         value when there are no PP-CP2 transactions
                                                         (preferrably during power-on software initialization). */
	uint64_t dtepina                      : 1;  /**< DTE Parity Error Interrupt Enable bit
                                                         (for 18b SIMPLE mode ONLY).
                                                         When set, all DTE-generated 18b SIMPLE Mode read
                                                         transactions which encounter a parity error (across
                                                         the 17b of data) are reported. */
	uint64_t dteperr                      : 1;  /**< DTE Parity Error Detected (for 18b SIMPLE mode ONLY)
                                                         When set, all DTE-generated 18b SIMPLE Mode read
                                                         transactions which encounter a parity error (across
                                                         the 17b of data) are reported. */
	uint64_t dteparena                    : 1;  /**< DTE Parity Error Enable (for 18b SIMPLE mode ONLY)
                                                         When set, all DTE-generated 18b SIMPLE Mode read
                                                         transactions which encounter a parity error (across
                                                         the 17b of data) are reported.
                                                         NOTE: This signal must only be written to a different
                                                         value when there are no DFA thread engines active
                                                         (preferrably during power-on). */
	uint64_t dtesyn                       : 7;  /**< DTE 29b ECC Failing 6bit Syndrome
                                                         When DTESBE or DTEDBE are set, this field contains
                                                         the failing 7b ECC syndrome. */
	uint64_t dtedbina                     : 1;  /**< DTE 29b Double Bit Error Interrupt Enable bit
                                                         When set, an interrupt is posted for any DTE-generated
                                                         36b SIMPLE Mode read which encounters a double bit
                                                         error. */
	uint64_t dtesbina                     : 1;  /**< DTE 29b Single Bit Error Interrupt Enable bit
                                                         When set, an interrupt is posted for any DTE-generated
                                                         36b SIMPLE Mode read which encounters a single bit
                                                         error (which is also corrected). */
	uint64_t dtedbe                       : 1;  /**< DTE 29b Double Bit Error Detected - Status bit
                                                         When set, a double bit error had been detected
                                                         for a DTE-generated 36b SIMPLE Mode read transaction.
                                                         The DTESYN contains the failing syndrome.
                                                         If the DTEDBINA had previously been enabled(set),
                                                         an interrupt will be posted. Software can clear
                                                         the interrupt by writing a 1 to this register bit.
                                                         See also: DFA_MEMFADR CSR which contains more data
                                                         about the memory address/control to help isolate
                                                         the failure.
                                                         NOTE: DTE-generated 18b SIMPLE Mode Read transactions
                                                         do not participate in ECC check/correct). */
	uint64_t dtesbe                       : 1;  /**< DTE 29b Single Bit Error Corrected - Status bit
                                                         When set, a single bit error had been detected and
                                                         corrected for a DTE-generated 36b SIMPLE Mode read
                                                         transaction.
                                                         If the DTEDBE=0, then the DTESYN contains the
                                                         failing syndrome (used during correction).
                                                         NOTE: DTE-generated 18b SIMPLE Mode Read
                                                         transactions do not participate in ECC check/correct).
                                                         If the DTESBINA had previously been enabled(set),
                                                         an interrupt will be posted. Software can clear
                                                         the interrupt by writing a 1 to this register bit.
                                                         See also: DFA_MEMFADR CSR which contains more data
                                                         about the memory address/control to help isolate
                                                         the failure. */
	uint64_t dteeccena                    : 1;  /**< DTE 29b ECC Enable (for 36b SIMPLE mode ONLY)
                                                         When set, 29b ECC is enabled on all DTE-generated
                                                         36b SIMPLE Mode read transactions.
                                                         NOTE: This signal must only be written to a different
                                                         value when there are no DFA thread engines active
                                                         (preferrably during power-on software initialization). */
	uint64_t cp2syn                       : 8;  /**< PP-CP2 QW ECC Failing 8bit Syndrome
                                                         When CP2SBE or CP2DBE are set, this field contains
                                                         the failing ECC 8b syndrome.
                                                         Refer to CP2ECCENA. */
	uint64_t cp2dbina                     : 1;  /**< PP-CP2 Double Bit Error Interrupt Enable bit
                                                         When set, an interrupt is posted for any PP-generated
                                                         QW Mode read which encounters a double bit error.
                                                         Refer to CP2DBE. */
	uint64_t cp2sbina                     : 1;  /**< PP-CP2 Single Bit Error Interrupt Enable bit
                                                         When set, an interrupt is posted for any PP-generated
                                                         QW Mode read which encounters a single bit error
                                                         (which is also corrected).
                                                         Refer to CP2SBE. */
	uint64_t cp2dbe                       : 1;  /**< PP-CP2 Double Bit Error Detected - Status bit
                                                         When set, a double bit error had been detected
                                                         for a PP-generated QW Mode read transaction.
                                                         The CP2SYN contains the failing syndrome.
                                                          NOTE: PP-generated LW Mode Read transactions
                                                         do not participate in ECC check/correct).
                                                         Refer to CP2ECCENA.
                                                         If the CP2DBINA had previously been enabled(set),
                                                         an interrupt will be posted. Software can clear
                                                         the interrupt by writing a 1 to this register bit.
                                                         See also: DFA_MEMFADR CSR which contains more data
                                                         about the memory address/control to help isolate
                                                         the failure. */
	uint64_t cp2sbe                       : 1;  /**< PP-CP2 Single Bit Error Corrected - Status bit
                                                         When set, a single bit error had been detected and
                                                         corrected for a PP-generated QW Mode read
                                                         transaction.
                                                         If the CP2DBE=0, then the CP2SYN contains the
                                                         failing syndrome (used during correction).
                                                         Refer to CP2ECCENA.
                                                         If the CP2SBINA had previously been enabled(set),
                                                         an interrupt will be posted. Software can clear
                                                         the interrupt by writing a 1 to this register bit.
                                                         See also: DFA_MEMFADR CSR which contains more data
                                                         about the memory address/control to help isolate
                                                         the failure.
                                                         NOTE: PP-generated LW Mode Read transactions
                                                         do not participate in ECC check/correct). */
	uint64_t cp2eccena                    : 1;  /**< PP-CP2 QW ECC Enable (for QW Mode transactions)
                                                         When set, 8bit QW ECC is enabled on all PP-generated
                                                         QW Mode read transactions, CP2SBE and
                                                         CP2DBE may be set, and CP2SYN may be filled.
                                                         NOTE: This signal must only be written to a different
                                                         value when there are no PP-CP2 transactions
                                                         (preferrably during power-on software initialization).
                                                         NOTE: QW refers to a 64-bit LLM Load/Store (intiated
                                                         by a processor core). LW refers to a 36-bit load/store. */
#else
	uint64_t cp2eccena                    : 1;
	uint64_t cp2sbe                       : 1;
	uint64_t cp2dbe                       : 1;
	uint64_t cp2sbina                     : 1;
	uint64_t cp2dbina                     : 1;
	uint64_t cp2syn                       : 8;
	uint64_t dteeccena                    : 1;
	uint64_t dtesbe                       : 1;
	uint64_t dtedbe                       : 1;
	uint64_t dtesbina                     : 1;
	uint64_t dtedbina                     : 1;
	uint64_t dtesyn                       : 7;
	uint64_t dteparena                    : 1;
	uint64_t dteperr                      : 1;
	uint64_t dtepina                      : 1;
	uint64_t cp2parena                    : 1;
	uint64_t cp2perr                      : 1;
	uint64_t cp2pina                      : 1;
	uint64_t dblovf                       : 1;
	uint64_t dblina                       : 1;
	uint64_t reserved_33_63               : 31;
#endif
	} s;
	struct cvmx_dfa_err_s                 cn31xx;
	struct cvmx_dfa_err_s                 cn38xx;
	struct cvmx_dfa_err_s                 cn38xxp2;
	struct cvmx_dfa_err_s                 cn58xx;
	struct cvmx_dfa_err_s                 cn58xxp1;
};
typedef union cvmx_dfa_err cvmx_dfa_err_t;

/**
 * cvmx_dfa_error
 *
 * DFA_ERROR = DFA ERROR Register
 *
 * Description:
 */
union cvmx_dfa_error
{
	uint64_t u64;
	struct cvmx_dfa_error_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_17_63               : 47;
	uint64_t cndrd                        : 1;  /**< If DC0PERR[0]=1 indicating a RAM1 Parity error,
                                                         this additional bit further specifies that the
                                                         RAM1 parity error was detected during a CND-RD
                                                         (Cache Node Metadata Read).

                                                         For CNDRD Parity Error, the previous CNA arc fetch
                                                         information is written to RWORD1+ as follows:
                                                            RWORD1+[NTYPE]=MNODE
                                                            RWORD1+[NDNID]=cna.ndnid
                                                            RWORD1+[NHMSK]=cna.hmsk
                                                            RWORD1+[NNPTR]=cna.nnptr[13:0] */
	uint64_t reserved_4_15                : 12;
	uint64_t dc0perr                      : 3;  /**< RAM[3:1] Parity Error Detected from Node Cluster \#0
                                                         See also DFA_DTCFADR register which contains the
                                                         failing addresses for the internal node cache RAMs. */
	uint64_t dblovf                       : 1;  /**< Doorbell Overflow detected - Status bit
                                                         When set, the 20b accumulated doorbell register
                                                         had overflowed (SW wrote too many doorbell requests).
                                                         If the DBLINA had previously been enabled(set),
                                                         an interrupt will be posted. Software can clear
                                                         the interrupt by writing a 1 to this register bit.
                                                         NOTE: Detection of a Doorbell Register overflow
                                                         is a catastrophic error which may leave the DFA
                                                         HW in an unrecoverable state. */
#else
	uint64_t dblovf                       : 1;
	uint64_t dc0perr                      : 3;
	uint64_t reserved_4_15                : 12;
	uint64_t cndrd                        : 1;
	uint64_t reserved_17_63               : 47;
#endif
	} s;
	struct cvmx_dfa_error_s               cn63xx;
	struct cvmx_dfa_error_s               cn63xxp1;
};
typedef union cvmx_dfa_error cvmx_dfa_error_t;

/**
 * cvmx_dfa_intmsk
 *
 * DFA_INTMSK = DFA ERROR Interrupt Mask Register
 *
 * Description:
 */
union cvmx_dfa_intmsk
{
	uint64_t u64;
	struct cvmx_dfa_intmsk_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_4_63                : 60;
	uint64_t dc0pena                      : 3;  /**< RAM[3:1] Parity Error Enabled Node Cluster \#0 */
	uint64_t dblina                       : 1;  /**< Doorbell Overflow Interrupt Enable bit.
                                                         When set, doorbell overflow conditions are reported. */
#else
	uint64_t dblina                       : 1;
	uint64_t dc0pena                      : 3;
	uint64_t reserved_4_63                : 60;
#endif
	} s;
	struct cvmx_dfa_intmsk_s              cn63xx;
	struct cvmx_dfa_intmsk_s              cn63xxp1;
};
typedef union cvmx_dfa_intmsk cvmx_dfa_intmsk_t;

