aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/AArch64/AArch64SIMDInstrOpt.cpp
blob: 28a7e680849b0ac70af3c83a85b4dad1521c64c5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains a pass that performs optimization on SIMD instructions
// with high latency by splitting them into more efficient series of
// instructions.
//
// 1. Rewrite certain SIMD instructions with vector element due to their
// inefficiency on some targets.
//
// For example:
//    fmla v0.4s, v1.4s, v2.s[1]
//
// Is rewritten into:
//    dup v3.4s, v2.s[1]
//    fmla v0.4s, v1.4s, v3.4s
//
// 2. Rewrite interleaved memory access instructions due to their
// inefficiency on some targets.
//
// For example:
//    st2 {v0.4s, v1.4s}, addr
//
// Is rewritten into:
//    zip1 v2.4s, v0.4s, v1.4s
//    zip2 v3.4s, v0.4s, v1.4s
//    stp  q2, q3,  addr
//
//===----------------------------------------------------------------------===//

#include "AArch64InstrInfo.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetSchedule.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCSchedule.h"
#include "llvm/Pass.h"
#include <unordered_map>

using namespace llvm;

#define DEBUG_TYPE "aarch64-simdinstr-opt"

STATISTIC(NumModifiedInstr,
          "Number of SIMD instructions modified");

#define AARCH64_VECTOR_BY_ELEMENT_OPT_NAME                                     \
  "AArch64 SIMD instructions optimization pass"

namespace {

struct AArch64SIMDInstrOpt : public MachineFunctionPass {
  static char ID;

  const TargetInstrInfo *TII;
  MachineRegisterInfo *MRI;
  TargetSchedModel SchedModel;

  // The two maps below are used to cache decisions instead of recomputing:
  // This is used to cache instruction replacement decisions within function
  // units and across function units.
  std::map<std::pair<unsigned, std::string>, bool> SIMDInstrTable;
  // This is used to cache the decision of whether to leave the interleaved
  // store instructions replacement pass early or not for a particular target.
  std::unordered_map<std::string, bool> InterlEarlyExit;

  typedef enum {
    VectorElem,
    Interleave
  } Subpass;

  // Instruction represented by OrigOpc is replaced by instructions in ReplOpc.
  struct InstReplInfo {
    unsigned OrigOpc;
		std::vector<unsigned> ReplOpc;
    const TargetRegisterClass RC;
  };

#define RuleST2(OpcOrg, OpcR0, OpcR1, OpcR2, RC) \
  {OpcOrg, {OpcR0, OpcR1, OpcR2}, RC}
#define RuleST4(OpcOrg, OpcR0, OpcR1, OpcR2, OpcR3, OpcR4, OpcR5, OpcR6, \
                OpcR7, OpcR8, OpcR9, RC) \
  {OpcOrg, \
   {OpcR0, OpcR1, OpcR2, OpcR3, OpcR4, OpcR5, OpcR6, OpcR7, OpcR8, OpcR9}, RC}

