aboutsummaryrefslogtreecommitdiff
path: root/lib/Analysis/MemorySSAUpdater.cpp
blob: 4c1feee7fd9affdc46951ad8d30f06aa57367fe5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
//===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------===//
//
// This file implements the MemorySSAUpdater class.
//
//===----------------------------------------------------------------===//
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/IteratedDominanceFrontier.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FormattedStream.h"
#include <algorithm>

#define DEBUG_TYPE "memoryssa"
using namespace llvm;

// This is the marker algorithm from "Simple and Efficient Construction of
// Static Single Assignment Form"
// The simple, non-marker algorithm places phi nodes at any join
// Here, we place markers, and only place phi nodes if they end up necessary.
// They are only necessary if they break a cycle (IE we recursively visit
// ourselves again), or we discover, while getting the value of the operands,
// that there are two or more definitions needing to be merged.
// This still will leave non-minimal form in the case of irreducible control
// flow, where phi nodes may be in cycles with themselves, but unnecessary.
MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive(
    BasicBlock *BB,
    DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
  // First, do a cache lookup. Without this cache, certain CFG structures
  // (like a series of if statements) take exponential time to visit.
  auto Cached = CachedPreviousDef.find(BB);
  if (Cached != CachedPreviousDef.end()) {
    return Cached->second;
  }

  if (BasicBlock *Pred = BB->getSinglePredecessor()) {
    // Single predecessor case, just recurse, we can only have one definition.
    MemoryAccess *Result = getPreviousDefFromEnd(Pred, CachedPreviousDef);
    CachedPreviousDef.insert({BB, Result});
    return Result;
  }

  if (VisitedBlocks.count(BB)) {
    // We hit our node again, meaning we had a cycle, we must insert a phi
    // node to break it so we have an operand. The only case this will
    // insert useless phis is if we have irreducible control flow.
    MemoryAccess *Result = MSSA->createMemoryPhi(BB);
    CachedPreviousDef.insert({BB, Result});
    return Result;
  }

  if (VisitedBlocks.insert(BB).second) {
    // Mark us visited so we can detect a cycle
    SmallVector<TrackingVH<MemoryAccess>, 8> PhiOps;

    // Recurse to get the values in our predecessors for placement of a
    // potential phi node. This will insert phi nodes if we cycle in order to
    // break the cycle and have an operand.
    for (auto *Pred : predecessors(BB))
      if (MSSA->DT->isReachableFromEntry(Pred))
        PhiOps.push_back(getPreviousDefFromEnd(Pred, CachedPreviousDef));
      else
        PhiOps.push_back(MSSA->getLiveOnEntryDef());

    // Now try to simplify the ops to avoid placing a phi.
    // This may return null if we never created a phi yet, that's okay
    MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB));

    // See if we can avoid the phi by simplifying it.
    auto *Result = tryRemoveTrivialPhi(Phi, PhiOps);
    // If we couldn't simplify, we may have to create a phi
    if (Result == Phi) {
      if (!Phi)
        Phi = MSSA->createMemoryPhi(BB);

      // See if the existing phi operands match what we need.
      // Unlike normal SSA, we only allow one phi node per block, so we can't just
      // create a new one.
      if (Phi->getNumOperands() != 0) {
        // FIXME: Figure out whether this is dead code and if so remove it.
        if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) {
          // These will have been filled in by the recursive read we did above.
          llvm::copy(PhiOps, Phi->op_begin());
          std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin());
        }
      } else {
        unsigned i = 0;
        for (auto *Pred : predecessors(BB))
          Phi->addIncoming(&*PhiOps[i++], Pred);
        InsertedPHIs.push_back(Phi);
      }
      Result = Phi;
    }

    // Set ourselves up for the next variable by resetting visited state.
    VisitedBlocks.erase(BB);
    CachedPreviousDef.insert({BB, Result});
    return Result;
  }
  llvm_unreachable("Should have hit one of the three cases above");
}

// This starts at the memory access, and goes backwards in the block to find the
// previous definition. If a definition is not found the block of the access,
// it continues globally, creating phi nodes to ensure we have a single
// definition.
MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) {
  if (auto *LocalResult = getPreviousDefInBlock(MA))
    return LocalResult;
  DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
  return getPreviousDefRecursive(MA->getBlock(), CachedPreviousDef);
}

// This starts at the memory access, and goes backwards in the block to the find
// the previous definition. If the definition is not found in the block of the
// access, it returns nullptr.
MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) {
  auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock());

  // It's possible there are no defs, or we got handed the first def to start.
  if (Defs) {
    // If this is a def, we can just use the def iterators.
    if (!isa<MemoryUse>(MA)) {
      auto Iter = MA->getReverseDefsIterator();
      ++Iter;
      if (Iter != Defs->rend())
        return &*Iter;
    } else {
      // Otherwise, have to walk the all access iterator.
      auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend();
      for (auto &U : make_range(++MA->getReverseIterator(), End))
        if (!isa<MemoryUse>(U))
          return cast<MemoryAccess>(&U);
      // Note that if MA comes before Defs->begin(), we won't hit a def.
      return nullptr;
    }
  }
  return nullptr;
}

// This starts at the end of block
MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd(
    BasicBlock *BB,
    DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
  auto *Defs = MSSA->getWritableBlockDefs(BB);

  if (Defs) {
    CachedPreviousDef.insert({BB, &*Defs->rbegin()});
    return &*Defs->rbegin();
  }

  return getPreviousDefRecursive(BB, CachedPreviousDef);
}
// Recurse over a set of phi uses to eliminate the trivial ones
MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) {
  if (!Phi)
    return nullptr;
  TrackingVH<MemoryAccess> Res(Phi);
  SmallVector<TrackingVH<Value>, 8> Uses;
  std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses));
  for (auto &U : Uses) {
    if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U)) {
      auto OperRange = UsePhi->operands();
      tryRemoveTrivialPhi(UsePhi, OperRange);
    }
  }
  return Res;
}

// Eliminate trivial phis
// Phis are trivial if they are defined either by themselves, or all the same
// argument.
// IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c)
// We recursively try to remove them.
template <class RangeType>
MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi,
                                                    RangeType &Operands) {
  // Bail out on non-opt Phis.
  if (NonOptPhis.count(Phi))
    return Phi;

  // Detect equal or self arguments
  MemoryAccess *Same = nullptr;
  for (auto &Op : Operands) {
    // If the same or self, good so far
    if (Op == Phi || Op == Same)
      continue;
    // not the same, return the phi since it's not eliminatable by us
    if (Same)
      return Phi;
    Same = cast<MemoryAccess>(&*Op);
  }
  // Never found a non-self reference, the phi is undef
  if (Same == nullptr)
    return MSSA->getLiveOnEntryDef();
  if (Phi) {
    Phi->replaceAllUsesWith(Same);
    removeMemoryAccess(Phi);
  }