/**
 * cvmx_dfa_memcfg0
 *
 * DFA_MEMCFG0 = DFA Memory Configuration
 *
 * Description:
 */
union cvmx_dfa_memcfg0
{
	uint64_t u64;
	struct cvmx_dfa_memcfg0_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_32_63               : 32;
	uint64_t rldqck90_rst                 : 1;  /**< RLDCK90 and RLDQK90 DLL SW Reset
                                                         When written with a '1' the RLDCK90 and RLDQK90 DLL are
                                                         in soft-reset. */
	uint64_t rldck_rst                    : 1;  /**< RLDCK Zero Delay DLL(Clock Generator) SW Reset
                                                         When written with a '1' the RLDCK zero delay DLL is in
                                                         soft-reset. */
	uint64_t clkdiv                       : 2;  /**< RLDCLK Divisor Select
                                                           - 0: RLDx_CK_H/L = Core Clock /2
                                                           - 1: RESERVED (must not be used)
                                                           - 2: RLDx_CK_H/L = Core Clock /3
                                                           - 3: RLDx_CK_H/L = Core Clock /4
                                                         The DFA LLM interface(s) are tied to the core clock
                                                         frequency through this programmable clock divisor.
                                                         Examples:
                                                            Core Clock(MHz) | DFA-LLM Clock(MHz) | CLKDIV
                                                           -----------------+--------------------+--------
                                                                 800        |    400/(800-DDR)   |  /2
                                                                1000        |    333/(666-DDR)   |  /3
                                                                 800        |    200/(400-DDR)   |  /4
                                                         NOTE: This value MUST BE programmed BEFORE doing a
                                                         Hardware init sequence (see: DFA_MEMCFG0[INIT_Px] bits). */
	uint64_t lpp_ena                      : 1;  /**< PP Linear Port Addressing Mode Enable
                                                         When enabled, PP-core LLM accesses to the lower-512MB
                                                         LLM address space are sent to the single DFA port
                                                         which is enabled. NOTE: If LPP_ENA=1, only
                                                         one DFA RLDRAM port may be enabled for RLDRAM accesses
                                                         (ie: ENA_P0 and ENA_P1 CAN NEVER BOTH be set).
                                                         PP-core LLM accesses to the upper-512MB LLM address
                                                         space are sent to the other 'disabled' DFA port.
                                                         SW RESTRICTION: If LPP_ENA=1, then only one DFA port
                                                         may be enabled for RLDRAM accesses (ie: ENA_P0 and
                                                         ENA_P1 CAN NEVER BOTH be set).
                                                         NOTE: This bit is used to allow PP-Core LLM accesses to a
                                                         disabled port, such that each port can be sequentially
                                                         addressed (ie: disable LW address interleaving).
                                                         Enabling this bit allows BOTH PORTs to be active and
                                                         sequentially addressable. The single port that is
                                                         enabled(ENA_Px) will respond to the low-512MB LLM address
                                                         space, and the other 'disabled' port will respond to the
                                                         high-512MB LLM address space.
                                                         Example usage:
                                                            - DFA RLD0 pins used for TCAM-FPGA(CP2 accesses)
                                                            - DFA RLD1 pins used for RLDRAM (DTE/CP2 accesses).
                                                         USAGE NOTE:
                                                         If LPP_ENA=1 and SW DOES NOT initialize the disabled port
                                                         (ie: INIT_Px=0->1), then refreshes and the HW init
                                                         sequence WILL NOT occur for the disabled port.
                                                         If LPP_ENA=1 and SW does initialize the disabled port
                                                         (INIT_Px=0->1 with ENA_Px=0), then refreshes and
                                                         the HW init sequence WILL occur to the disabled port. */
	uint64_t bunk_init                    : 2;  /**< Controls the CS_N[1:0] during a) a HW Initialization
                                                         sequence (triggered by DFA_MEMCFG0[INIT_Px]) or
                                                         b) during a normal refresh sequence. If
                                                         the BNK_INIT[x]=1, the corresponding CS_N[x] is driven.
                                                         NOTE: This is required for DRAM used in a
                                                         clamshell configuration, since the address lines
                                                         carry Mode Register write data that is unique
                                                         per bunk(or clam). In a clamshell configuration,
                                                         The N3K A[x] pin may be tied into Clam#0's A[x]
                                                         and also into Clam#1's 'mirrored' address bit A[y]
                                                         (eg: Clam0 sees A[5] and Clam1 sees A[15]).
                                                         To support clamshell designs, SW must initiate
                                                         two separate HW init sequences for the two bunks
                                                         (or clams) . Before each HW init sequence is triggered,
                                                         SW must preload the DFA_MEMRLD[22:0] with the data
                                                         that will be driven onto the A[22:0] wires during
                                                         an MRS mode register write.
                                                         NOTE: After the final HW initialization sequence has
                                                         been triggered, SW must wait 64K eclks before writing
                                                         the BUNK_INIT[1:0] field = 3'b11 (so that CS_N[1:0] is
                                                         driven during refresh sequences in normal operation.
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
	uint64_t init_p0                      : 1;  /**< When a '1' is written (and the previous value was '0'),
                                                         the HW init sequence(s) for Memory Port \#0 is
                                                         initiated.
                                                         NOTE: To initialize memory, SW must:
                                                           1) Set up the DFA_MEMCFG0[CLKDIV] ratio for intended
                                                              RLDRAM operation.
                                                                [legal values 0: DIV2 2: DIV3 3: DIV4]
                                                           2) Write a '1' into BOTH the DFA_MEM_CFG0[RLDCK_RST]
                                                              and DFA_MEM_CFG0[RLDQCK90_RST] field at
                                                              the SAME TIME. This step puts all three DLLs in
                                                              SW reset (RLDCK, RLDCK90, RLDQK90 DLLs).
                                                           3) Write a '0' into the DFA_MEM_CFG0[RLDCK_RST] field.
                                                              This step takes the RLDCK DLL out of soft-reset so
                                                              that the DLL can generate the RLDx_CK_H/L clock pins.
                                                           4) Wait 1ms (for RLDCK DLL to achieve lock)
                                                           5) Write a '0' into DFA_MEM_CFG0[RLDQCK90_RST] field.
                                                              This step takes the RLDCK90 DLL AND RLDQK90 DLL out
                                                              of soft-reset.
                                                           6) Wait 1ms (for RLDCK90/RLDQK90 DLLs to achieve lock)
                                                           7) Enable memory port(s):  ENA_P0=1/ENA_P1=1
                                                           8) Wait 100us (to ensure a stable clock
                                                              to the RLDRAMs) - as per RLDRAM spec.
                                                           - - - - - Hardware Initialization Sequence - - - - -
                                                           9) Setup the DFA_MEMCFG0[BUNK_INIT] for the bunk(s)
                                                              intended to be initialized.
                                                          10) Write a '1' to the corresponding INIT_Px which
                                                              will initiate a hardware initialization
                                                              sequence to that'specific' port.
                                                          11) Wait (DFA_MEMCFG0[CLKDIV] * 32K) eclk cycles.
                                                              [to ensure the HW init sequence has completed
                                                              before writing to ANY of the DFA_MEM* registers]
                                                           - - - - - Hardware Initialization Sequence - - - - -
                                                          12) Write the DFA_MEMCFG0[BUNK_INIT]=3 to enable
                                                              refreshes to BOTH bunks.
                                                         NOTE: In some cases (where the address wires are routed
                                                         differently between the front and back 'bunks'),
                                                         SW will need to use DFA_MEMCFG0[BUNK_INIT] bits to
                                                         control the Hardware initialization sequence for a
                                                         'specific bunk'. In these cases, SW would setup the
                                                         BUNK_INIT and repeat Steps \#9-11 for each bunk/port.
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization.
                                                         NOTE: DFA Memory Port#0 corresponds to the Octeon
                                                         RLD0_* pins. */
	uint64_t init_p1                      : 1;  /**< When a '1' is written (and the previous value was '0'),
                                                         the HW init sequence(s) for Memory Port \#1 is
                                                         initiated.
                                                         NOTE: To initialize memory, SW must:
                                                           1) Set up the DFA_MEMCFG0[CLKDIV] ratio for intended
                                                              RLDRAM operation.
                                                                [legal values 0: DIV2 2: DIV3 3: DIV4]
                                                           2) Write a '1' into BOTH the DFA_MEM_CFG0[RLDCK_RST]
                                                              and DFA_MEM_CFG0[RLDQCK90_RST] field at
                                                              the SAME TIME. This step puts all three DLLs in
                                                              SW reset (RLDCK, RLDCK90, RLDQK90 DLLs).
                                                           3) Write a '0' into the DFA_MEM_CFG0[RLDCK_RST] field.
                                                              This step takes the RLDCK DLL out of soft-reset so
                                                              that the DLL can generate the RLDx_CK_H/L clock pins.
                                                           4) Wait 1ms (for RLDCK DLL to achieve lock)
                                                           5) Write a '0' into DFA_MEM_CFG0[RLDQCK90_RST] field.
                                                              This step takes the RLDCK90 DLL AND RLDQK90 DLL out
                                                              of soft-reset.
                                                           6) Wait 1ms (for RLDCK90/RLDQK90 DLLs to achieve lock)
                                                           7) Enable memory port(s) ENA_P0=1/ENA_P1=1
                                                           8) Wait 100us (to ensure a stable clock
                                                              to the RLDRAMs) - as per RLDRAM spec.
                                                           - - - - - Hardware Initialization Sequence - - - - -
                                                           9) Setup the DFA_MEMCFG0[BUNK_INIT] for the bunk(s)
                                                              intended to be initialized.
                                                          10) Write a '1' to the corresponding INIT_Px which
                                                              will initiate a hardware initialization
                                                              sequence to that'specific' port.
                                                          11) Wait (DFA_MEMCFG0[CLKDIV] * 32K) eclk cycles.
                                                              [to ensure the HW init sequence has completed
                                                              before writing to ANY of the DFA_MEM* registers]
                                                           - - - - - Hardware Initialization Sequence - - - - -
                                                          12) Write the DFA_MEMCFG0[BUNK_INIT]=3 to enable
                                                              refreshes to BOTH bunks.
                                                         NOTE: In some cases (where the address wires are routed
                                                         differently between the front and back 'bunks'),
                                                         SW will need to use DFA_MEMCFG0[BUNK_INIT] bits to
                                                         control the Hardware initialization sequence for a
                                                         'specific bunk'. In these cases, SW would setup the
                                                         BUNK_INIT and repeat Steps \#9-11 for each bunk/port.
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization.
                                                         NOTE: DFA Memory Port#1 corresponds to the Octeon
                                                         RLD1_* pins. */
	uint64_t r2r_pbunk                    : 1;  /**< When enabled, an additional command bubble is inserted
                                                         if back to back reads are issued to different physical
                                                         bunks. This is to avoid DQ data bus collisions when
                                                         references cross between physical bunks.
                                                         [NOTE: the physical bunk address boundary is determined
                                                         by the PBUNK bit].
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
	uint64_t pbunk                        : 3;  /**< Physical Bunk address bit pointer.
                                                         Specifies which address bit within the Longword
                                                         Memory address MA[23:0] is used to determine the
                                                         chip selects.
                                                         [RLD_CS0_N corresponds to physical bunk \#0, and
                                                         RLD_CS1_N corresponds to physical bunk \#1].
                                                           - 000: CS0_N = MA[19]/CS1_N = !MA[19]
                                                           - 001: CS0_N = MA[20]/CS1_N = !MA[20]
                                                           - 010: CS0_N = MA[21]/CS1_N = !MA[21]
                                                           - 011: CS0_N = MA[22]/CS1_N = !MA[22]
                                                           - 100: CS0_N = MA[23]/CS1_N = !MA[23]
                                                           - 101-111: CS0_N = 0 /CS1_N = 1
                                                         Example(s):
                                                         To build out a 128MB DFA memory, 4x 32Mx9
                                                         parts could be used to fill out TWO physical
                                                         bunks (clamshell configuration). Each (of the
                                                         two) physical bunks contains 2x 32Mx9 = 16Mx36.
                                                         Each RLDRAM device also contains 8 internal banks,
                                                         therefore the memory Address is 16M/8banks = 2M
                                                         addresses/bunk (2^21). In this case, MA[21] would
                                                         select the physical bunk.
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization.
                                                         be used to determine the Chip Select(s). */
	uint64_t blen                         : 1;  /**< Device Burst Length  (0=2-burst/1=4-burst)
                                                         NOTE: RLDRAM-II MUST USE BLEN=0(2-burst) */
	uint64_t bprch                        : 2;  /**< Tristate Enable (back porch) (\#dclks)
                                                         On reads, allows user to control the shape of the
                                                         tristate disable back porch for the DQ data bus.
                                                         This parameter is also very dependent on the
                                                         RW_DLY and WR_DLY parameters and care must be
                                                         taken when programming these parameters to avoid
                                                         data bus contention. Valid range [0..2]
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
	uint64_t fprch                        : 2;  /**< Tristate Enable (front porch) (\#dclks)
                                                         On reads, allows user to control the shape of the
                                                         tristate disable front porch for the DQ data bus.
                                                         This parameter is also very dependent on the
                                                         RW_DLY and WR_DLY parameters and care must be
                                                         taken when programming these parameters to avoid
                                                         data bus contention. Valid range [0..2]
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
	uint64_t wr_dly                       : 4;  /**< Write->Read CMD Delay (\#mclks):
                                                         Determines \#mclk cycles to insert when controller
                                                         switches from write to read. This allows programmer
                                                         to control the data bus contention.
                                                         For RLDRAM-II(BL2): (TBL=1)
                                                         WR_DLY = ROUND_UP[((TWL+TBL)*2 - TSKW + FPRCH) / 2] - TRL + 1
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization.
                                                         NOTE: For aggressive(performance optimal) designs,
                                                         the WR_DLY 'may' be tuned down(-1) if bus fight
                                                         on W->R transitions is not pronounced. */
	uint64_t rw_dly                       : 4;  /**< Read->Write CMD Delay (\#mclks):
                                                         Determines \#mclk cycles to insert when controller
                                                         switches from read to write. This allows programmer
                                                         to control the data bus contention.
                                                         For RLDRAM-II(BL2): (TBL=1)
                                                         RW_DLY = ROUND_UP[((TRL+TBL)*2 + TSKW + BPRCH+2)/2] - TWL + 1
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization.
                                                         NOTE: For aggressive(performance optimal) designs,
                                                         the RW_DLY 'may' be tuned down(-1) if bus fight
                                                         on R->W transitions is not pronounced. */
	uint64_t sil_lat                      : 2;  /**< Silo Latency (\#dclks): On reads, determines how many
                                                         additional dclks to wait (on top of tRL+1) before
                                                         pulling data out of the padring silos used for time
                                                         domain boundary crossing.
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
	uint64_t mtype                        : 1;  /**< FCRAM-II Memory Type
                                                         *** CN58XX UNSUPPORTED *** */
	uint64_t reserved_2_2                 : 1;
	uint64_t ena_p0                       : 1;  /**< Enable DFA RLDRAM Port#0
                                                         When enabled, this bit lets N3K be the default
                                                         driver for memory port \#0.
                                                         NOTE: a customer is at
                                                         liberty to enable either Port#0 or Port#1 or both.
                                                         NOTE: Once a port has been disabled, it MUST NEVER
                                                         be re-enabled. [the only way to enable a port is
                                                         through a chip reset].
                                                         NOTE: DFA Memory Port#0 corresponds to the Octeon
                                                         RLD0_* pins. */
	uint64_t ena_p1                       : 1;  /**< Enable DFA RLDRAM Port#1
                                                         When enabled, this bit lets N3K be the default
                                                         driver for memory port \#1.
                                                         NOTE: a customer is at
                                                         liberty to enable either Port#0 or Port#1 or both.
                                                         NOTE: Once a port has been disabled, it MUST NEVER
                                                         be re-enabled. [the only way to enable a port is
                                                         through a chip reset].
                                                         NOTE: DFA Memory Port#1 corresponds to the Octeon
                                                         RLD1_* pins. */
#else
	uint64_t ena_p1                       : 1;
	uint64_t ena_p0                       : 1;
	uint64_t reserved_2_2                 : 1;
	uint64_t mtype                        : 1;
	uint64_t sil_lat                      : 2;
	uint64_t rw_dly                       : 4;
	uint64_t wr_dly                       : 4;
	uint64_t fprch                        : 2;
	uint64_t bprch                        : 2;
	uint64_t blen                         : 1;
	uint64_t pbunk                        : 3;
	uint64_t r2r_pbunk                    : 1;
	uint64_t init_p1                      : 1;
	uint64_t init_p0                      : 1;
	uint64_t bunk_init                    : 2;
	uint64_t lpp_ena                      : 1;
	uint64_t clkdiv                       : 2;
	uint64_t rldck_rst                    : 1;
	uint64_t rldqck90_rst                 : 1;
	uint64_t reserved_32_63               : 32;
#endif
	} s;
	struct cvmx_dfa_memcfg0_cn38xx
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_28_63               : 36;
	uint64_t lpp_ena                      : 1;  /**< PP Linear Port Addressing Mode Enable
                                                         When enabled, PP-core LLM accesses to the lower-512MB
                                                         LLM address space are sent to the single DFA port
                                                         which is enabled. NOTE: If LPP_ENA=1, only
                                                         one DFA RLDRAM port may be enabled for RLDRAM accesses
                                                         (ie: ENA_P0 and ENA_P1 CAN NEVER BOTH be set).
                                                         PP-core LLM accesses to the upper-512MB LLM address
                                                         space are sent to the other 'disabled' DFA port.
                                                         SW RESTRICTION: If LPP_ENA=1, then only one DFA port
                                                         may be enabled for RLDRAM accesses (ie: ENA_P0 and
                                                         ENA_P1 CAN NEVER BOTH be set).
                                                         NOTE: This bit is used to allow PP-Core LLM accesses to a
                                                         disabled port, such that each port can be sequentially
                                                         addressed (ie: disable LW address interleaving).
                                                         Enabling this bit allows BOTH PORTs to be active and
                                                         sequentially addressable. The single port that is
                                                         enabled(ENA_Px) will respond to the low-512MB LLM address
                                                         space, and the other 'disabled' port will respond to the
                                                         high-512MB LLM address space.
                                                         Example usage:
                                                            - DFA RLD0 pins used for TCAM-FPGA(CP2 accesses)
                                                            - DFA RLD1 pins used for RLDRAM (DTE/CP2 accesses).
                                                         USAGE NOTE:
                                                         If LPP_ENA=1 and SW DOES NOT initialize the disabled port
                                                         (ie: INIT_Px=0->1), then refreshes and the HW init
                                                         sequence WILL NOT occur for the disabled port.
                                                         If LPP_ENA=1 and SW does initialize the disabled port
                                                         (INIT_Px=0->1 with ENA_Px=0), then refreshes and
                                                         the HW init sequence WILL occur to the disabled port. */
	uint64_t bunk_init                    : 2;  /**< Controls the CS_N[1:0] during a) a HW Initialization
                                                         sequence (triggered by DFA_MEMCFG0[INIT_Px]) or
                                                         b) during a normal refresh sequence. If
                                                         the BNK_INIT[x]=1, the corresponding CS_N[x] is driven.
                                                         NOTE: This is required for DRAM used in a
                                                         clamshell configuration, since the address lines
                                                         carry Mode Register write data that is unique
                                                         per bunk(or clam). In a clamshell configuration,
                                                         The N3K A[x] pin may be tied into Clam#0's A[x]
                                                         and also into Clam#1's 'mirrored' address bit A[y]
                                                         (eg: Clam0 sees A[5] and Clam1 sees A[15]).
                                                         To support clamshell designs, SW must initiate
                                                         two separate HW init sequences for the two bunks
                                                         (or clams) . Before each HW init sequence is triggered,
                                                         SW must preload the DFA_MEMRLD[22:0] with the data
                                                         that will be driven onto the A[22:0] wires during
                                                         an MRS mode register write.
                                                         NOTE: After the final HW initialization sequence has
                                                         been triggered, SW must wait 64K eclks before writing
                                                         the BUNK_INIT[1:0] field = 3'b11 (so that CS_N[1:0] is
                                                         driven during refresh sequences in normal operation.
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization.
                                                         NOTE: For MTYPE=1(FCRAM) Mode, each bunk MUST BE
                                                         initialized independently. In other words, a HW init
                                                         must be done for Bunk#0, and then another HW init
                                                         must be done for Bunk#1 at power-on. */
	uint64_t init_p0                      : 1;  /**< When a '1' is written (and the previous value was '0'),
                                                         the HW init sequence(s) for Memory Port \#0 is
                                                         initiated.
                                                         NOTE: To initialize memory, SW must:
                                                           1) Enable memory port(s):
                                                               a) ENA_P1=1 (single port in pass 1) OR
                                                               b) ENA_P0=1/ENA_P1=1 (dual ports or single when not pass 1)
                                                           2) Wait 100us (to ensure a stable clock
                                                              to the RLDRAMs) - as per RLDRAM spec.
                                                           3) Write a '1' to the corresponding INIT_Px which
                                                              will initiate a hardware initialization
                                                              sequence.
                                                         NOTE: After writing a '1', SW must wait 64K eclk
                                                         cycles to ensure the HW init sequence has completed
                                                         before writing to ANY of the DFA_MEM* registers.
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization.
                                                         NOTE: DFA Memory Port#0 corresponds to the Octeon
                                                         RLD0_* pins. */
	uint64_t init_p1                      : 1;  /**< When a '1' is written (and the previous value was '0'),
                                                         the HW init sequence(s) for Memory Port \#1 is
                                                         initiated.
                                                         NOTE: To initialize memory, SW must:
                                                           1) Enable memory port(s):
                                                               a) ENA_P1=1 (single port in pass 1) OR
                                                               b) ENA_P0=1/ENA_P1=1 (dual ports or single when not pass 1)
                                                           2) Wait 100us (to ensure a stable clock
                                                              to the RLDRAMs) - as per RLDRAM spec.
                                                           3) Write a '1' to the corresponding INIT_Px which
                                                              will initiate a hardware initialization
                                                              sequence.
                                                         NOTE: After writing a '1', SW must wait 64K eclk
                                                         cycles to ensure the HW init sequence has completed
                                                         before writing to ANY of the DFA_MEM* registers.
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization.
                                                         NOTE: DFA Memory Port#1 corresponds to the Octeon
                                                         RLD1_* pins. */
	uint64_t r2r_pbunk                    : 1;  /**< When enabled, an additional command bubble is inserted
                                                         if back to back reads are issued to different physical
                                                         bunks. This is to avoid DQ data bus collisions when
                                                         references cross between physical bunks.
                                                         [NOTE: the physical bunk address boundary is determined
                                                         by the PBUNK bit].
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization.
                                                         When MTYPE=1(FCRAM)/BLEN=0(2-burst), R2R_PBUNK SHOULD BE
                                                         ZERO(for optimal performance). However, if electrically,
                                                         DQ-sharing becomes a power/heat issue, then R2R_PBUNK
                                                         should be set (but at a cost to performance (1/2 BW). */
	uint64_t pbunk                        : 3;  /**< Physical Bunk address bit pointer.
                                                         Specifies which address bit within the Longword
                                                         Memory address MA[23:0] is used to determine the
                                                         chip selects.
                                                         [RLD_CS0_N corresponds to physical bunk \#0, and
                                                         RLD_CS1_N corresponds to physical bunk \#1].
                                                           - 000: CS0_N = MA[19]/CS1_N = !MA[19]
                                                           - 001: CS0_N = MA[20]/CS1_N = !MA[20]
