aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/AMDGPU/AMDGPULegalizerInfo.cpp
blob: 5aba35a19ced77532725da31c78546ab263647b9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
//===- AMDGPULegalizerInfo.cpp -----------------------------------*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the Machinelegalizer class for
/// AMDGPU.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//

#if defined(_MSC_VER) || defined(__MINGW32__)
// According to Microsoft, one must set _USE_MATH_DEFINES in order to get M_PI
// from the Visual C++ cmath / math.h headers:
// https://docs.microsoft.com/en-us/cpp/c-runtime-library/math-constants?view=vs-2019
#define _USE_MATH_DEFINES
#endif

#include "AMDGPU.h"
#include "AMDGPULegalizerInfo.h"
#include "AMDGPUTargetMachine.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Debug.h"

#define DEBUG_TYPE "amdgpu-legalinfo"

using namespace llvm;
using namespace LegalizeActions;
using namespace LegalizeMutations;
using namespace LegalityPredicates;


static LegalityPredicate isMultiple32(unsigned TypeIdx,
                                      unsigned MaxSize = 1024) {
  return [=](const LegalityQuery &Query) {
    const LLT Ty = Query.Types[TypeIdx];
    const LLT EltTy = Ty.getScalarType();
    return Ty.getSizeInBits() <= MaxSize && EltTy.getSizeInBits() % 32 == 0;
  };
}

static LegalityPredicate sizeIs(unsigned TypeIdx, unsigned Size) {
  return [=](const LegalityQuery &Query) {
    return Query.Types[TypeIdx].getSizeInBits() == Size;
  };
}

static LegalityPredicate isSmallOddVector(unsigned TypeIdx) {
  return [=](const LegalityQuery &Query) {
    const LLT Ty = Query.Types[TypeIdx];
    return Ty.isVector() &&
           Ty.getNumElements() % 2 != 0 &&
           Ty.getElementType().getSizeInBits() < 32 &&
           Ty.getSizeInBits() % 32 != 0;
  };
}

static LegalityPredicate isWideVec16(unsigned TypeIdx) {
  return [=](const LegalityQuery &Query) {
    const LLT Ty = Query.Types[TypeIdx];
    const LLT EltTy = Ty.getScalarType();
    return EltTy.getSizeInBits() == 16 && Ty.getNumElements() > 2;
  };
}

static LegalizeMutation oneMoreElement(unsigned TypeIdx) {
  return [=](const LegalityQuery &Query) {
    const LLT Ty = Query.Types[TypeIdx];
    const LLT EltTy = Ty.getElementType();
    return std::make_pair(TypeIdx, LLT::vector(Ty.getNumElements() + 1, EltTy));
  };
}

static LegalizeMutation fewerEltsToSize64Vector(unsigned TypeIdx) {
  return [=](const LegalityQuery &Query) {
    const LLT Ty = Query.Types[TypeIdx];
    const LLT EltTy = Ty.getElementType();
    unsigned Size = Ty.getSizeInBits();
    unsigned Pieces = (Size + 63) / 64;
    unsigned NewNumElts = (Ty.getNumElements() + 1) / Pieces;
    return std::make_pair(TypeIdx, LLT::scalarOrVector(NewNumElts, EltTy));
  };
}

// Increase the number of vector elements to reach the next multiple of 32-bit
// type.
static LegalizeMutation moreEltsToNext32Bit(unsigned TypeIdx) {
  return [=](const LegalityQuery &Query) {
    const LLT Ty = Query.Types[TypeIdx];

    const LLT EltTy = Ty.getElementType();
    const int Size = Ty.getSizeInBits();
    const int EltSize = EltTy.getSizeInBits();
    const int NextMul32 = (Size + 31) / 32;

    assert(EltSize < 32);

    const int NewNumElts = (32 * NextMul32 + EltSize - 1) / EltSize;
    return std::make_pair(TypeIdx, LLT::vector(NewNumElts, EltTy));
  };
}

static LegalityPredicate vectorSmallerThan(unsigned TypeIdx, unsigned Size) {
  return [=](const LegalityQuery &Query) {
    const LLT QueryTy = Query.Types[TypeIdx];
    return QueryTy.isVector() && QueryTy.getSizeInBits() < Size;
  };
}

static LegalityPredicate vectorWiderThan(unsigned TypeIdx, unsigned Size) {
  return [=](const LegalityQuery &Query) {
    const LLT QueryTy = Query.Types[TypeIdx];
    return QueryTy.isVector() && QueryTy.getSizeInBits() > Size;
  };
}

static LegalityPredicate numElementsNotEven(unsigned TypeIdx) {
  return [=](const LegalityQuery &Query) {
    const LLT QueryTy = Query.Types[TypeIdx];
    return QueryTy.isVector() && QueryTy.getNumElements() % 2 != 0;
  };
}

// Any combination of 32 or 64-bit elements up to 1024 bits, and multiples of
// v2s16.
static LegalityPredicate isRegisterType(unsigned TypeIdx) {
  return [=](const LegalityQuery &Query) {
    const LLT Ty = Query.Types[TypeIdx];
    if (Ty.isVector()) {
      const int EltSize = Ty.getElementType().getSizeInBits();
      return EltSize == 32 || EltSize == 64 ||
            (EltSize == 16 && Ty.getNumElements() % 2 == 0) ||
             EltSize == 128 || EltSize == 256;
    }

    return Ty.getSizeInBits() % 32 == 0 && Ty.getSizeInBits() <= 1024;
  };
}

static LegalityPredicate elementTypeIs(unsigned TypeIdx, LLT Type) {
  return [=](const LegalityQuery &Query) {
    return Query.Types[TypeIdx].getElementType() == Type;
  };
}

static LegalityPredicate isWideScalarTruncStore(unsigned TypeIdx) {
  return [=](const LegalityQuery &Query) {
    const LLT Ty = Query.Types[TypeIdx];
    return !Ty.isVector() && Ty.getSizeInBits() > 32 &&
           Query.MMODescrs[0].SizeInBits < Ty.getSizeInBits();
  };
}

AMDGPULegalizerInfo::AMDGPULegalizerInfo(const GCNSubtarget &ST_,
                                         const GCNTargetMachine &TM)
  :  ST(ST_) {
  using namespace TargetOpcode;

  auto GetAddrSpacePtr = [&TM](unsigned AS) {
    return LLT::pointer(AS, TM.getPointerSizeInBits(AS));
  };

  const LLT S1 = LLT::scalar(1);
  const LLT S8 = LLT::scalar(8);
  const LLT S16 = LLT::scalar(16);
  const LLT S32 = LLT::scalar(32);
  const LLT S64 = LLT::scalar(64);
  const LLT S96 = LLT::scalar(96);
  const LLT S128 = LLT::scalar(128);
  const LLT S256 = LLT::scalar(256);
  const LLT S1024 = LLT::scalar(1024);

  const LLT V2S16 = LLT::vector(2, 16);
  const LLT V4S16 = LLT::vector(4, 16);

  const LLT V2S32 = LLT::vector(2, 32);
  const LLT V3S32 = LLT::vector(3, 32);
  const LLT V4S32 = LLT::vector(4, 32);
  const LLT V5S32 = LLT::vector(5, 32);
  const LLT V6S32 = LLT::vector(6, 32);
  const LLT V7S32 = LLT::vector(7, 32);
  const LLT V8S32 = LLT::vector(8, 32);
  const LLT V9S32 = LLT::vector(9, 32);
  const LLT V10S32 = LLT::vector(10, 32);
  const LLT V11S32 = LLT::vector(11, 32);
  const LLT V12S32 = LLT::vector(12, 32);
  const LLT V13S32 = LLT::vector(13, 32);
  const LLT V14S32 = LLT::vector(14, 32);
  const LLT V15S32 = LLT::vector(15, 32);
  const LLT V16S32 = LLT::vector(16, 32);
  const LLT V32S32 = LLT::vector(32, 32);

  const LLT V2S64 = LLT::vector(2, 64);
  const LLT V3S64 = LLT::vector(3, 64);
  const LLT V4S64 = LLT::vector(4, 64);
  const LLT V5S64 = LLT::vector(5, 64);
  const LLT V6S64 = LLT::vector(6, 64);
  const LLT V7S64 = LLT::vector(7, 64);
  const LLT V8S64 = LLT::vector(8, 64);
  const LLT V16S64 = LLT::vector(16, 64);