  // We should only end up recursing in case we replaced something, in which
  // case, we may have made other Phis trivial.
  return recursePhi(Same);
}

void MemorySSAUpdater::insertUse(MemoryUse *MU) {
  InsertedPHIs.clear();
  MU->setDefiningAccess(getPreviousDef(MU));
  // Unlike for defs, there is no extra work to do.  Because uses do not create
  // new may-defs, there are only two cases:
  //
  // 1. There was a def already below us, and therefore, we should not have
  // created a phi node because it was already needed for the def.
  //
  // 2. There is no def below us, and therefore, there is no extra renaming work
  // to do.
}

// Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef.
static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB,
                                      MemoryAccess *NewDef) {
  // Replace any operand with us an incoming block with the new defining
  // access.
  int i = MP->getBasicBlockIndex(BB);
  assert(i != -1 && "Should have found the basic block in the phi");
  // We can't just compare i against getNumOperands since one is signed and the
  // other not. So use it to index into the block iterator.
  for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end();
       ++BBIter) {
    if (*BBIter != BB)
      break;
    MP->setIncomingValue(i, NewDef);
    ++i;
  }
}

// A brief description of the algorithm:
// First, we compute what should define the new def, using the SSA
// construction algorithm.
// Then, we update the defs below us (and any new phi nodes) in the graph to
// point to the correct new defs, to ensure we only have one variable, and no
// disconnected stores.
void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) {
  InsertedPHIs.clear();

  // See if we had a local def, and if not, go hunting.
  MemoryAccess *DefBefore = getPreviousDef(MD);
  bool DefBeforeSameBlock = DefBefore->getBlock() == MD->getBlock();

  // There is a def before us, which means we can replace any store/phi uses
  // of that thing with us, since we are in the way of whatever was there
  // before.
  // We now define that def's memorydefs and memoryphis
  if (DefBeforeSameBlock) {
    for (auto UI = DefBefore->use_begin(), UE = DefBefore->use_end();
         UI != UE;) {
      Use &U = *UI++;
      // Leave the MemoryUses alone.
      // Also make sure we skip ourselves to avoid self references.
      if (isa<MemoryUse>(U.getUser()) || U.getUser() == MD)
        continue;
      // Defs are automatically unoptimized when the user is set to MD below,
      // because the isOptimized() call will fail to find the same ID.
      U.set(MD);
    }
  }

  // and that def is now our defining access.
  MD->setDefiningAccess(DefBefore);

  // Remember the index where we may insert new phis below.
  unsigned NewPhiIndex = InsertedPHIs.size();

  SmallVector<WeakVH, 8> FixupList(InsertedPHIs.begin(), InsertedPHIs.end());
  if (!DefBeforeSameBlock) {
    // If there was a local def before us, we must have the same effect it
    // did. Because every may-def is the same, any phis/etc we would create, it
    // would also have created.  If there was no local def before us, we
    // performed a global update, and have to search all successors and make
    // sure we update the first def in each of them (following all paths until
    // we hit the first def along each path). This may also insert phi nodes.
    // TODO: There are other cases we can skip this work, such as when we have a
    // single successor, and only used a straight line of single pred blocks
    // backwards to find the def.  To make that work, we'd have to track whether
    // getDefRecursive only ever used the single predecessor case.  These types
    // of paths also only exist in between CFG simplifications.

    // If this is the first def in the block and this insert is in an arbitrary
    // place, compute IDF and place phis.
    auto Iter = MD->getDefsIterator();
    ++Iter;
    auto IterEnd = MSSA->getBlockDefs(MD->getBlock())->end();
    if (Iter == IterEnd) {
      ForwardIDFCalculator IDFs(*MSSA->DT);
      SmallVector<BasicBlock *, 32> IDFBlocks;
      SmallPtrSet<BasicBlock *, 2> DefiningBlocks;
      DefiningBlocks.insert(MD->getBlock());
      IDFs.setDefiningBlocks(DefiningBlocks);
      IDFs.calculate(IDFBlocks);
      SmallVector<AssertingVH<MemoryPhi>, 4> NewInsertedPHIs;
      for (auto *BBIDF : IDFBlocks)
        if (!MSSA->getMemoryAccess(BBIDF)) {
          auto *MPhi = MSSA->createMemoryPhi(BBIDF);
          NewInsertedPHIs.push_back(MPhi);
          // Add the phis created into the IDF blocks to NonOptPhis, so they are
          // not optimized out as trivial by the call to getPreviousDefFromEnd
          // below. Once they are complete, all these Phis are added to the
          // FixupList, and removed from NonOptPhis inside fixupDefs().
          NonOptPhis.insert(MPhi);
        }

      for (auto &MPhi : NewInsertedPHIs) {
        auto *BBIDF = MPhi->getBlock();
        for (auto *Pred : predecessors(BBIDF)) {
          DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
          MPhi->addIncoming(getPreviousDefFromEnd(Pred, CachedPreviousDef),
                            Pred);
        }
      }

      // Re-take the index where we're adding the new phis, because the above
      // call to getPreviousDefFromEnd, may have inserted into InsertedPHIs.
      NewPhiIndex = InsertedPHIs.size();
      for (auto &MPhi : NewInsertedPHIs) {
        InsertedPHIs.push_back(&*MPhi);
        FixupList.push_back(&*MPhi);
      }
    }

    FixupList.push_back(MD);
  }

  // Remember the index where we stopped inserting new phis above, since the
  // fixupDefs call in the loop below may insert more, that are already minimal.
  unsigned NewPhiIndexEnd = InsertedPHIs.size();

  while (!FixupList.empty()) {
    unsigned StartingPHISize = InsertedPHIs.size();
    fixupDefs(FixupList);
    FixupList.clear();
    // Put any new phis on the fixup list, and process them
    FixupList.append(InsertedPHIs.begin() + StartingPHISize, InsertedPHIs.end());
  }

  // Optimize potentially non-minimal phis added in this method.
  unsigned NewPhiSize = NewPhiIndexEnd - NewPhiIndex;
  if (NewPhiSize)
    tryRemoveTrivialPhis(ArrayRef<WeakVH>(&InsertedPHIs[NewPhiIndex], NewPhiSize));

  // Now that all fixups are done, rename all uses if we are asked.
  if (RenameUses) {
    SmallPtrSet<BasicBlock *, 16> Visited;
    BasicBlock *StartBlock = MD->getBlock();
    // We are guaranteed there is a def in the block, because we just got it
    // handed to us in this function.
    MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin();
    // Convert to incoming value if it's a memorydef. A phi *is* already an
    // incoming value.
    if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
      FirstDef = MD->getDefiningAccess();

