aboutsummaryrefslogtreecommitdiff
path: root/lib/CodeGen/TargetABIInfo.cpp
blob: 6f7bea2340a9e661e24ffb00b31be6af20fff09c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
//===---- TargetABIInfo.cpp - Encapsulate target ABI details ----*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// These classes wrap the information about a call or function
// definition used to handle ABI compliancy.
//
//===----------------------------------------------------------------------===//

#include "ABIInfo.h"
#include "CodeGenFunction.h"
#include "clang/AST/RecordLayout.h"
#include "llvm/Type.h"

using namespace clang;
using namespace CodeGen;

ABIInfo::~ABIInfo() {}

void ABIArgInfo::dump() const {
  fprintf(stderr, "(ABIArgInfo Kind=");
  switch (TheKind) {
  case Direct:
    fprintf(stderr, "Direct");
    break;
  case Extend:
    fprintf(stderr, "Extend");
    break;
  case Ignore:
    fprintf(stderr, "Ignore");
    break;
  case Coerce:
    fprintf(stderr, "Coerce Type=");
    getCoerceToType()->print(llvm::errs());
    break;
  case Indirect:
    fprintf(stderr, "Indirect Align=%d", getIndirectAlign());
    break;
  case Expand:
    fprintf(stderr, "Expand");
    break;
  }
  fprintf(stderr, ")\n");
}

static bool isEmptyRecord(ASTContext &Context, QualType T);

/// isEmptyField - Return true iff a the field is "empty", that is it
/// is an unnamed bit-field or an (array of) empty record(s).
static bool isEmptyField(ASTContext &Context, const FieldDecl *FD) {
  if (FD->isUnnamedBitfield())
    return true;

  QualType FT = FD->getType();
  // Constant arrays of empty records count as empty, strip them off.
  while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT))
    FT = AT->getElementType();

  return isEmptyRecord(Context, FT);
}

/// isEmptyRecord - Return true iff a structure contains only empty
/// fields. Note that a structure with a flexible array member is not
/// considered empty.
static bool isEmptyRecord(ASTContext &Context, QualType T) {
  const RecordType *RT = T->getAsRecordType();
  if (!RT)
    return 0;
  const RecordDecl *RD = RT->getDecl();
  if (RD->hasFlexibleArrayMember())
    return false;
  for (RecordDecl::field_iterator i = RD->field_begin(Context),
         e = RD->field_end(Context); i != e; ++i)
    if (!isEmptyField(Context, *i))
      return false;
  return true;
}

/// isSingleElementStruct - Determine if a structure is a "single
/// element struct", i.e. it has exactly one non-empty field or
/// exactly one field which is itself a single element
/// struct. Structures with flexible array members are never
/// considered single element structs.
///
/// \return The field declaration for the single non-empty field, if
/// it exists.
static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
  const RecordType *RT = T->getAsStructureType();
  if (!RT)
    return 0;

  const RecordDecl *RD = RT->getDecl();
  if (RD->hasFlexibleArrayMember())
    return 0;

  const Type *Found = 0;
  for (RecordDecl::field_iterator i = RD->field_begin(Context),
         e = RD->field_end(Context); i != e; ++i) {
    const FieldDecl *FD = *i;
    QualType FT = FD->getType();

    // Ignore empty fields.
    if (isEmptyField(Context, FD))
      continue;

    // If we already found an element then this isn't a single-element
    // struct.
    if (Found)
      return 0;

    // Treat single element arrays as the element.
    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
      if (AT->getSize().getZExtValue() != 1)
        break;
      FT = AT->getElementType();
    }

    if (!CodeGenFunction::hasAggregateLLVMType(FT)) {
      Found = FT.getTypePtr();
    } else {
      Found = isSingleElementStruct(FT, Context);
      if (!Found)
        return 0;
    }
  }

  return Found;
}

static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
  if (!Ty->getAsBuiltinType() && !Ty->isPointerType())
    return false;

  uint64_t Size = Context.getTypeSize(Ty);
  return Size == 32 || Size == 64;
}

static bool areAllFields32Or64BitBasicType(const RecordDecl *RD,
                                           ASTContext &Context) {
  for (RecordDecl::field_iterator i = RD->field_begin(Context),
         e = RD->field_end(Context); i != e; ++i) {
    const FieldDecl *FD = *i;

    if (!is32Or64BitBasicType(FD->getType(), Context))
      return false;

    // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
    // how to expand them yet, and the predicate for telling if a bitfield still
    // counts as "basic" is more complicated than what we were doing previously.
    if (FD->isBitField())
      return false;
  }

  return true;
}

namespace {
/// DefaultABIInfo - The default implementation for ABI specific
/// details. This implementation provides information which results in
/// self-consistent and sensible LLVM IR generation, but does not
/// conform to any particular ABI.
class DefaultABIInfo : public ABIInfo {
  ABIArgInfo classifyReturnType(QualType RetTy,
                                ASTContext &Context) const;

  ABIArgInfo classifyArgumentType(QualType RetTy,
                                  ASTContext &Context) const;

  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const {
    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context);
    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
         it != ie; ++it)
      it->info = classifyArgumentType(it->type, Context);
  }

  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
                                 CodeGenFunction &CGF) const;
};