  std::initializer_list<LLT> AllS32Vectors =
    {V2S32, V3S32, V4S32, V5S32, V6S32, V7S32, V8S32,
     V9S32, V10S32, V11S32, V12S32, V13S32, V14S32, V15S32, V16S32, V32S32};
  std::initializer_list<LLT> AllS64Vectors =
    {V2S64, V3S64, V4S64, V5S64, V6S64, V7S64, V8S64, V16S64};

  const LLT GlobalPtr = GetAddrSpacePtr(AMDGPUAS::GLOBAL_ADDRESS);
  const LLT ConstantPtr = GetAddrSpacePtr(AMDGPUAS::CONSTANT_ADDRESS);
  const LLT Constant32Ptr = GetAddrSpacePtr(AMDGPUAS::CONSTANT_ADDRESS_32BIT);
  const LLT LocalPtr = GetAddrSpacePtr(AMDGPUAS::LOCAL_ADDRESS);
  const LLT RegionPtr = GetAddrSpacePtr(AMDGPUAS::REGION_ADDRESS);
  const LLT FlatPtr = GetAddrSpacePtr(AMDGPUAS::FLAT_ADDRESS);
  const LLT PrivatePtr = GetAddrSpacePtr(AMDGPUAS::PRIVATE_ADDRESS);

  const LLT CodePtr = FlatPtr;

  const std::initializer_list<LLT> AddrSpaces64 = {
    GlobalPtr, ConstantPtr, FlatPtr
  };

  const std::initializer_list<LLT> AddrSpaces32 = {
    LocalPtr, PrivatePtr, Constant32Ptr, RegionPtr
  };

  const std::initializer_list<LLT> FPTypesBase = {
    S32, S64
  };

  const std::initializer_list<LLT> FPTypes16 = {
    S32, S64, S16
  };

  const std::initializer_list<LLT> FPTypesPK16 = {
    S32, S64, S16, V2S16
  };

  setAction({G_BRCOND, S1}, Legal);

  // TODO: All multiples of 32, vectors of pointers, all v2s16 pairs, more
  // elements for v3s16
  getActionDefinitionsBuilder(G_PHI)
    .legalFor({S32, S64, V2S16, V4S16, S1, S128, S256})
    .legalFor(AllS32Vectors)
    .legalFor(AllS64Vectors)
    .legalFor(AddrSpaces64)
    .legalFor(AddrSpaces32)
    .clampScalar(0, S32, S256)
    .widenScalarToNextPow2(0, 32)
    .clampMaxNumElements(0, S32, 16)
    .moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
    .legalIf(isPointer(0));

  if (ST.has16BitInsts()) {
    getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL})
      .legalFor({S32, S16})
      .clampScalar(0, S16, S32)
      .scalarize(0);
  } else {
    getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL})
      .legalFor({S32})
      .clampScalar(0, S32, S32)
      .scalarize(0);
  }

  getActionDefinitionsBuilder({G_UMULH, G_SMULH})
    .legalFor({S32})
    .clampScalar(0, S32, S32)
    .scalarize(0);

  // Report legal for any types we can handle anywhere. For the cases only legal
  // on the SALU, RegBankSelect will be able to re-legalize.
  getActionDefinitionsBuilder({G_AND, G_OR, G_XOR})
    .legalFor({S32, S1, S64, V2S32, S16, V2S16, V4S16})
    .clampScalar(0, S32, S64)
    .moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
    .fewerElementsIf(vectorWiderThan(0, 64), fewerEltsToSize64Vector(0))
    .widenScalarToNextPow2(0)
    .scalarize(0);

  getActionDefinitionsBuilder({G_UADDO, G_USUBO,
                               G_UADDE, G_SADDE, G_USUBE, G_SSUBE})
    .legalFor({{S32, S1}})
    .clampScalar(0, S32, S32)
    .scalarize(0); // TODO: Implement.

  getActionDefinitionsBuilder({G_SADDO, G_SSUBO})
    .lower();

  getActionDefinitionsBuilder(G_BITCAST)
    // Don't worry about the size constraint.
    .legalIf(all(isRegisterType(0), isRegisterType(1)))
    // FIXME: Testing hack
    .legalForCartesianProduct({S16, LLT::vector(2, 8), });

  getActionDefinitionsBuilder(G_FCONSTANT)
    .legalFor({S32, S64, S16})
    .clampScalar(0, S16, S64);

  getActionDefinitionsBuilder(G_IMPLICIT_DEF)
    .legalFor({S1, S32, S64, S16, V2S32, V4S32, V2S16, V4S16, GlobalPtr,
               ConstantPtr, LocalPtr, FlatPtr, PrivatePtr})
    .moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
    .clampScalarOrElt(0, S32, S1024)
    .legalIf(isMultiple32(0))
    .widenScalarToNextPow2(0, 32)
    .clampMaxNumElements(0, S32, 16);


  // FIXME: i1 operands to intrinsics should always be legal, but other i1
  // values may not be legal.  We need to figure out how to distinguish
  // between these two scenarios.
  getActionDefinitionsBuilder(G_CONSTANT)
    .legalFor({S1, S32, S64, S16, GlobalPtr,
               LocalPtr, ConstantPtr, PrivatePtr, FlatPtr })
    .clampScalar(0, S32, S64)
    .widenScalarToNextPow2(0)
    .legalIf(isPointer(0));

  setAction({G_FRAME_INDEX, PrivatePtr}, Legal);
  getActionDefinitionsBuilder(G_GLOBAL_VALUE)
    .customFor({LocalPtr, GlobalPtr, ConstantPtr, Constant32Ptr});


  auto &FPOpActions = getActionDefinitionsBuilder(
    { G_FADD, G_FMUL, G_FMA, G_FCANONICALIZE})
    .legalFor({S32, S64});
  auto &TrigActions = getActionDefinitionsBuilder({G_FSIN, G_FCOS})
    .customFor({S32, S64});
  auto &FDIVActions = getActionDefinitionsBuilder(G_FDIV)
    .customFor({S32, S64});

  if (ST.has16BitInsts()) {
    if (ST.hasVOP3PInsts())
      FPOpActions.legalFor({S16, V2S16});
    else
      FPOpActions.legalFor({S16});

    TrigActions.customFor({S16});
    FDIVActions.customFor({S16});
  }

  auto &MinNumMaxNum = getActionDefinitionsBuilder({
      G_FMINNUM, G_FMAXNUM, G_FMINNUM_IEEE, G_FMAXNUM_IEEE});

  if (ST.hasVOP3PInsts()) {
    MinNumMaxNum.customFor(FPTypesPK16)
      .clampMaxNumElements(0, S16, 2)
      .clampScalar(0, S16, S64)
      .scalarize(0);
  } else if (ST.has16BitInsts()) {
    MinNumMaxNum.customFor(FPTypes16)
      .clampScalar(0, S16, S64)
      .scalarize(0);
  } else {
    MinNumMaxNum.customFor(FPTypesBase)
      .clampScalar(0, S32, S64)
      .scalarize(0);
  }

  if (ST.hasVOP3PInsts())
    FPOpActions.clampMaxNumElements(0, S16, 2);

  FPOpActions
    .scalarize(0)
    .clampScalar(0, ST.has16BitInsts() ? S16 : S32, S64);

  TrigActions
    .scalarize(0)
    .clampScalar(0, ST.has16BitInsts() ? S16 : S32, S64);

  FDIVActions
    .scalarize(0)
    .clampScalar(0, ST.has16BitInsts() ? S16 : S32, S64);

  getActionDefinitionsBuilder({G_FNEG, G_FABS})
    .legalFor(FPTypesPK16)
    .clampMaxNumElements(0, S16, 2)
    .scalarize(0)
    .clampScalar(0, S16, S64);