    MSSA->renamePass(MD->getBlock(), FirstDef, Visited);
    // We just inserted a phi into this block, so the incoming value will become
    // the phi anyway, so it does not matter what we pass.
    for (auto &MP : InsertedPHIs) {
      MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP);
      if (Phi)
        MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
    }
  }
}

void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<WeakVH> &Vars) {
  SmallPtrSet<const BasicBlock *, 8> Seen;
  SmallVector<const BasicBlock *, 16> Worklist;
  for (auto &Var : Vars) {
    MemoryAccess *NewDef = dyn_cast_or_null<MemoryAccess>(Var);
    if (!NewDef)
      continue;
    // First, see if there is a local def after the operand.
    auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock());
    auto DefIter = NewDef->getDefsIterator();

    // The temporary Phi is being fixed, unmark it for not to optimize.
    if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(NewDef))
      NonOptPhis.erase(Phi);

    // If there is a local def after us, we only have to rename that.
    if (++DefIter != Defs->end()) {
      cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef);
      continue;
    }

    // Otherwise, we need to search down through the CFG.
    // For each of our successors, handle it directly if their is a phi, or
    // place on the fixup worklist.
    for (const auto *S : successors(NewDef->getBlock())) {
      if (auto *MP = MSSA->getMemoryAccess(S))
        setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef);
      else
        Worklist.push_back(S);
    }

    while (!Worklist.empty()) {
      const BasicBlock *FixupBlock = Worklist.back();
      Worklist.pop_back();

      // Get the first def in the block that isn't a phi node.
      if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) {
        auto *FirstDef = &*Defs->begin();
        // The loop above and below should have taken care of phi nodes
        assert(!isa<MemoryPhi>(FirstDef) &&
               "Should have already handled phi nodes!");
        // We are now this def's defining access, make sure we actually dominate
        // it
        assert(MSSA->dominates(NewDef, FirstDef) &&
               "Should have dominated the new access");

        // This may insert new phi nodes, because we are not guaranteed the
        // block we are processing has a single pred, and depending where the
        // store was inserted, it may require phi nodes below it.
        cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef));
        return;
      }
      // We didn't find a def, so we must continue.
      for (const auto *S : successors(FixupBlock)) {
        // If there is a phi node, handle it.
        // Otherwise, put the block on the worklist
        if (auto *MP = MSSA->getMemoryAccess(S))
          setMemoryPhiValueForBlock(MP, FixupBlock, NewDef);
        else {
          // If we cycle, we should have ended up at a phi node that we already
          // processed.  FIXME: Double check this
          if (!Seen.insert(S).second)
            continue;
          Worklist.push_back(S);
        }
      }
    }
  }
}

void MemorySSAUpdater::removeEdge(BasicBlock *From, BasicBlock *To) {
  if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
    MPhi->unorderedDeleteIncomingBlock(From);
    if (MPhi->getNumIncomingValues() == 1)
      removeMemoryAccess(MPhi);
  }
}

void MemorySSAUpdater::removeDuplicatePhiEdgesBetween(const BasicBlock *From,
                                                      const BasicBlock *To) {
  if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
    bool Found = false;
    MPhi->unorderedDeleteIncomingIf([&](const MemoryAccess *, BasicBlock *B) {
      if (From != B)
        return false;
      if (Found)
        return true;
      Found = true;
      return false;
    });
    if (MPhi->getNumIncomingValues() == 1)
      removeMemoryAccess(MPhi);
  }
}

void MemorySSAUpdater::cloneUsesAndDefs(BasicBlock *BB, BasicBlock *NewBB,
                                        const ValueToValueMapTy &VMap,
                                        PhiToDefMap &MPhiMap,
                                        bool CloneWasSimplified) {
  auto GetNewDefiningAccess = [&](MemoryAccess *MA) -> MemoryAccess * {
    MemoryAccess *InsnDefining = MA;
    if (MemoryUseOrDef *DefMUD = dyn_cast<MemoryUseOrDef>(InsnDefining)) {
      if (!MSSA->isLiveOnEntryDef(DefMUD)) {
        Instruction *DefMUDI = DefMUD->getMemoryInst();
        assert(DefMUDI && "Found MemoryUseOrDef with no Instruction.");
        if (Instruction *NewDefMUDI =
                cast_or_null<Instruction>(VMap.lookup(DefMUDI)))
          InsnDefining = MSSA->getMemoryAccess(NewDefMUDI);
      }
    } else {
      MemoryPhi *DefPhi = cast<MemoryPhi>(InsnDefining);
      if (MemoryAccess *NewDefPhi = MPhiMap.lookup(DefPhi))
        InsnDefining = NewDefPhi;
    }
    assert(InsnDefining && "Defining instruction cannot be nullptr.");
    return InsnDefining;
  };

  const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB);
  if (!Acc)
    return;
  for (const MemoryAccess &MA : *Acc) {
    if (const MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&MA)) {
      Instruction *Insn = MUD->getMemoryInst();
      // Entry does not exist if the clone of the block did not clone all
      // instructions. This occurs in LoopRotate when cloning instructions
      // from the old header to the old preheader. The cloned instruction may
      // also be a simplified Value, not an Instruction (see LoopRotate).
      // Also in LoopRotate, even when it's an instruction, due to it being
      // simplified, it may be a Use rather than a Def, so we cannot use MUD as
      // template. Calls coming from updateForClonedBlockIntoPred, ensure this.
      if (Instruction *NewInsn =
              dyn_cast_or_null<Instruction>(VMap.lookup(Insn))) {
        MemoryAccess *NewUseOrDef = MSSA->createDefinedAccess(
            NewInsn, GetNewDefiningAccess(MUD->getDefiningAccess()),
            CloneWasSimplified ? nullptr : MUD);
        MSSA->insertIntoListsForBlock(NewUseOrDef, NewBB, MemorySSA::End);
      }
    }
  }
}

void MemorySSAUpdater::updatePhisWhenInsertingUniqueBackedgeBlock(
    BasicBlock *Header, BasicBlock *Preheader, BasicBlock *BEBlock) {
  auto *MPhi = MSSA->getMemoryAccess(Header);
  if (!MPhi)
    return;

  // Create phi node in the backedge block and populate it with the same
  // incoming values as MPhi. Skip incoming values coming from Preheader.
  auto *NewMPhi = MSSA->createMemoryPhi(BEBlock);
  bool HasUniqueIncomingValue = true;
  MemoryAccess *UniqueValue = nullptr;
  for (unsigned I = 0, E = MPhi->getNumIncomingValues(); I != E; ++I) {
    BasicBlock *IBB = MPhi->getIncomingBlock(I);
    MemoryAccess *IV = MPhi->getIncomingValue(I);
    if (IBB != Preheader) {
      NewMPhi->addIncoming(IV, IBB);
      if (HasUniqueIncomingValue) {
        if (!UniqueValue)
          UniqueValue = IV;
        else if (UniqueValue != IV)
          HasUniqueIncomingValue = false;
      }
    }
  }

