aboutsummaryrefslogtreecommitdiff
path: root/dnscrypt/dnscrypt.c
blob: a0db120770938b1e51a46f824cc8083717c5733c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053

#include "config.h"
#include <stdlib.h>
#include <fcntl.h>
#ifdef HAVE_TIME_H
#include <time.h>
#endif
#include <sys/time.h>
#include <sys/types.h>
#include "sldns/sbuffer.h"
#include "util/config_file.h"
#include "util/net_help.h"
#include "util/netevent.h"
#include "util/log.h"
#include "util/storage/slabhash.h"
#include "util/storage/lookup3.h"

#include "dnscrypt/cert.h"
#include "dnscrypt/dnscrypt.h"
#include "dnscrypt/dnscrypt_config.h"

#include <ctype.h>


/**
 * \file
 * dnscrypt functions for encrypting DNS packets.
 */

#define DNSCRYPT_QUERY_BOX_OFFSET \
    (DNSCRYPT_MAGIC_HEADER_LEN + crypto_box_PUBLICKEYBYTES + \
    crypto_box_HALF_NONCEBYTES)

//  8 bytes: magic header (CERT_MAGIC_HEADER)
// 12 bytes: the client's nonce
// 12 bytes: server nonce extension
// 16 bytes: Poly1305 MAC (crypto_box_ZEROBYTES - crypto_box_BOXZEROBYTES)

#define DNSCRYPT_REPLY_BOX_OFFSET \
    (DNSCRYPT_MAGIC_HEADER_LEN + crypto_box_HALF_NONCEBYTES + \
    crypto_box_HALF_NONCEBYTES)


/**
 * Shared secret cache key length.
 * secret key.
 * 1 byte: ES_VERSION[1]
 * 32 bytes: client crypto_box_PUBLICKEYBYTES
 * 32 bytes: server crypto_box_SECRETKEYBYTES
 */
#define DNSCRYPT_SHARED_SECRET_KEY_LENGTH \
    (1 + crypto_box_PUBLICKEYBYTES + crypto_box_SECRETKEYBYTES)


struct shared_secret_cache_key {
    /** the hash table key */
    uint8_t key[DNSCRYPT_SHARED_SECRET_KEY_LENGTH];
    /** the hash table entry, data is uint8_t pointer of size crypto_box_BEFORENMBYTES which contains the shared secret. */
    struct lruhash_entry entry;
};


struct nonce_cache_key {
    /** the nonce used by the client */
    uint8_t nonce[crypto_box_HALF_NONCEBYTES];
    /** the client_magic used by the client, this is associated to 1 cert only */
    uint8_t magic_query[DNSCRYPT_MAGIC_HEADER_LEN];
    /** the client public key */
    uint8_t client_publickey[crypto_box_PUBLICKEYBYTES];
    /** the hash table entry, data is uint8_t */
    struct lruhash_entry entry;
};

/**
 * Generate a key suitable to find shared secret in slabhash.
 * \param[in] key: a uint8_t pointer of size DNSCRYPT_SHARED_SECRET_KEY_LENGTH
 * \param[in] esversion: The es version least significant byte.
 * \param[in] pk: The public key of the client. uint8_t pointer of size
 * crypto_box_PUBLICKEYBYTES.
 * \param[in] sk: The secret key of the server matching the magic query number.
 * uint8_t pointer of size crypto_box_SECRETKEYBYTES.
 * \return the hash of the key.
 */
static uint32_t
dnsc_shared_secrets_cache_key(uint8_t* key,
                              uint8_t esversion,
                              uint8_t* pk,
                              uint8_t* sk)
{
    key[0] = esversion;
    memcpy(key + 1, pk, crypto_box_PUBLICKEYBYTES);
    memcpy(key + 1 + crypto_box_PUBLICKEYBYTES, sk, crypto_box_SECRETKEYBYTES);
    return hashlittle(key, DNSCRYPT_SHARED_SECRET_KEY_LENGTH, 0);
}

/**
 * Inserts a shared secret into the shared_secrets_cache slabhash.
 * The shared secret is copied so the caller can use it freely without caring
 * about the cache entry being evicted or not.
 * \param[in] cache: the slabhash in which to look for the key.
 * \param[in] key: a uint8_t pointer of size DNSCRYPT_SHARED_SECRET_KEY_LENGTH
 * which contains the key of the shared secret.
 * \param[in] hash: the hash of the key.
 * \param[in] nmkey: a uint8_t pointer of size crypto_box_BEFORENMBYTES which
 * contains the shared secret.
 */
static void
dnsc_shared_secret_cache_insert(struct slabhash *cache,
                                uint8_t key[DNSCRYPT_SHARED_SECRET_KEY_LENGTH],
                                uint32_t hash,
                                uint8_t nmkey[crypto_box_BEFORENMBYTES])
{
    struct shared_secret_cache_key* k =
        (struct shared_secret_cache_key*)calloc(1, sizeof(*k));
    uint8_t* d = malloc(crypto_box_BEFORENMBYTES);
    if(!k || !d) {
        free(k);
        free(d);
        return;
    }
    memcpy(d, nmkey, crypto_box_BEFORENMBYTES);
    lock_rw_init(&k->entry.lock);
    memcpy(k->key, key, DNSCRYPT_SHARED_SECRET_KEY_LENGTH);
    k->entry.hash = hash;
    k->entry.key = k;
    k->entry.data = d;
    slabhash_insert(cache,
                    hash, &k->entry,
                    d,
                    NULL);
}