                                                           - 010: CS0_N = MA[21]/CS1_N = !MA[21]
                                                           - 011: CS0_N = MA[22]/CS1_N = !MA[22]
                                                           - 100: CS0_N = MA[23]/CS1_N = !MA[23]
                                                           - 101-111: CS0_N = 0 /CS1_N = 1
                                                         Example(s):
                                                         To build out a 128MB DFA memory, 4x 32Mx9
                                                         parts could be used to fill out TWO physical
                                                         bunks (clamshell configuration). Each (of the
                                                         two) physical bunks contains 2x 32Mx9 = 16Mx36.
                                                         Each RLDRAM device also contains 8 internal banks,
                                                         therefore the memory Address is 16M/8banks = 2M
                                                         addresses/bunk (2^21). In this case, MA[21] would
                                                         select the physical bunk.
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization.
                                                         be used to determine the Chip Select(s).
                                                         NOTE: When MTYPE=1(FCRAM)/BLEN=0(2-burst), a
                                                         "Redundant Bunk" scheme is employed to provide the
                                                         highest overall performance (1 Req/ MCLK cycle).
                                                         In this mode, it's imperative that SW set the PBUNK
                                                         field +1 'above' the highest address bit. (such that
                                                         the PBUNK extracted from the address will always be
                                                         zero). In this mode, the CS_N[1:0] pins are driven
                                                         to each redundant bunk based on a TDM scheme:
                                                         [MCLK-EVEN=Bunk#0/MCLK-ODD=Bunk#1]. */
	uint64_t blen                         : 1;  /**< Device Burst Length  (0=2-burst/1=4-burst)
                                                         When BLEN=0(BL2), all QW reads/writes from CP2 are
                                                         decomposed into 2 separate BL2(LW) requests to the
                                                         Low-Latency memory.
                                                         When BLEN=1(BL4), a LW request (from CP2 or NCB) is
                                                         treated as 1 BL4(QW) request to the low latency memory.
                                                         NOTE: QW refers to a 64-bit LLM Load/Store (intiated
                                                         by a processor core). LW refers to a 36-bit load/store.
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization before the DFA LLM
                                                         (low latency memory) is used.
                                                         NOTE: MTYPE=0(RLDRAM-II) MUST USE BLEN=0(2-burst)
                                                         NOTE: MTYPE=1(FCRAM)/BLEN=0(BL2) requires a
                                                         multi-bunk(clam) board design.
                                                         NOTE: If MTYPE=1(FCRAM)/FCRAM2P=0(II)/BLEN=1(BL4),
                                                         SW SHOULD use CP2 QW read/write requests (for
                                                         optimal low-latency bus performance).
                                                         [LW length read/write requests(in BL4 mode) use 50%
                                                         of the available bus bandwidth]
                                                         NOTE: MTYPE=1(FCRAM)/FCRAM2P=0(II)/BLEN=0(BL2) can only
                                                         be used with FCRAM-II devices which support BL2 mode
                                                         (see: Toshiba FCRAM-II, where DQ tristate after 2 data
                                                         transfers).
                                                         NOTE: MTYPE=1(FCRAM)/FCRAM2P=1(II+) does not support LW
                                                         write requests (FCRAM-II+ device specification has removed
                                                         the variable write mask function from the devices).
                                                         As such, if this mode is used, SW must be careful to
                                                         issue only PP-CP2 QW write requests. */
	uint64_t bprch                        : 2;  /**< Tristate Enable (back porch) (\#dclks)
                                                         On reads, allows user to control the shape of the
                                                         tristate disable back porch for the DQ data bus.
                                                         This parameter is also very dependent on the
                                                         RW_DLY and WR_DLY parameters and care must be
                                                         taken when programming these parameters to avoid
                                                         data bus contention. Valid range [0..2]
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
	uint64_t fprch                        : 2;  /**< Tristate Enable (front porch) (\#dclks)
                                                         On reads, allows user to control the shape of the
                                                         tristate disable front porch for the DQ data bus.
                                                         This parameter is also very dependent on the
                                                         RW_DLY and WR_DLY parameters and care must be
                                                         taken when programming these parameters to avoid
                                                         data bus contention. Valid range [0..2]
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
	uint64_t wr_dly                       : 4;  /**< Write->Read CMD Delay (\#mclks):
                                                         Determines \#mclk cycles to insert when controller
                                                         switches from write to read. This allows programmer
                                                         to control the data bus contention.
                                                         For RLDRAM-II(BL2): (TBL=1)
                                                         For FCRAM-II (BL4): (TBL=2)
                                                         For FCRAM-II (BL2 grepl=1x ONLY): (TBL=1)
                                                         For FCRAM-II (BL2 grepl>=2x): (TBL=3)
                                                            NOTE: When MTYTPE=1(FCRAM-II) BLEN=0(BL2 Mode),
                                                            grepl>=2x, writes require redundant bunk writes
                                                            which require an additional 2 cycles before slotting
                                                            the next read.
                                                         WR_DLY = ROUND_UP[((TWL+TBL)*2 - TSKW + FPRCH) / 2] - TRL + 1
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization.
                                                         NOTE: For aggressive(performance optimal) designs,
                                                         the WR_DLY 'may' be tuned down(-1) if bus fight
                                                         on W->R transitions is not pronounced. */
	uint64_t rw_dly                       : 4;  /**< Read->Write CMD Delay (\#mclks):
                                                         Determines \#mclk cycles to insert when controller
                                                         switches from read to write. This allows programmer
                                                         to control the data bus contention.
                                                         For RLDRAM-II/FCRAM-II (BL2): (TBL=1)
                                                         For FCRAM-II (BL4): (TBL=2)
                                                         RW_DLY = ROUND_UP[((TRL+TBL)*2 + TSKW + BPRCH+2)/2] - TWL + 1
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization.
                                                         NOTE: For aggressive(performance optimal) designs,
                                                         the RW_DLY 'may' be tuned down(-1) if bus fight
                                                         on R->W transitions is not pronounced. */
	uint64_t sil_lat                      : 2;  /**< Silo Latency (\#dclks): On reads, determines how many
                                                         additional dclks to wait (on top of tRL+1) before
                                                         pulling data out of the padring silos used for time
                                                         domain boundary crossing.
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
	uint64_t mtype                        : 1;  /**< Memory Type (0=RLDRAM-II/1=Network DRAM-II/FCRAM)
                                                         NOTE: N3K-P1 only supports RLDRAM-II
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization.
                                                         NOTE: When MTYPE=1(FCRAM)/BLEN=0(2-burst), only the
                                                         "unidirectional DS/QS" mode is supported. (see FCRAM
                                                         data sheet EMRS[A6:A5]=SS(Strobe Select) register
                                                         definition. [in FCRAM 2-burst mode, we use FCRAM
                                                         in a clamshell configuration such that clam0 is
                                                         addressed independently of clam1, and DQ is shared
                                                         for optimal performance. As such it's imperative that
                                                         the QS are conditionally received (and are NOT
                                                         free-running), as the N3K receive data capture silos
                                                         OR the clam0/1 QS strobes.
                                                         NOTE: If this bit is SET, the ASX0/1
                                                         ASX_RLD_FCRAM_MODE[MODE] bit(s) should also be SET
                                                         in order for the RLD0/1-PHY(s) to support FCRAM devices. */
	uint64_t reserved_2_2                 : 1;
	uint64_t ena_p0                       : 1;  /**< Enable DFA RLDRAM Port#0
                                                         When enabled, this bit lets N3K be the default
                                                         driver for memory port \#0.
                                                         NOTE: For N3K-P1, to enable Port#0(2nd port),
                                                         Port#1 MUST ALSO be enabled.
                                                         NOTE: For N3K-P2, single port mode, a customer is at
                                                         liberty to enable either Port#0 or Port#1.
                                                         NOTE: Once a port has been disabled, it MUST NEVER
                                                         be re-enabled. [the only way to enable a port is
                                                         through a chip reset].
                                                         NOTE: DFA Memory Port#0 corresponds to the Octeon
                                                         RLD0_* pins. */
	uint64_t ena_p1                       : 1;  /**< Enable DFA RLDRAM Port#1
                                                         When enabled, this bit lets N3K be the default
                                                         driver for memory port \#1.
                                                         NOTE: For N3K-P1, If the customer wishes to use a
                                                         single port, s/he must enable Port#1 (and not Port#0).
                                                         NOTE: For N3K-P2, single port mode, a customer is at
                                                         liberty to enable either Port#0 or Port#1.
                                                         NOTE: Once a port has been disabled, it MUST NEVER
                                                         be re-enabled. [the only way to enable a port is
                                                         through a chip reset].
                                                         NOTE: DFA Memory Port#1 corresponds to the Octeon
                                                         RLD1_* pins. */
#else
	uint64_t ena_p1                       : 1;
	uint64_t ena_p0                       : 1;
	uint64_t reserved_2_2                 : 1;
	uint64_t mtype                        : 1;
	uint64_t sil_lat                      : 2;
	uint64_t rw_dly                       : 4;
	uint64_t wr_dly                       : 4;
	uint64_t fprch                        : 2;
	uint64_t bprch                        : 2;
	uint64_t blen                         : 1;
	uint64_t pbunk                        : 3;
	uint64_t r2r_pbunk                    : 1;
	uint64_t init_p1                      : 1;
	uint64_t init_p0                      : 1;
	uint64_t bunk_init                    : 2;
	uint64_t lpp_ena                      : 1;
	uint64_t reserved_28_63               : 36;
#endif
	} cn38xx;
	struct cvmx_dfa_memcfg0_cn38xxp2
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_27_63               : 37;
	uint64_t bunk_init                    : 2;  /**< Controls the CS_N[1:0] during a) a HW Initialization
                                                         sequence (triggered by DFA_MEMCFG0[INIT_Px]) or
                                                         b) during a normal refresh sequence. If
                                                         the BNK_INIT[x]=1, the corresponding CS_N[x] is driven.
                                                         NOTE: This is required for DRAM used in a
                                                         clamshell configuration, since the address lines
                                                         carry Mode Register write data that is unique
                                                         per bunk(or clam). In a clamshell configuration,
                                                         The N3K A[x] pin may be tied into Clam#0's A[x]
                                                         and also into Clam#1's 'mirrored' address bit A[y]
                                                         (eg: Clam0 sees A[5] and Clam1 sees A[15]).
                                                         To support clamshell designs, SW must initiate
                                                         two separate HW init sequences for the two bunks
                                                         (or clams) . Before each HW init sequence is triggered,
                                                         SW must preload the DFA_MEMRLD[22:0] with the data
                                                         that will be driven onto the A[22:0] wires during
                                                         an MRS mode register write.
                                                         NOTE: After the final HW initialization sequence has
                                                         been triggered, SW must wait 64K eclks before writing
                                                         the BUNK_INIT[1:0] field = 3'b11 (so that CS_N[1:0] is
                                                         driven during refresh sequences in normal operation.
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization.
                                                         NOTE: For MTYPE=1(FCRAM) Mode, each bunk MUST BE
                                                         initialized independently. In other words, a HW init
                                                         must be done for Bunk#0, and then another HW init
                                                         must be done for Bunk#1 at power-on. */
	uint64_t init_p0                      : 1;  /**< When a '1' is written (and the previous value was '0'),
                                                         the HW init sequence(s) for Memory Port \#0 is
                                                         initiated.
                                                         NOTE: To initialize memory, SW must:
                                                           1) Enable memory port(s):
                                                               a) ENA_P1=1 (single port in pass 1) OR
                                                               b) ENA_P0=1/ENA_P1=1 (dual ports or single when not pass 1)
                                                           2) Wait 100us (to ensure a stable clock
                                                              to the RLDRAMs) - as per RLDRAM spec.
                                                           3) Write a '1' to the corresponding INIT_Px which
                                                              will initiate a hardware initialization
                                                              sequence.
                                                         NOTE: After writing a '1', SW must wait 64K eclk
                                                         cycles to ensure the HW init sequence has completed
                                                         before writing to ANY of the DFA_MEM* registers.
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization.
                                                         NOTE: DFA Memory Port#0 corresponds to the Octeon
                                                         RLD0_* pins. */
	uint64_t init_p1                      : 1;  /**< When a '1' is written (and the previous value was '0'),
                                                         the HW init sequence(s) for Memory Port \#1 is
                                                         initiated.
                                                         NOTE: To initialize memory, SW must:
                                                           1) Enable memory port(s):
                                                               a) ENA_P1=1 (single port in pass 1) OR
                                                               b) ENA_P0=1/ENA_P1=1 (dual ports or single when not pass 1)
                                                           2) Wait 100us (to ensure a stable clock
                                                              to the RLDRAMs) - as per RLDRAM spec.
                                                           3) Write a '1' to the corresponding INIT_Px which
                                                              will initiate a hardware initialization
                                                              sequence.
                                                         NOTE: After writing a '1', SW must wait 64K eclk
                                                         cycles to ensure the HW init sequence has completed
                                                         before writing to ANY of the DFA_MEM* registers.
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization.
                                                         NOTE: DFA Memory Port#1 corresponds to the Octeon
                                                         RLD1_* pins. */
	uint64_t r2r_pbunk                    : 1;  /**< When enabled, an additional command bubble is inserted
                                                         if back to back reads are issued to different physical
                                                         bunks. This is to avoid DQ data bus collisions when
                                                         references cross between physical bunks.
                                                         [NOTE: the physical bunk address boundary is determined
                                                         by the PBUNK bit].
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization.
                                                         When MTYPE=1(FCRAM)/BLEN=0(2-burst), R2R_PBUNK SHOULD BE
                                                         ZERO(for optimal performance). However, if electrically,
                                                         DQ-sharing becomes a power/heat issue, then R2R_PBUNK
                                                         should be set (but at a cost to performance (1/2 BW). */
	uint64_t pbunk                        : 3;  /**< Physical Bunk address bit pointer.
                                                         Specifies which address bit within the Longword
                                                         Memory address MA[23:0] is used to determine the
                                                         chip selects.
                                                         [RLD_CS0_N corresponds to physical bunk \#0, and
                                                         RLD_CS1_N corresponds to physical bunk \#1].
                                                           - 000: CS0_N = MA[19]/CS1_N = !MA[19]
                                                           - 001: CS0_N = MA[20]/CS1_N = !MA[20]
                                                           - 010: CS0_N = MA[21]/CS1_N = !MA[21]
                                                           - 011: CS0_N = MA[22]/CS1_N = !MA[22]
                                                           - 100: CS0_N = MA[23]/CS1_N = !MA[23]
                                                           - 101-111: CS0_N = 0 /CS1_N = 1
                                                         Example(s):
                                                         To build out a 128MB DFA memory, 4x 32Mx9
                                                         parts could be used to fill out TWO physical
                                                         bunks (clamshell configuration). Each (of the
                                                         two) physical bunks contains 2x 32Mx9 = 16Mx36.
                                                         Each RLDRAM device also contains 8 internal banks,
                                                         therefore the memory Address is 16M/8banks = 2M
                                                         addresses/bunk (2^21). In this case, MA[21] would
                                                         select the physical bunk.
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization.
                                                         be used to determine the Chip Select(s).
                                                         NOTE: When MTYPE=1(FCRAM)/BLEN=0(2-burst), a
                                                         "Redundant Bunk" scheme is employed to provide the
                                                         highest overall performance (1 Req/ MCLK cycle).
                                                         In this mode, it's imperative that SW set the PBUNK
                                                         field +1 'above' the highest address bit. (such that
                                                         the PBUNK extracted from the address will always be
                                                         zero). In this mode, the CS_N[1:0] pins are driven
                                                         to each redundant bunk based on a TDM scheme:
                                                         [MCLK-EVEN=Bunk#0/MCLK-ODD=Bunk#1]. */
	uint64_t blen                         : 1;  /**< Device Burst Length  (0=2-burst/1=4-burst)
                                                         When BLEN=0(BL2), all QW reads/writes from CP2 are
                                                         decomposed into 2 separate BL2(LW) requests to the
                                                         Low-Latency memory.
                                                         When BLEN=1(BL4), a LW request (from CP2 or NCB) is
                                                         treated as 1 BL4(QW) request to the low latency memory.
                                                         NOTE: QW refers to a 64-bit LLM Load/Store (intiated
                                                         by a processor core). LW refers to a 36-bit load/store.
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization before the DFA LLM
                                                         (low latency memory) is used.
                                                         NOTE: MTYPE=0(RLDRAM-II) MUST USE BLEN=0(2-burst)
                                                         NOTE: MTYPE=1(FCRAM)/BLEN=0(BL2) requires a
                                                         multi-bunk(clam) board design.
                                                         NOTE: If MTYPE=1(FCRAM)/FCRAM2P=0(II)/BLEN=1(BL4),
                                                         SW SHOULD use CP2 QW read/write requests (for
                                                         optimal low-latency bus performance).
                                                         [LW length read/write requests(in BL4 mode) use 50%
                                                         of the available bus bandwidth]
                                                         NOTE: MTYPE=1(FCRAM)/FCRAM2P=0(II)/BLEN=0(BL2) can only
                                                         be used with FCRAM-II devices which support BL2 mode
                                                         (see: Toshiba FCRAM-II, where DQ tristate after 2 data
                                                         transfers).
                                                         NOTE: MTYPE=1(FCRAM)/FCRAM2P=1(II+) does not support LW
                                                         write requests (FCRAM-II+ device specification has removed
                                                         the variable write mask function from the devices).
                                                         As such, if this mode is used, SW must be careful to
                                                         issue only PP-CP2 QW write requests. */
	uint64_t bprch                        : 2;  /**< Tristate Enable (back porch) (\#dclks)
                                                         On reads, allows user to control the shape of the
                                                         tristate disable back porch for the DQ data bus.
                                                         This parameter is also very dependent on the
                                                         RW_DLY and WR_DLY parameters and care must be
                                                         taken when programming these parameters to avoid
                                                         data bus contention. Valid range [0..2]
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
	uint64_t fprch                        : 2;  /**< Tristate Enable (front porch) (\#dclks)
                                                         On reads, allows user to control the shape of the
                                                         tristate disable front porch for the DQ data bus.
                                                         This parameter is also very dependent on the
                                                         RW_DLY and WR_DLY parameters and care must be
                                                         taken when programming these parameters to avoid
                                                         data bus contention. Valid range [0..2]
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
	uint64_t wr_dly                       : 4;  /**< Write->Read CMD Delay (\#mclks):
                                                         Determines \#mclk cycles to insert when controller
                                                         switches from write to read. This allows programmer
                                                         to control the data bus contention.
                                                         For RLDRAM-II(BL2): (TBL=1)
                                                         For FCRAM-II (BL4): (TBL=2)
                                                         For FCRAM-II (BL2 grepl=1x ONLY): (TBL=1)
                                                         For FCRAM-II (BL2 grepl>=2x): (TBL=3)
                                                            NOTE: When MTYTPE=1(FCRAM-II) BLEN=0(BL2 Mode),
                                                            grepl>=2x, writes require redundant bunk writes
                                                            which require an additional 2 cycles before slotting
                                                            the next read.
                                                         WR_DLY = ROUND_UP[((TWL+TBL)*2 - TSKW + FPRCH) / 2] - TRL + 1
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization.
                                                         NOTE: For aggressive(performance optimal) designs,
                                                         the WR_DLY 'may' be tuned down(-1) if bus fight
                                                         on W->R transitions is not pronounced. */
	uint64_t rw_dly                       : 4;  /**< Read->Write CMD Delay (\#mclks):
                                                         Determines \#mclk cycles to insert when controller
                                                         switches from read to write. This allows programmer
                                                         to control the data bus contention.
                                                         For RLDRAM-II/FCRAM-II (BL2): (TBL=1)
                                                         For FCRAM-II (BL4): (TBL=2)
                                                         RW_DLY = ROUND_UP[((TRL+TBL)*2 + TSKW + BPRCH+2)/2] - TWL + 1
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization.
                                                         NOTE: For aggressive(performance optimal) designs,
                                                         the RW_DLY 'may' be tuned down(-1) if bus fight
                                                         on R->W transitions is not pronounced. */
	uint64_t sil_lat                      : 2;  /**< Silo Latency (\#dclks): On reads, determines how many
                                                         additional dclks to wait (on top of tRL+1) before
                                                         pulling data out of the padring silos used for time
                                                         domain boundary crossing.
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
	uint64_t mtype                        : 1;  /**< Memory Type (0=RLDRAM-II/1=Network DRAM-II/FCRAM)
                                                         NOTE: N3K-P1 only supports RLDRAM-II
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization.
                                                         NOTE: When MTYPE=1(FCRAM)/BLEN=0(2-burst), only the
                                                         "unidirectional DS/QS" mode is supported. (see FCRAM
                                                         data sheet EMRS[A6:A5]=SS(Strobe Select) register
                                                         definition. [in FCRAM 2-burst mode, we use FCRAM
                                                         in a clamshell configuration such that clam0 is
                                                         addressed independently of clam1, and DQ is shared
                                                         for optimal performance. As such it's imperative that
                                                         the QS are conditionally received (and are NOT
                                                         free-running), as the N3K receive data capture silos
                                                         OR the clam0/1 QS strobes.
                                                         NOTE: If this bit is SET, the ASX0/1
                                                         ASX_RLD_FCRAM_MODE[MODE] bit(s) should also be SET
                                                         in order for the RLD0/1-PHY(s) to support FCRAM devices. */
	uint64_t reserved_2_2                 : 1;
	uint64_t ena_p0                       : 1;  /**< Enable DFA RLDRAM Port#0
                                                         When enabled, this bit lets N3K be the default
                                                         driver for memory port \#0.
                                                         NOTE: For N3K-P1, to enable Port#0(2nd port),
                                                         Port#1 MUST ALSO be enabled.
                                                         NOTE: For N3K-P2, single port mode, a customer is at
                                                         liberty to enable either Port#0 or Port#1.
                                                         NOTE: Once a port has been disabled, it MUST NEVER
                                                         be re-enabled. [the only way to enable a port is
                                                         through a chip reset].
                                                         NOTE: DFA Memory Port#0 corresponds to the Octeon
                                                         RLD0_* pins. */
	uint64_t ena_p1                       : 1;  /**< Enable DFA RLDRAM Port#1
                                                         When enabled, this bit lets N3K be the default
                                                         driver for memory port \#1.
                                                         NOTE: For N3K-P1, If the customer wishes to use a
                                                         single port, s/he must enable Port#1 (and not Port#0).
                                                         NOTE: For N3K-P2, single port mode, a customer is at
                                                         liberty to enable either Port#0 or Port#1.
                                                         NOTE: Once a port has been disabled, it MUST NEVER
                                                         be re-enabled. [the only way to enable a port is
                                                         through a chip reset].
                                                         NOTE: DFA Memory Port#1 corresponds to the Octeon
                                                         RLD1_* pins. */
#else
	uint64_t ena_p1                       : 1;
	uint64_t ena_p0                       : 1;
	uint64_t reserved_2_2                 : 1;
	uint64_t mtype                        : 1;
	uint64_t sil_lat                      : 2;
	uint64_t rw_dly                       : 4;
	uint64_t wr_dly                       : 4;
	uint64_t fprch                        : 2;
	uint64_t bprch                        : 2;
	uint64_t blen                         : 1;
	uint64_t pbunk                        : 3;
	uint64_t r2r_pbunk                    : 1;
	uint64_t init_p1                      : 1;
	uint64_t init_p0                      : 1;
	uint64_t bunk_init                    : 2;
	uint64_t reserved_27_63               : 37;
#endif
	} cn38xxp2;
	struct cvmx_dfa_memcfg0_s             cn58xx;
	struct cvmx_dfa_memcfg0_s             cn58xxp1;
};
typedef union cvmx_dfa_memcfg0 cvmx_dfa_memcfg0_t;