  // The Instruction Replacement Table:
  std::vector<InstReplInfo> IRT = {
    // ST2 instructions
    RuleST2(AArch64::ST2Twov2d, AArch64::ZIP1v2i64, AArch64::ZIP2v2i64,
          AArch64::STPQi, AArch64::FPR128RegClass),
    RuleST2(AArch64::ST2Twov4s, AArch64::ZIP1v4i32, AArch64::ZIP2v4i32,
          AArch64::STPQi, AArch64::FPR128RegClass),
    RuleST2(AArch64::ST2Twov2s, AArch64::ZIP1v2i32, AArch64::ZIP2v2i32,
          AArch64::STPDi, AArch64::FPR64RegClass),
    RuleST2(AArch64::ST2Twov8h, AArch64::ZIP1v8i16, AArch64::ZIP2v8i16,
          AArch64::STPQi, AArch64::FPR128RegClass),
    RuleST2(AArch64::ST2Twov4h, AArch64::ZIP1v4i16, AArch64::ZIP2v4i16,
          AArch64::STPDi, AArch64::FPR64RegClass),
    RuleST2(AArch64::ST2Twov16b, AArch64::ZIP1v16i8, AArch64::ZIP2v16i8,
          AArch64::STPQi, AArch64::FPR128RegClass),
    RuleST2(AArch64::ST2Twov8b, AArch64::ZIP1v8i8, AArch64::ZIP2v8i8,
          AArch64::STPDi, AArch64::FPR64RegClass),
    // ST4 instructions
    RuleST4(AArch64::ST4Fourv2d, AArch64::ZIP1v2i64, AArch64::ZIP2v2i64,
          AArch64::ZIP1v2i64, AArch64::ZIP2v2i64, AArch64::ZIP1v2i64,
          AArch64::ZIP2v2i64, AArch64::ZIP1v2i64, AArch64::ZIP2v2i64,
          AArch64::STPQi, AArch64::STPQi, AArch64::FPR128RegClass),
    RuleST4(AArch64::ST4Fourv4s, AArch64::ZIP1v4i32, AArch64::ZIP2v4i32,
          AArch64::ZIP1v4i32, AArch64::ZIP2v4i32, AArch64::ZIP1v4i32,
          AArch64::ZIP2v4i32, AArch64::ZIP1v4i32, AArch64::ZIP2v4i32,
          AArch64::STPQi, AArch64::STPQi, AArch64::FPR128RegClass),
    RuleST4(AArch64::ST4Fourv2s, AArch64::ZIP1v2i32, AArch64::ZIP2v2i32,
          AArch64::ZIP1v2i32, AArch64::ZIP2v2i32, AArch64::ZIP1v2i32,
          AArch64::ZIP2v2i32, AArch64::ZIP1v2i32, AArch64::ZIP2v2i32,
          AArch64::STPDi, AArch64::STPDi, AArch64::FPR64RegClass),
    RuleST4(AArch64::ST4Fourv8h, AArch64::ZIP1v8i16, AArch64::ZIP2v8i16,
          AArch64::ZIP1v8i16, AArch64::ZIP2v8i16, AArch64::ZIP1v8i16,
          AArch64::ZIP2v8i16, AArch64::ZIP1v8i16, AArch64::ZIP2v8i16,
          AArch64::STPQi, AArch64::STPQi, AArch64::FPR128RegClass),
    RuleST4(AArch64::ST4Fourv4h, AArch64::ZIP1v4i16, AArch64::ZIP2v4i16,
          AArch64::ZIP1v4i16, AArch64::ZIP2v4i16, AArch64::ZIP1v4i16,
          AArch64::ZIP2v4i16, AArch64::ZIP1v4i16, AArch64::ZIP2v4i16,
          AArch64::STPDi, AArch64::STPDi, AArch64::FPR64RegClass),
    RuleST4(AArch64::ST4Fourv16b, AArch64::ZIP1v16i8, AArch64::ZIP2v16i8,
          AArch64::ZIP1v16i8, AArch64::ZIP2v16i8, AArch64::ZIP1v16i8,
          AArch64::ZIP2v16i8, AArch64::ZIP1v16i8, AArch64::ZIP2v16i8,
          AArch64::STPQi, AArch64::STPQi, AArch64::FPR128RegClass),
    RuleST4(AArch64::ST4Fourv8b, AArch64::ZIP1v8i8, AArch64::ZIP2v8i8,
          AArch64::ZIP1v8i8, AArch64::ZIP2v8i8, AArch64::ZIP1v8i8,
          AArch64::ZIP2v8i8, AArch64::ZIP1v8i8, AArch64::ZIP2v8i8,
          AArch64::STPDi, AArch64::STPDi, AArch64::FPR64RegClass)
  };

  // A costly instruction is replaced in this work by N efficient instructions
  // The maximum of N is curently 10 and it is for ST4 case.
  static const unsigned MaxNumRepl = 10;

  AArch64SIMDInstrOpt() : MachineFunctionPass(ID) {
    initializeAArch64SIMDInstrOptPass(*PassRegistry::getPassRegistry());
  }