/**
 * Lookup a record in shared_secrets_cache.
 * \param[in] cache: a pointer to shared_secrets_cache slabhash.
 * \param[in] key: a uint8_t pointer of size DNSCRYPT_SHARED_SECRET_KEY_LENGTH
 * containing the key to look for.
 * \param[in] hash: a hash of the key.
 * \return a pointer to the locked cache entry or NULL on failure.
 */
static struct lruhash_entry*
dnsc_shared_secrets_lookup(struct slabhash* cache,
                           uint8_t key[DNSCRYPT_SHARED_SECRET_KEY_LENGTH],
                           uint32_t hash)
{
    return slabhash_lookup(cache, hash, key, 0);
}

/**
 * Generate a key hash suitable to find a nonce in slabhash.
 * \param[in] nonce: a uint8_t pointer of size crypto_box_HALF_NONCEBYTES
 * \param[in] magic_query: a uint8_t pointer of size DNSCRYPT_MAGIC_HEADER_LEN
 * \param[in] pk: The public key of the client. uint8_t pointer of size
 * crypto_box_PUBLICKEYBYTES.
 * \return the hash of the key.
 */
static uint32_t
dnsc_nonce_cache_key_hash(const uint8_t nonce[crypto_box_HALF_NONCEBYTES],
                          const uint8_t magic_query[DNSCRYPT_MAGIC_HEADER_LEN],
                          const uint8_t pk[crypto_box_PUBLICKEYBYTES])
{
    uint32_t h = 0;
    h = hashlittle(nonce, crypto_box_HALF_NONCEBYTES, h);
    h = hashlittle(magic_query, DNSCRYPT_MAGIC_HEADER_LEN, h);
    return hashlittle(pk, crypto_box_PUBLICKEYBYTES, h);
}

/**
 * Inserts a nonce, magic_query, pk tuple into the nonces_cache slabhash.
 * \param[in] cache: the slabhash in which to look for the key.
 * \param[in] nonce: a uint8_t pointer of size crypto_box_HALF_NONCEBYTES
 * \param[in] magic_query: a uint8_t pointer of size DNSCRYPT_MAGIC_HEADER_LEN
 * \param[in] pk: The public key of the client. uint8_t pointer of size
 * crypto_box_PUBLICKEYBYTES.
 * \param[in] hash: the hash of the key.
 */
static void
dnsc_nonce_cache_insert(struct slabhash *cache,
                        const uint8_t nonce[crypto_box_HALF_NONCEBYTES],
                        const uint8_t magic_query[DNSCRYPT_MAGIC_HEADER_LEN],
                        const uint8_t pk[crypto_box_PUBLICKEYBYTES],
                        uint32_t hash)
{
    struct nonce_cache_key* k =
        (struct nonce_cache_key*)calloc(1, sizeof(*k));
    if(!k) {
        free(k);
        return;
    }
    lock_rw_init(&k->entry.lock);
    memcpy(k->nonce, nonce, crypto_box_HALF_NONCEBYTES);
    memcpy(k->magic_query, magic_query, DNSCRYPT_MAGIC_HEADER_LEN);
    memcpy(k->client_publickey, pk, crypto_box_PUBLICKEYBYTES);
    k->entry.hash = hash;
    k->entry.key = k;
    k->entry.data = NULL;
    slabhash_insert(cache,
                    hash, &k->entry,
                    NULL,
                    NULL);
}

/**
 * Lookup a record in nonces_cache.
 * \param[in] cache: the slabhash in which to look for the key.
 * \param[in] nonce: a uint8_t pointer of size crypto_box_HALF_NONCEBYTES
 * \param[in] magic_query: a uint8_t pointer of size DNSCRYPT_MAGIC_HEADER_LEN
 * \param[in] pk: The public key of the client. uint8_t pointer of size
 * crypto_box_PUBLICKEYBYTES.
 * \param[in] hash: the hash of the key.
 * \return a pointer to the locked cache entry or NULL on failure.
 */
static struct lruhash_entry*
dnsc_nonces_lookup(struct slabhash* cache,
                   const uint8_t nonce[crypto_box_HALF_NONCEBYTES],
                   const uint8_t magic_query[DNSCRYPT_MAGIC_HEADER_LEN],
                   const uint8_t pk[crypto_box_PUBLICKEYBYTES],
                   uint32_t hash)
{
    struct nonce_cache_key k;
    memset(&k, 0, sizeof(k));
    k.entry.hash = hash;
    memcpy(k.nonce, nonce, crypto_box_HALF_NONCEBYTES);
    memcpy(k.magic_query, magic_query, DNSCRYPT_MAGIC_HEADER_LEN);
    memcpy(k.client_publickey, pk, crypto_box_PUBLICKEYBYTES);