/**
 * cvmx_dfa_memcfg1
 *
 * DFA_MEMCFG1 = RLDRAM Memory Timing Configuration
 *
 * Description:
 */
union cvmx_dfa_memcfg1
{
	uint64_t u64;
	struct cvmx_dfa_memcfg1_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_34_63               : 30;
	uint64_t ref_intlo                    : 9;  /**< Burst Refresh Interval[8:0] (\#dclks)
                                                         For finer refresh interval granularity control.
                                                         This field provides an additional level of granularity
                                                         for the refresh interval. It specifies the additional
                                                         \#dclks [0...511] to be added to the REF_INT[3:0] field.
                                                         For RLDRAM-II: For dclk(400MHz=2.5ns):
                                                         Example: 64K AREF cycles required within tREF=32ms
                                                             trefint = tREF(ms)/(64K cycles/8banks)
                                                                         = 32ms/8K = 3.9us = 3900ns
                                                             REF_INT[3:0] = ROUND_DOWN[(trefint/dclk)/512]
                                                                          = ROUND_DOWN[(3900/2.5)/512]
                                                                          = 3
                                                             REF_INTLO[8:0] = MOD[(trefint/dclk)/512]
                                                                            = MOD[(3900/2.5)/512]
                                                                            = 24
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
	uint64_t aref_ena                     : 1;  /**< Auto Refresh Cycle Enable
                                                         INTERNAL USE ONLY:
                                                         NOTE: This mode bit is ONLY intended to be used by
                                                         low-level power-on initialization routines in the
                                                         event that the hardware initialization routine
                                                         does not work. It allows SW to create AREF
                                                         commands on the RLDRAM bus directly.
                                                         When this bit is set, ALL RLDRAM writes (issued by
                                                         a PP through the NCB or CP2) are converted to AREF
                                                         commands on the RLDRAM bus. The write-address is
                                                         presented on the A[20:0]/BA[2:0] pins (for which
                                                         the RLDRAM only interprets BA[2:0]).
                                                         When this bit is set, only writes are allowed
                                                         and MUST use grepl=0 (1x).
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization.
                                                         NOTE: MRS_ENA and AREF_ENA are mutually exclusive
                                                         (SW can set one or the other, but never both!)
                                                         NOTE: AREF commands generated using this method target
                                                         the 'addressed' bunk. */
	uint64_t mrs_ena                      : 1;  /**< Mode Register Set Cycle Enable
                                                         INTERNAL USE ONLY:
                                                         NOTE: This mode bit is ONLY intended to be used by
                                                         low-level power-on initialization routines in the
                                                         event that the hardware initialization routine
                                                         does not work. It allows SW to create MRS
                                                         commands on the RLDRAM bus directly.
                                                         When this bit is set, ALL RLDRAM writes (issued by
                                                         a PP through the NCB or CP2) are converted to MRS
                                                         commands on the RLDRAM bus. The write-address is
                                                         presented on the A[20:0]/BA[2:0] pins (for which
                                                         the RLDRAM only interprets A[17:0]).
                                                         When this bit is set, only writes are allowed
                                                         and MUST use grepl=0 (1x).
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization.
                                                         NOTE: MRS_ENA and AREF_ENA are mutually exclusive
                                                         (SW can set one or the other, but never both!)
                                                         NOTE: MRS commands generated using this method target
                                                         the 'addressed' bunk. */
	uint64_t tmrsc                        : 3;  /**< Mode Register Set Cycle Time (represented in \#mclks)
                                                              - 000-001: RESERVED
                                                              - 010: tMRSC = 2 mclks
                                                              - 011: tMRSC = 3 mclks
                                                              - ...
                                                              - 111: tMRSC = 7 mclks
                                                         NOTE: The device tMRSC parameter is a function of CL
                                                         (which during HW initialization is not known. Its
                                                         recommended to load tMRSC(MAX) value to avoid timing
                                                         violations.
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
	uint64_t trc                          : 4;  /**< Row Cycle Time (represented in \#mclks)
                                                         see also: DFA_MEMRLD[RLCFG] field which must
                                                         correspond with tRL/tWL parameter(s).
                                                              - 0000-0010: RESERVED
                                                              - 0011: tRC = 3 mclks
                                                              - 0100: tRC = 4 mclks
                                                              - 0101: tRC = 5 mclks
                                                              - 0110: tRC = 6 mclks
                                                              - 0111: tRC = 7 mclks
                                                              - 1000: tRC = 8 mclks
                                                              - 1001: tRC = 9 mclks
                                                              - 1010-1111: RESERVED
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
	uint64_t twl                          : 4;  /**< Write Latency (represented in \#mclks)
                                                         see also: DFA_MEMRLD[RLCFG] field which must
                                                         correspond with tRL/tWL parameter(s).
                                                              - 0000-0001: RESERVED
                                                              - 0010: Write Latency (WL=2.0 mclk)
                                                              - 0011: Write Latency (WL=3.0 mclks)
                                                              - 0100: Write Latency (WL=4.0 mclks)
                                                              - 0101: Write Latency (WL=5.0 mclks)
                                                              - 0110: Write Latency (WL=6.0 mclks)
                                                              - 0111: Write Latency (WL=7.0 mclks)
                                                              - 1000: Write Latency (WL=8.0 mclks)
                                                              - 1001: Write Latency (WL=9.0 mclks)
                                                              - 1010: Write Latency (WL=10.0 mclks)
                                                              - 1011-1111: RESERVED
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
	uint64_t trl                          : 4;  /**< Read Latency (represented in \#mclks)
                                                         see also: DFA_MEMRLD[RLCFG] field which must
                                                         correspond with tRL/tWL parameter(s).
                                                              - 0000-0010: RESERVED
                                                              - 0011: Read Latency = 3 mclks
                                                              - 0100: Read Latency = 4 mclks
                                                              - 0101: Read Latency = 5 mclks
                                                              - 0110: Read Latency = 6 mclks
                                                              - 0111: Read Latency = 7 mclks
                                                              - 1000: Read Latency = 8 mclks
                                                              - 1001: Read Latency = 9 mclks
                                                              - 1010: Read Latency = 10 mclks
                                                              - 1011-1111: RESERVED
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
	uint64_t reserved_6_7                 : 2;
	uint64_t tskw                         : 2;  /**< Board Skew (represented in \#dclks)
                                                         Represents additional board skew of DQ/DQS.
                                                             - 00: board-skew = 0 dclk
                                                             - 01: board-skew = 1 dclk
                                                             - 10: board-skew = 2 dclk
                                                             - 11: board-skew = 3 dclk
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
	uint64_t ref_int                      : 4;  /**< Refresh Interval (represented in \#of 512 dclk
                                                         increments).
                                                              - 0000: RESERVED
                                                              - 0001: 1 * 512  = 512 dclks
                                                              - ...
                                                              - 1111: 15 * 512 = 7680 dclks
                                                         NOTE: For finer level of granularity, refer to
                                                         REF_INTLO[8:0] field.
                                                         For RLDRAM-II, each refresh interval will
                                                         generate a burst of 8 AREF commands, one to each of
                                                         8 explicit banks (referenced using the RLD_BA[2:0]
                                                         pins.
                                                         Example: For mclk=200MHz/dclk(400MHz=2.5ns):
                                                           64K AREF cycles required within tREF=32ms
                                                             trefint = tREF(ms)/(64K cycles/8banks)
                                                                     = 32ms/8K = 3.9us = 3900ns
                                                             REF_INT = ROUND_DOWN[(trefint/dclk)/512]
                                                                     = ROUND_DOWN[(3900/2.5)/512]
                                                                     = 3
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
#else
	uint64_t ref_int                      : 4;
	uint64_t tskw                         : 2;
	uint64_t reserved_6_7                 : 2;
	uint64_t trl                          : 4;
	uint64_t twl                          : 4;
	uint64_t trc                          : 4;
	uint64_t tmrsc                        : 3;
	uint64_t mrs_ena                      : 1;
	uint64_t aref_ena                     : 1;
	uint64_t ref_intlo                    : 9;
	uint64_t reserved_34_63               : 30;
#endif
	} s;
	struct cvmx_dfa_memcfg1_s             cn38xx;
	struct cvmx_dfa_memcfg1_s             cn38xxp2;
	struct cvmx_dfa_memcfg1_s             cn58xx;
	struct cvmx_dfa_memcfg1_s             cn58xxp1;
};
typedef union cvmx_dfa_memcfg1 cvmx_dfa_memcfg1_t;

