aboutsummaryrefslogtreecommitdiff
path: root/lib/IR/IntrinsicInst.cpp
blob: 26ed46a9cd918774b4d2e3a1f332bbdf35a48d85 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
//===-- InstrinsicInst.cpp - Intrinsic Instruction Wrappers ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements methods that make it really easy to deal with intrinsic
// functions.
//
// All intrinsic function calls are instances of the call instruction, so these
// are all subclasses of the CallInst class.  Note that none of these classes
// has state or virtual methods, which is an important part of this gross/neat
// hack working.
//
// In some cases, arguments to intrinsics need to be generic and are defined as
// type pointer to empty struct { }*.  To access the real item of interest the
// cast instruction needs to be stripped away.
//
//===----------------------------------------------------------------------===//

#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Operator.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;

//===----------------------------------------------------------------------===//
/// DbgVariableIntrinsic - This is the common base class for debug info
/// intrinsics for variables.
///

Value *DbgVariableIntrinsic::getVariableLocation(bool AllowNullOp) const {
  Value *Op = getArgOperand(0);
  if (AllowNullOp && !Op)
    return nullptr;

  auto *MD = cast<MetadataAsValue>(Op)->getMetadata();
  if (auto *V = dyn_cast<ValueAsMetadata>(MD))
    return V->getValue();

  // When the value goes to null, it gets replaced by an empty MDNode.
  assert(!cast<MDNode>(MD)->getNumOperands() && "Expected an empty MDNode");
  return nullptr;
}

Optional<uint64_t> DbgVariableIntrinsic::getFragmentSizeInBits() const {
  if (auto Fragment = getExpression()->getFragmentInfo())
    return Fragment->SizeInBits;
  return getVariable()->getSizeInBits();
}

int llvm::Intrinsic::lookupLLVMIntrinsicByName(ArrayRef<const char *> NameTable,
                                               StringRef Name) {
  assert(Name.startswith("llvm."));

  // Do successive binary searches of the dotted name components. For
  // "llvm.gc.experimental.statepoint.p1i8.p1i32", we will find the range of
  // intrinsics starting with "llvm.gc", then "llvm.gc.experimental", then
  // "llvm.gc.experimental.statepoint", and then we will stop as the range is
  // size 1. During the search, we can skip the prefix that we already know is
  // identical. By using strncmp we consider names with differing suffixes to
  // be part of the equal range.
  size_t CmpEnd = 4; // Skip the "llvm" component.
  const char *const *Low = NameTable.begin();
  const char *const *High = NameTable.end();
  const char *const *LastLow = Low;
  while (CmpEnd < Name.size() && High - Low > 0) {
    size_t CmpStart = CmpEnd;
    CmpEnd = Name.find('.', CmpStart + 1);
    CmpEnd = CmpEnd == StringRef::npos ? Name.size() : CmpEnd;
    auto Cmp = [CmpStart, CmpEnd](const char *LHS, const char *RHS) {
      return strncmp(LHS + CmpStart, RHS + CmpStart, CmpEnd - CmpStart) < 0;
    };
    LastLow = Low;
    std::tie(Low, High) = std::equal_range(Low, High, Name.data(), Cmp);
  }
  if (High - Low > 0)
    LastLow = Low;

  if (LastLow == NameTable.end())
    return -1;
  StringRef NameFound = *LastLow;
  if (Name == NameFound ||
      (Name.startswith(NameFound) && Name[NameFound.size()] == '.'))
    return LastLow - NameTable.begin();
  return -1;
}

Value *InstrProfIncrementInst::getStep() const {
  if (InstrProfIncrementInstStep::classof(this)) {
    return const_cast<Value *>(getArgOperand(4));
  }
  const Module *M = getModule();
  LLVMContext &Context = M->getContext();
  return ConstantInt::get(Type::getInt64Ty(Context), 1);
}

Optional<ConstrainedFPIntrinsic::RoundingMode>
ConstrainedFPIntrinsic::getRoundingMode() const {
  unsigned NumOperands = getNumArgOperands();
  Metadata *MD =
      cast<MetadataAsValue>(getArgOperand(NumOperands - 2))->getMetadata();
  if (!MD || !isa<MDString>(MD))
    return None;
  return StrToRoundingMode(cast<MDString>(MD)->getString());
}

Optional<ConstrainedFPIntrinsic::RoundingMode>
ConstrainedFPIntrinsic::StrToRoundingMode(StringRef RoundingArg) {
  // For dynamic rounding mode, we use round to nearest but we will set the
  // 'exact' SDNodeFlag so that the value will not be rounded.
  return StringSwitch<Optional<RoundingMode>>(RoundingArg)
    .Case("round.dynamic",    rmDynamic)
    .Case("round.tonearest",  rmToNearest)
    .Case("round.downward",   rmDownward)
    .Case("round.upward",     rmUpward)
    .Case("round.towardzero", rmTowardZero)
    .Default(None);
}