  /// Based only on latency of instructions, determine if it is cost efficient
  /// to replace the instruction InstDesc by the instructions stored in the
  /// array InstDescRepl.
  /// Return true if replacement is expected to be faster.
  bool shouldReplaceInst(MachineFunction *MF, const MCInstrDesc *InstDesc,
                         SmallVectorImpl<const MCInstrDesc*> &ReplInstrMCID);

  /// Determine if we need to exit the instruction replacement optimization
  /// passes early. This makes sure that no compile time is spent in this pass
  /// for targets with no need for any of these optimizations.
  /// Return true if early exit of the pass is recommended.
  bool shouldExitEarly(MachineFunction *MF, Subpass SP);

  /// Check whether an equivalent DUP instruction has already been
  /// created or not.
  /// Return true when the DUP instruction already exists. In this case,
  /// DestReg will point to the destination of the already created DUP.
  bool reuseDUP(MachineInstr &MI, unsigned DupOpcode, unsigned SrcReg,
                unsigned LaneNumber, unsigned *DestReg) const;

  /// Certain SIMD instructions with vector element operand are not efficient.
  /// Rewrite them into SIMD instructions with vector operands. This rewrite
  /// is driven by the latency of the instructions.
  /// Return true if the SIMD instruction is modified.
  bool optimizeVectElement(MachineInstr &MI);

  /// Process The REG_SEQUENCE instruction, and extract the source
  /// operands of the ST2/4 instruction from it.
  /// Example of such instructions.
  ///    %dest = REG_SEQUENCE %st2_src1, dsub0, %st2_src2, dsub1;
  /// Return true when the instruction is processed successfully.
  bool processSeqRegInst(MachineInstr *DefiningMI, unsigned* StReg,
                         unsigned* StRegKill, unsigned NumArg) const;

  /// Load/Store Interleaving instructions are not always beneficial.
  /// Replace them by ZIP instructionand classical load/store.
  /// Return true if the SIMD instruction is modified.
  bool optimizeLdStInterleave(MachineInstr &MI);

  /// Return the number of useful source registers for this
  /// instruction (2 for ST2 and 4 for ST4).
  unsigned determineSrcReg(MachineInstr &MI) const;

  bool runOnMachineFunction(MachineFunction &Fn) override;

  StringRef getPassName() const override {
    return AARCH64_VECTOR_BY_ELEMENT_OPT_NAME;
  }
};

char AArch64SIMDInstrOpt::ID = 0;

} // end anonymous namespace

INITIALIZE_PASS(AArch64SIMDInstrOpt, "aarch64-simdinstr-opt",
                AARCH64_VECTOR_BY_ELEMENT_OPT_NAME, false, false)

/// Based only on latency of instructions, determine if it is cost efficient
/// to replace the instruction InstDesc by the instructions stored in the
/// array InstDescRepl.
/// Return true if replacement is expected to be faster.
bool AArch64SIMDInstrOpt::
shouldReplaceInst(MachineFunction *MF, const MCInstrDesc *InstDesc,
                  SmallVectorImpl<const MCInstrDesc*> &InstDescRepl) {
  // Check if replacement decision is already available in the cached table.
  // if so, return it.
  std::string Subtarget = SchedModel.getSubtargetInfo()->getCPU();
  auto InstID = std::make_pair(InstDesc->getOpcode(), Subtarget);
  if (SIMDInstrTable.find(InstID) != SIMDInstrTable.end())
    return SIMDInstrTable[InstID];

  unsigned SCIdx = InstDesc->getSchedClass();
  const MCSchedClassDesc *SCDesc =
    SchedModel.getMCSchedModel()->getSchedClassDesc(SCIdx);

  // If a target does not define resources for the instructions
  // of interest, then return false for no replacement.
  const MCSchedClassDesc *SCDescRepl;
  if (!SCDesc->isValid() || SCDesc->isVariant())
  {
    SIMDInstrTable[InstID] = false;
    return false;
  }
  for (auto IDesc : InstDescRepl)
  {
    SCDescRepl = SchedModel.getMCSchedModel()->getSchedClassDesc(
      IDesc->getSchedClass());
    if (!SCDescRepl->isValid() || SCDescRepl->isVariant())
    {
      SIMDInstrTable[InstID] = false;
      return false;
    }
  }