/**
 * cvmx_dfa_memcfg2
 *
 * DFA_MEMCFG2 = DFA Memory Config Register \#2
 * *** NOTE: Pass2 Addition
 *
 * Description: Additional Memory Configuration CSRs to support FCRAM-II/II+ and Network DRAM-II
 */
union cvmx_dfa_memcfg2
{
	uint64_t u64;
	struct cvmx_dfa_memcfg2_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_12_63               : 52;
	uint64_t dteclkdis                    : 1;  /**< DFA DTE Clock Disable
                                                         When SET, the DFA clocks for DTE(thread engine)
                                                         operation are disabled.
                                                         NOTE: When SET, SW MUST NEVER issue ANY operations to
                                                         the DFA via the NCB Bus. All DFA Operations must be
                                                         issued solely through the CP2 interface.

                                                         NOTE: When DTECLKDIS=1, if CP2 Errors are encountered
                                                         (ie: CP2SBE, CP2DBE, CP2PERR), the DFA_MEMFADR CSR
                                                         does not reflect the failing address/ctl information. */
	uint64_t silrst                       : 1;  /**< LLM-PHY Silo Reset
                                                         When a '1' is written (when the previous
                                                         value was a '0') causes the the LLM-PHY Silo read/write
                                                         pointers to be reset.
                                                         NOTE: SW MUST WAIT 400 dclks after the LAST HW Init
                                                         sequence was launched (ie: INIT_START 0->1 CSR write),
                                                         before the SILRST can be triggered (0->1). */
	uint64_t trfc                         : 5;  /**< FCRAM-II Refresh Interval
                                                         *** CN58XX UNSUPPORTED *** */
	uint64_t refshort                     : 1;  /**< FCRAM Short Refresh Mode
                                                         *** CN58XX UNSUPPORTED *** */
	uint64_t ua_start                     : 2;  /**< FCRAM-II Upper Addres Start
                                                         *** CN58XX UNSUPPORTED *** */
	uint64_t maxbnk                       : 1;  /**< Maximum Banks per-device (used by the address mapper
                                                         when extracting address bits for the memory bank#.
                                                           - 0: 4 banks/device
                                                           - 1: 8 banks/device */
	uint64_t fcram2p                      : 1;  /**< FCRAM-II+ Mode Enable
                                                         *** CN58XX UNSUPPORTED *** */
#else
	uint64_t fcram2p                      : 1;
	uint64_t maxbnk                       : 1;
	uint64_t ua_start                     : 2;
	uint64_t refshort                     : 1;
	uint64_t trfc                         : 5;
	uint64_t silrst                       : 1;
	uint64_t dteclkdis                    : 1;
	uint64_t reserved_12_63               : 52;
#endif
	} s;
	struct cvmx_dfa_memcfg2_s             cn38xx;
	struct cvmx_dfa_memcfg2_s             cn38xxp2;
	struct cvmx_dfa_memcfg2_s             cn58xx;
	struct cvmx_dfa_memcfg2_s             cn58xxp1;
};
typedef union cvmx_dfa_memcfg2 cvmx_dfa_memcfg2_t;

/**
 * cvmx_dfa_memfadr
 *
 * DFA_MEMFADR = RLDRAM Failing Address/Control Register
 *
 * Description: DFA Memory Failing Address/Control Error Capture information
 * This register contains useful information to help in isolating an RLDRAM memory failure.
 * NOTE: The first detected SEC/DED/PERR failure is captured in DFA_MEMFADR, however, a DED or PERR (which is
 * more severe) will always overwrite a SEC error. The user can 'infer' the source of the interrupt
 * via the FSRC field.
 * NOTE: If DFA_MEMCFG2[DTECLKDIS]=1, the contents of this register are UNDEFINED.
 */
union cvmx_dfa_memfadr
{
	uint64_t u64;
	struct cvmx_dfa_memfadr_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_24_63               : 40;
	uint64_t maddr                        : 24; /**< Memory Address */
#else
	uint64_t maddr                        : 24;
	uint64_t reserved_24_63               : 40;
#endif
	} s;
	struct cvmx_dfa_memfadr_cn31xx
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_40_63               : 24;
	uint64_t fdst                         : 9;  /**< Fill-Destination
                                                            FSRC[1:0]    | FDST[8:0]
                                                            -------------+-------------------------------------
                                                             0(NCB-DTE)  | [fillstart,2'b0,WIDX(1),DMODE(1),DTE(4)]
                                                             1(NCB-CSR)  | [ncbSRC[8:0]]
                                                             3(CP2-PP)   | [2'b0,SIZE(1),INDEX(1),PP(4),FID(1)]
                                                           where:
                                                               DTE: DFA Thread Engine ID#
                                                               PP: Packet Processor ID#
                                                               FID: Fill-ID# (unique per PP)
                                                               WIDX:  16b SIMPLE Mode (index)
                                                               DMODE: (0=16b SIMPLE/1=32b SIMPLE)
                                                               SIZE: (0=LW Mode access/1=QW Mode Access)
                                                               INDEX: (0=Low LW/1=High LW)
                                                         NOTE: QW refers to a 56/64-bit LLM Load/Store (intiated
                                                         by a processor core). LW refers to a 32-bit load/store. */
	uint64_t fsrc                         : 2;  /**< Fill-Source (0=NCB-DTE/1=NCB-CSR/2=RESERVED/3=PP-CP2) */
	uint64_t pnum                         : 1;  /**< Memory Port
                                                         NOTE: For O2P, this bit will always return zero. */
	uint64_t bnum                         : 3;  /**< Memory Bank
                                                         When DFA_DDR2_ADDR[RNK_LO]=1, BNUM[2]=RANK[0].
                                                         (RANK[1] can be inferred from MADDR[24:0]) */
	uint64_t maddr                        : 25; /**< Memory Address */
#else
	uint64_t maddr                        : 25;
	uint64_t bnum                         : 3;
	uint64_t pnum                         : 1;
	uint64_t fsrc                         : 2;
	uint64_t fdst                         : 9;
	uint64_t reserved_40_63               : 24;
#endif
	} cn31xx;
	struct cvmx_dfa_memfadr_cn38xx
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_39_63               : 25;
	uint64_t fdst                         : 9;  /**< Fill-Destination
                                                            FSRC[1:0]    | FDST[8:0]
                                                            -------------+-------------------------------------
                                                             0(NCB-DTE)  | [fillstart,2'b0,WIDX(1),DMODE(1),DTE(4)]
                                                             1(NCB-CSR)  | [ncbSRC[8:0]]
                                                             3(CP2-PP)   | [2'b0,SIZE(1),INDEX(1),PP(4),FID(1)]
                                                           where:
                                                               DTE: DFA Thread Engine ID#
                                                               PP: Packet Processor ID#
                                                               FID: Fill-ID# (unique per PP)
                                                               WIDX:  18b SIMPLE Mode (index)
                                                               DMODE: (0=18b SIMPLE/1=36b SIMPLE)
                                                               SIZE: (0=LW Mode access/1=QW Mode Access)
                                                               INDEX: (0=Low LW/1=High LW)
                                                         NOTE: QW refers to a 64-bit LLM Load/Store (intiated
                                                         by a processor core). LW refers to a 36-bit load/store. */
	uint64_t fsrc                         : 2;  /**< Fill-Source (0=NCB-DTE/1=NCB-CSR/2=RESERVED/3=PP-CP2) */
	uint64_t pnum                         : 1;  /**< Memory Port
                                                         NOTE: the port id's are reversed
                                                            PNUM==0 => port#1
                                                            PNUM==1 => port#0 */
	uint64_t bnum                         : 3;  /**< Memory Bank */
	uint64_t maddr                        : 24; /**< Memory Address */
#else
	uint64_t maddr                        : 24;
	uint64_t bnum                         : 3;
	uint64_t pnum                         : 1;
	uint64_t fsrc                         : 2;
	uint64_t fdst                         : 9;
	uint64_t reserved_39_63               : 25;
#endif
	} cn38xx;
	struct cvmx_dfa_memfadr_cn38xx        cn38xxp2;
	struct cvmx_dfa_memfadr_cn38xx        cn58xx;
	struct cvmx_dfa_memfadr_cn38xx        cn58xxp1;
};
typedef union cvmx_dfa_memfadr cvmx_dfa_memfadr_t;

/**
 * cvmx_dfa_memfcr
 *
 * DFA_MEMFCR = FCRAM MRS Register(s) EMRS2[14:0], EMRS1[14:0], MRS[14:0]
 * *** CN58XX UNSUPPORTED ***
 *
 * Notes:
 * For FCRAM-II please consult your device's data sheet for further details:
 * MRS Definition:
 *    A[13:8]=0   RESERVED
 *    A[7]=0      TEST MODE     (N3K requires test mode 0:"disabled")
 *    A[6:4]      CAS LATENCY   (fully programmable - SW must ensure that the value programmed
 *                               into DFA_MEM_CFG0[TRL] corresponds with this value).
 *    A[3]=0      BURST TYPE    (N3K requires 0:"Sequential" Burst Type)
 *    A[2:0]      BURST LENGTH  Burst Length [1:BL2/2:BL4] (N3K only supports BL=2,4)
 *
 *                                  In BL2 mode(for highest performance), only 1/2 the phsyical
 *                                  memory is unique (ie: each bunk stores the same information).
 *                                  In BL4 mode(highest capacity), all of the physical memory
 *                                  is unique (ie: each bunk is uniquely addressable).
 * EMRS Definition:
 *    A[13:12]    REFRESH MODE  (N3K Supports only 0:"Conventional" and 1:"Short" auto-refresh modes)
 *
 *                              (SW must ensure that the value programmed into DFA_MEMCFG2[REFSHORT]
 *                              is also reflected in the Refresh Mode encoding).
 *    A[11:7]=0   RESERVED
 *    A[6:5]=2    STROBE SELECT (N3K supports only 2:"Unidirectional DS/QS" mode - the read capture
 *                              silos rely on a conditional QS strobe)
 *    A[4:3]      DIC(QS)       QS Drive Strength: fully programmable (consult your FCRAM-II data sheet)
 *                                [0: Normal Output Drive/1: Strong Output Drive/2: Weak output Drive]
 *    A[2:1]      DIC(DQ)       DQ Drive Strength: fully programmable (consult your FCRAM-II data sheet)
 *                                [0: Normal Output Drive/1: Strong Output Drive/2: Weak output Drive]
 *    A[0]        DLL           DLL Enable: Programmable [0:DLL Enable/1: DLL Disable]
 *
 * EMRS2 Definition: (for FCRAM-II+)
 *    A[13:11]=0                RESERVED
 *    A[10:8]     ODTDS         On Die Termination (DS+/-)
 *                                 [0: ODT Disable /1: 15ohm termination /(2-7): RESERVED]
 *    A[7:6]=0    MBW           Multi-Bank Write: (N3K requires use of 0:"single bank" mode only)
 *    A[5:3]      ODTin         On Die Termination (input pin)
 *                                 [0: ODT Disable /1: 15ohm termination /(2-7): RESERVED]
 *    A[2:0]      ODTDQ         On Die Termination (DQ)
 *                                 [0: ODT Disable /1: 15ohm termination /(2-7): RESERVED]
 */
union cvmx_dfa_memfcr
{
	uint64_t u64;
	struct cvmx_dfa_memfcr_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_47_63               : 17;
	uint64_t emrs2                        : 15; /**< Memory Address[14:0] during EMRS2(for FCRAM-II+)
                                                         *** CN58XX UNSUPPORTED *** */
	uint64_t reserved_31_31               : 1;
	uint64_t emrs                         : 15; /**< Memory Address[14:0] during EMRS
                                                         *** CN58XX UNSUPPORTED ***
                                                           A[0]=1: DLL Enabled) */
	uint64_t reserved_15_15               : 1;
	uint64_t mrs                          : 15; /**< FCRAM Memory Address[14:0] during MRS
                                                         *** CN58XX UNSUPPORTED ***
                                                           A[6:4]=4  CAS LATENCY=4(default)
                                                           A[3]=0    Burst Type(must be 0:Sequential)
                                                           A[2:0]=2  Burst Length=4(default) */
#else
	uint64_t mrs                          : 15;
	uint64_t reserved_15_15               : 1;
	uint64_t emrs                         : 15;
	uint64_t reserved_31_31               : 1;
	uint64_t emrs2                        : 15;
	uint64_t reserved_47_63               : 17;
#endif
	} s;
	struct cvmx_dfa_memfcr_s              cn38xx;
	struct cvmx_dfa_memfcr_s              cn38xxp2;
	struct cvmx_dfa_memfcr_s              cn58xx;
	struct cvmx_dfa_memfcr_s              cn58xxp1;
};
typedef union cvmx_dfa_memfcr cvmx_dfa_memfcr_t;