Optional<StringRef>
ConstrainedFPIntrinsic::RoundingModeToStr(RoundingMode UseRounding) {
  Optional<StringRef> RoundingStr = None;
  switch (UseRounding) {
  case ConstrainedFPIntrinsic::rmDynamic:
    RoundingStr = "round.dynamic";
    break;
  case ConstrainedFPIntrinsic::rmToNearest:
    RoundingStr = "round.tonearest";
    break;
  case ConstrainedFPIntrinsic::rmDownward:
    RoundingStr = "round.downward";
    break;
  case ConstrainedFPIntrinsic::rmUpward:
    RoundingStr = "round.upward";
    break;
  case ConstrainedFPIntrinsic::rmTowardZero:
    RoundingStr = "round.towardzero";
    break;
  }
  return RoundingStr;
}

Optional<ConstrainedFPIntrinsic::ExceptionBehavior>
ConstrainedFPIntrinsic::getExceptionBehavior() const {
  unsigned NumOperands = getNumArgOperands();
  Metadata *MD =
      cast<MetadataAsValue>(getArgOperand(NumOperands - 1))->getMetadata();
  if (!MD || !isa<MDString>(MD))
    return None;
  return StrToExceptionBehavior(cast<MDString>(MD)->getString());
}

Optional<ConstrainedFPIntrinsic::ExceptionBehavior>
ConstrainedFPIntrinsic::StrToExceptionBehavior(StringRef ExceptionArg) {
  return StringSwitch<Optional<ExceptionBehavior>>(ExceptionArg)
    .Case("fpexcept.ignore",  ebIgnore)
    .Case("fpexcept.maytrap", ebMayTrap)
    .Case("fpexcept.strict",  ebStrict)
    .Default(None);
}

Optional<StringRef>
ConstrainedFPIntrinsic::ExceptionBehaviorToStr(ExceptionBehavior UseExcept) {
  Optional<StringRef> ExceptStr = None;
  switch (UseExcept) {
  case ConstrainedFPIntrinsic::ebStrict:
    ExceptStr = "fpexcept.strict";
    break;
  case ConstrainedFPIntrinsic::ebIgnore:
    ExceptStr = "fpexcept.ignore";
    break;
  case ConstrainedFPIntrinsic::ebMayTrap:
    ExceptStr = "fpexcept.maytrap";
    break;
  }
  return ExceptStr;
}

bool ConstrainedFPIntrinsic::isUnaryOp() const {
  switch (getIntrinsicID()) {
    default:
      return false;
    case Intrinsic::experimental_constrained_fptosi:
    case Intrinsic::experimental_constrained_fptoui:
    case Intrinsic::experimental_constrained_fptrunc:
    case Intrinsic::experimental_constrained_fpext:
    case Intrinsic::experimental_constrained_sqrt:
    case Intrinsic::experimental_constrained_sin:
    case Intrinsic::experimental_constrained_cos:
    case Intrinsic::experimental_constrained_exp:
    case Intrinsic::experimental_constrained_exp2:
    case Intrinsic::experimental_constrained_log:
    case Intrinsic::experimental_constrained_log10:
    case Intrinsic::experimental_constrained_log2:
    case Intrinsic::experimental_constrained_lrint:
    case Intrinsic::experimental_constrained_llrint:
    case Intrinsic::experimental_constrained_rint:
    case Intrinsic::experimental_constrained_nearbyint:
    case Intrinsic::experimental_constrained_ceil:
    case Intrinsic::experimental_constrained_floor:
    case Intrinsic::experimental_constrained_lround:
    case Intrinsic::experimental_constrained_llround:
    case Intrinsic::experimental_constrained_round:
    case Intrinsic::experimental_constrained_trunc:
      return true;
  }
}

bool ConstrainedFPIntrinsic::isTernaryOp() const {
  switch (getIntrinsicID()) {
    default:
      return false;
    case Intrinsic::experimental_constrained_fma:
      return true;
  }
}

Instruction::BinaryOps BinaryOpIntrinsic::getBinaryOp() const {
  switch (getIntrinsicID()) {
    case Intrinsic::uadd_with_overflow:
    case Intrinsic::sadd_with_overflow:
    case Intrinsic::uadd_sat:
    case Intrinsic::sadd_sat:
      return Instruction::Add;
    case Intrinsic::usub_with_overflow:
    case Intrinsic::ssub_with_overflow:
    case Intrinsic::usub_sat:
    case Intrinsic::ssub_sat:
      return Instruction::Sub;
    case Intrinsic::umul_with_overflow:
    case Intrinsic::smul_with_overflow:
      return Instruction::Mul;
    default:
      llvm_unreachable("Invalid intrinsic");
  }
}

bool BinaryOpIntrinsic::isSigned() const {
  switch (getIntrinsicID()) {
    case Intrinsic::sadd_with_overflow:
    case Intrinsic::ssub_with_overflow:
    case Intrinsic::smul_with_overflow:
    case Intrinsic::sadd_sat:
    case Intrinsic::ssub_sat:
      return true;
    default:
      return false;
  }
}

unsigned BinaryOpIntrinsic::getNoWrapKind() const {
  if (isSigned())
    return OverflowingBinaryOperator::NoSignedWrap;
  else
    return OverflowingBinaryOperator::NoUnsignedWrap;
}