  // TODO: Implement
  getActionDefinitionsBuilder({G_FMINIMUM, G_FMAXIMUM}).lower();

  if (ST.has16BitInsts()) {
    getActionDefinitionsBuilder({G_FSQRT, G_FFLOOR})
      .legalFor({S32, S64, S16})
      .scalarize(0)
      .clampScalar(0, S16, S64);
  } else {
    getActionDefinitionsBuilder({G_FSQRT, G_FFLOOR})
      .legalFor({S32, S64})
      .scalarize(0)
      .clampScalar(0, S32, S64);
  }

  getActionDefinitionsBuilder(G_FPTRUNC)
    .legalFor({{S32, S64}, {S16, S32}})
    .scalarize(0);

  getActionDefinitionsBuilder(G_FPEXT)
    .legalFor({{S64, S32}, {S32, S16}})
    .lowerFor({{S64, S16}}) // FIXME: Implement
    .scalarize(0);

  // TODO: Verify V_BFI_B32 is generated from expanded bit ops.
  getActionDefinitionsBuilder(G_FCOPYSIGN).lower();

  getActionDefinitionsBuilder(G_FSUB)
      // Use actual fsub instruction
      .legalFor({S32})
      // Must use fadd + fneg
      .lowerFor({S64, S16, V2S16})
      .scalarize(0)
      .clampScalar(0, S32, S64);

  // Whether this is legal depends on the floating point mode for the function.
  auto &FMad = getActionDefinitionsBuilder(G_FMAD);
  if (ST.hasMadF16())
    FMad.customFor({S32, S16});
  else
    FMad.customFor({S32});
  FMad.scalarize(0)
      .lower();

  getActionDefinitionsBuilder({G_SEXT, G_ZEXT, G_ANYEXT})
    .legalFor({{S64, S32}, {S32, S16}, {S64, S16},
               {S32, S1}, {S64, S1}, {S16, S1},
               {S96, S32},
               // FIXME: Hack
               {S64, LLT::scalar(33)},
               {S32, S8}, {S128, S32}, {S128, S64}, {S32, LLT::scalar(24)}})
    .scalarize(0);

  // TODO: Split s1->s64 during regbankselect for VALU.
  auto &IToFP = getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
    .legalFor({{S32, S32}, {S64, S32}, {S16, S32}, {S32, S1}, {S16, S1}, {S64, S1}})
    .lowerFor({{S32, S64}})
    .customFor({{S64, S64}});
  if (ST.has16BitInsts())
    IToFP.legalFor({{S16, S16}});
  IToFP.clampScalar(1, S32, S64)
       .scalarize(0);

  auto &FPToI = getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
    .legalFor({{S32, S32}, {S32, S64}, {S32, S16}});
  if (ST.has16BitInsts())
    FPToI.legalFor({{S16, S16}});
  else
    FPToI.minScalar(1, S32);

  FPToI.minScalar(0, S32)
       .scalarize(0);

  getActionDefinitionsBuilder(G_INTRINSIC_ROUND)
    .legalFor({S32, S64})
    .scalarize(0);

  if (ST.getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) {
    getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT})
      .legalFor({S32, S64})
      .clampScalar(0, S32, S64)
      .scalarize(0);
  } else {
    getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT})
      .legalFor({S32})
      .customFor({S64})
      .clampScalar(0, S32, S64)
      .scalarize(0);
  }

  getActionDefinitionsBuilder(G_GEP)
    .legalForCartesianProduct(AddrSpaces64, {S64})
    .legalForCartesianProduct(AddrSpaces32, {S32})
    .scalarize(0);

  getActionDefinitionsBuilder(G_PTR_MASK)
    .scalarize(0)
    .alwaysLegal();

  setAction({G_BLOCK_ADDR, CodePtr}, Legal);

  auto &CmpBuilder =
    getActionDefinitionsBuilder(G_ICMP)
    .legalForCartesianProduct(
      {S1}, {S32, S64, GlobalPtr, LocalPtr, ConstantPtr, PrivatePtr, FlatPtr})
    .legalFor({{S1, S32}, {S1, S64}});
  if (ST.has16BitInsts()) {
    CmpBuilder.legalFor({{S1, S16}});
  }

  CmpBuilder
    .widenScalarToNextPow2(1)
    .clampScalar(1, S32, S64)
    .scalarize(0)
    .legalIf(all(typeIs(0, S1), isPointer(1)));

  getActionDefinitionsBuilder(G_FCMP)
    .legalForCartesianProduct({S1}, ST.has16BitInsts() ? FPTypes16 : FPTypesBase)
    .widenScalarToNextPow2(1)
    .clampScalar(1, S32, S64)
    .scalarize(0);

  // FIXME: fexp, flog2, flog10 needs to be custom lowered.
  getActionDefinitionsBuilder({G_FPOW, G_FEXP, G_FEXP2,
                               G_FLOG, G_FLOG2, G_FLOG10})
    .legalFor({S32})
    .scalarize(0);

  // The 64-bit versions produce 32-bit results, but only on the SALU.
  getActionDefinitionsBuilder({G_CTLZ, G_CTLZ_ZERO_UNDEF,
                               G_CTTZ, G_CTTZ_ZERO_UNDEF,
                               G_CTPOP})
    .legalFor({{S32, S32}, {S32, S64}})
    .clampScalar(0, S32, S32)
    .clampScalar(1, S32, S64)
    .scalarize(0)
    .widenScalarToNextPow2(0, 32)
    .widenScalarToNextPow2(1, 32);

  // TODO: Expand for > s32
  getActionDefinitionsBuilder({G_BSWAP, G_BITREVERSE})
    .legalFor({S32})
    .clampScalar(0, S32, S32)
    .scalarize(0);

  if (ST.has16BitInsts()) {
    if (ST.hasVOP3PInsts()) {
      getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX})
        .legalFor({S32, S16, V2S16})
        .moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
        .clampMaxNumElements(0, S16, 2)
        .clampScalar(0, S16, S32)
        .widenScalarToNextPow2(0)
        .scalarize(0);
    } else {
      getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX})
        .legalFor({S32, S16})
        .widenScalarToNextPow2(0)
        .clampScalar(0, S16, S32)
        .scalarize(0);
    }
  } else {
    getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX})
      .legalFor({S32})
      .clampScalar(0, S32, S32)
      .widenScalarToNextPow2(0)
      .scalarize(0);
  }

  auto smallerThan = [](unsigned TypeIdx0, unsigned TypeIdx1) {
    return [=](const LegalityQuery &Query) {
      return Query.Types[TypeIdx0].getSizeInBits() <
             Query.Types[TypeIdx1].getSizeInBits();
    };
  };

  auto greaterThan = [](unsigned TypeIdx0, unsigned TypeIdx1) {
    return [=](const LegalityQuery &Query) {
      return Query.Types[TypeIdx0].getSizeInBits() >
             Query.Types[TypeIdx1].getSizeInBits();
    };
  };

  getActionDefinitionsBuilder(G_INTTOPTR)
    // List the common cases
    .legalForCartesianProduct(AddrSpaces64, {S64})
    .legalForCartesianProduct(AddrSpaces32, {S32})
    .scalarize(0)
    // Accept any address space as long as the size matches
    .legalIf(sameSize(0, 1))
    .widenScalarIf(smallerThan(1, 0),
      [](const LegalityQuery &Query) {
        return std::make_pair(1, LLT::scalar(Query.Types[0].getSizeInBits()));
      })
    .narrowScalarIf(greaterThan(1, 0),
      [](const LegalityQuery &Query) {
        return std::make_pair(1, LLT::scalar(Query.Types[0].getSizeInBits()));
      });

  getActionDefinitionsBuilder(G_PTRTOINT)
    // List the common cases
    .legalForCartesianProduct(AddrSpaces64, {S64})
    .legalForCartesianProduct(AddrSpaces32, {S32})
    .scalarize(0)
    // Accept any address space as long as the size matches
    .legalIf(sameSize(0, 1))
    .widenScalarIf(smallerThan(0, 1),
      [](const LegalityQuery &Query) {
        return std::make_pair(0, LLT::scalar(Query.Types[1].getSizeInBits()));
      })
    .narrowScalarIf(
      greaterThan(0, 1),
      [](const LegalityQuery &Query) {
        return std::make_pair(0, LLT::scalar(Query.Types[1].getSizeInBits()));
      });

  getActionDefinitionsBuilder(G_ADDRSPACE_CAST)
    .scalarize(0)
    .custom();