/**
 * cvmx_dfa_memhidat
 *
 * DFA_MEMHIDAT = DFA NCB-Direct CSR access to DFM Memory Space (High QW)
 *
 * Description:
 * DFA supports NCB-Direct CSR acccesses to DFM Memory space for debug purposes. Unfortunately, NCB-Direct accesses
 * are limited to QW-size(64bits), whereas the minimum access granularity for DFM Memory space is OW(128bits). To
 * support writes to DFM Memory space, the Hi-QW of data is sourced from the DFA_MEMHIDAT register. Recall, the
 * OW(128b) in DDR3 memory space is fixed format:
 *     OWDATA[127:118]: OWECC[9:0] 10bits of in-band OWECC SEC/DED codeword
 *                      This can be precomputed/written by SW OR
 *                      if DFM_FNTCTL[ECC_WENA]=1, DFM hardware will auto-compute the 10b OWECC and place in the
 *                      OWDATA[127:118] before being written to memory.
 *     OWDATA[117:0]:   Memory Data (contains fixed MNODE/MONODE arc formats for use by DTEs(thread engines).
 *                      Or, a user may choose to treat DFM Memory Space as 'scratch pad' in which case the
 *                      OWDATA[117:0] may contain user-specified information accessible via NCB-Direct CSR mode
 *                      accesses to DFA Memory Space.
 *  NOTE: To write to the DFA_MEMHIDAT register, a device would issue an IOBST directed at the DFA with addr[34:32]=3'b111.
 *        To read the DFA_MEMHIDAT register, a device would issue an IOBLD64 directed at the DFA with addr[34:32]=3'b111.
 *
 *  NOTE: If DFA_CONFIG[DTECLKDIS]=1 (DFA-DTE clocks disabled), reads/writes to the DFA_MEMHIDAT register do not take effect.
 *  NOTE: If FUSE[TBD]="DFA DTE disable" is blown, reads/writes to the DFA_MEMHIDAT register do not take effect.
 */
union cvmx_dfa_memhidat
{
	uint64_t u64;
	struct cvmx_dfa_memhidat_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t hidat                        : 64; /**< DFA Hi-QW of Write data during NCB-Direct DFM DDR3
                                                         Memory accesses.
                                                         All DFM DDR3 memory accesses are OW(128b) references,
                                                         and since NCB-Direct Mode writes only support QW(64b),
                                                         the Hi QW of data must be sourced from a CSR register.
                                                         NOTE: This single register is 'shared' for ALL DFM
                                                         DDR3 Memory writes. */
#else
	uint64_t hidat                        : 64;
#endif
	} s;
	struct cvmx_dfa_memhidat_s            cn63xx;
	struct cvmx_dfa_memhidat_s            cn63xxp1;
};
typedef union cvmx_dfa_memhidat cvmx_dfa_memhidat_t;

/**
 * cvmx_dfa_memrld
 *
 * DFA_MEMRLD = DFA RLDRAM MRS Register Values
 *
 * Description:
 */
union cvmx_dfa_memrld
{
	uint64_t u64;
	struct cvmx_dfa_memrld_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_23_63               : 41;
	uint64_t mrsdat                       : 23; /**< This field represents the data driven onto the
                                                         A[22:0] address lines during MRS(Mode Register Set)
                                                         commands (during a HW init sequence). This field
                                                         corresponds with the Mode Register Bit Map from
                                                         your RLDRAM-II device specific data sheet.
                                                            A[17:10]: RESERVED
                                                            A[9]:     ODT (on die termination)
                                                            A[8]:     Impedance Matching
                                                            A[7]:     DLL Reset
                                                            A[6]:     UNUSED
                                                            A[5]:     Address Mux  (for N3K: MUST BE ZERO)
                                                            A[4:3]:   Burst Length (for N3K: MUST BE ZERO)
                                                            A[2:0]:   Configuration (see data sheet for
                                                                      specific RLDRAM-II device).
                                                               - 000-001: CFG=1 [tRC=4/tRL=4/tWL=5]
                                                               - 010:     CFG=2 [tRC=6/tRL=6/tWL=7]
                                                               - 011:     CFG=3 [tRC=8/tRL=8/tWL=9]
                                                               - 100-111: RESERVED
                                                          NOTE: For additional density, the RLDRAM-II parts
                                                          can be 'clamshelled' (ie: two devices mounted on
                                                          different sides of the PCB board), since the BGA
                                                          pinout supports 'mirroring'.
                                                          To support a clamshell design, SW must preload
                                                          the MRSDAT[22:0] with the proper A[22:0] pin mapping
                                                          which is dependent on the 'selected' bunk/clam
                                                          (see also: DFA_MEMCFG0[BUNK_INIT] field).
                                                          NOTE: Care MUST BE TAKEN NOT to write to this register
                                                          within 64K eclk cycles of a HW INIT (see: INIT_P0/INIT_P1).
                                                          NOTE: This should only be written to a different value
                                                          during power-on SW initialization. */
#else
	uint64_t mrsdat                       : 23;
	uint64_t reserved_23_63               : 41;
#endif
	} s;
	struct cvmx_dfa_memrld_s              cn38xx;
	struct cvmx_dfa_memrld_s              cn38xxp2;
	struct cvmx_dfa_memrld_s              cn58xx;
	struct cvmx_dfa_memrld_s              cn58xxp1;
};
typedef union cvmx_dfa_memrld cvmx_dfa_memrld_t;

/**
 * cvmx_dfa_ncbctl
 *
 * DFA_NCBCTL = DFA NCB CTL Register
 *
 * Description:
 */
union cvmx_dfa_ncbctl
{
	uint64_t u64;
	struct cvmx_dfa_ncbctl_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_11_63               : 53;
	uint64_t sbdnum                       : 5;  /**< SBD Debug Entry#
                                                         For internal use only. (DFA Scoreboard debug)
                                                         Selects which one of 32 DFA Scoreboard entries is
                                                         latched into the DFA_SBD_DBG[0-3] registers. */
	uint64_t sbdlck                       : 1;  /**< DFA Scoreboard LOCK Strobe
                                                         For internal use only. (DFA Scoreboard debug)
                                                         When written with a '1', the DFA Scoreboard Debug
                                                         registers (DFA_SBD_DBG[0-3]) are all locked down.
                                                         This allows SW to lock down the contents of the entire
                                                         SBD for a single instant in time. All subsequent reads
                                                         of the DFA scoreboard registers will return the data
                                                         from that instant in time. */
	uint64_t dcmode                       : 1;  /**< DRF-CRQ/DTE Arbiter Mode
                                                         DTE-DRF Arbiter (0=FP [LP=CRQ/HP=DTE],1=RR)
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
	uint64_t dtmode                       : 1;  /**< DRF-DTE Arbiter Mode
                                                         DTE-DRF Arbiter (0=FP [LP=DTE[15],...,HP=DTE[0]],1=RR)
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
	uint64_t pmode                        : 1;  /**< NCB-NRP Arbiter Mode
                                                         (0=Fixed Priority [LP=WQF,DFF,HP=RGF]/1=RR
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
	uint64_t qmode                        : 1;  /**< NCB-NRQ Arbiter Mode
                                                         (0=Fixed Priority [LP=IRF,RWF,PRF,HP=GRF]/1=RR
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
	uint64_t imode                        : 1;  /**< NCB-Inbound Arbiter
                                                         (0=FP [LP=NRQ,HP=NRP], 1=RR)
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
#else
	uint64_t imode                        : 1;
	uint64_t qmode                        : 1;
	uint64_t pmode                        : 1;
	uint64_t dtmode                       : 1;
	uint64_t dcmode                       : 1;
	uint64_t sbdlck                       : 1;
	uint64_t sbdnum                       : 5;
	uint64_t reserved_11_63               : 53;
#endif
	} s;
	struct cvmx_dfa_ncbctl_cn38xx
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_10_63               : 54;
	uint64_t sbdnum                       : 4;  /**< SBD Debug Entry#
                                                         For internal use only. (DFA Scoreboard debug)
                                                         Selects which one of 16 DFA Scoreboard entries is
                                                         latched into the DFA_SBD_DBG[0-3] registers. */
	uint64_t sbdlck                       : 1;  /**< DFA Scoreboard LOCK Strobe
                                                         For internal use only. (DFA Scoreboard debug)
                                                         When written with a '1', the DFA Scoreboard Debug
                                                         registers (DFA_SBD_DBG[0-3]) are all locked down.
                                                         This allows SW to lock down the contents of the entire
                                                         SBD for a single instant in time. All subsequent reads
                                                         of the DFA scoreboard registers will return the data
                                                         from that instant in time. */
	uint64_t dcmode                       : 1;  /**< DRF-CRQ/DTE Arbiter Mode
                                                         DTE-DRF Arbiter (0=FP [LP=CRQ/HP=DTE],1=RR)
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
	uint64_t dtmode                       : 1;  /**< DRF-DTE Arbiter Mode
                                                         DTE-DRF Arbiter (0=FP [LP=DTE[15],...,HP=DTE[0]],1=RR)
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
	uint64_t pmode                        : 1;  /**< NCB-NRP Arbiter Mode
                                                         (0=Fixed Priority [LP=WQF,DFF,HP=RGF]/1=RR
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
	uint64_t qmode                        : 1;  /**< NCB-NRQ Arbiter Mode
                                                         (0=Fixed Priority [LP=IRF,RWF,PRF,HP=GRF]/1=RR
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
	uint64_t imode                        : 1;  /**< NCB-Inbound Arbiter
                                                         (0=FP [LP=NRQ,HP=NRP], 1=RR)
                                                         NOTE: This should only be written to a different value
                                                         during power-on SW initialization. */
#else
	uint64_t imode                        : 1;
	uint64_t qmode                        : 1;
	uint64_t pmode                        : 1;
	uint64_t dtmode                       : 1;
	uint64_t dcmode                       : 1;
	uint64_t sbdlck                       : 1;
	uint64_t sbdnum                       : 4;
	uint64_t reserved_10_63               : 54;
#endif
	} cn38xx;
	struct cvmx_dfa_ncbctl_cn38xx         cn38xxp2;
	struct cvmx_dfa_ncbctl_s              cn58xx;
	struct cvmx_dfa_ncbctl_s              cn58xxp1;
};
typedef union cvmx_dfa_ncbctl cvmx_dfa_ncbctl_t;

/**
 * cvmx_dfa_pfc0_cnt
 *
 * DFA_PFC0_CNT = DFA Performance Counter \#0
 * *FOR INTERNAL USE ONLY*
 * Description:
 */
union cvmx_dfa_pfc0_cnt
{
	uint64_t u64;
	struct cvmx_dfa_pfc0_cnt_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t pfcnt0                       : 64; /**< Performance Counter \#0
                                                         When DFA_PFC_GCTL[CNT0ENA]=1, the event selected
                                                         by DFA_PFC0_CTL[EVSEL] is counted.
                                                         See also DFA_PFC_GCTL[CNT0WCLR] and DFA_PFC_GCTL
                                                         [CNT0RCLR] for special clear count cases available
                                                         for SW data collection. */
#else
	uint64_t pfcnt0                       : 64;
#endif
	} s;
	struct cvmx_dfa_pfc0_cnt_s            cn63xx;
	struct cvmx_dfa_pfc0_cnt_s            cn63xxp1;
};
typedef union cvmx_dfa_pfc0_cnt cvmx_dfa_pfc0_cnt_t;

/**
 * cvmx_dfa_pfc0_ctl
 *
 * DFA_PFC0_CTL = DFA Performance Counter#0 Control
 * *FOR INTERNAL USE ONLY*
 * Description:
 */
union cvmx_dfa_pfc0_ctl
{
	uint64_t u64;
	struct cvmx_dfa_pfc0_ctl_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_14_63               : 50;
	uint64_t evsel                        : 6;  /**< Performance Counter#0 Event Selector
                                                         // Events [0-31] are based on PMODE(0:per cluster-DTE 1:per graph)
                                                          - 0:  \#Total Cycles
                                                          - 1:  \#LDNODE visits
                                                          - 2:  \#SDNODE visits
                                                          - 3:  \#DNODE visits (LD/SD)
                                                          - 4:  \#LCNODE visits
                                                          - 5:  \#SCNODE visits
                                                          - 6:  \#CNODE visits (LC/SC)
                                                          - 7:  \#LMNODE visits
                                                          - 8:  \#SMNODE visits
                                                          - 9:  \#MNODE visits (LM/SM)
                                                           - 10: \#MONODE visits
                                                           - 11: \#CACHE visits (DNODE,CNODE) exc: CNDRD,MPHIDX
                                                           - 12: \#CACHE visits (DNODE,CNODE)+(CNDRD,MPHIDX)
                                                           - 13: \#MEMORY visits (MNODE+MONODE)
                                                           - 14: \#CNDRDs detected (occur for SCNODE->*MNODE transitions)
                                                           - 15: \#MPHIDX detected (occur for ->LMNODE transitions)
                                                           - 16: \#RESCANs detected (occur when HASH collision is detected)
                                                           - 17: \#GWALK iterations STALLED - Packet data/Result Buffer
                                                           - 18: \#GWALK iterations NON-STALLED
                                                           - 19: \#CLOAD iterations
                                                           - 20: \#MLOAD iterations
                                                               [NOTE: If PMODE=1(per-graph) the MLOAD IWORD0.VGID will be used to discern graph#].
                                                           - 21: \#RWORD1+ writes
                                                           - 22: \#cycles Cluster is busy
                                                           - 23: \#GWALK Instructions
                                                           - 24: \#CLOAD Instructions
                                                           - 25: \#MLOAD Instructions
                                                               [NOTE: If PMODE=1(per-graph) the MLOAD IWORD0.VGID will be used to discern graph#].
                                                           - 26: \#GFREE Instructions
                                                           - 27-30: RESERVED
                                                           - 31: \# Node Transitions detected (see DFA_PFC_GCTL[SNODE,ENODE,EDNODE] registers
                                                         //=============================================================
                                                         // Events [32-63] are used ONLY FOR PMODE=0(per-cluster DTE mode):
                                                           - 32: \#cycles a specific cluster-DTE remains active(valid state)
                                                           - 33: \#cycles a specific cluster-DTE waits for Memory Response Data
                                                           - 34: \#cycles a specific cluster-DTE waits in resource stall state
                                                                  (waiting for packet data or result buffer space)
                                                           - 35: \#cycles a specific cluster-DTE waits in resource pending state
                                                           - 36-63: RESERVED
                                                         //============================================================= */
	uint64_t reserved_6_7                 : 2;
	uint64_t cldte                        : 4;  /**< Performance Counter#0 Cluster DTE Selector
                                                         When DFA_PFC_GCTL[PMODE]=0 (per-cluster DTE), this field
                                                         is used to select/monitor the cluster's DTE# for all events
                                                         associated with Performance Counter#0. */
	uint64_t clnum                        : 2;  /**< Performance Counter#0 Cluster Selector
                                                         When DFA_PFC_GCTL[PMODE]=0 (per-cluster DTE), this field
                                                         is used to select/monitor the cluster# for all events
                                                         associated with Performance Counter#0. */
#else
	uint64_t clnum                        : 2;
	uint64_t cldte                        : 4;
	uint64_t reserved_6_7                 : 2;
	uint64_t evsel                        : 6;
	uint64_t reserved_14_63               : 50;
#endif
	} s;
	struct cvmx_dfa_pfc0_ctl_s            cn63xx;
	struct cvmx_dfa_pfc0_ctl_s            cn63xxp1;
};
typedef union cvmx_dfa_pfc0_ctl cvmx_dfa_pfc0_ctl_t;