  // Update incoming edges into MPhi. Remove all but the incoming edge from
  // Preheader. Add an edge from NewMPhi
  auto *AccFromPreheader = MPhi->getIncomingValueForBlock(Preheader);
  MPhi->setIncomingValue(0, AccFromPreheader);
  MPhi->setIncomingBlock(0, Preheader);
  for (unsigned I = MPhi->getNumIncomingValues() - 1; I >= 1; --I)
    MPhi->unorderedDeleteIncoming(I);
  MPhi->addIncoming(NewMPhi, BEBlock);

  // If NewMPhi is a trivial phi, remove it. Its use in the header MPhi will be
  // replaced with the unique value.
  if (HasUniqueIncomingValue)
    removeMemoryAccess(NewMPhi);
}

void MemorySSAUpdater::updateForClonedLoop(const LoopBlocksRPO &LoopBlocks,
                                           ArrayRef<BasicBlock *> ExitBlocks,
                                           const ValueToValueMapTy &VMap,
                                           bool IgnoreIncomingWithNoClones) {
  PhiToDefMap MPhiMap;

  auto FixPhiIncomingValues = [&](MemoryPhi *Phi, MemoryPhi *NewPhi) {
    assert(Phi && NewPhi && "Invalid Phi nodes.");
    BasicBlock *NewPhiBB = NewPhi->getBlock();
    SmallPtrSet<BasicBlock *, 4> NewPhiBBPreds(pred_begin(NewPhiBB),
                                               pred_end(NewPhiBB));
    for (unsigned It = 0, E = Phi->getNumIncomingValues(); It < E; ++It) {
      MemoryAccess *IncomingAccess = Phi->getIncomingValue(It);
      BasicBlock *IncBB = Phi->getIncomingBlock(It);

      if (BasicBlock *NewIncBB = cast_or_null<BasicBlock>(VMap.lookup(IncBB)))
        IncBB = NewIncBB;
      else if (IgnoreIncomingWithNoClones)
        continue;

      // Now we have IncBB, and will need to add incoming from it to NewPhi.

      // If IncBB is not a predecessor of NewPhiBB, then do not add it.
      // NewPhiBB was cloned without that edge.
      if (!NewPhiBBPreds.count(IncBB))
        continue;

      // Determine incoming value and add it as incoming from IncBB.
      if (MemoryUseOrDef *IncMUD = dyn_cast<MemoryUseOrDef>(IncomingAccess)) {
        if (!MSSA->isLiveOnEntryDef(IncMUD)) {
          Instruction *IncI = IncMUD->getMemoryInst();
          assert(IncI && "Found MemoryUseOrDef with no Instruction.");
          if (Instruction *NewIncI =
                  cast_or_null<Instruction>(VMap.lookup(IncI))) {
            IncMUD = MSSA->getMemoryAccess(NewIncI);
            assert(IncMUD &&
                   "MemoryUseOrDef cannot be null, all preds processed.");
          }
        }
        NewPhi->addIncoming(IncMUD, IncBB);
      } else {
        MemoryPhi *IncPhi = cast<MemoryPhi>(IncomingAccess);
        if (MemoryAccess *NewDefPhi = MPhiMap.lookup(IncPhi))
          NewPhi->addIncoming(NewDefPhi, IncBB);
        else
          NewPhi->addIncoming(IncPhi, IncBB);
      }
    }
  };

  auto ProcessBlock = [&](BasicBlock *BB) {
    BasicBlock *NewBlock = cast_or_null<BasicBlock>(VMap.lookup(BB));
    if (!NewBlock)
      return;

    assert(!MSSA->getWritableBlockAccesses(NewBlock) &&
           "Cloned block should have no accesses");

    // Add MemoryPhi.
    if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) {
      MemoryPhi *NewPhi = MSSA->createMemoryPhi(NewBlock);
      MPhiMap[MPhi] = NewPhi;
    }
    // Update Uses and Defs.
    cloneUsesAndDefs(BB, NewBlock, VMap, MPhiMap);
  };

  for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
    ProcessBlock(BB);

  for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
    if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
      if (MemoryAccess *NewPhi = MPhiMap.lookup(MPhi))
        FixPhiIncomingValues(MPhi, cast<MemoryPhi>(NewPhi));
}

void MemorySSAUpdater::updateForClonedBlockIntoPred(
    BasicBlock *BB, BasicBlock *P1, const ValueToValueMapTy &VM) {
  // All defs/phis from outside BB that are used in BB, are valid uses in P1.
  // Since those defs/phis must have dominated BB, and also dominate P1.
  // Defs from BB being used in BB will be replaced with the cloned defs from
  // VM. The uses of BB's Phi (if it exists) in BB will be replaced by the
  // incoming def into the Phi from P1.
  // Instructions cloned into the predecessor are in practice sometimes
  // simplified, so disable the use of the template, and create an access from
  // scratch.
  PhiToDefMap MPhiMap;
  if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
    MPhiMap[MPhi] = MPhi->getIncomingValueForBlock(P1);
  cloneUsesAndDefs(BB, P1, VM, MPhiMap, /*CloneWasSimplified=*/true);
}

template <typename Iter>
void MemorySSAUpdater::privateUpdateExitBlocksForClonedLoop(
    ArrayRef<BasicBlock *> ExitBlocks, Iter ValuesBegin, Iter ValuesEnd,
    DominatorTree &DT) {
  SmallVector<CFGUpdate, 4> Updates;
  // Update/insert phis in all successors of exit blocks.
  for (auto *Exit : ExitBlocks)
    for (const ValueToValueMapTy *VMap : make_range(ValuesBegin, ValuesEnd))
      if (BasicBlock *NewExit = cast_or_null<BasicBlock>(VMap->lookup(Exit))) {
        BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
        Updates.push_back({DT.Insert, NewExit, ExitSucc});
      }
  applyInsertUpdates(Updates, DT);
}

void MemorySSAUpdater::updateExitBlocksForClonedLoop(
    ArrayRef<BasicBlock *> ExitBlocks, const ValueToValueMapTy &VMap,
    DominatorTree &DT) {
  const ValueToValueMapTy *const Arr[] = {&VMap};
  privateUpdateExitBlocksForClonedLoop(ExitBlocks, std::begin(Arr),
                                       std::end(Arr), DT);
}

void MemorySSAUpdater::updateExitBlocksForClonedLoop(
    ArrayRef<BasicBlock *> ExitBlocks,
    ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, DominatorTree &DT) {
  auto GetPtr = [&](const std::unique_ptr<ValueToValueMapTy> &I) {
    return I.get();
  };
  using MappedIteratorType =
      mapped_iterator<const std::unique_ptr<ValueToValueMapTy> *,
                      decltype(GetPtr)>;
  auto MapBegin = MappedIteratorType(VMaps.begin(), GetPtr);
  auto MapEnd = MappedIteratorType(VMaps.end(), GetPtr);
  privateUpdateExitBlocksForClonedLoop(ExitBlocks, MapBegin, MapEnd, DT);
}