/// X86_32ABIInfo - The X86-32 ABI information.
class X86_32ABIInfo : public ABIInfo {
  ASTContext &Context;
  bool IsDarwin;

  static bool isRegisterSize(unsigned Size) {
    return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
  }

  static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context);

public:
  ABIArgInfo classifyReturnType(QualType RetTy,
                                ASTContext &Context) const;

  ABIArgInfo classifyArgumentType(QualType RetTy,
                                  ASTContext &Context) const;

  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const {
    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context);
    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
         it != ie; ++it)
      it->info = classifyArgumentType(it->type, Context);
  }

  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
                                 CodeGenFunction &CGF) const;

  X86_32ABIInfo(ASTContext &Context, bool d)
    : ABIInfo(), Context(Context), IsDarwin(d) {}
};
}


/// shouldReturnTypeInRegister - Determine if the given type should be
/// passed in a register (for the Darwin ABI).
bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
                                               ASTContext &Context) {
  uint64_t Size = Context.getTypeSize(Ty);

  // Type must be register sized.
  if (!isRegisterSize(Size))
    return false;

  if (Ty->isVectorType()) {
    // 64- and 128- bit vectors inside structures are not returned in
    // registers.
    if (Size == 64 || Size == 128)
      return false;

    return true;
  }

  // If this is a builtin, pointer, or complex type, it is ok.
  if (Ty->getAsBuiltinType() || Ty->isPointerType() || Ty->isAnyComplexType())
    return true;

  // Arrays are treated like records.
  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
    return shouldReturnTypeInRegister(AT->getElementType(), Context);

  // Otherwise, it must be a record type.
  const RecordType *RT = Ty->getAsRecordType();
  if (!RT) return false;

  // Structure types are passed in register if all fields would be
  // passed in a register.
  for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(Context),
         e = RT->getDecl()->field_end(Context); i != e; ++i) {
    const FieldDecl *FD = *i;

    // Empty fields are ignored.
    if (isEmptyField(Context, FD))
      continue;

    // Check fields recursively.
    if (!shouldReturnTypeInRegister(FD->getType(), Context))
      return false;
  }

  return true;
}

ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
                                            ASTContext &Context) const {
  if (RetTy->isVoidType()) {
    return ABIArgInfo::getIgnore();
  } else if (const VectorType *VT = RetTy->getAsVectorType()) {
    // On Darwin, some vectors are returned in registers.
    if (IsDarwin) {
      uint64_t Size = Context.getTypeSize(RetTy);

      // 128-bit vectors are a special case; they are returned in
      // registers and we need to make sure to pick a type the LLVM
      // backend will like.
      if (Size == 128)
        return ABIArgInfo::getCoerce(llvm::VectorType::get(llvm::Type::Int64Ty,
                                                           2));

      // Always return in register if it fits in a general purpose
      // register, or if it is 64 bits and has a single element.
      if ((Size == 8 || Size == 16 || Size == 32) ||
          (Size == 64 && VT->getNumElements() == 1))
        return ABIArgInfo::getCoerce(llvm::IntegerType::get(Size));

      return ABIArgInfo::getIndirect(0);
    }

    return ABIArgInfo::getDirect();
  } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
    // Structures with flexible arrays are always indirect.
    if (const RecordType *RT = RetTy->getAsStructureType())
      if (RT->getDecl()->hasFlexibleArrayMember())
        return ABIArgInfo::getIndirect(0);

    // Outside of Darwin, structs and unions are always indirect.
    if (!IsDarwin && !RetTy->isAnyComplexType())
      return ABIArgInfo::getIndirect(0);

    // Classify "single element" structs as their element type.
    if (const Type *SeltTy = isSingleElementStruct(RetTy, Context)) {
      if (const BuiltinType *BT = SeltTy->getAsBuiltinType()) {
        if (BT->isIntegerType()) {
          // We need to use the size of the structure, padding
          // bit-fields can adjust that to be larger than the single
          // element type.
          uint64_t Size = Context.getTypeSize(RetTy);
          return ABIArgInfo::getCoerce(llvm::IntegerType::get((unsigned) Size));
        } else if (BT->getKind() == BuiltinType::Float) {
          assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) &&
                 "Unexpect single element structure size!");
          return ABIArgInfo::getCoerce(llvm::Type::FloatTy);
        } else if (BT->getKind() == BuiltinType::Double) {
          assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) &&
                 "Unexpect single element structure size!");
          return ABIArgInfo::getCoerce(llvm::Type::DoubleTy);
        }
      } else if (SeltTy->isPointerType()) {
        // FIXME: It would be really nice if this could come out as the proper
        // pointer type.
        llvm::Type *PtrTy =
          llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
        return ABIArgInfo::getCoerce(PtrTy);
      } else if (SeltTy->isVectorType()) {
        // 64- and 128-bit vectors are never returned in a
        // register when inside a structure.
        uint64_t Size = Context.getTypeSize(RetTy);
        if (Size == 64 || Size == 128)
          return ABIArgInfo::getIndirect(0);

        return classifyReturnType(QualType(SeltTy, 0), Context);
      }
    }

    // Small structures which are register sized are generally returned
    // in a register.
    if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, Context)) {
      uint64_t Size = Context.getTypeSize(RetTy);
      return ABIArgInfo::getCoerce(llvm::IntegerType::get(Size));
    }

    return ABIArgInfo::getIndirect(0);
  } else {
    return (RetTy->isPromotableIntegerType() ?
            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
  }
}

ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
                                               ASTContext &Context) const {
  // FIXME: Set alignment on indirect arguments.
  if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
    // Structures with flexible arrays are always indirect.
    if (const RecordType *RT = Ty->getAsStructureType())
      if (RT->getDecl()->hasFlexibleArrayMember())
        return ABIArgInfo::getIndirect(0);

    // Ignore empty structs.
    uint64_t Size = Context.getTypeSize(Ty);
    if (Ty->isStructureType() && Size == 0)
      return ABIArgInfo::getIgnore();

    // Expand structs with size <= 128-bits which consist only of
    // basic types (int, long long, float, double, xxx*). This is
    // non-recursive and does not ignore empty fields.
    if (const RecordType *RT = Ty->getAsStructureType()) {
      if (Context.getTypeSize(Ty) <= 4*32 &&
          areAllFields32Or64BitBasicType(RT->getDecl(), Context))
        return ABIArgInfo::getExpand();
    }

    return ABIArgInfo::getIndirect(0);
  } else {
    return (Ty->isPromotableIntegerType() ?
            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
  }
}

llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
                                      CodeGenFunction &CGF) const {
  const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);

  CGBuilderTy &Builder = CGF.Builder;
  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
                                                       "ap");
  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
  llvm::Type *PTy =
    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);

  uint64_t Offset =
    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
  llvm::Value *NextAddr =
    Builder.CreateGEP(Addr,
                      llvm::ConstantInt::get(llvm::Type::Int32Ty, Offset),
                      "ap.next");
  Builder.CreateStore(NextAddr, VAListAddrAsBPP);

  return AddrTyped;
}

namespace {
/// X86_64ABIInfo - The X86_64 ABI information.
class X86_64ABIInfo : public ABIInfo {
  enum Class {
    Integer = 0,
    SSE,
    SSEUp,
    X87,
    X87Up,
    ComplexX87,
    NoClass,
    Memory
  };

  /// merge - Implement the X86_64 ABI merging algorithm.
  ///
  /// Merge an accumulating classification \arg Accum with a field
  /// classification \arg Field.
  ///
  /// \param Accum - The accumulating classification. This should
  /// always be either NoClass or the result of a previous merge
  /// call. In addition, this should never be Memory (the caller
  /// should just return Memory for the aggregate).
  Class merge(Class Accum, Class Field) const;

  /// classify - Determine the x86_64 register classes in which the
  /// given type T should be passed.
  ///
  /// \param Lo - The classification for the parts of the type
  /// residing in the low word of the containing object.
  ///
  /// \param Hi - The classification for the parts of the type
  /// residing in the high word of the containing object.
  ///
  /// \param OffsetBase - The bit offset of this type in the
  /// containing object.  Some parameters are classified different
  /// depending on whether they straddle an eightbyte boundary.
  ///
  /// If a word is unused its result will be NoClass; if a type should
  /// be passed in Memory then at least the classification of \arg Lo
  /// will be Memory.
  ///
  /// The \arg Lo class will be NoClass iff the argument is ignored.
  ///
  /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
  /// also be ComplexX87.
  void classify(QualType T, ASTContext &Context, uint64_t OffsetBase,
                Class &Lo, Class &Hi) const;

  /// getCoerceResult - Given a source type \arg Ty and an LLVM type
  /// to coerce to, chose the best way to pass Ty in the same place
  /// that \arg CoerceTo would be passed, but while keeping the
  /// emitted code as simple as possible.
  ///
  /// FIXME: Note, this should be cleaned up to just take an enumeration of all
  /// the ways we might want to pass things, instead of constructing an LLVM
  /// type. This makes this code more explicit, and it makes it clearer that we
  /// are also doing this for correctness in the case of passing scalar types.
  ABIArgInfo getCoerceResult(QualType Ty,
                             const llvm::Type *CoerceTo,
                             ASTContext &Context) const;

  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
  /// such that the argument will be passed in memory.
  ABIArgInfo getIndirectResult(QualType Ty,
                               ASTContext &Context) const;

  ABIArgInfo classifyReturnType(QualType RetTy,
                                ASTContext &Context) const;

  ABIArgInfo classifyArgumentType(QualType Ty,
                                  ASTContext &Context,
                                  unsigned &neededInt,
                                  unsigned &neededSSE) const;

public:
  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const;

  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
                                 CodeGenFunction &CGF) const;
};
}

X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum,
                                          Class Field) const {
  // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
  // classified recursively so that always two fields are
  // considered. The resulting class is calculated according to
  // the classes of the fields in the eightbyte:
  //
  // (a) If both classes are equal, this is the resulting class.
  //
  // (b) If one of the classes is NO_CLASS, the resulting class is
  // the other class.
  //
  // (c) If one of the classes is MEMORY, the result is the MEMORY
  // class.
  //
  // (d) If one of the classes is INTEGER, the result is the
  // INTEGER.
  //
  // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
  // MEMORY is used as class.
  //
  // (f) Otherwise class SSE is used.