  // TODO: Should load to s16 be legal? Most loads extend to 32-bits, but we
  // handle some operations by just promoting the register during
  // selection. There are also d16 loads on GFX9+ which preserve the high bits.
  auto maxSizeForAddrSpace = [this](unsigned AS) -> unsigned {
    switch (AS) {
    // FIXME: Private element size.
    case AMDGPUAS::PRIVATE_ADDRESS:
      return 32;
    // FIXME: Check subtarget
    case AMDGPUAS::LOCAL_ADDRESS:
      return ST.useDS128() ? 128 : 64;

    // Treat constant and global as identical. SMRD loads are sometimes usable
    // for global loads (ideally constant address space should be eliminated)
    // depending on the context. Legality cannot be context dependent, but
    // RegBankSelect can split the load as necessary depending on the pointer
    // register bank/uniformity and if the memory is invariant or not written in
    // a kernel.
    case AMDGPUAS::CONSTANT_ADDRESS:
    case AMDGPUAS::GLOBAL_ADDRESS:
      return 512;
    default:
      return 128;
    }
  };

  const auto needToSplitLoad = [=](const LegalityQuery &Query) -> bool {
    const LLT DstTy = Query.Types[0];

    // Split vector extloads.
    unsigned MemSize = Query.MMODescrs[0].SizeInBits;
    if (DstTy.isVector() && DstTy.getSizeInBits() > MemSize)
      return true;

    const LLT PtrTy = Query.Types[1];
    unsigned AS = PtrTy.getAddressSpace();
    if (MemSize > maxSizeForAddrSpace(AS))
      return true;

    // Catch weird sized loads that don't evenly divide into the access sizes
    // TODO: May be able to widen depending on alignment etc.
    unsigned NumRegs = MemSize / 32;
    if (NumRegs == 3 && !ST.hasDwordx3LoadStores())
      return true;

    unsigned Align = Query.MMODescrs[0].AlignInBits;
    if (Align < MemSize) {
      const SITargetLowering *TLI = ST.getTargetLowering();
      return !TLI->allowsMisalignedMemoryAccessesImpl(MemSize, AS, Align / 8);
    }

    return false;
  };

  unsigned GlobalAlign32 = ST.hasUnalignedBufferAccess() ? 0 : 32;
  unsigned GlobalAlign16 = ST.hasUnalignedBufferAccess() ? 0 : 16;
  unsigned GlobalAlign8 = ST.hasUnalignedBufferAccess() ? 0 : 8;

  // TODO: Refine based on subtargets which support unaligned access or 128-bit
  // LDS
  // TODO: Unsupported flat for SI.

  for (unsigned Op : {G_LOAD, G_STORE}) {
    const bool IsStore = Op == G_STORE;

    auto &Actions = getActionDefinitionsBuilder(Op);
    // Whitelist the common cases.
    // TODO: Pointer loads
    // TODO: Wide constant loads
    // TODO: Only CI+ has 3x loads
    // TODO: Loads to s16 on gfx9
    Actions.legalForTypesWithMemDesc({{S32, GlobalPtr, 32, GlobalAlign32},
                                      {V2S32, GlobalPtr, 64, GlobalAlign32},
                                      {V3S32, GlobalPtr, 96, GlobalAlign32},
                                      {S96, GlobalPtr, 96, GlobalAlign32},
                                      {V4S32, GlobalPtr, 128, GlobalAlign32},
                                      {S128, GlobalPtr, 128, GlobalAlign32},
                                      {S64, GlobalPtr, 64, GlobalAlign32},
                                      {V2S64, GlobalPtr, 128, GlobalAlign32},
                                      {V2S16, GlobalPtr, 32, GlobalAlign32},
                                      {S32, GlobalPtr, 8, GlobalAlign8},
                                      {S32, GlobalPtr, 16, GlobalAlign16},

                                      {S32, LocalPtr, 32, 32},
                                      {S64, LocalPtr, 64, 32},
                                      {V2S32, LocalPtr, 64, 32},
                                      {S32, LocalPtr, 8, 8},
                                      {S32, LocalPtr, 16, 16},
                                      {V2S16, LocalPtr, 32, 32},

                                      {S32, PrivatePtr, 32, 32},
                                      {S32, PrivatePtr, 8, 8},
                                      {S32, PrivatePtr, 16, 16},
                                      {V2S16, PrivatePtr, 32, 32},

                                      {S32, FlatPtr, 32, GlobalAlign32},
                                      {S32, FlatPtr, 16, GlobalAlign16},
                                      {S32, FlatPtr, 8, GlobalAlign8},
                                      {V2S16, FlatPtr, 32, GlobalAlign32},

                                      {S32, ConstantPtr, 32, GlobalAlign32},
                                      {V2S32, ConstantPtr, 64, GlobalAlign32},
                                      {V3S32, ConstantPtr, 96, GlobalAlign32},
                                      {V4S32, ConstantPtr, 128, GlobalAlign32},
                                      {S64, ConstantPtr, 64, GlobalAlign32},
                                      {S128, ConstantPtr, 128, GlobalAlign32},
                                      {V2S32, ConstantPtr, 32, GlobalAlign32}});
    Actions
        .customIf(typeIs(1, Constant32Ptr))
        .narrowScalarIf(
            [=](const LegalityQuery &Query) -> bool {
              return !Query.Types[0].isVector() && needToSplitLoad(Query);
            },
            [=](const LegalityQuery &Query) -> std::pair<unsigned, LLT> {
              const LLT DstTy = Query.Types[0];
              const LLT PtrTy = Query.Types[1];

              const unsigned DstSize = DstTy.getSizeInBits();
              unsigned MemSize = Query.MMODescrs[0].SizeInBits;

              // Split extloads.
              if (DstSize > MemSize)
                return std::make_pair(0, LLT::scalar(MemSize));

              if (DstSize > 32 && (DstSize % 32 != 0)) {
                // FIXME: Need a way to specify non-extload of larger size if
                // suitably aligned.
                return std::make_pair(0, LLT::scalar(32 * (DstSize / 32)));
              }

              unsigned MaxSize = maxSizeForAddrSpace(PtrTy.getAddressSpace());
              if (MemSize > MaxSize)
                return std::make_pair(0, LLT::scalar(MaxSize));

              unsigned Align = Query.MMODescrs[0].AlignInBits;
              return std::make_pair(0, LLT::scalar(Align));
            })
        .fewerElementsIf(
            [=](const LegalityQuery &Query) -> bool {
              return Query.Types[0].isVector() && needToSplitLoad(Query);
            },
            [=](const LegalityQuery &Query) -> std::pair<unsigned, LLT> {
              const LLT DstTy = Query.Types[0];
              const LLT PtrTy = Query.Types[1];

              LLT EltTy = DstTy.getElementType();
              unsigned MaxSize = maxSizeForAddrSpace(PtrTy.getAddressSpace());

              // Split if it's too large for the address space.
              if (Query.MMODescrs[0].SizeInBits > MaxSize) {
                unsigned NumElts = DstTy.getNumElements();
                unsigned NumPieces = Query.MMODescrs[0].SizeInBits / MaxSize;

                // FIXME: Refine when odd breakdowns handled
                // The scalars will need to be re-legalized.
                if (NumPieces == 1 || NumPieces >= NumElts ||
                    NumElts % NumPieces != 0)
                  return std::make_pair(0, EltTy);

                return std::make_pair(0,
                                      LLT::vector(NumElts / NumPieces, EltTy));
              }

              // Need to split because of alignment.
              unsigned Align = Query.MMODescrs[0].AlignInBits;
              unsigned EltSize = EltTy.getSizeInBits();
              if (EltSize > Align &&
                  (EltSize / Align < DstTy.getNumElements())) {
                return std::make_pair(0, LLT::vector(EltSize / Align, EltTy));
              }

              // May need relegalization for the scalars.
              return std::make_pair(0, EltTy);
            })
        .minScalar(0, S32);

    if (IsStore)
      Actions.narrowScalarIf(isWideScalarTruncStore(0), changeTo(0, S32));

    // TODO: Need a bitcast lower option?
    Actions
        .legalIf([=](const LegalityQuery &Query) {
          const LLT Ty0 = Query.Types[0];
          unsigned Size = Ty0.getSizeInBits();
          unsigned MemSize = Query.MMODescrs[0].SizeInBits;
          unsigned Align = Query.MMODescrs[0].AlignInBits;

          // No extending vector loads.
          if (Size > MemSize && Ty0.isVector())
            return false;