/**
 * cvmx_dfa_pfc1_cnt
 *
 * DFA_PFC1_CNT = DFA Performance Counter \#1
 * *FOR INTERNAL USE ONLY*
 * Description:
 */
union cvmx_dfa_pfc1_cnt
{
	uint64_t u64;
	struct cvmx_dfa_pfc1_cnt_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t pfcnt1                       : 64; /**< Performance Counter \#1
                                                         When DFA_PFC_GCTL[CNT1ENA]=1, the event selected
                                                         by DFA_PFC1_CTL[EVSEL] is counted.
                                                         See also DFA_PFC_GCTL[CNT1WCLR] and DFA_PFC_GCTL
                                                         [CNT1RCLR] for special clear count cases available
                                                         for SW data collection. */
#else
	uint64_t pfcnt1                       : 64;
#endif
	} s;
	struct cvmx_dfa_pfc1_cnt_s            cn63xx;
	struct cvmx_dfa_pfc1_cnt_s            cn63xxp1;
};
typedef union cvmx_dfa_pfc1_cnt cvmx_dfa_pfc1_cnt_t;

/**
 * cvmx_dfa_pfc1_ctl
 *
 * DFA_PFC1_CTL = DFA Performance Counter#1 Control
 * *FOR INTERNAL USE ONLY*
 * Description:
 */
union cvmx_dfa_pfc1_ctl
{
	uint64_t u64;
	struct cvmx_dfa_pfc1_ctl_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_14_63               : 50;
	uint64_t evsel                        : 6;  /**< Performance Counter#1 Event Selector
                                                         - 0:  \#Cycles
                                                         - 1:  \#LDNODE visits
                                                         - 2:  \#SDNODE visits
                                                         - 3:  \#DNODE visits (LD/SD)
                                                         - 4:  \#LCNODE visits
                                                         - 5:  \#SCNODE visits
                                                         - 6:  \#CNODE visits (LC/SC)
                                                         - 7:  \#LMNODE visits
                                                         - 8:  \#SMNODE visits
                                                         - 9:  \#MNODE visits (LM/SM)
                                                          - 10: \#MONODE visits
                                                          - 11: \#CACHE visits (DNODE,CNODE) exc: CNDRD,MPHIDX
                                                          - 12: \#CACHE visits (DNODE,CNODE)+(CNDRD,MPHIDX)
                                                          - 13: \#MEMORY visits (MNODE+MONODE)
                                                          - 14: \#CNDRDs detected (occur for SCNODE->*MNODE transitions)
                                                          - 15: \#MPHIDX detected (occur for ->LMNODE transitions)
                                                          - 16: \#RESCANs detected (occur when HASH collision is detected)
                                                          - 17: \#GWALK STALLs detected - Packet data/Result Buffer
                                                          - 18: \#GWALK DTE cycles (all DTE-GNT[3a])
                                                          - 19: \#CLOAD DTE cycles
                                                          - 20: \#MLOAD DTE cycles
                                                          - 21: \#cycles waiting for Memory Response Data
                                                          - 22: \#cycles waiting in resource stall state (waiting for packet data or result buffer space)
                                                          - 23: \#cycles waiting in resource pending state
                                                          - 24: \#RWORD1+ writes
                                                          - 25: \#DTE-VLD cycles
                                                          - 26: \#DTE Transitions detected (see DFA_PFC_GCTL[SNODE,ENODE] registers
                                                          - 27: \#GWALK Instructions
                                                          - 28: \#CLOAD Instructions
                                                          - 29: \#MLOAD Instructions
                                                          - 30: \#GFREE Instructions (== \#GFREE DTE cycles)
                                                          - 31: RESERVED
                                                          - 32: \#DTE-Busy cycles (ALL DTE-GNT strobes) */
	uint64_t reserved_6_7                 : 2;
	uint64_t cldte                        : 4;  /**< Performance Counter#1 Cluster DTE Selector
                                                         When DFA_PFC_GCTL[PMODE]=0 (per-cluster DTE), this field
                                                         is used to select/monitor the cluster's DTE# for all events
                                                         associated with Performance Counter#1. */
	uint64_t clnum                        : 2;  /**< Performance Counter#1 Cluster Selector
                                                         When DFA_PFC_GCTL[PMODE]=0 (per-cluster DTE), this field
                                                         is used to select/monitor the cluster# for all events
                                                         associated with Performance Counter#1. */
#else
	uint64_t clnum                        : 2;
	uint64_t cldte                        : 4;
	uint64_t reserved_6_7                 : 2;
	uint64_t evsel                        : 6;
	uint64_t reserved_14_63               : 50;
#endif
	} s;
	struct cvmx_dfa_pfc1_ctl_s            cn63xx;
	struct cvmx_dfa_pfc1_ctl_s            cn63xxp1;
};
typedef union cvmx_dfa_pfc1_ctl cvmx_dfa_pfc1_ctl_t;

/**
 * cvmx_dfa_pfc2_cnt
 *
 * DFA_PFC2_CNT = DFA Performance Counter \#2
 * *FOR INTERNAL USE ONLY*
 * Description:
 */
union cvmx_dfa_pfc2_cnt
{
	uint64_t u64;
	struct cvmx_dfa_pfc2_cnt_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t pfcnt2                       : 64; /**< Performance Counter \#2
                                                         When DFA_PFC_GCTL[CNT2ENA]=1, the event selected
                                                         by DFA_PFC2_CTL[EVSEL] is counted.
                                                         See also DFA_PFC_GCTL[CNT2WCLR] and DFA_PFC_GCTL
                                                         [CNT2RCLR] for special clear count cases available
                                                         for SW data collection. */
#else
	uint64_t pfcnt2                       : 64;
#endif
	} s;
	struct cvmx_dfa_pfc2_cnt_s            cn63xx;
	struct cvmx_dfa_pfc2_cnt_s            cn63xxp1;
};
typedef union cvmx_dfa_pfc2_cnt cvmx_dfa_pfc2_cnt_t;

/**
 * cvmx_dfa_pfc2_ctl
 *
 * DFA_PFC2_CTL = DFA Performance Counter#2 Control
 * *FOR INTERNAL USE ONLY*
 * Description:
 */
union cvmx_dfa_pfc2_ctl
{
	uint64_t u64;
	struct cvmx_dfa_pfc2_ctl_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_14_63               : 50;
	uint64_t evsel                        : 6;  /**< Performance Counter#2 Event Selector
                                                         - 0:  \#Cycles
                                                         - 1:  \#LDNODE visits
                                                         - 2:  \#SDNODE visits
                                                         - 3:  \#DNODE visits (LD/SD)
                                                         - 4:  \#LCNODE visits
                                                         - 5:  \#SCNODE visits
                                                         - 6:  \#CNODE visits (LC/SC)
                                                         - 7:  \#LMNODE visits
                                                         - 8:  \#SMNODE visits
                                                         - 9:  \#MNODE visits (LM/SM)
                                                          - 10: \#MONODE visits
                                                          - 11: \#CACHE visits (DNODE,CNODE) exc: CNDRD,MPHIDX
                                                          - 12: \#CACHE visits (DNODE,CNODE)+(CNDRD,MPHIDX)
                                                          - 13: \#MEMORY visits (MNODE+MONODE)
                                                          - 14: \#CNDRDs detected (occur for SCNODE->*MNODE transitions)
                                                          - 15: \#MPHIDX detected (occur for ->LMNODE transitions)
                                                          - 16: \#RESCANs detected (occur when HASH collision is detected)
                                                          - 17: \#GWALK STALLs detected - Packet data/Result Buffer
                                                          - 18: \#GWALK DTE cycles (all DTE-GNT[3a])
                                                          - 19: \#CLOAD DTE cycles
                                                          - 20: \#MLOAD DTE cycles
                                                          - 21: \#cycles waiting for Memory Response Data
                                                          - 22: \#cycles waiting in resource stall state (waiting for packet data or result buffer space)
                                                          - 23: \#cycles waiting in resource pending state
                                                          - 24: \#RWORD1+ writes
                                                          - 25: \#DTE-VLD cycles
                                                          - 26: \#DTE Transitions detected (see DFA_PFC_GCTL[SNODE,ENODE] registers
                                                          - 27: \#GWALK Instructions
                                                          - 28: \#CLOAD Instructions
                                                          - 29: \#MLOAD Instructions
                                                          - 30: \#GFREE Instructions (== \#GFREE DTE cycles)
                                                          - 31: RESERVED
                                                          - 32: \#DTE-Busy cycles (ALL DTE-GNT strobes) */
	uint64_t reserved_6_7                 : 2;
	uint64_t cldte                        : 4;  /**< Performance Counter#2 Cluster DTE Selector
                                                         When DFA_PFC_GCTL[PMODE]=0 (per-cluster DTE), this field
                                                         is used to select/monitor the cluster's DTE# for all events
                                                         associated with Performance Counter#2. */
	uint64_t clnum                        : 2;  /**< Performance Counter#2 Cluster Selector
                                                         When DFA_PFC_GCTL[PMODE]=0 (per-cluster DTE), this field
                                                         is used to select/monitor the cluster# for all events
                                                         associated with Performance Counter#2. */
#else
	uint64_t clnum                        : 2;
	uint64_t cldte                        : 4;
	uint64_t reserved_6_7                 : 2;
	uint64_t evsel                        : 6;
	uint64_t reserved_14_63               : 50;
#endif
	} s;
	struct cvmx_dfa_pfc2_ctl_s            cn63xx;
	struct cvmx_dfa_pfc2_ctl_s            cn63xxp1;
};
typedef union cvmx_dfa_pfc2_ctl cvmx_dfa_pfc2_ctl_t;

/**
 * cvmx_dfa_pfc3_cnt
 *
 * DFA_PFC3_CNT = DFA Performance Counter \#3
 * *FOR INTERNAL USE ONLY*
 * Description:
 */
union cvmx_dfa_pfc3_cnt
{
	uint64_t u64;
	struct cvmx_dfa_pfc3_cnt_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t pfcnt3                       : 64; /**< Performance Counter \#3
                                                         When DFA_PFC_GCTL[CNT3ENA]=1, the event selected
                                                         by DFA_PFC3_CTL[EVSEL] is counted.
                                                         See also DFA_PFC_GCTL[CNT3WCLR] and DFA_PFC_GCTL
                                                         [CNT3RCLR] for special clear count cases available
                                                         for SW data collection. */
#else
	uint64_t pfcnt3                       : 64;
#endif
	} s;
	struct cvmx_dfa_pfc3_cnt_s            cn63xx;
	struct cvmx_dfa_pfc3_cnt_s            cn63xxp1;
};
typedef union cvmx_dfa_pfc3_cnt cvmx_dfa_pfc3_cnt_t;

/**
 * cvmx_dfa_pfc3_ctl
 *
 * DFA_PFC3_CTL = DFA Performance Counter#3 Control
 * *FOR INTERNAL USE ONLY*
 * Description:
 */
union cvmx_dfa_pfc3_ctl
{
	uint64_t u64;
	struct cvmx_dfa_pfc3_ctl_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_14_63               : 50;
	uint64_t evsel                        : 6;  /**< Performance Counter#3 Event Selector
                                                         - 0:  \#Cycles
                                                         - 1:  \#LDNODE visits
                                                         - 2:  \#SDNODE visits
                                                         - 3:  \#DNODE visits (LD/SD)
                                                         - 4:  \#LCNODE visits
                                                         - 5:  \#SCNODE visits
                                                         - 6:  \#CNODE visits (LC/SC)
                                                         - 7:  \#LMNODE visits
                                                         - 8:  \#SMNODE visits
                                                         - 9:  \#MNODE visits (LM/SM)
                                                          - 10: \#MONODE visits
                                                          - 11: \#CACHE visits (DNODE,CNODE) exc: CNDRD,MPHIDX
                                                          - 12: \#CACHE visits (DNODE,CNODE)+(CNDRD,MPHIDX)
                                                          - 13: \#MEMORY visits (MNODE+MONODE)
                                                          - 14: \#CNDRDs detected (occur for SCNODE->*MNODE transitions)
                                                          - 15: \#MPHIDX detected (occur for ->LMNODE transitions)
                                                          - 16: \#RESCANs detected (occur when HASH collision is detected)
                                                          - 17: \#GWALK STALLs detected - Packet data/Result Buffer
                                                          - 18: \#GWALK DTE cycles (all DTE-GNT[3a])
                                                          - 19: \#CLOAD DTE cycles
                                                          - 20: \#MLOAD DTE cycles
                                                          - 21: \#cycles waiting for Memory Response Data
                                                          - 22: \#cycles waiting in resource stall state (waiting for packet data or result buffer space)
                                                          - 23: \#cycles waiting in resource pending state
                                                          - 24: \#RWORD1+ writes
                                                          - 25: \#DTE-VLD cycles
                                                          - 26: \#DTE Transitions detected (see DFA_PFC_GCTL[SNODE,ENODE] registers
                                                          - 27: \#GWALK Instructions
                                                          - 28: \#CLOAD Instructions
                                                          - 29: \#MLOAD Instructions
                                                          - 30: \#GFREE Instructions (== \#GFREE DTE cycles)
                                                          - 31: RESERVED
                                                          - 32: \#DTE-Busy cycles (ALL DTE-GNT strobes) */
	uint64_t reserved_6_7                 : 2;
	uint64_t cldte                        : 4;  /**< Performance Counter#3 Cluster DTE Selector
                                                         When DFA_PFC_GCTL[PMODE]=0 (per-cluster DTE), this field
                                                         is used to select/monitor the cluster's DTE# for all events
                                                         associated with Performance Counter#3. */
	uint64_t clnum                        : 2;  /**< Performance Counter#3 Cluster Selector
                                                         When DFA_PFC_GCTL[PMODE]=0 (per-cluster DTE), this field
                                                         is used to select/monitor the cluster# for all events
                                                         associated with Performance Counter#3. */
#else
	uint64_t clnum                        : 2;
	uint64_t cldte                        : 4;
	uint64_t reserved_6_7                 : 2;
	uint64_t evsel                        : 6;
	uint64_t reserved_14_63               : 50;
#endif
	} s;
	struct cvmx_dfa_pfc3_ctl_s            cn63xx;
	struct cvmx_dfa_pfc3_ctl_s            cn63xxp1;
};
typedef union cvmx_dfa_pfc3_ctl cvmx_dfa_pfc3_ctl_t;