  // Accum should never be memory (we should have returned) or
  // ComplexX87 (because this cannot be passed in a structure).
  assert((Accum != Memory && Accum != ComplexX87) &&
         "Invalid accumulated classification during merge.");
  if (Accum == Field || Field == NoClass)
    return Accum;
  else if (Field == Memory)
    return Memory;
  else if (Accum == NoClass)
    return Field;
  else if (Accum == Integer || Field == Integer)
    return Integer;
  else if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
           Accum == X87 || Accum == X87Up)
    return Memory;
  else
    return SSE;
}

void X86_64ABIInfo::classify(QualType Ty,
                             ASTContext &Context,
                             uint64_t OffsetBase,
                             Class &Lo, Class &Hi) const {
  // FIXME: This code can be simplified by introducing a simple value class for
  // Class pairs with appropriate constructor methods for the various
  // situations.

  // FIXME: Some of the split computations are wrong; unaligned vectors
  // shouldn't be passed in registers for example, so there is no chance they
  // can straddle an eightbyte. Verify & simplify.

  Lo = Hi = NoClass;

  Class &Current = OffsetBase < 64 ? Lo : Hi;
  Current = Memory;

  if (const BuiltinType *BT = Ty->getAsBuiltinType()) {
    BuiltinType::Kind k = BT->getKind();

    if (k == BuiltinType::Void) {
      Current = NoClass;
    } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
      Lo = Integer;
      Hi = Integer;
    } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
      Current = Integer;
    } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
      Current = SSE;
    } else if (k == BuiltinType::LongDouble) {
      Lo = X87;
      Hi = X87Up;
    }
    // FIXME: _Decimal32 and _Decimal64 are SSE.
    // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
  } else if (const EnumType *ET = Ty->getAsEnumType()) {
    // Classify the underlying integer type.
    classify(ET->getDecl()->getIntegerType(), Context, OffsetBase, Lo, Hi);
  } else if (Ty->hasPointerRepresentation()) {
    Current = Integer;
  } else if (const VectorType *VT = Ty->getAsVectorType()) {
    uint64_t Size = Context.getTypeSize(VT);
    if (Size == 32) {
      // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
      // float> as integer.
      Current = Integer;

      // If this type crosses an eightbyte boundary, it should be
      // split.
      uint64_t EB_Real = (OffsetBase) / 64;
      uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
      if (EB_Real != EB_Imag)
        Hi = Lo;
    } else if (Size == 64) {
      // gcc passes <1 x double> in memory. :(
      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
        return;

      // gcc passes <1 x long long> as INTEGER.
      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong))
        Current = Integer;
      else
        Current = SSE;

      // If this type crosses an eightbyte boundary, it should be
      // split.
      if (OffsetBase && OffsetBase != 64)
        Hi = Lo;
    } else if (Size == 128) {
      Lo = SSE;
      Hi = SSEUp;
    }
  } else if (const ComplexType *CT = Ty->getAsComplexType()) {
    QualType ET = Context.getCanonicalType(CT->getElementType());

    uint64_t Size = Context.getTypeSize(Ty);
    if (ET->isIntegralType()) {
      if (Size <= 64)
        Current = Integer;
      else if (Size <= 128)
        Lo = Hi = Integer;
    } else if (ET == Context.FloatTy)
      Current = SSE;
    else if (ET == Context.DoubleTy)
      Lo = Hi = SSE;
    else if (ET == Context.LongDoubleTy)
      Current = ComplexX87;

    // If this complex type crosses an eightbyte boundary then it
    // should be split.
    uint64_t EB_Real = (OffsetBase) / 64;
    uint64_t EB_Imag = (OffsetBase + Context.getTypeSize(ET)) / 64;
    if (Hi == NoClass && EB_Real != EB_Imag)
      Hi = Lo;
  } else if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
    // Arrays are treated like structures.

    uint64_t Size = Context.getTypeSize(Ty);

    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
    // than two eightbytes, ..., it has class MEMORY.
    if (Size > 128)
      return;

    // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
    // fields, it has class MEMORY.
    //
    // Only need to check alignment of array base.
    if (OffsetBase % Context.getTypeAlign(AT->getElementType()))
      return;

    // Otherwise implement simplified merge. We could be smarter about
    // this, but it isn't worth it and would be harder to verify.
    Current = NoClass;
    uint64_t EltSize = Context.getTypeSize(AT->getElementType());
    uint64_t ArraySize = AT->getSize().getZExtValue();
    for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
      Class FieldLo, FieldHi;
      classify(AT->getElementType(), Context, Offset, FieldLo, FieldHi);
      Lo = merge(Lo, FieldLo);
      Hi = merge(Hi, FieldHi);
      if (Lo == Memory || Hi == Memory)
        break;
    }

    // Do post merger cleanup (see below). Only case we worry about is Memory.
    if (Hi == Memory)
      Lo = Memory;
    assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
  } else if (const RecordType *RT = Ty->getAsRecordType()) {
    uint64_t Size = Context.getTypeSize(Ty);

    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
    // than two eightbytes, ..., it has class MEMORY.
    if (Size > 128)
      return;

    const RecordDecl *RD = RT->getDecl();

    // Assume variable sized types are passed in memory.
    if (RD->hasFlexibleArrayMember())
      return;

    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);

    // Reset Lo class, this will be recomputed.
    Current = NoClass;
    unsigned idx = 0;
    for (RecordDecl::field_iterator i = RD->field_begin(Context),
           e = RD->field_end(Context); i != e; ++i, ++idx) {
      uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
      bool BitField = i->isBitField();

      // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
      // fields, it has class MEMORY.
      //
      // Note, skip this test for bit-fields, see below.
      if (!BitField && Offset % Context.getTypeAlign(i->getType())) {
        Lo = Memory;
        return;
      }

      // Classify this field.
      //
      // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
      // exceeds a single eightbyte, each is classified
      // separately. Each eightbyte gets initialized to class
      // NO_CLASS.
      Class FieldLo, FieldHi;

      // Bit-fields require special handling, they do not force the
      // structure to be passed in memory even if unaligned, and
      // therefore they can straddle an eightbyte.
      if (BitField) {
        // Ignore padding bit-fields.
        if (i->isUnnamedBitfield())
          continue;

        uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
        uint64_t Size = i->getBitWidth()->EvaluateAsInt(Context).getZExtValue();

        uint64_t EB_Lo = Offset / 64;
        uint64_t EB_Hi = (Offset + Size - 1) / 64;
        FieldLo = FieldHi = NoClass;
        if (EB_Lo) {
          assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
          FieldLo = NoClass;
          FieldHi = Integer;
        } else {
          FieldLo = Integer;
          FieldHi = EB_Hi ? Integer : NoClass;
        }
      } else
        classify(i->getType(), Context, Offset, FieldLo, FieldHi);
      Lo = merge(Lo, FieldLo);
      Hi = merge(Hi, FieldHi);
      if (Lo == Memory || Hi == Memory)
        break;
    }

    // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
    //
    // (a) If one of the classes is MEMORY, the whole argument is
    // passed in memory.
    //
    // (b) If SSEUP is not preceeded by SSE, it is converted to SSE.

    // The first of these conditions is guaranteed by how we implement
    // the merge (just bail).
    //
    // The second condition occurs in the case of unions; for example
    // union { _Complex double; unsigned; }.
    if (Hi == Memory)
      Lo = Memory;
    if (Hi == SSEUp && Lo != SSE)
      Hi = SSE;
  }
}

ABIArgInfo X86_64ABIInfo::getCoerceResult(QualType Ty,
                                          const llvm::Type *CoerceTo,
                                          ASTContext &Context) const {
  if (CoerceTo == llvm::Type::Int64Ty) {
    // Integer and pointer types will end up in a general purpose
    // register.
    if (Ty->isIntegralType() || Ty->isPointerType())
      return (Ty->isPromotableIntegerType() ?
              ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
  } else if (CoerceTo == llvm::Type::DoubleTy) {
    // FIXME: It would probably be better to make CGFunctionInfo only map using
    // canonical types than to canonize here.
    QualType CTy = Context.getCanonicalType(Ty);

    // Float and double end up in a single SSE reg.
    if (CTy == Context.FloatTy || CTy == Context.DoubleTy)
      return ABIArgInfo::getDirect();

  }

  return ABIArgInfo::getCoerce(CoerceTo);
}

ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
                                            ASTContext &Context) const {
  // If this is a scalar LLVM value then assume LLVM will pass it in the right
  // place naturally.
  if (!CodeGenFunction::hasAggregateLLVMType(Ty))
    return (Ty->isPromotableIntegerType() ?
            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());

  // FIXME: Set alignment correctly.
  return ABIArgInfo::getIndirect(0);
}

ABIArgInfo X86_64ABIInfo::classifyReturnType(QualType RetTy,
                                            ASTContext &Context) const {
  // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
  // classification algorithm.
  X86_64ABIInfo::Class Lo, Hi;
  classify(RetTy, Context, 0, Lo, Hi);

  // Check some invariants.
  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
  assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification.");
  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");

  const llvm::Type *ResType = 0;
  switch (Lo) {
  case NoClass:
    return ABIArgInfo::getIgnore();

  case SSEUp:
  case X87Up:
    assert(0 && "Invalid classification for lo word.");

    // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
    // hidden argument.
  case Memory:
    return getIndirectResult(RetTy, Context);

    // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
    // available register of the sequence %rax, %rdx is used.
  case Integer:
    ResType = llvm::Type::Int64Ty; break;

    // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
    // available SSE register of the sequence %xmm0, %xmm1 is used.
  case SSE:
    ResType = llvm::Type::DoubleTy; break;

    // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
    // returned on the X87 stack in %st0 as 80-bit x87 number.
  case X87:
    ResType = llvm::Type::X86_FP80Ty; break;

    // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
    // part of the value is returned in %st0 and the imaginary part in
    // %st1.
  case ComplexX87:
    assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
    ResType = llvm::StructType::get(llvm::Type::X86_FP80Ty,
                                    llvm::Type::X86_FP80Ty,
                                    NULL);
    break;
  }

  switch (Hi) {
    // Memory was handled previously and X87 should
    // never occur as a hi class.
  case Memory:
  case X87:
    assert(0 && "Invalid classification for hi word.");

  case ComplexX87: // Previously handled.
  case NoClass: break;

  case Integer:
    ResType = llvm::StructType::get(ResType, llvm::Type::Int64Ty, NULL);
    break;
  case SSE:
    ResType = llvm::StructType::get(ResType, llvm::Type::DoubleTy, NULL);
    break;

    // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
    // is passed in the upper half of the last used SSE register.
    //
    // SSEUP should always be preceeded by SSE, just widen.
  case SSEUp:
    assert(Lo == SSE && "Unexpected SSEUp classification.");
    ResType = llvm::VectorType::get(llvm::Type::DoubleTy, 2);
    break;

    // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
    // returned together with the previous X87 value in %st0.
  case X87Up:
    // If X87Up is preceeded by X87, we don't need to do
    // anything. However, in some cases with unions it may not be
    // preceeded by X87. In such situations we follow gcc and pass the
    // extra bits in an SSE reg.
    if (Lo != X87)
      ResType = llvm::StructType::get(ResType, llvm::Type::DoubleTy, NULL);
    break;
  }

  return getCoerceResult(RetTy, ResType, Context);
}

ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, ASTContext &Context,
                                               unsigned &neededInt,
                                               unsigned &neededSSE) const {
  X86_64ABIInfo::Class Lo, Hi;
  classify(Ty, Context, 0, Lo, Hi);

  // Check some invariants.
  // FIXME: Enforce these by construction.
  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
  assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification.");
  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");

  neededInt = 0;
  neededSSE = 0;
  const llvm::Type *ResType = 0;
  switch (Lo) {
  case NoClass:
    return ABIArgInfo::getIgnore();

    // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
    // on the stack.
  case Memory:

    // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
    // COMPLEX_X87, it is passed in memory.
  case X87:
  case ComplexX87:
    return getIndirectResult(Ty, Context);

  case SSEUp:
  case X87Up:
    assert(0 && "Invalid classification for lo word.");

    // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
    // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
    // and %r9 is used.
  case Integer:
    ++neededInt;
    ResType = llvm::Type::Int64Ty;
    break;

    // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
    // available SSE register is used, the registers are taken in the
    // order from %xmm0 to %xmm7.
  case SSE:
    ++neededSSE;
    ResType = llvm::Type::DoubleTy;
    break;
  }

  switch (Hi) {
    // Memory was handled previously, ComplexX87 and X87 should
    // never occur as hi classes, and X87Up must be preceed by X87,
    // which is passed in memory.
  case Memory:
  case X87:
  case ComplexX87:
    assert(0 && "Invalid classification for hi word.");
    break;

  case NoClass: break;
  case Integer:
    ResType = llvm::StructType::get(ResType, llvm::Type::Int64Ty, NULL);
    ++neededInt;
    break;

    // X87Up generally doesn't occur here (long double is passed in
    // memory), except in situations involving unions.
  case X87Up:
  case SSE:
    ResType = llvm::StructType::get(ResType, llvm::Type::DoubleTy, NULL);
    ++neededSSE;
    break;

    // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
    // eightbyte is passed in the upper half of the last used SSE
    // register.
  case SSEUp:
    assert(Lo == SSE && "Unexpected SSEUp classification.");
    ResType = llvm::VectorType::get(llvm::Type::DoubleTy, 2);
    break;
  }

  return getCoerceResult(Ty, ResType, Context);
}

void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context) const {
  FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context);

  // Keep track of the number of assigned registers.
  unsigned freeIntRegs = 6, freeSSERegs = 8;

  // If the return value is indirect, then the hidden argument is consuming one
  // integer register.
  if (FI.getReturnInfo().isIndirect())
    --freeIntRegs;

  // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
  // get assigned (in left-to-right order) for passing as follows...
  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
       it != ie; ++it) {
    unsigned neededInt, neededSSE;
    it->info = classifyArgumentType(it->type, Context, neededInt, neededSSE);

    // AMD64-ABI 3.2.3p3: If there are no registers available for any
    // eightbyte of an argument, the whole argument is passed on the
    // stack. If registers have already been assigned for some
    // eightbytes of such an argument, the assignments get reverted.
    if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
      freeIntRegs -= neededInt;
      freeSSERegs -= neededSSE;
    } else {
      it->info = getIndirectResult(it->type, Context);
    }
  }
}

static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
                                        QualType Ty,
                                        CodeGenFunction &CGF) {
  llvm::Value *overflow_arg_area_p =
    CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
  llvm::Value *overflow_arg_area =
    CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");

  // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
  // byte boundary if alignment needed by type exceeds 8 byte boundary.
  uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
  if (Align > 8) {
    // Note that we follow the ABI & gcc here, even though the type
    // could in theory have an alignment greater than 16. This case
    // shouldn't ever matter in practice.

    // overflow_arg_area = (overflow_arg_area + 15) & ~15;
    llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty, 15);
    overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
    llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
                                                    llvm::Type::Int64Ty);
    llvm::Value *Mask = llvm::ConstantInt::get(llvm::Type::Int64Ty, ~15LL);
    overflow_arg_area =
      CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
                                 overflow_arg_area->getType(),
                                 "overflow_arg_area.align");
  }

  // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
  const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
  llvm::Value *Res =
    CGF.Builder.CreateBitCast(overflow_arg_area,
                              llvm::PointerType::getUnqual(LTy));

  // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
  // l->overflow_arg_area + sizeof(type).
  // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
  // an 8 byte boundary.

  uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
  llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty,
                                               (SizeInBytes + 7)  & ~7);
  overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
                                            "overflow_arg_area.next");
  CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);

  // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
  return Res;
}

llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
                                      CodeGenFunction &CGF) const {
  // Assume that va_list type is correct; should be pointer to LLVM type:
  // struct {
  //   i32 gp_offset;
  //   i32 fp_offset;
  //   i8* overflow_arg_area;
  //   i8* reg_save_area;
  // };
  unsigned neededInt, neededSSE;
  ABIArgInfo AI = classifyArgumentType(Ty, CGF.getContext(),
                                       neededInt, neededSSE);

  // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
  // in the registers. If not go to step 7.
  if (!neededInt && !neededSSE)
    return EmitVAArgFromMemory(VAListAddr, Ty, CGF);

  // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
  // general purpose registers needed to pass type and num_fp to hold
  // the number of floating point registers needed.

  // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
  // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
  // l->fp_offset > 304 - num_fp * 16 go to step 7.
  //
  // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
  // register save space).

  llvm::Value *InRegs = 0;
  llvm::Value *gp_offset_p = 0, *gp_offset = 0;
  llvm::Value *fp_offset_p = 0, *fp_offset = 0;
  if (neededInt) {
    gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
    gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
    InRegs =
      CGF.Builder.CreateICmpULE(gp_offset,
                                llvm::ConstantInt::get(llvm::Type::Int32Ty,
                                                       48 - neededInt * 8),
                                "fits_in_gp");
  }

  if (neededSSE) {
    fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
    fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
    llvm::Value *FitsInFP =
      CGF.Builder.CreateICmpULE(fp_offset,
                                llvm::ConstantInt::get(llvm::Type::Int32Ty,
                                                       176 - neededSSE * 16),
                                "fits_in_fp");
    InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
  }

  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);

  // Emit code to load the value if it was passed in registers.

  CGF.EmitBlock(InRegBlock);

  // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
  // an offset of l->gp_offset and/or l->fp_offset. This may require
  // copying to a temporary location in case the parameter is passed
  // in different register classes or requires an alignment greater
  // than 8 for general purpose registers and 16 for XMM registers.
  //
  // FIXME: This really results in shameful code when we end up needing to
  // collect arguments from different places; often what should result in a
  // simple assembling of a structure from scattered addresses has many more
  // loads than necessary. Can we clean this up?
  const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
  llvm::Value *RegAddr =
    CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
                           "reg_save_area");
  if (neededInt && neededSSE) {
    // FIXME: Cleanup.
    assert(AI.isCoerce() && "Unexpected ABI info for mixed regs");
    const llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
    llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
    assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
    const llvm::Type *TyLo = ST->getElementType(0);
    const llvm::Type *TyHi = ST->getElementType(1);
    assert((TyLo->isFloatingPoint() ^ TyHi->isFloatingPoint()) &&
           "Unexpected ABI info for mixed regs");
    const llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
    const llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
    llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
    llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
    llvm::Value *RegLoAddr = TyLo->isFloatingPoint() ? FPAddr : GPAddr;
    llvm::Value *RegHiAddr = TyLo->isFloatingPoint() ? GPAddr : FPAddr;
    llvm::Value *V =
      CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));

    RegAddr = CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(LTy));
  } else if (neededInt) {
    RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
                                        llvm::PointerType::getUnqual(LTy));
  } else {
    if (neededSSE == 1) {
      RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
      RegAddr = CGF.Builder.CreateBitCast(RegAddr,
                                          llvm::PointerType::getUnqual(LTy));
    } else {
      assert(neededSSE == 2 && "Invalid number of needed registers!");
      // SSE registers are spaced 16 bytes apart in the register save
      // area, we need to collect the two eightbytes together.
      llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
      llvm::Value *RegAddrHi =
        CGF.Builder.CreateGEP(RegAddrLo,
                              llvm::ConstantInt::get(llvm::Type::Int32Ty, 16));
      const llvm::Type *DblPtrTy =
        llvm::PointerType::getUnqual(llvm::Type::DoubleTy);
      const llvm::StructType *ST = llvm::StructType::get(llvm::Type::DoubleTy,
                                                         llvm::Type::DoubleTy,
                                                         NULL);
      llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
      V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
                                                           DblPtrTy));
      CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
      V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
                                                           DblPtrTy));
      CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
      RegAddr = CGF.Builder.CreateBitCast(Tmp,
                                          llvm::PointerType::getUnqual(LTy));
    }
  }

  // AMD64-ABI 3.5.7p5: Step 5. Set:
  // l->gp_offset = l->gp_offset + num_gp * 8
  // l->fp_offset = l->fp_offset + num_fp * 16.
  if (neededInt) {
    llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty,
                                                 neededInt * 8);
    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
                            gp_offset_p);
  }
  if (neededSSE) {
    llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty,
                                                 neededSSE * 16);
    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
                            fp_offset_p);
  }
  CGF.EmitBranch(ContBlock);

  // Emit code to load the value if it was passed in memory.

  CGF.EmitBlock(InMemBlock);
  llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);

  // Return the appropriate result.