  // Replacement cost.
  unsigned ReplCost = 0;
  for (auto IDesc :InstDescRepl)
    ReplCost += SchedModel.computeInstrLatency(IDesc->getOpcode());

  if (SchedModel.computeInstrLatency(InstDesc->getOpcode()) > ReplCost)
  {
    SIMDInstrTable[InstID] = true;
    return true;
  }
  else
  {
    SIMDInstrTable[InstID] = false;
    return false;
  }
}

/// Determine if we need to exit this pass for a kind of instruction replacement
/// early. This makes sure that no compile time is spent in this pass for
/// targets with no need for any of these optimizations beyond performing this
/// check.
/// Return true if early exit of this pass for a kind of instruction
/// replacement is recommended for a target.
bool AArch64SIMDInstrOpt::shouldExitEarly(MachineFunction *MF, Subpass SP) {
  const MCInstrDesc* OriginalMCID;
  SmallVector<const MCInstrDesc*, MaxNumRepl> ReplInstrMCID;

  switch (SP) {
  // For this optimization, check by comparing the latency of a representative
  // instruction to that of the replacement instructions.
  // TODO: check for all concerned instructions.
  case VectorElem:
    OriginalMCID = &TII->get(AArch64::FMLAv4i32_indexed);
    ReplInstrMCID.push_back(&TII->get(AArch64::DUPv4i32lane));
    ReplInstrMCID.push_back(&TII->get(AArch64::FMLAv4f32));
    if (shouldReplaceInst(MF, OriginalMCID, ReplInstrMCID))
      return false;
    break;

  // For this optimization, check for all concerned instructions.
  case Interleave:
    std::string Subtarget = SchedModel.getSubtargetInfo()->getCPU();
    if (InterlEarlyExit.find(Subtarget) != InterlEarlyExit.end())
      return InterlEarlyExit[Subtarget];

    for (auto &I : IRT) {
      OriginalMCID = &TII->get(I.OrigOpc);
      for (auto &Repl : I.ReplOpc)
        ReplInstrMCID.push_back(&TII->get(Repl));
      if (shouldReplaceInst(MF, OriginalMCID, ReplInstrMCID)) {
        InterlEarlyExit[Subtarget] = false;
        return false;
      }
      ReplInstrMCID.clear();
    }
    InterlEarlyExit[Subtarget] = true;
    break;
  }

  return true;
}

/// Check whether an equivalent DUP instruction has already been
/// created or not.
/// Return true when the DUP instruction already exists. In this case,
/// DestReg will point to the destination of the already created DUP.
bool AArch64SIMDInstrOpt::reuseDUP(MachineInstr &MI, unsigned DupOpcode,
                                         unsigned SrcReg, unsigned LaneNumber,
                                         unsigned *DestReg) const {
  for (MachineBasicBlock::iterator MII = MI, MIE = MI.getParent()->begin();
       MII != MIE;) {
    MII--;
    MachineInstr *CurrentMI = &*MII;

    if (CurrentMI->getOpcode() == DupOpcode &&
        CurrentMI->getNumOperands() == 3 &&
        CurrentMI->getOperand(1).getReg() == SrcReg &&
        CurrentMI->getOperand(2).getImm() == LaneNumber) {
      *DestReg = CurrentMI->getOperand(0).getReg();
      return true;
    }
  }

  return false;
}

/// Certain SIMD instructions with vector element operand are not efficient.
/// Rewrite them into SIMD instructions with vector operands. This rewrite
/// is driven by the latency of the instructions.
/// The instruction of concerns are for the time being FMLA, FMLS, FMUL,
/// and FMULX and hence they are hardcoded.
///
/// For example:
///    fmla v0.4s, v1.4s, v2.s[1]
///
/// Is rewritten into
///    dup  v3.4s, v2.s[1]      // DUP not necessary if redundant
///    fmla v0.4s, v1.4s, v3.4s
///
/// Return true if the SIMD instruction is modified.
bool AArch64SIMDInstrOpt::optimizeVectElement(MachineInstr &MI) {
  const MCInstrDesc *MulMCID, *DupMCID;
  const TargetRegisterClass *RC = &AArch64::FPR128RegClass;

  switch (MI.getOpcode()) {
  default:
    return false;