          // FIXME: Widening store from alignment not valid.
          if (MemSize < Size)
            MemSize = std::max(MemSize, Align);

          switch (MemSize) {
          case 8:
          case 16:
            return Size == 32;
          case 32:
          case 64:
          case 128:
            return true;
          case 96:
            return ST.hasDwordx3LoadStores();
          case 256:
          case 512:
            return true;
          default:
            return false;
          }
        })
        .widenScalarToNextPow2(0)
        // TODO: v3s32->v4s32 with alignment
        .moreElementsIf(vectorSmallerThan(0, 32), moreEltsToNext32Bit(0));
  }

  auto &ExtLoads = getActionDefinitionsBuilder({G_SEXTLOAD, G_ZEXTLOAD})
                       .legalForTypesWithMemDesc({{S32, GlobalPtr, 8, 8},
                                                  {S32, GlobalPtr, 16, 2 * 8},
                                                  {S32, LocalPtr, 8, 8},
                                                  {S32, LocalPtr, 16, 16},
                                                  {S32, PrivatePtr, 8, 8},
                                                  {S32, PrivatePtr, 16, 16},
                                                  {S32, ConstantPtr, 8, 8},
                                                  {S32, ConstantPtr, 16, 2 * 8}});
  if (ST.hasFlatAddressSpace()) {
    ExtLoads.legalForTypesWithMemDesc(
        {{S32, FlatPtr, 8, 8}, {S32, FlatPtr, 16, 16}});
  }

  ExtLoads.clampScalar(0, S32, S32)
          .widenScalarToNextPow2(0)
          .unsupportedIfMemSizeNotPow2()
          .lower();

  auto &Atomics = getActionDefinitionsBuilder(
    {G_ATOMICRMW_XCHG, G_ATOMICRMW_ADD, G_ATOMICRMW_SUB,
     G_ATOMICRMW_AND, G_ATOMICRMW_OR, G_ATOMICRMW_XOR,
     G_ATOMICRMW_MAX, G_ATOMICRMW_MIN, G_ATOMICRMW_UMAX,
     G_ATOMICRMW_UMIN, G_ATOMIC_CMPXCHG})
    .legalFor({{S32, GlobalPtr}, {S32, LocalPtr},
               {S64, GlobalPtr}, {S64, LocalPtr}});
  if (ST.hasFlatAddressSpace()) {
    Atomics.legalFor({{S32, FlatPtr}, {S64, FlatPtr}});
  }

  getActionDefinitionsBuilder(G_ATOMICRMW_FADD)
    .legalFor({{S32, LocalPtr}});

  getActionDefinitionsBuilder(G_ATOMIC_CMPXCHG_WITH_SUCCESS)
    .lower();

  // TODO: Pointer types, any 32-bit or 64-bit vector
  getActionDefinitionsBuilder(G_SELECT)
    .legalForCartesianProduct({S32, S64, S16, V2S32, V2S16, V4S16,
          GlobalPtr, LocalPtr, FlatPtr, PrivatePtr,
          LLT::vector(2, LocalPtr), LLT::vector(2, PrivatePtr)}, {S1})
    .clampScalar(0, S16, S64)
    .moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
    .fewerElementsIf(numElementsNotEven(0), scalarize(0))
    .scalarize(1)
    .clampMaxNumElements(0, S32, 2)
    .clampMaxNumElements(0, LocalPtr, 2)
    .clampMaxNumElements(0, PrivatePtr, 2)
    .scalarize(0)
    .widenScalarToNextPow2(0)
    .legalIf(all(isPointer(0), typeIs(1, S1)));

  // TODO: Only the low 4/5/6 bits of the shift amount are observed, so we can
  // be more flexible with the shift amount type.
  auto &Shifts = getActionDefinitionsBuilder({G_SHL, G_LSHR, G_ASHR})
    .legalFor({{S32, S32}, {S64, S32}});
  if (ST.has16BitInsts()) {
    if (ST.hasVOP3PInsts()) {
      Shifts.legalFor({{S16, S32}, {S16, S16}, {V2S16, V2S16}})
            .clampMaxNumElements(0, S16, 2);
    } else
      Shifts.legalFor({{S16, S32}, {S16, S16}});

    Shifts.clampScalar(1, S16, S32);
    Shifts.clampScalar(0, S16, S64);
    Shifts.widenScalarToNextPow2(0, 16);
  } else {
    // Make sure we legalize the shift amount type first, as the general
    // expansion for the shifted type will produce much worse code if it hasn't
    // been truncated already.
    Shifts.clampScalar(1, S32, S32);
    Shifts.clampScalar(0, S32, S64);
    Shifts.widenScalarToNextPow2(0, 32);
  }
  Shifts.scalarize(0);

  for (unsigned Op : {G_EXTRACT_VECTOR_ELT, G_INSERT_VECTOR_ELT}) {
    unsigned VecTypeIdx = Op == G_EXTRACT_VECTOR_ELT ? 1 : 0;
    unsigned EltTypeIdx = Op == G_EXTRACT_VECTOR_ELT ? 0 : 1;
    unsigned IdxTypeIdx = 2;

    getActionDefinitionsBuilder(Op)
      .customIf([=](const LegalityQuery &Query) {
          const LLT EltTy = Query.Types[EltTypeIdx];
          const LLT VecTy = Query.Types[VecTypeIdx];
          const LLT IdxTy = Query.Types[IdxTypeIdx];
          return (EltTy.getSizeInBits() == 16 ||
                  EltTy.getSizeInBits() % 32 == 0) &&
                 VecTy.getSizeInBits() % 32 == 0 &&
                 VecTy.getSizeInBits() <= 1024 &&
                 IdxTy.getSizeInBits() == 32;
        })
      .clampScalar(EltTypeIdx, S32, S64)
      .clampScalar(VecTypeIdx, S32, S64)
      .clampScalar(IdxTypeIdx, S32, S32);
  }

  getActionDefinitionsBuilder(G_EXTRACT_VECTOR_ELT)
    .unsupportedIf([=](const LegalityQuery &Query) {
        const LLT &EltTy = Query.Types[1].getElementType();
        return Query.Types[0] != EltTy;
      });

  for (unsigned Op : {G_EXTRACT, G_INSERT}) {
    unsigned BigTyIdx = Op == G_EXTRACT ? 1 : 0;
    unsigned LitTyIdx = Op == G_EXTRACT ? 0 : 1;

    // FIXME: Doesn't handle extract of illegal sizes.
    getActionDefinitionsBuilder(Op)
      .lowerIf(all(typeIs(LitTyIdx, S16), sizeIs(BigTyIdx, 32)))
      // FIXME: Multiples of 16 should not be legal.
      .legalIf([=](const LegalityQuery &Query) {
          const LLT BigTy = Query.Types[BigTyIdx];
          const LLT LitTy = Query.Types[LitTyIdx];
          return (BigTy.getSizeInBits() % 32 == 0) &&
                 (LitTy.getSizeInBits() % 16 == 0);
        })
      .widenScalarIf(
        [=](const LegalityQuery &Query) {
          const LLT BigTy = Query.Types[BigTyIdx];
          return (BigTy.getScalarSizeInBits() < 16);
        },
        LegalizeMutations::widenScalarOrEltToNextPow2(BigTyIdx, 16))
      .widenScalarIf(
        [=](const LegalityQuery &Query) {
          const LLT LitTy = Query.Types[LitTyIdx];
          return (LitTy.getScalarSizeInBits() < 16);
        },
        LegalizeMutations::widenScalarOrEltToNextPow2(LitTyIdx, 16))
      .moreElementsIf(isSmallOddVector(BigTyIdx), oneMoreElement(BigTyIdx))
      .widenScalarToNextPow2(BigTyIdx, 32);

  }

  auto &BuildVector = getActionDefinitionsBuilder(G_BUILD_VECTOR)
    .legalForCartesianProduct(AllS32Vectors, {S32})
    .legalForCartesianProduct(AllS64Vectors, {S64})
    .clampNumElements(0, V16S32, V32S32)
    .clampNumElements(0, V2S64, V16S64)
    .fewerElementsIf(isWideVec16(0), changeTo(0, V2S16));

  if (ST.hasScalarPackInsts())
    BuildVector.legalFor({V2S16, S32});