void MemorySSAUpdater::applyUpdates(ArrayRef<CFGUpdate> Updates,
                                    DominatorTree &DT) {
  SmallVector<CFGUpdate, 4> RevDeleteUpdates;
  SmallVector<CFGUpdate, 4> InsertUpdates;
  for (auto &Update : Updates) {
    if (Update.getKind() == DT.Insert)
      InsertUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()});
    else
      RevDeleteUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()});
  }

  if (!RevDeleteUpdates.empty()) {
    // Update for inserted edges: use newDT and snapshot CFG as if deletes had
    // not occurred.
    // FIXME: This creates a new DT, so it's more expensive to do mix
    // delete/inserts vs just inserts. We can do an incremental update on the DT
    // to revert deletes, than re-delete the edges. Teaching DT to do this, is
    // part of a pending cleanup.
    DominatorTree NewDT(DT, RevDeleteUpdates);
    GraphDiff<BasicBlock *> GD(RevDeleteUpdates);
    applyInsertUpdates(InsertUpdates, NewDT, &GD);
  } else {
    GraphDiff<BasicBlock *> GD;
    applyInsertUpdates(InsertUpdates, DT, &GD);
  }

  // Update for deleted edges
  for (auto &Update : RevDeleteUpdates)
    removeEdge(Update.getFrom(), Update.getTo());
}

void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
                                          DominatorTree &DT) {
  GraphDiff<BasicBlock *> GD;
  applyInsertUpdates(Updates, DT, &GD);
}

void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
                                          DominatorTree &DT,
                                          const GraphDiff<BasicBlock *> *GD) {
  // Get recursive last Def, assuming well formed MSSA and updated DT.
  auto GetLastDef = [&](BasicBlock *BB) -> MemoryAccess * {
    while (true) {
      MemorySSA::DefsList *Defs = MSSA->getWritableBlockDefs(BB);
      // Return last Def or Phi in BB, if it exists.
      if (Defs)
        return &*(--Defs->end());

      // Check number of predecessors, we only care if there's more than one.
      unsigned Count = 0;
      BasicBlock *Pred = nullptr;
      for (auto &Pair : children<GraphDiffInvBBPair>({GD, BB})) {
        Pred = Pair.second;
        Count++;
        if (Count == 2)
          break;
      }

      // If BB has multiple predecessors, get last definition from IDom.
      if (Count != 1) {
        // [SimpleLoopUnswitch] If BB is a dead block, about to be deleted, its
        // DT is invalidated. Return LoE as its last def. This will be added to
        // MemoryPhi node, and later deleted when the block is deleted.
        if (!DT.getNode(BB))
          return MSSA->getLiveOnEntryDef();
        if (auto *IDom = DT.getNode(BB)->getIDom())
          if (IDom->getBlock() != BB) {
            BB = IDom->getBlock();
            continue;
          }
        return MSSA->getLiveOnEntryDef();
      } else {
        // Single predecessor, BB cannot be dead. GetLastDef of Pred.
        assert(Count == 1 && Pred && "Single predecessor expected.");
        BB = Pred;
      }
    };
    llvm_unreachable("Unable to get last definition.");
  };

  // Get nearest IDom given a set of blocks.
  // TODO: this can be optimized by starting the search at the node with the
  // lowest level (highest in the tree).
  auto FindNearestCommonDominator =
      [&](const SmallSetVector<BasicBlock *, 2> &BBSet) -> BasicBlock * {
    BasicBlock *PrevIDom = *BBSet.begin();
    for (auto *BB : BBSet)
      PrevIDom = DT.findNearestCommonDominator(PrevIDom, BB);
    return PrevIDom;
  };

  // Get all blocks that dominate PrevIDom, stop when reaching CurrIDom. Do not
  // include CurrIDom.
  auto GetNoLongerDomBlocks =
      [&](BasicBlock *PrevIDom, BasicBlock *CurrIDom,
          SmallVectorImpl<BasicBlock *> &BlocksPrevDom) {
        if (PrevIDom == CurrIDom)
          return;
        BlocksPrevDom.push_back(PrevIDom);
        BasicBlock *NextIDom = PrevIDom;
        while (BasicBlock *UpIDom =
                   DT.getNode(NextIDom)->getIDom()->getBlock()) {
          if (UpIDom == CurrIDom)
            break;
          BlocksPrevDom.push_back(UpIDom);
          NextIDom = UpIDom;
        }
      };

  // Map a BB to its predecessors: added + previously existing. To get a
  // deterministic order, store predecessors as SetVectors. The order in each
  // will be defined by the order in Updates (fixed) and the order given by
  // children<> (also fixed). Since we further iterate over these ordered sets,
  // we lose the information of multiple edges possibly existing between two
  // blocks, so we'll keep and EdgeCount map for that.
  // An alternate implementation could keep unordered set for the predecessors,
  // traverse either Updates or children<> each time to get  the deterministic
  // order, and drop the usage of EdgeCount. This alternate approach would still
  // require querying the maps for each predecessor, and children<> call has
  // additional computation inside for creating the snapshot-graph predecessors.
  // As such, we favor using a little additional storage and less compute time.
  // This decision can be revisited if we find the alternative more favorable.

  struct PredInfo {
    SmallSetVector<BasicBlock *, 2> Added;
    SmallSetVector<BasicBlock *, 2> Prev;
  };
  SmallDenseMap<BasicBlock *, PredInfo> PredMap;

  for (auto &Edge : Updates) {
    BasicBlock *BB = Edge.getTo();
    auto &AddedBlockSet = PredMap[BB].Added;
    AddedBlockSet.insert(Edge.getFrom());
  }

  // Store all existing predecessor for each BB, at least one must exist.
  SmallDenseMap<std::pair<BasicBlock *, BasicBlock *>, int> EdgeCountMap;
  SmallPtrSet<BasicBlock *, 2> NewBlocks;
  for (auto &BBPredPair : PredMap) {
    auto *BB = BBPredPair.first;
    const auto &AddedBlockSet = BBPredPair.second.Added;
    auto &PrevBlockSet = BBPredPair.second.Prev;
    for (auto &Pair : children<GraphDiffInvBBPair>({GD, BB})) {
      BasicBlock *Pi = Pair.second;
      if (!AddedBlockSet.count(Pi))
        PrevBlockSet.insert(Pi);
      EdgeCountMap[{Pi, BB}]++;
    }

    if (PrevBlockSet.empty()) {
      assert(pred_size(BB) == AddedBlockSet.size() && "Duplicate edges added.");
      LLVM_DEBUG(
          dbgs()
          << "Adding a predecessor to a block with no predecessors. "
             "This must be an edge added to a new, likely cloned, block. "
             "Its memory accesses must be already correct, assuming completed "
             "via the updateExitBlocksForClonedLoop API. "
             "Assert a single such edge is added so no phi addition or "
             "additional processing is required.\n");
      assert(AddedBlockSet.size() == 1 &&
             "Can only handle adding one predecessor to a new block.");
      // Need to remove new blocks from PredMap. Remove below to not invalidate
      // iterator here.
      NewBlocks.insert(BB);
    }
  }
  // Nothing to process for new/cloned blocks.
  for (auto *BB : NewBlocks)
    PredMap.erase(BB);