    return slabhash_lookup(cache, hash, &k, 0);
}

/**
 * Decrypt a query using the dnsccert that was found using dnsc_find_cert.
 * The client nonce will be extracted from the encrypted query and stored in
 * client_nonce, a shared secret will be computed and stored in nmkey and the
 * buffer will be decrypted inplace.
 * \param[in] env the dnscrypt environment.
 * \param[in] cert the cert that matches this encrypted query.
 * \param[in] client_nonce where the client nonce will be stored.
 * \param[in] nmkey where the shared secret key will be written.
 * \param[in] buffer the encrypted buffer.
 * \return 0 on success.
 */
static int
dnscrypt_server_uncurve(struct dnsc_env* env,
                        const dnsccert *cert,
                        uint8_t client_nonce[crypto_box_HALF_NONCEBYTES],
                        uint8_t nmkey[crypto_box_BEFORENMBYTES],
                        struct sldns_buffer* buffer)
{
    size_t len = sldns_buffer_limit(buffer);
    uint8_t *const buf = sldns_buffer_begin(buffer);
    uint8_t nonce[crypto_box_NONCEBYTES];
    struct dnscrypt_query_header *query_header;
    // shared secret cache
    uint8_t key[DNSCRYPT_SHARED_SECRET_KEY_LENGTH];
    struct lruhash_entry* entry;
    uint32_t hash;

    uint32_t nonce_hash;

    if (len <= DNSCRYPT_QUERY_HEADER_SIZE) {
        return -1;
    }

    query_header = (struct dnscrypt_query_header *)buf;

    /* Detect replay attacks */
    nonce_hash = dnsc_nonce_cache_key_hash(
        query_header->nonce,
        cert->magic_query,
        query_header->publickey);

    lock_basic_lock(&env->nonces_cache_lock);
    entry = dnsc_nonces_lookup(
        env->nonces_cache,
        query_header->nonce,
        cert->magic_query,
        query_header->publickey,
        nonce_hash);

    if(entry) {
        lock_rw_unlock(&entry->lock);
        env->num_query_dnscrypt_replay++;
        lock_basic_unlock(&env->nonces_cache_lock);
        return -1;
    }

    dnsc_nonce_cache_insert(
        env->nonces_cache,
        query_header->nonce,
        cert->magic_query,
        query_header->publickey,
        nonce_hash);
    lock_basic_unlock(&env->nonces_cache_lock);

    /* Find existing shared secret */
    hash = dnsc_shared_secrets_cache_key(key,
                                         cert->es_version[1],
                                         query_header->publickey,
                                         cert->keypair->crypt_secretkey);
    entry = dnsc_shared_secrets_lookup(env->shared_secrets_cache,
                                       key,
                                       hash);

    if(!entry) {
        lock_basic_lock(&env->shared_secrets_cache_lock);
        env->num_query_dnscrypt_secret_missed_cache++;
        lock_basic_unlock(&env->shared_secrets_cache_lock);
        if(cert->es_version[1] == 2) {
#ifdef USE_DNSCRYPT_XCHACHA20
            if (crypto_box_curve25519xchacha20poly1305_beforenm(
                        nmkey, query_header->publickey,
                        cert->keypair->crypt_secretkey) != 0) {
                return -1;
            }
#else
            return -1;
#endif
    } else {
        if (crypto_box_beforenm(nmkey,
                                query_header->publickey,
                                cert->keypair->crypt_secretkey) != 0) {
            return -1;
        }
    }
    // Cache the shared secret we just computed.
    dnsc_shared_secret_cache_insert(env->shared_secrets_cache,
                                    key,
                                    hash,
                                    nmkey);
    } else {
        /* copy shared secret and unlock entry */
        memcpy(nmkey, entry->data, crypto_box_BEFORENMBYTES);
        lock_rw_unlock(&entry->lock);
    }

    memcpy(nonce, query_header->nonce, crypto_box_HALF_NONCEBYTES);
    memset(nonce + crypto_box_HALF_NONCEBYTES, 0, crypto_box_HALF_NONCEBYTES);

    if(cert->es_version[1] == 2) {
#ifdef USE_DNSCRYPT_XCHACHA20
        if (crypto_box_curve25519xchacha20poly1305_open_easy_afternm
                (buf,
                buf + DNSCRYPT_QUERY_BOX_OFFSET,
                len - DNSCRYPT_QUERY_BOX_OFFSET, nonce,
                nmkey) != 0) {
            return -1;
        }
#else
        return -1;
#endif
    } else {
        if (crypto_box_open_easy_afternm
            (buf,
             buf + DNSCRYPT_QUERY_BOX_OFFSET,
             len - DNSCRYPT_QUERY_BOX_OFFSET, nonce,
             nmkey) != 0) {
            return -1;
        }
    }

    len -= DNSCRYPT_QUERY_HEADER_SIZE;

    while (*sldns_buffer_at(buffer, --len) == 0)
        ;