  BuildVector
    .minScalarSameAs(1, 0)
    .legalIf(isRegisterType(0))
    .minScalarOrElt(0, S32);

  if (ST.hasScalarPackInsts()) {
    getActionDefinitionsBuilder(G_BUILD_VECTOR_TRUNC)
      .legalFor({V2S16, S32})
      .lower();
  } else {
    getActionDefinitionsBuilder(G_BUILD_VECTOR_TRUNC)
      .lower();
  }

  getActionDefinitionsBuilder(G_CONCAT_VECTORS)
    .legalIf(isRegisterType(0));

  // TODO: Don't fully scalarize v2s16 pieces
  getActionDefinitionsBuilder(G_SHUFFLE_VECTOR).lower();

  // Merge/Unmerge
  for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) {
    unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1;
    unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0;

    auto notValidElt = [=](const LegalityQuery &Query, unsigned TypeIdx) {
      const LLT &Ty = Query.Types[TypeIdx];
      if (Ty.isVector()) {
        const LLT &EltTy = Ty.getElementType();
        if (EltTy.getSizeInBits() < 8 || EltTy.getSizeInBits() > 64)
          return true;
        if (!isPowerOf2_32(EltTy.getSizeInBits()))
          return true;
      }
      return false;
    };

    auto &Builder = getActionDefinitionsBuilder(Op)
      .widenScalarToNextPow2(LitTyIdx, /*Min*/ 16)
      // Clamp the little scalar to s8-s256 and make it a power of 2. It's not
      // worth considering the multiples of 64 since 2*192 and 2*384 are not
      // valid.
      .clampScalar(LitTyIdx, S16, S256)
      .widenScalarToNextPow2(LitTyIdx, /*Min*/ 32)
      .moreElementsIf(isSmallOddVector(BigTyIdx), oneMoreElement(BigTyIdx))
      .fewerElementsIf(all(typeIs(0, S16), vectorWiderThan(1, 32),
                           elementTypeIs(1, S16)),
                       changeTo(1, V2S16))
      // Break up vectors with weird elements into scalars
      .fewerElementsIf(
        [=](const LegalityQuery &Query) { return notValidElt(Query, 0); },
        scalarize(0))
      .fewerElementsIf(
        [=](const LegalityQuery &Query) { return notValidElt(Query, 1); },
        scalarize(1))
      .clampScalar(BigTyIdx, S32, S1024)
      .lowerFor({{S16, V2S16}});

    if (Op == G_MERGE_VALUES) {
      Builder.widenScalarIf(
        // TODO: Use 16-bit shifts if legal for 8-bit values?
        [=](const LegalityQuery &Query) {
          const LLT Ty = Query.Types[LitTyIdx];
          return Ty.getSizeInBits() < 32;
        },
        changeTo(LitTyIdx, S32));
    }

    Builder.widenScalarIf(
      [=](const LegalityQuery &Query) {
        const LLT Ty = Query.Types[BigTyIdx];
        return !isPowerOf2_32(Ty.getSizeInBits()) &&
          Ty.getSizeInBits() % 16 != 0;
      },
      [=](const LegalityQuery &Query) {
        // Pick the next power of 2, or a multiple of 64 over 128.
        // Whichever is smaller.
        const LLT &Ty = Query.Types[BigTyIdx];
        unsigned NewSizeInBits = 1 << Log2_32_Ceil(Ty.getSizeInBits() + 1);
        if (NewSizeInBits >= 256) {
          unsigned RoundedTo = alignTo<64>(Ty.getSizeInBits() + 1);
          if (RoundedTo < NewSizeInBits)
            NewSizeInBits = RoundedTo;
        }
        return std::make_pair(BigTyIdx, LLT::scalar(NewSizeInBits));
      })
      .legalIf([=](const LegalityQuery &Query) {
          const LLT &BigTy = Query.Types[BigTyIdx];
          const LLT &LitTy = Query.Types[LitTyIdx];

          if (BigTy.isVector() && BigTy.getSizeInBits() < 32)
            return false;
          if (LitTy.isVector() && LitTy.getSizeInBits() < 32)
            return false;

          return BigTy.getSizeInBits() % 16 == 0 &&
                 LitTy.getSizeInBits() % 16 == 0 &&
                 BigTy.getSizeInBits() <= 1024;
        })
      // Any vectors left are the wrong size. Scalarize them.
      .scalarize(0)
      .scalarize(1);
  }

  getActionDefinitionsBuilder(G_SEXT_INREG).lower();

  computeTables();
  verify(*ST.getInstrInfo());
}

bool AMDGPULegalizerInfo::legalizeCustom(MachineInstr &MI,
                                         MachineRegisterInfo &MRI,
                                         MachineIRBuilder &B,
                                         GISelChangeObserver &Observer) const {
  switch (MI.getOpcode()) {
  case TargetOpcode::G_ADDRSPACE_CAST:
    return legalizeAddrSpaceCast(MI, MRI, B);
  case TargetOpcode::G_FRINT:
    return legalizeFrint(MI, MRI, B);
  case TargetOpcode::G_FCEIL:
    return legalizeFceil(MI, MRI, B);
  case TargetOpcode::G_INTRINSIC_TRUNC:
    return legalizeIntrinsicTrunc(MI, MRI, B);
  case TargetOpcode::G_SITOFP:
    return legalizeITOFP(MI, MRI, B, true);
  case TargetOpcode::G_UITOFP:
    return legalizeITOFP(MI, MRI, B, false);
  case TargetOpcode::G_FMINNUM:
  case TargetOpcode::G_FMAXNUM:
  case TargetOpcode::G_FMINNUM_IEEE:
  case TargetOpcode::G_FMAXNUM_IEEE:
    return legalizeMinNumMaxNum(MI, MRI, B);
  case TargetOpcode::G_EXTRACT_VECTOR_ELT:
    return legalizeExtractVectorElt(MI, MRI, B);
  case TargetOpcode::G_INSERT_VECTOR_ELT:
    return legalizeInsertVectorElt(MI, MRI, B);
  case TargetOpcode::G_FSIN:
  case TargetOpcode::G_FCOS:
    return legalizeSinCos(MI, MRI, B);
  case TargetOpcode::G_GLOBAL_VALUE:
    return legalizeGlobalValue(MI, MRI, B);
  case TargetOpcode::G_LOAD:
    return legalizeLoad(MI, MRI, B, Observer);
  case TargetOpcode::G_FMAD:
    return legalizeFMad(MI, MRI, B);
  case TargetOpcode::G_FDIV:
    return legalizeFDIV(MI, MRI, B);
  default:
    return false;
  }

  llvm_unreachable("expected switch to return");
}

Register AMDGPULegalizerInfo::getSegmentAperture(
  unsigned AS,
  MachineRegisterInfo &MRI,
  MachineIRBuilder &B) const {
  MachineFunction &MF = B.getMF();
  const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
  const LLT S32 = LLT::scalar(32);

  assert(AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS);

  if (ST.hasApertureRegs()) {
    // FIXME: Use inline constants (src_{shared, private}_base) instead of
    // getreg.
    unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ?
        AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE :
        AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE;
    unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ?
        AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE :
        AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE;
    unsigned Encoding =
        AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ |
        Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ |
        WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_;

    Register ApertureReg = MRI.createGenericVirtualRegister(S32);
    Register GetReg = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);

    B.buildInstr(AMDGPU::S_GETREG_B32)
      .addDef(GetReg)
      .addImm(Encoding);
    MRI.setType(GetReg, S32);

    auto ShiftAmt = B.buildConstant(S32, WidthM1 + 1);
    B.buildInstr(TargetOpcode::G_SHL)
      .addDef(ApertureReg)
      .addUse(GetReg)
      .addUse(ShiftAmt.getReg(0));

    return ApertureReg;
  }

  Register QueuePtr = MRI.createGenericVirtualRegister(
    LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));

  const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
  if (!loadInputValue(QueuePtr, B, &MFI->getArgInfo().QueuePtr))
    return Register();

  // Offset into amd_queue_t for group_segment_aperture_base_hi /
  // private_segment_aperture_base_hi.
  uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;

  // FIXME: Don't use undef
  Value *V = UndefValue::get(PointerType::get(
                               Type::getInt8Ty(MF.getFunction().getContext()),
                               AMDGPUAS::CONSTANT_ADDRESS));