  SmallVector<BasicBlock *, 16> BlocksWithDefsToReplace;
  SmallVector<WeakVH, 8> InsertedPhis;

  // First create MemoryPhis in all blocks that don't have one. Create in the
  // order found in Updates, not in PredMap, to get deterministic numbering.
  for (auto &Edge : Updates) {
    BasicBlock *BB = Edge.getTo();
    if (PredMap.count(BB) && !MSSA->getMemoryAccess(BB))
      InsertedPhis.push_back(MSSA->createMemoryPhi(BB));
  }

  // Now we'll fill in the MemoryPhis with the right incoming values.
  for (auto &BBPredPair : PredMap) {
    auto *BB = BBPredPair.first;
    const auto &PrevBlockSet = BBPredPair.second.Prev;
    const auto &AddedBlockSet = BBPredPair.second.Added;
    assert(!PrevBlockSet.empty() &&
           "At least one previous predecessor must exist.");

    // TODO: if this becomes a bottleneck, we can save on GetLastDef calls by
    // keeping this map before the loop. We can reuse already populated entries
    // if an edge is added from the same predecessor to two different blocks,
    // and this does happen in rotate. Note that the map needs to be updated
    // when deleting non-necessary phis below, if the phi is in the map by
    // replacing the value with DefP1.
    SmallDenseMap<BasicBlock *, MemoryAccess *> LastDefAddedPred;
    for (auto *AddedPred : AddedBlockSet) {
      auto *DefPn = GetLastDef(AddedPred);
      assert(DefPn != nullptr && "Unable to find last definition.");
      LastDefAddedPred[AddedPred] = DefPn;
    }

    MemoryPhi *NewPhi = MSSA->getMemoryAccess(BB);
    // If Phi is not empty, add an incoming edge from each added pred. Must
    // still compute blocks with defs to replace for this block below.
    if (NewPhi->getNumOperands()) {
      for (auto *Pred : AddedBlockSet) {
        auto *LastDefForPred = LastDefAddedPred[Pred];
        for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
          NewPhi->addIncoming(LastDefForPred, Pred);
      }
    } else {
      // Pick any existing predecessor and get its definition. All other
      // existing predecessors should have the same one, since no phi existed.
      auto *P1 = *PrevBlockSet.begin();
      MemoryAccess *DefP1 = GetLastDef(P1);

      // Check DefP1 against all Defs in LastDefPredPair. If all the same,
      // nothing to add.
      bool InsertPhi = false;
      for (auto LastDefPredPair : LastDefAddedPred)
        if (DefP1 != LastDefPredPair.second) {
          InsertPhi = true;
          break;
        }
      if (!InsertPhi) {
        // Since NewPhi may be used in other newly added Phis, replace all uses
        // of NewPhi with the definition coming from all predecessors (DefP1),
        // before deleting it.
        NewPhi->replaceAllUsesWith(DefP1);
        removeMemoryAccess(NewPhi);
        continue;
      }

      // Update Phi with new values for new predecessors and old value for all
      // other predecessors. Since AddedBlockSet and PrevBlockSet are ordered
      // sets, the order of entries in NewPhi is deterministic.
      for (auto *Pred : AddedBlockSet) {
        auto *LastDefForPred = LastDefAddedPred[Pred];
        for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
          NewPhi->addIncoming(LastDefForPred, Pred);
      }
      for (auto *Pred : PrevBlockSet)
        for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
          NewPhi->addIncoming(DefP1, Pred);
    }

    // Get all blocks that used to dominate BB and no longer do after adding
    // AddedBlockSet, where PrevBlockSet are the previously known predecessors.
    assert(DT.getNode(BB)->getIDom() && "BB does not have valid idom");
    BasicBlock *PrevIDom = FindNearestCommonDominator(PrevBlockSet);
    assert(PrevIDom && "Previous IDom should exists");
    BasicBlock *NewIDom = DT.getNode(BB)->getIDom()->getBlock();
    assert(NewIDom && "BB should have a new valid idom");
    assert(DT.dominates(NewIDom, PrevIDom) &&
           "New idom should dominate old idom");
    GetNoLongerDomBlocks(PrevIDom, NewIDom, BlocksWithDefsToReplace);
  }

  tryRemoveTrivialPhis(InsertedPhis);
  // Create the set of blocks that now have a definition. We'll use this to
  // compute IDF and add Phis there next.
  SmallVector<BasicBlock *, 8> BlocksToProcess;
  for (auto &VH : InsertedPhis)
    if (auto *MPhi = cast_or_null<MemoryPhi>(VH))
      BlocksToProcess.push_back(MPhi->getBlock());

  // Compute IDF and add Phis in all IDF blocks that do not have one.
  SmallVector<BasicBlock *, 32> IDFBlocks;
  if (!BlocksToProcess.empty()) {
    ForwardIDFCalculator IDFs(DT, GD);
    SmallPtrSet<BasicBlock *, 16> DefiningBlocks(BlocksToProcess.begin(),
                                                 BlocksToProcess.end());
    IDFs.setDefiningBlocks(DefiningBlocks);
    IDFs.calculate(IDFBlocks);

    SmallSetVector<MemoryPhi *, 4> PhisToFill;
    // First create all needed Phis.
    for (auto *BBIDF : IDFBlocks)
      if (!MSSA->getMemoryAccess(BBIDF)) {
        auto *IDFPhi = MSSA->createMemoryPhi(BBIDF);
        InsertedPhis.push_back(IDFPhi);
        PhisToFill.insert(IDFPhi);
      }
    // Then update or insert their correct incoming values.
    for (auto *BBIDF : IDFBlocks) {
      auto *IDFPhi = MSSA->getMemoryAccess(BBIDF);
      assert(IDFPhi && "Phi must exist");
      if (!PhisToFill.count(IDFPhi)) {
        // Update existing Phi.
        // FIXME: some updates may be redundant, try to optimize and skip some.
        for (unsigned I = 0, E = IDFPhi->getNumIncomingValues(); I < E; ++I)
          IDFPhi->setIncomingValue(I, GetLastDef(IDFPhi->getIncomingBlock(I)));
      } else {
        for (auto &Pair : children<GraphDiffInvBBPair>({GD, BBIDF})) {
          BasicBlock *Pi = Pair.second;
          IDFPhi->addIncoming(GetLastDef(Pi), Pi);
        }
      }
    }
  }