    if (*sldns_buffer_at(buffer, len) != 0x80) {
        return -1;
    }

    memcpy(client_nonce, nonce, crypto_box_HALF_NONCEBYTES);

    sldns_buffer_set_position(buffer, 0);
    sldns_buffer_set_limit(buffer, len);

    return 0;
}


/**
 * Add random padding to a buffer, according to a client nonce.
 * The length has to depend on the query in order to avoid reply attacks.
 *
 * @param buf a buffer
 * @param len the initial size of the buffer
 * @param max_len the maximum size
 * @param nonce a nonce, made of the client nonce repeated twice
 * @param secretkey
 * @return the new size, after padding
 */
size_t
dnscrypt_pad(uint8_t *buf, const size_t len, const size_t max_len,
             const uint8_t *nonce, const uint8_t *secretkey)
{
    uint8_t *buf_padding_area = buf + len;
    size_t padded_len;
    uint32_t rnd;

    // no padding
    if (max_len < len + DNSCRYPT_MIN_PAD_LEN)
        return len;

    assert(nonce[crypto_box_HALF_NONCEBYTES] == nonce[0]);

    crypto_stream((unsigned char *)&rnd, (unsigned long long)sizeof(rnd), nonce,
                  secretkey);
    padded_len =
        len + DNSCRYPT_MIN_PAD_LEN + rnd % (max_len - len -
                                            DNSCRYPT_MIN_PAD_LEN + 1);
    padded_len += DNSCRYPT_BLOCK_SIZE - padded_len % DNSCRYPT_BLOCK_SIZE;
    if (padded_len > max_len)
        padded_len = max_len;

    memset(buf_padding_area, 0, padded_len - len);
    *buf_padding_area = 0x80;

    return padded_len;
}

uint64_t
dnscrypt_hrtime(void)
{
    struct timeval tv;
    uint64_t ts = (uint64_t)0U;
    int ret;

    ret = gettimeofday(&tv, NULL);
    if (ret == 0) {
        ts = (uint64_t)tv.tv_sec * 1000000U + (uint64_t)tv.tv_usec;
    } else {
        log_err("gettimeofday: %s", strerror(errno));
    }
    return ts;
}

/**
 * Add the server nonce part to once.
 * The nonce is made half of client nonce and the seconf half of the server
 * nonce, both of them of size crypto_box_HALF_NONCEBYTES.
 * \param[in] nonce: a uint8_t* of size crypto_box_NONCEBYTES
 */
static void
add_server_nonce(uint8_t *nonce)
{
    uint64_t ts;
    uint64_t tsn;
    uint32_t suffix;
    ts = dnscrypt_hrtime();
    // TODO? dnscrypt-wrapper does some logic with context->nonce_ts_last
    // unclear if we really need it, so skipping it for now.
    tsn = (ts << 10) | (randombytes_random() & 0x3ff);
#if (BYTE_ORDER == LITTLE_ENDIAN)
    tsn =
        (((uint64_t)htonl((uint32_t)tsn)) << 32) | htonl((uint32_t)(tsn >> 32));
#endif
    memcpy(nonce + crypto_box_HALF_NONCEBYTES, &tsn, 8);
    suffix = randombytes_random();
    memcpy(nonce + crypto_box_HALF_NONCEBYTES + 8, &suffix, 4);
}

/**
 * Encrypt a reply using the dnsccert that was used with the query.
 * The client nonce will be extracted from the encrypted query and stored in
 * The buffer will be encrypted inplace.
 * \param[in] cert the dnsccert that matches this encrypted query.
 * \param[in] client_nonce client nonce used during the query
 * \param[in] nmkey shared secret key used during the query.
 * \param[in] buffer the buffer where to encrypt the reply.
 * \param[in] udp if whether or not it is a UDP query.
 * \param[in] max_udp_size configured max udp size.
 * \return 0 on success.
 */
static int
dnscrypt_server_curve(const dnsccert *cert,
                      uint8_t client_nonce[crypto_box_HALF_NONCEBYTES],
                      uint8_t nmkey[crypto_box_BEFORENMBYTES],
                      struct sldns_buffer* buffer,
                      uint8_t udp,
                      size_t max_udp_size)
{
    size_t dns_reply_len = sldns_buffer_limit(buffer);
    size_t max_len = dns_reply_len + DNSCRYPT_MAX_PADDING \
        + DNSCRYPT_REPLY_HEADER_SIZE;
    size_t max_reply_size = max_udp_size - 20U - 8U;
    uint8_t nonce[crypto_box_NONCEBYTES];
    uint8_t *boxed;
    uint8_t *const buf = sldns_buffer_begin(buffer);
    size_t len = sldns_buffer_limit(buffer);

    if(udp){
        if (max_len > max_reply_size)
            max_len = max_reply_size;
    }


    memcpy(nonce, client_nonce, crypto_box_HALF_NONCEBYTES);
    memcpy(nonce + crypto_box_HALF_NONCEBYTES, client_nonce,
           crypto_box_HALF_NONCEBYTES);

    boxed = buf + DNSCRYPT_REPLY_BOX_OFFSET;
    memmove(boxed + crypto_box_MACBYTES, buf, len);
    len = dnscrypt_pad(boxed + crypto_box_MACBYTES, len,
                       max_len - DNSCRYPT_REPLY_HEADER_SIZE, nonce,
                       cert->keypair->crypt_secretkey);
    sldns_buffer_set_at(buffer,
                        DNSCRYPT_REPLY_BOX_OFFSET - crypto_box_BOXZEROBYTES,
                        0, crypto_box_ZEROBYTES);