  MachinePointerInfo PtrInfo(V, StructOffset);
  MachineMemOperand *MMO = MF.getMachineMemOperand(
    PtrInfo,
    MachineMemOperand::MOLoad |
    MachineMemOperand::MODereferenceable |
    MachineMemOperand::MOInvariant,
    4,
    MinAlign(64, StructOffset));

  Register LoadResult = MRI.createGenericVirtualRegister(S32);
  Register LoadAddr;

  B.materializeGEP(LoadAddr, QueuePtr, LLT::scalar(64), StructOffset);
  B.buildLoad(LoadResult, LoadAddr, *MMO);
  return LoadResult;
}

bool AMDGPULegalizerInfo::legalizeAddrSpaceCast(
  MachineInstr &MI, MachineRegisterInfo &MRI,
  MachineIRBuilder &B) const {
  MachineFunction &MF = B.getMF();

  B.setInstr(MI);

  const LLT S32 = LLT::scalar(32);
  Register Dst = MI.getOperand(0).getReg();
  Register Src = MI.getOperand(1).getReg();

  LLT DstTy = MRI.getType(Dst);
  LLT SrcTy = MRI.getType(Src);
  unsigned DestAS = DstTy.getAddressSpace();
  unsigned SrcAS = SrcTy.getAddressSpace();

  // TODO: Avoid reloading from the queue ptr for each cast, or at least each
  // vector element.
  assert(!DstTy.isVector());

  const AMDGPUTargetMachine &TM
    = static_cast<const AMDGPUTargetMachine &>(MF.getTarget());

  const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
  if (ST.getTargetLowering()->isNoopAddrSpaceCast(SrcAS, DestAS)) {
    MI.setDesc(B.getTII().get(TargetOpcode::G_BITCAST));
    return true;
  }

  if (DestAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
    // Truncate.
    B.buildExtract(Dst, Src, 0);
    MI.eraseFromParent();
    return true;
  }

  if (SrcAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
    const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
    uint32_t AddrHiVal = Info->get32BitAddressHighBits();

    // FIXME: This is a bit ugly due to creating a merge of 2 pointers to
    // another. Merge operands are required to be the same type, but creating an
    // extra ptrtoint would be kind of pointless.
    auto HighAddr = B.buildConstant(
      LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS_32BIT, 32), AddrHiVal);
    B.buildMerge(Dst, {Src, HighAddr.getReg(0)});
    MI.eraseFromParent();
    return true;
  }

  if (SrcAS == AMDGPUAS::FLAT_ADDRESS) {
    assert(DestAS == AMDGPUAS::LOCAL_ADDRESS ||
           DestAS == AMDGPUAS::PRIVATE_ADDRESS);
    unsigned NullVal = TM.getNullPointerValue(DestAS);

    auto SegmentNull = B.buildConstant(DstTy, NullVal);
    auto FlatNull = B.buildConstant(SrcTy, 0);

    Register PtrLo32 = MRI.createGenericVirtualRegister(DstTy);

    // Extract low 32-bits of the pointer.
    B.buildExtract(PtrLo32, Src, 0);

    Register CmpRes = MRI.createGenericVirtualRegister(LLT::scalar(1));
    B.buildICmp(CmpInst::ICMP_NE, CmpRes, Src, FlatNull.getReg(0));
    B.buildSelect(Dst, CmpRes, PtrLo32, SegmentNull.getReg(0));

    MI.eraseFromParent();
    return true;
  }

  if (SrcAS != AMDGPUAS::LOCAL_ADDRESS && SrcAS != AMDGPUAS::PRIVATE_ADDRESS)
    return false;

  if (!ST.hasFlatAddressSpace())
    return false;

  auto SegmentNull =
      B.buildConstant(SrcTy, TM.getNullPointerValue(SrcAS));
  auto FlatNull =
      B.buildConstant(DstTy, TM.getNullPointerValue(DestAS));

  Register ApertureReg = getSegmentAperture(SrcAS, MRI, B);
  if (!ApertureReg.isValid())
    return false;

  Register CmpRes = MRI.createGenericVirtualRegister(LLT::scalar(1));
  B.buildICmp(CmpInst::ICMP_NE, CmpRes, Src, SegmentNull.getReg(0));

  Register BuildPtr = MRI.createGenericVirtualRegister(DstTy);

  // Coerce the type of the low half of the result so we can use merge_values.
  Register SrcAsInt = MRI.createGenericVirtualRegister(S32);
  B.buildInstr(TargetOpcode::G_PTRTOINT)
    .addDef(SrcAsInt)
    .addUse(Src);

  // TODO: Should we allow mismatched types but matching sizes in merges to
  // avoid the ptrtoint?
  B.buildMerge(BuildPtr, {SrcAsInt, ApertureReg});
  B.buildSelect(Dst, CmpRes, BuildPtr, FlatNull.getReg(0));

  MI.eraseFromParent();
  return true;
}

bool AMDGPULegalizerInfo::legalizeFrint(
  MachineInstr &MI, MachineRegisterInfo &MRI,
  MachineIRBuilder &B) const {
  B.setInstr(MI);

  Register Src = MI.getOperand(1).getReg();
  LLT Ty = MRI.getType(Src);
  assert(Ty.isScalar() && Ty.getSizeInBits() == 64);

  APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
  APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");

  auto C1 = B.buildFConstant(Ty, C1Val);
  auto CopySign = B.buildFCopysign(Ty, C1, Src);

  // TODO: Should this propagate fast-math-flags?
  auto Tmp1 = B.buildFAdd(Ty, Src, CopySign);
  auto Tmp2 = B.buildFSub(Ty, Tmp1, CopySign);

  auto C2 = B.buildFConstant(Ty, C2Val);
  auto Fabs = B.buildFAbs(Ty, Src);

  auto Cond = B.buildFCmp(CmpInst::FCMP_OGT, LLT::scalar(1), Fabs, C2);
  B.buildSelect(MI.getOperand(0).getReg(), Cond, Src, Tmp2);
  return true;
}

bool AMDGPULegalizerInfo::legalizeFceil(
  MachineInstr &MI, MachineRegisterInfo &MRI,
  MachineIRBuilder &B) const {
  B.setInstr(MI);

  const LLT S1 = LLT::scalar(1);
  const LLT S64 = LLT::scalar(64);

  Register Src = MI.getOperand(1).getReg();
  assert(MRI.getType(Src) == S64);

  // result = trunc(src)
  // if (src > 0.0 && src != result)
  //   result += 1.0

  auto Trunc = B.buildInstr(TargetOpcode::G_INTRINSIC_TRUNC, {S64}, {Src});

  const auto Zero = B.buildFConstant(S64, 0.0);
  const auto One = B.buildFConstant(S64, 1.0);
  auto Lt0 = B.buildFCmp(CmpInst::FCMP_OGT, S1, Src, Zero);
  auto NeTrunc = B.buildFCmp(CmpInst::FCMP_ONE, S1, Src, Trunc);
  auto And = B.buildAnd(S1, Lt0, NeTrunc);
  auto Add = B.buildSelect(S64, And, One, Zero);

  // TODO: Should this propagate fast-math-flags?
  B.buildFAdd(MI.getOperand(0).getReg(), Trunc, Add);
  return true;
}

static MachineInstrBuilder extractF64Exponent(unsigned Hi,
                                              MachineIRBuilder &B) {
  const unsigned FractBits = 52;
  const unsigned ExpBits = 11;
  LLT S32 = LLT::scalar(32);

  auto Const0 = B.buildConstant(S32, FractBits - 32);
  auto Const1 = B.buildConstant(S32, ExpBits);

  auto ExpPart = B.buildIntrinsic(Intrinsic::amdgcn_ubfe, {S32}, false)
    .addUse(Const0.getReg(0))
    .addUse(Const1.getReg(0));

  return B.buildSub(S32, ExpPart, B.buildConstant(S32, 1023));
}

bool AMDGPULegalizerInfo::legalizeIntrinsicTrunc(
  MachineInstr &MI, MachineRegisterInfo &MRI,
  MachineIRBuilder &B) const {
  B.setInstr(MI);

  const LLT S1 = LLT::scalar(1);
  const LLT S32 = LLT::scalar(32);
  const LLT S64 = LLT::scalar(64);

  Register Src = MI.getOperand(1).getReg();
  assert(MRI.getType(Src) == S64);