  // 4X32 instructions
  case AArch64::FMLAv4i32_indexed:
    DupMCID = &TII->get(AArch64::DUPv4i32lane);
    MulMCID = &TII->get(AArch64::FMLAv4f32);
    break;
  case AArch64::FMLSv4i32_indexed:
    DupMCID = &TII->get(AArch64::DUPv4i32lane);
    MulMCID = &TII->get(AArch64::FMLSv4f32);
    break;
  case AArch64::FMULXv4i32_indexed:
    DupMCID = &TII->get(AArch64::DUPv4i32lane);
    MulMCID = &TII->get(AArch64::FMULXv4f32);
    break;
  case AArch64::FMULv4i32_indexed:
    DupMCID = &TII->get(AArch64::DUPv4i32lane);
    MulMCID = &TII->get(AArch64::FMULv4f32);
    break;

  // 2X64 instructions
  case AArch64::FMLAv2i64_indexed:
    DupMCID = &TII->get(AArch64::DUPv2i64lane);
    MulMCID = &TII->get(AArch64::FMLAv2f64);
    break;
  case AArch64::FMLSv2i64_indexed:
    DupMCID = &TII->get(AArch64::DUPv2i64lane);
    MulMCID = &TII->get(AArch64::FMLSv2f64);
    break;
  case AArch64::FMULXv2i64_indexed:
    DupMCID = &TII->get(AArch64::DUPv2i64lane);
    MulMCID = &TII->get(AArch64::FMULXv2f64);
    break;
  case AArch64::FMULv2i64_indexed:
    DupMCID = &TII->get(AArch64::DUPv2i64lane);
    MulMCID = &TII->get(AArch64::FMULv2f64);
    break;

  // 2X32 instructions
  case AArch64::FMLAv2i32_indexed:
    RC = &AArch64::FPR64RegClass;
    DupMCID = &TII->get(AArch64::DUPv2i32lane);
    MulMCID = &TII->get(AArch64::FMLAv2f32);
    break;
  case AArch64::FMLSv2i32_indexed:
    RC = &AArch64::FPR64RegClass;
    DupMCID = &TII->get(AArch64::DUPv2i32lane);
    MulMCID = &TII->get(AArch64::FMLSv2f32);
    break;
  case AArch64::FMULXv2i32_indexed:
    RC = &AArch64::FPR64RegClass;
    DupMCID = &TII->get(AArch64::DUPv2i32lane);
    MulMCID = &TII->get(AArch64::FMULXv2f32);
    break;
  case AArch64::FMULv2i32_indexed:
    RC = &AArch64::FPR64RegClass;
    DupMCID = &TII->get(AArch64::DUPv2i32lane);
    MulMCID = &TII->get(AArch64::FMULv2f32);
    break;
  }

  SmallVector<const MCInstrDesc*, 2> ReplInstrMCID;
  ReplInstrMCID.push_back(DupMCID);
  ReplInstrMCID.push_back(MulMCID);
  if (!shouldReplaceInst(MI.getParent()->getParent(), &TII->get(MI.getOpcode()),
                         ReplInstrMCID))
    return false;

  const DebugLoc &DL = MI.getDebugLoc();
  MachineBasicBlock &MBB = *MI.getParent();
  MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();

  // Get the operands of the current SIMD arithmetic instruction.
  Register MulDest = MI.getOperand(0).getReg();
  Register SrcReg0 = MI.getOperand(1).getReg();
  unsigned Src0IsKill = getKillRegState(MI.getOperand(1).isKill());
  Register SrcReg1 = MI.getOperand(2).getReg();
  unsigned Src1IsKill = getKillRegState(MI.getOperand(2).isKill());
  unsigned DupDest;