    // add server nonce extension
    add_server_nonce(nonce);

    if(cert->es_version[1] == 2) {
#ifdef USE_DNSCRYPT_XCHACHA20
        if (crypto_box_curve25519xchacha20poly1305_easy_afternm
            (boxed, boxed + crypto_box_MACBYTES, len, nonce, nmkey) != 0) {
            return -1;
        }
#else
        return -1;
#endif
    } else {
        if (crypto_box_easy_afternm
            (boxed, boxed + crypto_box_MACBYTES, len, nonce, nmkey) != 0) {
            return -1;
        }
    }

    sldns_buffer_write_at(buffer,
                          0,
                          DNSCRYPT_MAGIC_RESPONSE,
                          DNSCRYPT_MAGIC_HEADER_LEN);
    sldns_buffer_write_at(buffer,
                          DNSCRYPT_MAGIC_HEADER_LEN,
                          nonce,
                          crypto_box_NONCEBYTES);
    sldns_buffer_set_limit(buffer, len + DNSCRYPT_REPLY_HEADER_SIZE);
    return 0;
}

/**
 * Read the content of fname into buf.
 * \param[in] fname name of the file to read.
 * \param[in] buf the buffer in which to read the content of the file.
 * \param[in] count number of bytes to read.
 * \return 0 on success.
 */
static int
dnsc_read_from_file(char *fname, char *buf, size_t count)
{
    int fd;
    fd = open(fname, O_RDONLY);
    if (fd == -1) {
        return -1;
    }
    if (read(fd, buf, count) != (ssize_t)count) {
        close(fd);
        return -2;
    }
    close(fd);
    return 0;
}

/**
 * Given an absolute path on the original root, returns the absolute path
 * within the chroot. If chroot is disabled, the path is not modified.
 * No char * is malloced so there is no need to free this.
 * \param[in] cfg the configuration.
 * \param[in] path the path from the original root.
 * \return the path from inside the chroot.
 */
static char *
dnsc_chroot_path(struct config_file *cfg, char *path)
{
    char *nm;
    nm = path;
    if(cfg->chrootdir && cfg->chrootdir[0] && strncmp(nm,
        cfg->chrootdir, strlen(cfg->chrootdir)) == 0)
        nm += strlen(cfg->chrootdir);
    return nm;
}

/**
 * Parse certificates files provided by the configuration and load them into
 * dnsc_env.
 * \param[in] env the dnsc_env structure to load the certs into.
 * \param[in] cfg the configuration.
 * \return the number of certificates loaded.
 */
static int
dnsc_parse_certs(struct dnsc_env *env, struct config_file *cfg)
{
	struct config_strlist *head;
	size_t signed_cert_id;
	char *nm;

	env->signed_certs_count = 0U;
	for (head = cfg->dnscrypt_provider_cert; head; head = head->next) {
		env->signed_certs_count++;
	}
	env->signed_certs = sodium_allocarray(env->signed_certs_count,
										  sizeof *env->signed_certs);

	signed_cert_id = 0U;
	for(head = cfg->dnscrypt_provider_cert; head; head = head->next, signed_cert_id++) {
		nm = dnsc_chroot_path(cfg, head->str);
		if(dnsc_read_from_file(
				nm,
				(char *)(env->signed_certs + signed_cert_id),
				sizeof(struct SignedCert)) != 0) {
			fatal_exit("dnsc_parse_certs: failed to load %s: %s", head->str, strerror(errno));
		}
		verbose(VERB_OPS, "Loaded cert %s", head->str);
	}
	return signed_cert_id;
}

/**
 * Helper function to convert a binary key into a printable fingerprint.
 * \param[in] fingerprint the buffer in which to write the printable key.
 * \param[in] key the key to convert.
 */
void
dnsc_key_to_fingerprint(char fingerprint[80U], const uint8_t * const key)
{
    const size_t fingerprint_size = 80U;
    size_t       fingerprint_pos = (size_t) 0U;
    size_t       key_pos = (size_t) 0U;

    for (;;) {
        assert(fingerprint_size > fingerprint_pos);
        snprintf(&fingerprint[fingerprint_pos],
                        fingerprint_size - fingerprint_pos, "%02X%02X",
                        key[key_pos], key[key_pos + 1U]);
        key_pos += 2U;
        if (key_pos >= crypto_box_PUBLICKEYBYTES) {
            break;
        }
        fingerprint[fingerprint_pos + 4U] = ':';
        fingerprint_pos += 5U;
    }
}