/**
 * cvmx_dfa_pfc_gctl
 *
 * DFA_PFC_GCTL = DFA Performance Counter Global Control
 * *FOR INTERNAL USE ONLY*
 * Description:
 */
union cvmx_dfa_pfc_gctl
{
	uint64_t u64;
	struct cvmx_dfa_pfc_gctl_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_29_63               : 35;
	uint64_t vgid                         : 8;  /**< Virtual Graph Id#
                                                         When PMODE=1(per-graph selector), this field is used
                                                         to select/monitor only those events which are
                                                         associated with this selected VGID(virtual graph ID).
                                                         This field is used globally across all four performance
                                                         counters.
                                                         IMPNOTE: I implemented a global VGID across all 4 performance
                                                         counters to save wires/area. */
	uint64_t pmode                        : 1;  /**< Select Mode
                                                         - 0: Events are selected on a per-cluster DTE# (CLNUM/CLDTE)
                                                          DFA_PFCx_CTL[CLNUM,CLDTE] specifies the cluster-DTE for
                                                          each 1(of 4) performance counters.
                                                         - 1: Events are selected on a per-graph basis (VGID=virtual Graph ID).
                                                          NOTE: Only EVSEL=[0...31] can be used in conjunction with PMODE=1.
                                                          DFA_PFC_GCTL[VGID] specifies the Virtual graph ID used across
                                                          all four performance counters. */
	uint64_t ednode                       : 2;  /**< Ending DNODE Selector
                                                         When ENODE=0/1(*DNODE), this field is used to further
                                                         specify the Ending DNODE transition sub-type:
                                                           - 0: ALL DNODE sub-types
                                                           - 1: ->D2e (explicit DNODE transition node-arc alone transitions to DNODE)
                                                           - 2: ->D2i (implicit DNODE transition:arc-present triggers transition)
                                                           - 3: ->D1r (rescan DNODE transition) */
	uint64_t enode                        : 3;  /**< Ending Node Selector
                                                         When DFA_PFCx_CTL[EVSEL]=Node Transition(31), the ENODE
                                                         field is used to select Ending Node, and the SNODE
                                                         field is used to select the Starting Node.
                                                          - 0: LDNODE
                                                          - 1: SDNODE
                                                          - 2: LCNODE
                                                          - 3: SCNODE
                                                          - 4: LMNODE
                                                          - 5: SMNODE
                                                          - 6: MONODE
                                                          - 7: RESERVED */
	uint64_t snode                        : 3;  /**< Starting Node Selector
                                                         When DFA_PFCx_CTL[EVSEL]=Node Transition(31), the SNODE
                                                         field is used to select Starting Node, and the ENODE
                                                         field is used to select the Ending Node.
                                                          - 0: LDNODE
                                                          - 1: SDNODE
                                                          - 2: LCNODE
                                                          - 3: SCNODE
                                                          - 4: LMNODE
                                                          - 5: SMNODE
                                                          - 6: MONODE
                                                          - 7: RESERVED */
	uint64_t cnt3rclr                     : 1;  /**< Performance Counter \#3 Read Clear
                                                         If this bit is set, CSR reads to the DFA_PFC3_CNT
                                                         will clear the count value. This allows SW to maintain
                                                         'cumulative' counters to avoid HW wraparound. */
	uint64_t cnt2rclr                     : 1;  /**< Performance Counter \#2 Read Clear
                                                         If this bit is set, CSR reads to the DFA_PFC2_CNT
                                                         will clear the count value. This allows SW to maintain
                                                         'cumulative' counters to avoid HW wraparound. */
	uint64_t cnt1rclr                     : 1;  /**< Performance Counter \#1 Read Clear
                                                         If this bit is set, CSR reads to the DFA_PFC1_CNT
                                                         will clear the count value. This allows SW to maintain
                                                         'cumulative' counters to avoid HW wraparound. */
	uint64_t cnt0rclr                     : 1;  /**< Performance Counter \#0 Read Clear
                                                         If this bit is set, CSR reads to the DFA_PFC0_CNT
                                                         will clear the count value. This allows SW to maintain
                                                         'cumulative' counters to avoid HW wraparound. */
	uint64_t cnt3wclr                     : 1;  /**< Performance Counter \#3 Write Clear
                                                         If this bit is set, CSR writes to the DFA_PFC3_CNT
                                                         will clear the count value.
                                                         If this bit is clear, CSR writes to the DFA_PFC3_CNT
                                                         will continue the count from the written value. */
	uint64_t cnt2wclr                     : 1;  /**< Performance Counter \#2 Write Clear
                                                         If this bit is set, CSR writes to the DFA_PFC2_CNT
                                                         will clear the count value.
                                                         If this bit is clear, CSR writes to the DFA_PFC2_CNT
                                                         will continue the count from the written value. */
	uint64_t cnt1wclr                     : 1;  /**< Performance Counter \#1 Write Clear
                                                         If this bit is set, CSR writes to the DFA_PFC1_CNT
                                                         will clear the count value.
                                                         If this bit is clear, CSR writes to the DFA_PFC1_CNT
                                                         will continue the count from the written value. */
	uint64_t cnt0wclr                     : 1;  /**< Performance Counter \#0 Write Clear
                                                         If this bit is set, CSR writes to the DFA_PFC0_CNT
                                                         will clear the count value.
                                                         If this bit is clear, CSR writes to the DFA_PFC0_CNT
                                                         will continue the count from the written value. */
	uint64_t cnt3ena                      : 1;  /**< Performance Counter 3 Enable
                                                         When this bit is set, the performance counter \#3
                                                         is enabled. */
	uint64_t cnt2ena                      : 1;  /**< Performance Counter 2 Enable
                                                         When this bit is set, the performance counter \#2
                                                         is enabled. */
	uint64_t cnt1ena                      : 1;  /**< Performance Counter 1 Enable
                                                         When this bit is set, the performance counter \#1
                                                         is enabled. */
	uint64_t cnt0ena                      : 1;  /**< Performance Counter 0 Enable
                                                         When this bit is set, the performance counter \#0
                                                         is enabled. */
#else
	uint64_t cnt0ena                      : 1;
	uint64_t cnt1ena                      : 1;
	uint64_t cnt2ena                      : 1;
	uint64_t cnt3ena                      : 1;
	uint64_t cnt0wclr                     : 1;
	uint64_t cnt1wclr                     : 1;
	uint64_t cnt2wclr                     : 1;
	uint64_t cnt3wclr                     : 1;
	uint64_t cnt0rclr                     : 1;
	uint64_t cnt1rclr                     : 1;
	uint64_t cnt2rclr                     : 1;
	uint64_t cnt3rclr                     : 1;
	uint64_t snode                        : 3;
	uint64_t enode                        : 3;
	uint64_t ednode                       : 2;
	uint64_t pmode                        : 1;
	uint64_t vgid                         : 8;
	uint64_t reserved_29_63               : 35;
#endif
	} s;
	struct cvmx_dfa_pfc_gctl_s            cn63xx;
	struct cvmx_dfa_pfc_gctl_s            cn63xxp1;
};
typedef union cvmx_dfa_pfc_gctl cvmx_dfa_pfc_gctl_t;

/**
 * cvmx_dfa_rodt_comp_ctl
 *
 * DFA_RODT_COMP_CTL = DFA RLD Compensation control (For read "on die termination")
 *
 */
union cvmx_dfa_rodt_comp_ctl
{
	uint64_t u64;
	struct cvmx_dfa_rodt_comp_ctl_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t reserved_17_63               : 47;
	uint64_t enable                       : 1;  /**< Read On Die Termination Enable
                                                         (0=disable, 1=enable) */
	uint64_t reserved_12_15               : 4;
	uint64_t nctl                         : 4;  /**< Compensation control bits */
	uint64_t reserved_5_7                 : 3;
	uint64_t pctl                         : 5;  /**< Compensation control bits */
#else
	uint64_t pctl                         : 5;
	uint64_t reserved_5_7                 : 3;
	uint64_t nctl                         : 4;
	uint64_t reserved_12_15               : 4;
	uint64_t enable                       : 1;
	uint64_t reserved_17_63               : 47;
#endif
	} s;
	struct cvmx_dfa_rodt_comp_ctl_s       cn58xx;
	struct cvmx_dfa_rodt_comp_ctl_s       cn58xxp1;
};
typedef union cvmx_dfa_rodt_comp_ctl cvmx_dfa_rodt_comp_ctl_t;

/**
 * cvmx_dfa_sbd_dbg0
 *
 * DFA_SBD_DBG0 = DFA Scoreboard Debug \#0 Register
 *
 * Description: When the DFA_NCBCTL[SBDLCK] bit is written '1', the contents of this register are locked down.
 * Otherwise, the contents of this register are the 'active' contents of the DFA Scoreboard at the time of the
 * CSR read.
 * VERIFICATION NOTE: Read data is unsafe. X's(undefined data) can propagate (in the behavioral model)
 * on the reads unless the DTE Engine specified by DFA_NCBCTL[SBDNUM] has previously been assigned an
 * instruction.
 */
union cvmx_dfa_sbd_dbg0
{
	uint64_t u64;
	struct cvmx_dfa_sbd_dbg0_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t sbd0                         : 64; /**< DFA ScoreBoard \#0 Data
                                                         For internal use only! (DFA Scoreboard Debug)
                                                         [63:40] rptr[26:3]: Result Base Pointer
                                                         [39:24] rwcnt[15:0] Cumulative Result Write Counter
                                                         [23]    lastgrdrsp: Last Gather-Rd Response
                                                         [22]    wtgrdrsp: Waiting Gather-Rd Response
                                                         [21]    wtgrdreq: Waiting for Gather-Rd Issue
                                                         [20]    glvld: GLPTR/GLCNT Valid
                                                         [19]    cmpmark: Completion Marked Node Detected
                                                         [18:17] cmpcode[1:0]: Completion Code
                                                                       [0=PDGONE/1=PERR/2=RFULL/3=TERM]
                                                         [16]    cmpdet: Completion Detected
                                                         [15]    wthdrwrcmtrsp: Waiting for HDR RWrCmtRsp
                                                         [14]    wtlastwrcmtrsp: Waiting for LAST RESULT
                                                                       RWrCmtRsp
                                                         [13]    hdrwrreq: Waiting for HDR RWrReq
                                                         [12]    wtrwrreq: Waiting for RWrReq
                                                         [11]    wtwqwrreq: Waiting for WQWrReq issue
                                                         [10]    lastprdrspeot: Last Packet-Rd Response
                                                         [9]     lastprdrsp: Last Packet-Rd Response
                                                         [8]     wtprdrsp:  Waiting for PRdRsp EOT
                                                         [7]     wtprdreq: Waiting for PRdReq Issue
                                                         [6]     lastpdvld: PDPTR/PDLEN Valid
                                                         [5]     pdvld: Packet Data Valid
                                                         [4]     wqvld: WQVLD
                                                         [3]     wqdone: WorkQueue Done condition
                                                                       a) WQWrReq issued(for WQPTR<>0) OR
                                                                       b) HDR RWrCmtRsp completed)
                                                         [2]     rwstf: Resultant write STF/P Mode
                                                         [1]     pdldt: Packet-Data LDT mode
                                                         [0]     gmode: Gather-Mode */
#else
	uint64_t sbd0                         : 64;
#endif
	} s;
	struct cvmx_dfa_sbd_dbg0_s            cn31xx;
	struct cvmx_dfa_sbd_dbg0_s            cn38xx;
	struct cvmx_dfa_sbd_dbg0_s            cn38xxp2;
	struct cvmx_dfa_sbd_dbg0_s            cn58xx;
	struct cvmx_dfa_sbd_dbg0_s            cn58xxp1;
};
typedef union cvmx_dfa_sbd_dbg0 cvmx_dfa_sbd_dbg0_t;

/**
 * cvmx_dfa_sbd_dbg1
 *
 * DFA_SBD_DBG1 = DFA Scoreboard Debug \#1 Register
 *
 * Description: When the DFA_NCBCTL[SBDLCK] bit is written '1', the contents of this register are locked down.
 * Otherwise, the contents of this register are the 'active' contents of the DFA Scoreboard at the time of the
 * CSR read.
 * VERIFICATION NOTE: Read data is unsafe. X's(undefined data) can propagate (in the behavioral model)
 * on the reads unless the DTE Engine specified by DFA_NCBCTL[SBDNUM] has previously been assigned an
 * instruction.
 */
union cvmx_dfa_sbd_dbg1
{
	uint64_t u64;
	struct cvmx_dfa_sbd_dbg1_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t sbd1                         : 64; /**< DFA ScoreBoard \#1 Data
                                                         For internal use only! (DFA Scoreboard Debug)
                                                         [63:61] wqptr[35:33]: Work Queue Pointer
                                                         [60:52] rptr[35:27]: Result Base Pointer
                                                         [51:16] pdptr[35:0]: Packet Data Pointer
                                                         [15:0]  pdcnt[15:0]: Packet Data Counter */
#else
	uint64_t sbd1                         : 64;
#endif
	} s;
	struct cvmx_dfa_sbd_dbg1_s            cn31xx;
	struct cvmx_dfa_sbd_dbg1_s            cn38xx;
	struct cvmx_dfa_sbd_dbg1_s            cn38xxp2;
	struct cvmx_dfa_sbd_dbg1_s            cn58xx;
	struct cvmx_dfa_sbd_dbg1_s            cn58xxp1;
};
typedef union cvmx_dfa_sbd_dbg1 cvmx_dfa_sbd_dbg1_t;

/**
 * cvmx_dfa_sbd_dbg2
 *
 * DFA_SBD_DBG2 = DFA Scoreboard Debug \#2 Register
 *
 * Description: When the DFA_NCBCTL[SBDLCK] bit is written '1', the contents of this register are locked down.
 * Otherwise, the contents of this register are the 'active' contents of the DFA Scoreboard at the time of the
 * CSR read.
 * VERIFICATION NOTE: Read data is unsafe. X's(undefined data) can propagate (in the behavioral model)
 * on the reads unless the DTE Engine specified by DFA_NCBCTL[SBDNUM] has previously been assigned an
 * instruction.
 */
union cvmx_dfa_sbd_dbg2
{
	uint64_t u64;
	struct cvmx_dfa_sbd_dbg2_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t sbd2                         : 64; /**< DFA ScoreBoard \#2 Data
                                                         [63:49] wqptr[17:3]: Work Queue Pointer
                                                         [48:16] rwptr[35:3]: Result Write Pointer
                                                         [15:0]  prwcnt[15:0]: Pending Result Write Counter */
#else
	uint64_t sbd2                         : 64;
#endif
	} s;
	struct cvmx_dfa_sbd_dbg2_s            cn31xx;
	struct cvmx_dfa_sbd_dbg2_s            cn38xx;
	struct cvmx_dfa_sbd_dbg2_s            cn38xxp2;
	struct cvmx_dfa_sbd_dbg2_s            cn58xx;
	struct cvmx_dfa_sbd_dbg2_s            cn58xxp1;
};
typedef union cvmx_dfa_sbd_dbg2 cvmx_dfa_sbd_dbg2_t;

/**
 * cvmx_dfa_sbd_dbg3
 *
 * DFA_SBD_DBG3 = DFA Scoreboard Debug \#3 Register
 *
 * Description: When the DFA_NCBCTL[SBDLCK] bit is written '1', the contents of this register are locked down.
 * Otherwise, the contents of this register are the 'active' contents of the DFA Scoreboard at the time of the
 * CSR read.
 * VERIFICATION NOTE: Read data is unsafe. X's(undefined data) can propagate (in the behavioral model)
 * on the reads unless the DTE Engine specified by DFA_NCBCTL[SBDNUM] has previously been assigned an
 * instruction.
 */
union cvmx_dfa_sbd_dbg3
{
	uint64_t u64;
	struct cvmx_dfa_sbd_dbg3_s
	{
#if __BYTE_ORDER == __BIG_ENDIAN
	uint64_t sbd3                         : 64; /**< DFA ScoreBoard \#3 Data
                                                         [63:49] wqptr[32:18]: Work Queue Pointer
                                                         [48:16] glptr[35:3]: Gather List Pointer
                                                         [15:0]  glcnt[15:0]: Gather List Counter */
#else
	uint64_t sbd3                         : 64;
#endif
	} s;
	struct cvmx_dfa_sbd_dbg3_s            cn31xx;
	struct cvmx_dfa_sbd_dbg3_s            cn38xx;
	struct cvmx_dfa_sbd_dbg3_s            cn38xxp2;
	struct cvmx_dfa_sbd_dbg3_s            cn58xx;
	struct cvmx_dfa_sbd_dbg3_s            cn58xxp1;
};
typedef union cvmx_dfa_sbd_dbg3 cvmx_dfa_sbd_dbg3_t;

#endif