  // Instructions of interest have either 4 or 5 operands.
  if (MI.getNumOperands() == 5) {
    Register SrcReg2 = MI.getOperand(3).getReg();
    unsigned Src2IsKill = getKillRegState(MI.getOperand(3).isKill());
    unsigned LaneNumber = MI.getOperand(4).getImm();
    // Create a new DUP instruction. Note that if an equivalent DUP instruction
    // has already been created before, then use that one instead of creating
    // a new one.
    if (!reuseDUP(MI, DupMCID->getOpcode(), SrcReg2, LaneNumber, &DupDest)) {
      DupDest = MRI.createVirtualRegister(RC);
      BuildMI(MBB, MI, DL, *DupMCID, DupDest)
          .addReg(SrcReg2, Src2IsKill)
          .addImm(LaneNumber);
    }
    BuildMI(MBB, MI, DL, *MulMCID, MulDest)
        .addReg(SrcReg0, Src0IsKill)
        .addReg(SrcReg1, Src1IsKill)
        .addReg(DupDest, Src2IsKill);
  } else if (MI.getNumOperands() == 4) {
    unsigned LaneNumber = MI.getOperand(3).getImm();
    if (!reuseDUP(MI, DupMCID->getOpcode(), SrcReg1, LaneNumber, &DupDest)) {
      DupDest = MRI.createVirtualRegister(RC);
      BuildMI(MBB, MI, DL, *DupMCID, DupDest)
          .addReg(SrcReg1, Src1IsKill)
          .addImm(LaneNumber);
    }
    BuildMI(MBB, MI, DL, *MulMCID, MulDest)
        .addReg(SrcReg0, Src0IsKill)
        .addReg(DupDest, Src1IsKill);
  } else {
    return false;
  }

  ++NumModifiedInstr;
  return true;
}

/// Load/Store Interleaving instructions are not always beneficial.
/// Replace them by ZIP instructions and classical load/store.
///
/// For example:
///    st2 {v0.4s, v1.4s}, addr
///
/// Is rewritten into:
///    zip1 v2.4s, v0.4s, v1.4s
///    zip2 v3.4s, v0.4s, v1.4s
///    stp  q2, q3, addr
//
/// For example:
///    st4 {v0.4s, v1.4s, v2.4s, v3.4s}, addr
///
/// Is rewritten into:
///    zip1 v4.4s, v0.4s, v2.4s
///    zip2 v5.4s, v0.4s, v2.4s
///    zip1 v6.4s, v1.4s, v3.4s
///    zip2 v7.4s, v1.4s, v3.4s
///    zip1 v8.4s, v4.4s, v6.4s
///    zip2 v9.4s, v4.4s, v6.4s
///    zip1 v10.4s, v5.4s, v7.4s
///    zip2 v11.4s, v5.4s, v7.4s
///    stp  q8, q9, addr
///    stp  q10, q11, addr+32
///
/// Currently only instructions related to ST2 and ST4 are considered.
/// Other may be added later.
/// Return true if the SIMD instruction is modified.
bool AArch64SIMDInstrOpt::optimizeLdStInterleave(MachineInstr &MI) {

  unsigned SeqReg, AddrReg;
  unsigned StReg[4], StRegKill[4];
  MachineInstr *DefiningMI;
  const DebugLoc &DL = MI.getDebugLoc();
  MachineBasicBlock &MBB = *MI.getParent();
  SmallVector<unsigned, MaxNumRepl> ZipDest;
  SmallVector<const MCInstrDesc*, MaxNumRepl> ReplInstrMCID;

  // If current instruction matches any of the rewriting rules, then
  // gather information about parameters of the new instructions.
  bool Match = false;
  for (auto &I : IRT) {
    if (MI.getOpcode() == I.OrigOpc) {
      SeqReg  = MI.getOperand(0).getReg();
      AddrReg = MI.getOperand(1).getReg();
      DefiningMI = MRI->getUniqueVRegDef(SeqReg);
      unsigned NumReg = determineSrcReg(MI);
      if (!processSeqRegInst(DefiningMI, StReg, StRegKill, NumReg))
        return false;

      for (auto &Repl : I.ReplOpc) {
        ReplInstrMCID.push_back(&TII->get(Repl));
        // Generate destination registers but only for non-store instruction.
        if (Repl != AArch64::STPQi && Repl != AArch64::STPDi)
          ZipDest.push_back(MRI->createVirtualRegister(&I.RC));
      }
      Match = true;
      break;
    }
  }

  if (!Match)
    return false;