/**
 * Find the cert matching a DNSCrypt query.
 * \param[in] dnscenv The DNSCrypt environment, which contains the list of certs
 * supported by the server.
 * \param[in] buffer The encrypted DNS query.
 * \return a dnsccert * if we found a cert matching the magic_number of the
 * query, NULL otherwise.
 */
static const dnsccert *
dnsc_find_cert(struct dnsc_env* dnscenv, struct sldns_buffer* buffer)
{
	const dnsccert *certs = dnscenv->certs;
	struct dnscrypt_query_header *dnscrypt_header;
	size_t i;

	if (sldns_buffer_limit(buffer) < DNSCRYPT_QUERY_HEADER_SIZE) {
		return NULL;
	}
	dnscrypt_header = (struct dnscrypt_query_header *)sldns_buffer_begin(buffer);
	for (i = 0U; i < dnscenv->signed_certs_count; i++) {
		if (memcmp(certs[i].magic_query, dnscrypt_header->magic_query,
                   DNSCRYPT_MAGIC_HEADER_LEN) == 0) {
			return &certs[i];
		}
	}
	return NULL;
}

/**
 * Insert local-zone and local-data into configuration.
 * In order to be able to serve certs over TXT, we can reuse the local-zone and
 * local-data config option. The zone and qname are infered from the
 * provider_name and the content of the TXT record from the certificate content.
 * returns the number of certificate TXT record that were loaded.
 * < 0 in case of error.
 */
static int
dnsc_load_local_data(struct dnsc_env* dnscenv, struct config_file *cfg)
{
    size_t i, j;
	// Insert 'local-zone: "2.dnscrypt-cert.example.com" deny'
    if(!cfg_str2list_insert(&cfg->local_zones,
                            strdup(dnscenv->provider_name),
                            strdup("deny"))) {
        log_err("Could not load dnscrypt local-zone: %s deny",
                dnscenv->provider_name);
        return -1;
    }

    // Add local data entry of type:
    // 2.dnscrypt-cert.example.com 86400 IN TXT "DNSC......"
    for(i=0; i<dnscenv->signed_certs_count; i++) {
        const char *ttl_class_type = " 86400 IN TXT \"";
        struct SignedCert *cert = dnscenv->signed_certs + i;
        uint16_t rrlen = strlen(dnscenv->provider_name) +
                         strlen(ttl_class_type) +
                         4 * sizeof(struct SignedCert) + // worst case scenario
                         1 + // trailing double quote
                         1;
        char *rr = malloc(rrlen);
        if(!rr) {
            log_err("Could not allocate memory");
            return -2;
        }
        snprintf(rr, rrlen - 1, "%s 86400 IN TXT \"", dnscenv->provider_name);
        for(j=0; j<sizeof(struct SignedCert); j++) {
       	    int c = (int)*((const uint8_t *) cert + j);
            if (isprint(c) && c != '"' && c != '\\') {
                snprintf(rr + strlen(rr), rrlen - 1 - strlen(rr), "%c", c);
            } else {
                snprintf(rr + strlen(rr), rrlen - 1 - strlen(rr), "\\%03d", c);
            }
        }
        verbose(VERB_OPS, "DNSCrypt: adding local data to config: %s", rr);
        snprintf(rr + strlen(rr), rrlen - 1 - strlen(rr), "\"");
        cfg_strlist_insert(&cfg->local_data, strdup(rr));
        free(rr);
    }
    return dnscenv->signed_certs_count;
}

static const char *
key_get_es_version(uint8_t version[2])
{
    struct es_version {
        uint8_t es_version[2];
        const char *name;
    };

    struct es_version es_versions[] = {
        {{0x00, 0x01}, "X25519-XSalsa20Poly1305"},
        {{0x00, 0x02}, "X25519-XChacha20Poly1305"},
    };
    int i;
    for(i=0; i < (int)sizeof(es_versions); i++){
        if(es_versions[i].es_version[0] == version[0] &&
           es_versions[i].es_version[1] == version[1]){
            return es_versions[i].name;
        }
    }
    return NULL;
}


/**
 * Parse the secret key files from `dnscrypt-secret-key` config and populates
 * a list of dnsccert with es_version, magic number and secret/public keys
 * supported by dnscrypt listener.
 * \param[in] env The dnsc_env structure which will hold the keypairs.
 * \param[in] cfg The config with the secret key file paths.
 */
static int
dnsc_parse_keys(struct dnsc_env *env, struct config_file *cfg)
{
	struct config_strlist *head;
	size_t cert_id, keypair_id;
	size_t c;
	char *nm;

	env->keypairs_count = 0U;
	for (head = cfg->dnscrypt_secret_key; head; head = head->next) {
		env->keypairs_count++;
	}

	env->keypairs = sodium_allocarray(env->keypairs_count,
		sizeof *env->keypairs);
	env->certs = sodium_allocarray(env->signed_certs_count,
		sizeof *env->certs);