  // Now for all defs in BlocksWithDefsToReplace, if there are uses they no
  // longer dominate, replace those with the closest dominating def.
  // This will also update optimized accesses, as they're also uses.
  for (auto *BlockWithDefsToReplace : BlocksWithDefsToReplace) {
    if (auto DefsList = MSSA->getWritableBlockDefs(BlockWithDefsToReplace)) {
      for (auto &DefToReplaceUses : *DefsList) {
        BasicBlock *DominatingBlock = DefToReplaceUses.getBlock();
        Value::use_iterator UI = DefToReplaceUses.use_begin(),
                            E = DefToReplaceUses.use_end();
        for (; UI != E;) {
          Use &U = *UI;
          ++UI;
          MemoryAccess *Usr = dyn_cast<MemoryAccess>(U.getUser());
          if (MemoryPhi *UsrPhi = dyn_cast<MemoryPhi>(Usr)) {
            BasicBlock *DominatedBlock = UsrPhi->getIncomingBlock(U);
            if (!DT.dominates(DominatingBlock, DominatedBlock))
              U.set(GetLastDef(DominatedBlock));
          } else {
            BasicBlock *DominatedBlock = Usr->getBlock();
            if (!DT.dominates(DominatingBlock, DominatedBlock)) {
              if (auto *DomBlPhi = MSSA->getMemoryAccess(DominatedBlock))
                U.set(DomBlPhi);
              else {
                auto *IDom = DT.getNode(DominatedBlock)->getIDom();
                assert(IDom && "Block must have a valid IDom.");
                U.set(GetLastDef(IDom->getBlock()));
              }
              cast<MemoryUseOrDef>(Usr)->resetOptimized();
            }
          }
        }
      }
    }
  }
  tryRemoveTrivialPhis(InsertedPhis);
}

// Move What before Where in the MemorySSA IR.
template <class WhereType>
void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
                              WhereType Where) {
  // Mark MemoryPhi users of What not to be optimized.
  for (auto *U : What->users())
    if (MemoryPhi *PhiUser = dyn_cast<MemoryPhi>(U))
      NonOptPhis.insert(PhiUser);

  // Replace all our users with our defining access.
  What->replaceAllUsesWith(What->getDefiningAccess());

  // Let MemorySSA take care of moving it around in the lists.
  MSSA->moveTo(What, BB, Where);

  // Now reinsert it into the IR and do whatever fixups needed.
  if (auto *MD = dyn_cast<MemoryDef>(What))
    insertDef(MD);
  else
    insertUse(cast<MemoryUse>(What));

  // Clear dangling pointers. We added all MemoryPhi users, but not all
  // of them are removed by fixupDefs().
  NonOptPhis.clear();
}

// Move What before Where in the MemorySSA IR.
void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
  moveTo(What, Where->getBlock(), Where->getIterator());
}

// Move What after Where in the MemorySSA IR.
void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
  moveTo(What, Where->getBlock(), ++Where->getIterator());
}

void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB,
                                   MemorySSA::InsertionPlace Where) {
  return moveTo(What, BB, Where);
}

// All accesses in To used to be in From. Move to end and update access lists.
void MemorySSAUpdater::moveAllAccesses(BasicBlock *From, BasicBlock *To,
                                       Instruction *Start) {

  MemorySSA::AccessList *Accs = MSSA->getWritableBlockAccesses(From);
  if (!Accs)
    return;

  MemoryAccess *FirstInNew = nullptr;
  for (Instruction &I : make_range(Start->getIterator(), To->end()))
    if ((FirstInNew = MSSA->getMemoryAccess(&I)))
      break;
  if (!FirstInNew)
    return;

  auto *MUD = cast<MemoryUseOrDef>(FirstInNew);
  do {
    auto NextIt = ++MUD->getIterator();
    MemoryUseOrDef *NextMUD = (!Accs || NextIt == Accs->end())
                                  ? nullptr
                                  : cast<MemoryUseOrDef>(&*NextIt);
    MSSA->moveTo(MUD, To, MemorySSA::End);
    // Moving MUD from Accs in the moveTo above, may delete Accs, so we need to
    // retrieve it again.
    Accs = MSSA->getWritableBlockAccesses(From);
    MUD = NextMUD;
  } while (MUD);
}

void MemorySSAUpdater::moveAllAfterSpliceBlocks(BasicBlock *From,
                                                BasicBlock *To,
                                                Instruction *Start) {
  assert(MSSA->getBlockAccesses(To) == nullptr &&
         "To block is expected to be free of MemoryAccesses.");
  moveAllAccesses(From, To, Start);
  for (BasicBlock *Succ : successors(To))
    if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
      MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
}

void MemorySSAUpdater::moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To,
                                               Instruction *Start) {
  assert(From->getSinglePredecessor() == To &&
         "From block is expected to have a single predecessor (To).");
  moveAllAccesses(From, To, Start);
  for (BasicBlock *Succ : successors(From))
    if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
      MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
}

/// If all arguments of a MemoryPHI are defined by the same incoming
/// argument, return that argument.
static MemoryAccess *onlySingleValue(MemoryPhi *MP) {
  MemoryAccess *MA = nullptr;

  for (auto &Arg : MP->operands()) {
    if (!MA)
      MA = cast<MemoryAccess>(Arg);
    else if (MA != Arg)
      return nullptr;
  }
  return MA;
}

void MemorySSAUpdater::wireOldPredecessorsToNewImmediatePredecessor(
    BasicBlock *Old, BasicBlock *New, ArrayRef<BasicBlock *> Preds,
    bool IdenticalEdgesWereMerged) {
  assert(!MSSA->getWritableBlockAccesses(New) &&
         "Access list should be null for a new block.");
  MemoryPhi *Phi = MSSA->getMemoryAccess(Old);
  if (!Phi)
    return;
  if (Old->hasNPredecessors(1)) {
    assert(pred_size(New) == Preds.size() &&
           "Should have moved all predecessors.");
    MSSA->moveTo(Phi, New, MemorySSA::Beginning);
  } else {
    assert(!Preds.empty() && "Must be moving at least one predecessor to the "
                             "new immediate predecessor.");
    MemoryPhi *NewPhi = MSSA->createMemoryPhi(New);
    SmallPtrSet<BasicBlock *, 16> PredsSet(Preds.begin(), Preds.end());
    // Currently only support the case of removing a single incoming edge when
    // identical edges were not merged.
    if (!IdenticalEdgesWereMerged)
      assert(PredsSet.size() == Preds.size() &&
             "If identical edges were not merged, we cannot have duplicate "
             "blocks in the predecessors");
    Phi->unorderedDeleteIncomingIf([&](MemoryAccess *MA, BasicBlock *B) {
      if (PredsSet.count(B)) {
        NewPhi->addIncoming(MA, B);
        if (!IdenticalEdgesWereMerged)
          PredsSet.erase(B);
        return true;
      }
      return false;
    });
    Phi->addIncoming(NewPhi, New);
    if (onlySingleValue(NewPhi))
      removeMemoryAccess(NewPhi);
  }
}

void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA, bool OptimizePhis) {
  assert(!MSSA->isLiveOnEntryDef(MA) &&
         "Trying to remove the live on entry def");
  // We can only delete phi nodes if they have no uses, or we can replace all
  // uses with a single definition.
  MemoryAccess *NewDefTarget = nullptr;
  if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) {
    // Note that it is sufficient to know that all edges of the phi node have
    // the same argument.  If they do, by the definition of dominance frontiers
    // (which we used to place this phi), that argument must dominate this phi,
    // and thus, must dominate the phi's uses, and so we will not hit the assert
    // below.
    NewDefTarget = onlySingleValue(MP);
    assert((NewDefTarget || MP->use_empty()) &&
           "We can't delete this memory phi");
  } else {
    NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess();
  }