  // Determine if it is profitable to replace MI by the series of instructions
  // represented in ReplInstrMCID.
  if (!shouldReplaceInst(MI.getParent()->getParent(), &TII->get(MI.getOpcode()),
                         ReplInstrMCID))
    return false;

  // Generate the replacement instructions composed of ZIP1, ZIP2, and STP (at
  // this point, the code generation is hardcoded and does not rely on the IRT
  // table used above given that code generation for ST2 replacement is somewhat
  // different than for ST4 replacement. We could have added more info into the
  // table related to how we build new instructions but we may be adding more
  // complexity with that).
  switch (MI.getOpcode()) {
  default:
    return false;

  case AArch64::ST2Twov16b:
  case AArch64::ST2Twov8b:
  case AArch64::ST2Twov8h:
  case AArch64::ST2Twov4h:
  case AArch64::ST2Twov4s:
  case AArch64::ST2Twov2s:
  case AArch64::ST2Twov2d:
    // ZIP instructions
    BuildMI(MBB, MI, DL, *ReplInstrMCID[0], ZipDest[0])
        .addReg(StReg[0])
        .addReg(StReg[1]);
    BuildMI(MBB, MI, DL, *ReplInstrMCID[1], ZipDest[1])
        .addReg(StReg[0], StRegKill[0])
        .addReg(StReg[1], StRegKill[1]);
    // STP instructions
    BuildMI(MBB, MI, DL, *ReplInstrMCID[2])
        .addReg(ZipDest[0])
        .addReg(ZipDest[1])
        .addReg(AddrReg)
        .addImm(0);
    break;

  case AArch64::ST4Fourv16b:
  case AArch64::ST4Fourv8b:
  case AArch64::ST4Fourv8h:
  case AArch64::ST4Fourv4h:
  case AArch64::ST4Fourv4s:
  case AArch64::ST4Fourv2s:
  case AArch64::ST4Fourv2d:
    // ZIP instructions
    BuildMI(MBB, MI, DL, *ReplInstrMCID[0], ZipDest[0])
        .addReg(StReg[0])
        .addReg(StReg[2]);
    BuildMI(MBB, MI, DL, *ReplInstrMCID[1], ZipDest[1])
        .addReg(StReg[0], StRegKill[0])
        .addReg(StReg[2], StRegKill[2]);
    BuildMI(MBB, MI, DL, *ReplInstrMCID[2], ZipDest[2])
        .addReg(StReg[1])
        .addReg(StReg[3]);
    BuildMI(MBB, MI, DL, *ReplInstrMCID[3], ZipDest[3])
        .addReg(StReg[1], StRegKill[1])
        .addReg(StReg[3], StRegKill[3]);
    BuildMI(MBB, MI, DL, *ReplInstrMCID[4], ZipDest[4])
        .addReg(ZipDest[0])
        .addReg(ZipDest[2]);
    BuildMI(MBB, MI, DL, *ReplInstrMCID[5], ZipDest[5])
        .addReg(ZipDest[0])
        .addReg(ZipDest[2]);
    BuildMI(MBB, MI, DL, *ReplInstrMCID[6], ZipDest[6])
        .addReg(ZipDest[1])
        .addReg(ZipDest[3]);
    BuildMI(MBB, MI, DL, *ReplInstrMCID[7], ZipDest[7])
        .addReg(ZipDest[1])
        .addReg(ZipDest[3]);
    // stp instructions
    BuildMI(MBB, MI, DL, *ReplInstrMCID[8])
        .addReg(ZipDest[4])
        .addReg(ZipDest[5])
        .addReg(AddrReg)
        .addImm(0);
    BuildMI(MBB, MI, DL, *ReplInstrMCID[9])
        .addReg(ZipDest[6])
        .addReg(ZipDest[7])
        .addReg(AddrReg)
        .addImm(2);
    break;
  }