	cert_id = 0U;
	keypair_id = 0U;
	for(head = cfg->dnscrypt_secret_key; head; head = head->next, keypair_id++) {
		char fingerprint[80];
		int found_cert = 0;
		KeyPair *current_keypair = &env->keypairs[keypair_id];
		nm = dnsc_chroot_path(cfg, head->str);
		if(dnsc_read_from_file(
				nm,
				(char *)(current_keypair->crypt_secretkey),
				crypto_box_SECRETKEYBYTES) != 0) {
			fatal_exit("dnsc_parse_keys: failed to load %s: %s", head->str, strerror(errno));
		}
		verbose(VERB_OPS, "Loaded key %s", head->str);
		if (crypto_scalarmult_base(current_keypair->crypt_publickey,
			current_keypair->crypt_secretkey) != 0) {
			fatal_exit("dnsc_parse_keys: could not generate public key from %s", head->str);
		}
		dnsc_key_to_fingerprint(fingerprint, current_keypair->crypt_publickey);
		verbose(VERB_OPS, "Crypt public key fingerprint for %s: %s", head->str, fingerprint);
		// find the cert matching this key
		for(c = 0; c < env->signed_certs_count; c++) {
			if(memcmp(current_keypair->crypt_publickey,
				env->signed_certs[c].server_publickey,
				crypto_box_PUBLICKEYBYTES) == 0) {
				dnsccert *current_cert = &env->certs[cert_id++];
				found_cert = 1;
				current_cert->keypair = current_keypair;
				memcpy(current_cert->magic_query,
				       env->signed_certs[c].magic_query,
					sizeof env->signed_certs[c].magic_query);
				memcpy(current_cert->es_version,
				       env->signed_certs[c].version_major,
				       sizeof env->signed_certs[c].version_major
				);
				dnsc_key_to_fingerprint(fingerprint,
							current_cert->keypair->crypt_publickey);
				verbose(VERB_OPS, "Crypt public key fingerprint for %s: %s",
					head->str, fingerprint);
				verbose(VERB_OPS, "Using %s",
					key_get_es_version(current_cert->es_version));
#ifndef USE_DNSCRYPT_XCHACHA20
				if (current_cert->es_version[1] == 0x02) {
				    fatal_exit("Certificate for XChacha20 but libsodium does not support it.");
				}
#endif

            		}
        	}
		if (!found_cert) {
		    fatal_exit("dnsc_parse_keys: could not match certificate for key "
			       "%s. Unable to determine ES version.",
			       head->str);
		}
	}
	return cert_id;
}


/**
 * #########################################################
 * ############# Publicly accessible functions #############
 * #########################################################
 */

int
dnsc_handle_curved_request(struct dnsc_env* dnscenv,
                           struct comm_reply* repinfo)
{
    struct comm_point* c = repinfo->c;

    repinfo->is_dnscrypted = 0;
    if( !c->dnscrypt ) {
        return 1;
    }
    // Attempt to decrypt the query. If it is not crypted, we may still need
    // to serve the certificate.
    verbose(VERB_ALGO, "handle request called on DNSCrypt socket");
    if ((repinfo->dnsc_cert = dnsc_find_cert(dnscenv, c->buffer)) != NULL) {
        if(dnscrypt_server_uncurve(dnscenv,
                                   repinfo->dnsc_cert,
                                   repinfo->client_nonce,
                                   repinfo->nmkey,
                                   c->buffer) != 0){
            verbose(VERB_ALGO, "dnscrypt: Failed to uncurve");
            comm_point_drop_reply(repinfo);
            return 0;
        }
        repinfo->is_dnscrypted = 1;
        sldns_buffer_rewind(c->buffer);
    }
    return 1;
}

int
dnsc_handle_uncurved_request(struct comm_reply *repinfo)
{
    if(!repinfo->c->dnscrypt) {
        return 1;
    }
    sldns_buffer_copy(repinfo->c->dnscrypt_buffer, repinfo->c->buffer);
    if(!repinfo->is_dnscrypted) {
        return 1;
    }
	if(dnscrypt_server_curve(repinfo->dnsc_cert,
                             repinfo->client_nonce,
                             repinfo->nmkey,
                             repinfo->c->dnscrypt_buffer,
                             repinfo->c->type == comm_udp,
                             repinfo->max_udp_size) != 0){
		verbose(VERB_ALGO, "dnscrypt: Failed to curve cached missed answer");
		comm_point_drop_reply(repinfo);
		return 0;
	}
    return 1;
}

struct dnsc_env *
dnsc_create(void)
{
	struct dnsc_env *env;
	if (sodium_init() == -1) {
		fatal_exit("dnsc_create: could not initialize libsodium.");
	}
	env = (struct dnsc_env *) calloc(1, sizeof(struct dnsc_env));
	lock_basic_init(&env->shared_secrets_cache_lock);
	lock_protect(&env->shared_secrets_cache_lock,
                 &env->num_query_dnscrypt_secret_missed_cache,
                 sizeof(env->num_query_dnscrypt_secret_missed_cache));
	lock_basic_init(&env->nonces_cache_lock);
	lock_protect(&env->nonces_cache_lock,
                 &env->nonces_cache,
                 sizeof(env->nonces_cache));
	lock_protect(&env->nonces_cache_lock,
                 &env->num_query_dnscrypt_replay,
                 sizeof(env->num_query_dnscrypt_replay));