  SmallSetVector<MemoryPhi *, 4> PhisToCheck;

  // Re-point the uses at our defining access
  if (!isa<MemoryUse>(MA) && !MA->use_empty()) {
    // Reset optimized on users of this store, and reset the uses.
    // A few notes:
    // 1. This is a slightly modified version of RAUW to avoid walking the
    // uses twice here.
    // 2. If we wanted to be complete, we would have to reset the optimized
    // flags on users of phi nodes if doing the below makes a phi node have all
    // the same arguments. Instead, we prefer users to removeMemoryAccess those
    // phi nodes, because doing it here would be N^3.
    if (MA->hasValueHandle())
      ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget);
    // Note: We assume MemorySSA is not used in metadata since it's not really
    // part of the IR.

    while (!MA->use_empty()) {
      Use &U = *MA->use_begin();
      if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser()))
        MUD->resetOptimized();
      if (OptimizePhis)
        if (MemoryPhi *MP = dyn_cast<MemoryPhi>(U.getUser()))
          PhisToCheck.insert(MP);
      U.set(NewDefTarget);
    }
  }

  // The call below to erase will destroy MA, so we can't change the order we
  // are doing things here
  MSSA->removeFromLookups(MA);
  MSSA->removeFromLists(MA);

  // Optionally optimize Phi uses. This will recursively remove trivial phis.
  if (!PhisToCheck.empty()) {
    SmallVector<WeakVH, 16> PhisToOptimize{PhisToCheck.begin(),
                                           PhisToCheck.end()};
    PhisToCheck.clear();

    unsigned PhisSize = PhisToOptimize.size();
    while (PhisSize-- > 0)
      if (MemoryPhi *MP =
              cast_or_null<MemoryPhi>(PhisToOptimize.pop_back_val())) {
        auto OperRange = MP->operands();
        tryRemoveTrivialPhi(MP, OperRange);
      }
  }
}

void MemorySSAUpdater::removeBlocks(
    const SmallSetVector<BasicBlock *, 8> &DeadBlocks) {
  // First delete all uses of BB in MemoryPhis.
  for (BasicBlock *BB : DeadBlocks) {
    Instruction *TI = BB->getTerminator();
    assert(TI && "Basic block expected to have a terminator instruction");
    for (BasicBlock *Succ : successors(TI))
      if (!DeadBlocks.count(Succ))
        if (MemoryPhi *MP = MSSA->getMemoryAccess(Succ)) {
          MP->unorderedDeleteIncomingBlock(BB);
          if (MP->getNumIncomingValues() == 1)
            removeMemoryAccess(MP);
        }
    // Drop all references of all accesses in BB
    if (MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB))
      for (MemoryAccess &MA : *Acc)
        MA.dropAllReferences();
  }

  // Next, delete all memory accesses in each block
  for (BasicBlock *BB : DeadBlocks) {
    MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB);
    if (!Acc)
      continue;
    for (auto AB = Acc->begin(), AE = Acc->end(); AB != AE;) {
      MemoryAccess *MA = &*AB;
      ++AB;
      MSSA->removeFromLookups(MA);
      MSSA->removeFromLists(MA);
    }
  }
}

void MemorySSAUpdater::tryRemoveTrivialPhis(ArrayRef<WeakVH> UpdatedPHIs) {
  for (auto &VH : UpdatedPHIs)
    if (auto *MPhi = cast_or_null<MemoryPhi>(VH)) {
      auto OperRange = MPhi->operands();
      tryRemoveTrivialPhi(MPhi, OperRange);
    }
}

void MemorySSAUpdater::changeToUnreachable(const Instruction *I) {
  const BasicBlock *BB = I->getParent();
  // Remove memory accesses in BB for I and all following instructions.
  auto BBI = I->getIterator(), BBE = BB->end();
  // FIXME: If this becomes too expensive, iterate until the first instruction
  // with a memory access, then iterate over MemoryAccesses.
  while (BBI != BBE)
    removeMemoryAccess(&*(BBI++));
  // Update phis in BB's successors to remove BB.
  SmallVector<WeakVH, 16> UpdatedPHIs;
  for (const BasicBlock *Successor : successors(BB)) {
    removeDuplicatePhiEdgesBetween(BB, Successor);
    if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Successor)) {
      MPhi->unorderedDeleteIncomingBlock(BB);
      UpdatedPHIs.push_back(MPhi);
    }
  }
  // Optimize trivial phis.
  tryRemoveTrivialPhis(UpdatedPHIs);
}

void MemorySSAUpdater::changeCondBranchToUnconditionalTo(const BranchInst *BI,
                                                         const BasicBlock *To) {
  const BasicBlock *BB = BI->getParent();
  SmallVector<WeakVH, 16> UpdatedPHIs;
  for (const BasicBlock *Succ : successors(BB)) {
    removeDuplicatePhiEdgesBetween(BB, Succ);
    if (Succ != To)
      if (auto *MPhi = MSSA->getMemoryAccess(Succ)) {
        MPhi->unorderedDeleteIncomingBlock(BB);
        UpdatedPHIs.push_back(MPhi);
      }
  }
  // Optimize trivial phis.
  tryRemoveTrivialPhis(UpdatedPHIs);
}

MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB(
    Instruction *I, MemoryAccess *Definition, const BasicBlock *BB,
    MemorySSA::InsertionPlace Point) {
  MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
  MSSA->insertIntoListsForBlock(NewAccess, BB, Point);
  return NewAccess;
}

MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore(
    Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) {
  assert(I->getParent() == InsertPt->getBlock() &&
         "New and old access must be in the same block");
  MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
  MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
                              InsertPt->getIterator());
  return NewAccess;
}

MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter(
    Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) {
  assert(I->getParent() == InsertPt->getBlock() &&
         "New and old access must be in the same block");
  MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
  MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
                              ++InsertPt->getIterator());
  return NewAccess;
}