  CGF.EmitBlock(ContBlock);
  llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(),
                                                 "vaarg.addr");
  ResAddr->reserveOperandSpace(2);
  ResAddr->addIncoming(RegAddr, InRegBlock);
  ResAddr->addIncoming(MemAddr, InMemBlock);

  return ResAddr;
}

// ABI Info for PIC16
class PIC16ABIInfo : public ABIInfo {
  ABIArgInfo classifyReturnType(QualType RetTy,
                                ASTContext &Context) const;

  ABIArgInfo classifyArgumentType(QualType RetTy,
                                  ASTContext &Context) const;

  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const {
    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context);
    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
         it != ie; ++it)
      it->info = classifyArgumentType(it->type, Context);
  }

  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
                                 CodeGenFunction &CGF) const;

};

ABIArgInfo PIC16ABIInfo::classifyReturnType(QualType RetTy,
                                              ASTContext &Context) const {
  if (RetTy->isVoidType()) {
    return ABIArgInfo::getIgnore();
  } else {
    return ABIArgInfo::getDirect();
  }
}

ABIArgInfo PIC16ABIInfo::classifyArgumentType(QualType Ty,
                                                ASTContext &Context) const {
  return ABIArgInfo::getDirect();
}

llvm::Value *PIC16ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
                                       CodeGenFunction &CGF) const {
  return 0;
}

class ARMABIInfo : public ABIInfo {
  ABIArgInfo classifyReturnType(QualType RetTy,
                                ASTContext &Context) const;

  ABIArgInfo classifyArgumentType(QualType RetTy,
                                  ASTContext &Context) const;

  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const;

  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
                                 CodeGenFunction &CGF) const;
};

void ARMABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context) const {
  FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context);
  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
       it != ie; ++it) {
    it->info = classifyArgumentType(it->type, Context);
  }
}

ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
                                            ASTContext &Context) const {
  if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
    return (Ty->isPromotableIntegerType() ?
            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
  }
  // FIXME: This is kind of nasty... but there isn't much choice because the ARM
  // backend doesn't support byval.
  // FIXME: This doesn't handle alignment > 64 bits.
  const llvm::Type* ElemTy;
  unsigned SizeRegs;
  if (Context.getTypeAlign(Ty) > 32) {
    ElemTy = llvm::Type::Int64Ty;
    SizeRegs = (Context.getTypeSize(Ty) + 63) / 64;
  } else {
    ElemTy = llvm::Type::Int32Ty;
    SizeRegs = (Context.getTypeSize(Ty) + 31) / 32;
  }
  std::vector<const llvm::Type*> LLVMFields;
  LLVMFields.push_back(llvm::ArrayType::get(ElemTy, SizeRegs));
  const llvm::Type* STy = llvm::StructType::get(LLVMFields, true);
  return ABIArgInfo::getCoerce(STy);
}

ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
                                          ASTContext &Context) const {
  if (RetTy->isVoidType()) {
    return ABIArgInfo::getIgnore();
  } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
    // Aggregates <= 4 bytes are returned in r0; other aggregates
    // are returned indirectly.
    uint64_t Size = Context.getTypeSize(RetTy);
    if (Size <= 32)
      return ABIArgInfo::getCoerce(llvm::Type::Int32Ty);
    return ABIArgInfo::getIndirect(0);
  } else {
    return (RetTy->isPromotableIntegerType() ?
            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
  }
}

llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
                                      CodeGenFunction &CGF) const {
  // FIXME: Need to handle alignment
  const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);

  CGBuilderTy &Builder = CGF.Builder;
  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
                                                       "ap");
  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
  llvm::Type *PTy =
    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);

  uint64_t Offset =
    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
  llvm::Value *NextAddr =
    Builder.CreateGEP(Addr,
                      llvm::ConstantInt::get(llvm::Type::Int32Ty, Offset),
                      "ap.next");
  Builder.CreateStore(NextAddr, VAListAddrAsBPP);

  return AddrTyped;
}

ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy,
                                              ASTContext &Context) const {
  if (RetTy->isVoidType()) {
    return ABIArgInfo::getIgnore();
  } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
    return ABIArgInfo::getIndirect(0);
  } else {
    return (RetTy->isPromotableIntegerType() ?
            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
  }
}

ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty,
                                                ASTContext &Context) const {
  if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
    return ABIArgInfo::getIndirect(0);
  } else {
    return (Ty->isPromotableIntegerType() ?
            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
  }
}

llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
                                       CodeGenFunction &CGF) const {
  return 0;
}

const ABIInfo &CodeGenTypes::getABIInfo() const {
  if (TheABIInfo)
    return *TheABIInfo;

  // For now we just cache this in the CodeGenTypes and don't bother
  // to free it.
  const char *TargetPrefix = getContext().Target.getTargetPrefix();
  if (strcmp(TargetPrefix, "x86") == 0) {
    bool IsDarwin = strstr(getContext().Target.getTargetTriple(), "darwin");
    switch (getContext().Target.getPointerWidth(0)) {
    case 32:
      return *(TheABIInfo = new X86_32ABIInfo(Context, IsDarwin));
    case 64:
      return *(TheABIInfo = new X86_64ABIInfo());
    }
  } else if (strcmp(TargetPrefix, "arm") == 0) {
    // FIXME: Support for OABI?
    return *(TheABIInfo = new ARMABIInfo());
  } else if (strcmp(TargetPrefix, "pic16") == 0) {
    return *(TheABIInfo = new PIC16ABIInfo());
  }

  return *(TheABIInfo = new DefaultABIInfo);
}