	return env;
}

int
dnsc_apply_cfg(struct dnsc_env *env, struct config_file *cfg)
{
    if(dnsc_parse_certs(env, cfg) <= 0) {
        fatal_exit("dnsc_apply_cfg: no cert file loaded");
    }
    if(dnsc_parse_keys(env, cfg) <= 0) {
        fatal_exit("dnsc_apply_cfg: no key file loaded");
    }
    randombytes_buf(env->hash_key, sizeof env->hash_key);
    env->provider_name = cfg->dnscrypt_provider;

    if(dnsc_load_local_data(env, cfg) <= 0) {
        fatal_exit("dnsc_apply_cfg: could not load local data");
    }
    env->shared_secrets_cache = slabhash_create(
        cfg->dnscrypt_shared_secret_cache_slabs,
        HASH_DEFAULT_STARTARRAY,
        cfg->dnscrypt_shared_secret_cache_size,
        dnsc_shared_secrets_sizefunc,
        dnsc_shared_secrets_compfunc,
        dnsc_shared_secrets_delkeyfunc,
        dnsc_shared_secrets_deldatafunc,
        NULL
    );
    if(!env->shared_secrets_cache){
        fatal_exit("dnsc_apply_cfg: could not create shared secrets cache.");
    }
    env->nonces_cache = slabhash_create(
        cfg->dnscrypt_nonce_cache_slabs,
        HASH_DEFAULT_STARTARRAY,
        cfg->dnscrypt_nonce_cache_size,
        dnsc_nonces_sizefunc,
        dnsc_nonces_compfunc,
        dnsc_nonces_delkeyfunc,
        dnsc_nonces_deldatafunc,
        NULL
    );
    return 0;
}

void
dnsc_delete(struct dnsc_env *env)
{
	if(!env) {
		return;
	}
	verbose(VERB_OPS, "DNSCrypt: Freeing environment.");
	sodium_free(env->signed_certs);
	sodium_free(env->certs);
	sodium_free(env->keypairs);
	slabhash_delete(env->shared_secrets_cache);
	slabhash_delete(env->nonces_cache);
	lock_basic_destroy(&env->shared_secrets_cache_lock);
	lock_basic_destroy(&env->nonces_cache_lock);
	free(env);
}

/**
 * #########################################################
 * ############# Shared secrets cache functions ############
 * #########################################################
 */

size_t
dnsc_shared_secrets_sizefunc(void *k, void* ATTR_UNUSED(d))
{
    struct shared_secret_cache_key* ssk = (struct shared_secret_cache_key*)k;
    size_t key_size = sizeof(struct shared_secret_cache_key)
        + lock_get_mem(&ssk->entry.lock);
    size_t data_size = crypto_box_BEFORENMBYTES;
    (void)ssk; /* otherwise ssk is unused if no threading, or fixed locksize */
    return key_size + data_size;
}

int
dnsc_shared_secrets_compfunc(void *m1, void *m2)
{
    return sodium_memcmp(m1, m2, DNSCRYPT_SHARED_SECRET_KEY_LENGTH);
}

void
dnsc_shared_secrets_delkeyfunc(void *k, void* ATTR_UNUSED(arg))
{
    struct shared_secret_cache_key* ssk = (struct shared_secret_cache_key*)k;
    lock_rw_destroy(&ssk->entry.lock);
    free(ssk);
}

void
dnsc_shared_secrets_deldatafunc(void* d, void* ATTR_UNUSED(arg))
{
    uint8_t* data = (uint8_t*)d;
    free(data);
}

/**
 * #########################################################
 * ############### Nonces cache functions ##################
 * #########################################################
 */

size_t
dnsc_nonces_sizefunc(void *k, void* ATTR_UNUSED(d))
{
    struct nonce_cache_key* nk = (struct nonce_cache_key*)k;
    size_t key_size = sizeof(struct nonce_cache_key)
        + lock_get_mem(&nk->entry.lock);
    (void)nk; /* otherwise ssk is unused if no threading, or fixed locksize */
    return key_size;
}

int
dnsc_nonces_compfunc(void *m1, void *m2)
{
    struct nonce_cache_key *k1 = m1, *k2 = m2;
    return
        sodium_memcmp(
            k1->nonce,
            k2->nonce,
            crypto_box_HALF_NONCEBYTES) != 0 ||
        sodium_memcmp(
            k1->magic_query,
            k2->magic_query,
            DNSCRYPT_MAGIC_HEADER_LEN) != 0 ||
        sodium_memcmp(
            k1->client_publickey, k2->client_publickey,
            crypto_box_PUBLICKEYBYTES) != 0;
}

void
dnsc_nonces_delkeyfunc(void *k, void* ATTR_UNUSED(arg))
{
    struct nonce_cache_key* nk = (struct nonce_cache_key*)k;
    lock_rw_destroy(&nk->entry.lock);
    free(nk);
}

void
dnsc_nonces_deldatafunc(void* ATTR_UNUSED(d), void* ATTR_UNUSED(arg))
{
    return;
}