  ++NumModifiedInstr;
  return true;
}

/// Process The REG_SEQUENCE instruction, and extract the source
/// operands of the ST2/4 instruction from it.
/// Example of such instruction.
///    %dest = REG_SEQUENCE %st2_src1, dsub0, %st2_src2, dsub1;
/// Return true when the instruction is processed successfully.
bool AArch64SIMDInstrOpt::processSeqRegInst(MachineInstr *DefiningMI,
     unsigned* StReg, unsigned* StRegKill, unsigned NumArg) const {
  assert (DefiningMI != NULL);
  if (DefiningMI->getOpcode() != AArch64::REG_SEQUENCE)
    return false;

  for (unsigned i=0; i<NumArg; i++) {
    StReg[i]     = DefiningMI->getOperand(2*i+1).getReg();
    StRegKill[i] = getKillRegState(DefiningMI->getOperand(2*i+1).isKill());

    // Sanity check for the other arguments.
    if (DefiningMI->getOperand(2*i+2).isImm()) {
      switch (DefiningMI->getOperand(2*i+2).getImm()) {
      default:
        return false;

      case AArch64::dsub0:
      case AArch64::dsub1:
      case AArch64::dsub2:
      case AArch64::dsub3:
      case AArch64::qsub0:
      case AArch64::qsub1:
      case AArch64::qsub2:
      case AArch64::qsub3:
        break;
      }
    }
    else
      return false;
  }
  return true;
}

/// Return the number of useful source registers for this instruction
/// (2 for ST2 and 4 for ST4).
unsigned AArch64SIMDInstrOpt::determineSrcReg(MachineInstr &MI) const {
  switch (MI.getOpcode()) {
  default:
    llvm_unreachable("Unsupported instruction for this pass");

  case AArch64::ST2Twov16b:
  case AArch64::ST2Twov8b:
  case AArch64::ST2Twov8h:
  case AArch64::ST2Twov4h:
  case AArch64::ST2Twov4s:
  case AArch64::ST2Twov2s:
  case AArch64::ST2Twov2d:
    return 2;

  case AArch64::ST4Fourv16b:
  case AArch64::ST4Fourv8b:
  case AArch64::ST4Fourv8h:
  case AArch64::ST4Fourv4h:
  case AArch64::ST4Fourv4s:
  case AArch64::ST4Fourv2s:
  case AArch64::ST4Fourv2d:
    return 4;
  }
}

bool AArch64SIMDInstrOpt::runOnMachineFunction(MachineFunction &MF) {
  if (skipFunction(MF.getFunction()))
    return false;

  TII = MF.getSubtarget().getInstrInfo();
  MRI = &MF.getRegInfo();
  const TargetSubtargetInfo &ST = MF.getSubtarget();
  const AArch64InstrInfo *AAII =
      static_cast<const AArch64InstrInfo *>(ST.getInstrInfo());
  if (!AAII)
    return false;
  SchedModel.init(&ST);
  if (!SchedModel.hasInstrSchedModel())
    return false;

  bool Changed = false;
  for (auto OptimizationKind : {VectorElem, Interleave}) {
    if (!shouldExitEarly(&MF, OptimizationKind)) {
      SmallVector<MachineInstr *, 8> RemoveMIs;
      for (MachineBasicBlock &MBB : MF) {
        for (MachineBasicBlock::iterator MII = MBB.begin(), MIE = MBB.end();
             MII != MIE;) {
          MachineInstr &MI = *MII;
          bool InstRewrite;
          if (OptimizationKind == VectorElem)
            InstRewrite = optimizeVectElement(MI) ;
          else
            InstRewrite = optimizeLdStInterleave(MI);
          if (InstRewrite) {
            // Add MI to the list of instructions to be removed given that it
            // has been replaced.
            RemoveMIs.push_back(&MI);
            Changed = true;
          }
          ++MII;
        }
      }
      for (MachineInstr *MI : RemoveMIs)
        MI->eraseFromParent();
    }
  }

  return Changed;
}

/// Returns an instance of the high cost ASIMD instruction replacement
/// optimization pass.
FunctionPass *llvm::createAArch64SIMDInstrOptPass() {
  return new AArch64SIMDInstrOpt();
}