  // TODO: Should this use extract since the low half is unused?
  auto Unmerge = B.buildUnmerge({S32, S32}, Src);
  Register Hi = Unmerge.getReg(1);

  // Extract the upper half, since this is where we will find the sign and
  // exponent.
  auto Exp = extractF64Exponent(Hi, B);

  const unsigned FractBits = 52;

  // Extract the sign bit.
  const auto SignBitMask = B.buildConstant(S32, UINT32_C(1) << 31);
  auto SignBit = B.buildAnd(S32, Hi, SignBitMask);

  const auto FractMask = B.buildConstant(S64, (UINT64_C(1) << FractBits) - 1);

  const auto Zero32 = B.buildConstant(S32, 0);

  // Extend back to 64-bits.
  auto SignBit64 = B.buildMerge(S64, {Zero32.getReg(0), SignBit.getReg(0)});

  auto Shr = B.buildAShr(S64, FractMask, Exp);
  auto Not = B.buildNot(S64, Shr);
  auto Tmp0 = B.buildAnd(S64, Src, Not);
  auto FiftyOne = B.buildConstant(S32, FractBits - 1);

  auto ExpLt0 = B.buildICmp(CmpInst::ICMP_SLT, S1, Exp, Zero32);
  auto ExpGt51 = B.buildICmp(CmpInst::ICMP_SGT, S1, Exp, FiftyOne);

  auto Tmp1 = B.buildSelect(S64, ExpLt0, SignBit64, Tmp0);
  B.buildSelect(MI.getOperand(0).getReg(), ExpGt51, Src, Tmp1);
  return true;
}

bool AMDGPULegalizerInfo::legalizeITOFP(
  MachineInstr &MI, MachineRegisterInfo &MRI,
  MachineIRBuilder &B, bool Signed) const {
  B.setInstr(MI);

  Register Dst = MI.getOperand(0).getReg();
  Register Src = MI.getOperand(1).getReg();

  const LLT S64 = LLT::scalar(64);
  const LLT S32 = LLT::scalar(32);

  assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S64);

  auto Unmerge = B.buildUnmerge({S32, S32}, Src);

  auto CvtHi = Signed ?
    B.buildSITOFP(S64, Unmerge.getReg(1)) :
    B.buildUITOFP(S64, Unmerge.getReg(1));

  auto CvtLo = B.buildUITOFP(S64, Unmerge.getReg(0));

  auto ThirtyTwo = B.buildConstant(S32, 32);
  auto LdExp = B.buildIntrinsic(Intrinsic::amdgcn_ldexp, {S64}, false)
    .addUse(CvtHi.getReg(0))
    .addUse(ThirtyTwo.getReg(0));

  // TODO: Should this propagate fast-math-flags?
  B.buildFAdd(Dst, LdExp, CvtLo);
  MI.eraseFromParent();
  return true;
}

bool AMDGPULegalizerInfo::legalizeMinNumMaxNum(
  MachineInstr &MI, MachineRegisterInfo &MRI,
  MachineIRBuilder &B) const {
  MachineFunction &MF = B.getMF();
  const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();

  const bool IsIEEEOp = MI.getOpcode() == AMDGPU::G_FMINNUM_IEEE ||
                        MI.getOpcode() == AMDGPU::G_FMAXNUM_IEEE;

  // With ieee_mode disabled, the instructions have the correct behavior
  // already for G_FMINNUM/G_FMAXNUM
  if (!MFI->getMode().IEEE)
    return !IsIEEEOp;

  if (IsIEEEOp)
    return true;

  MachineIRBuilder HelperBuilder(MI);
  GISelObserverWrapper DummyObserver;
  LegalizerHelper Helper(MF, DummyObserver, HelperBuilder);
  HelperBuilder.setInstr(MI);
  return Helper.lowerFMinNumMaxNum(MI) == LegalizerHelper::Legalized;
}

bool AMDGPULegalizerInfo::legalizeExtractVectorElt(
  MachineInstr &MI, MachineRegisterInfo &MRI,
  MachineIRBuilder &B) const {
  // TODO: Should move some of this into LegalizerHelper.

  // TODO: Promote dynamic indexing of s16 to s32
  // TODO: Dynamic s64 indexing is only legal for SGPR.
  Optional<int64_t> IdxVal = getConstantVRegVal(MI.getOperand(2).getReg(), MRI);
  if (!IdxVal) // Dynamic case will be selected to register indexing.
    return true;

  Register Dst = MI.getOperand(0).getReg();
  Register Vec = MI.getOperand(1).getReg();

  LLT VecTy = MRI.getType(Vec);
  LLT EltTy = VecTy.getElementType();
  assert(EltTy == MRI.getType(Dst));

  B.setInstr(MI);

  if (IdxVal.getValue() < VecTy.getNumElements())
    B.buildExtract(Dst, Vec, IdxVal.getValue() * EltTy.getSizeInBits());
  else
    B.buildUndef(Dst);

  MI.eraseFromParent();
  return true;
}

bool AMDGPULegalizerInfo::legalizeInsertVectorElt(
  MachineInstr &MI, MachineRegisterInfo &MRI,
  MachineIRBuilder &B) const {
  // TODO: Should move some of this into LegalizerHelper.

  // TODO: Promote dynamic indexing of s16 to s32
  // TODO: Dynamic s64 indexing is only legal for SGPR.
  Optional<int64_t> IdxVal = getConstantVRegVal(MI.getOperand(3).getReg(), MRI);
  if (!IdxVal) // Dynamic case will be selected to register indexing.
    return true;

  Register Dst = MI.getOperand(0).getReg();
  Register Vec = MI.getOperand(1).getReg();
  Register Ins = MI.getOperand(2).getReg();

  LLT VecTy = MRI.getType(Vec);
  LLT EltTy = VecTy.getElementType();
  assert(EltTy == MRI.getType(Ins));

  B.setInstr(MI);

  if (IdxVal.getValue() < VecTy.getNumElements())
    B.buildInsert(Dst, Vec, Ins, IdxVal.getValue() * EltTy.getSizeInBits());
  else
    B.buildUndef(Dst);

  MI.eraseFromParent();
  return true;
}

bool AMDGPULegalizerInfo::legalizeSinCos(
  MachineInstr &MI, MachineRegisterInfo &MRI,
  MachineIRBuilder &B) const {
  B.setInstr(MI);

  Register DstReg = MI.getOperand(0).getReg();
  Register SrcReg = MI.getOperand(1).getReg();
  LLT Ty = MRI.getType(DstReg);
  unsigned Flags = MI.getFlags();

  Register TrigVal;
  auto OneOver2Pi = B.buildFConstant(Ty, 0.5 / M_PI);
  if (ST.hasTrigReducedRange()) {
    auto MulVal = B.buildFMul(Ty, SrcReg, OneOver2Pi, Flags);
    TrigVal = B.buildIntrinsic(Intrinsic::amdgcn_fract, {Ty}, false)
      .addUse(MulVal.getReg(0))
      .setMIFlags(Flags).getReg(0);
  } else
    TrigVal = B.buildFMul(Ty, SrcReg, OneOver2Pi, Flags).getReg(0);

  Intrinsic::ID TrigIntrin = MI.getOpcode() == AMDGPU::G_FSIN ?
    Intrinsic::amdgcn_sin : Intrinsic::amdgcn_cos;
  B.buildIntrinsic(TrigIntrin, makeArrayRef<Register>(DstReg), false)
    .addUse(TrigVal)
    .setMIFlags(Flags);
  MI.eraseFromParent();
  return true;
}

bool AMDGPULegalizerInfo::buildPCRelGlobalAddress(
  Register DstReg, LLT PtrTy,
  MachineIRBuilder &B, const GlobalValue *GV,
  unsigned Offset, unsigned GAFlags) const {
  // In order to support pc-relative addressing, SI_PC_ADD_REL_OFFSET is lowered
  // to the following code sequence:
  //
  // For constant address space:
  //   s_getpc_b64 s[0:1]
  //   s_add_u32 s0, s0, $symbol
  //   s_addc_u32 s1, s1, 0
  //
  //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
  //   a fixup or relocation is emitted to replace $symbol with a literal
  //   constant, which is a pc-relative offset from the encoding of the $symbol
  //   operand to the global variable.
  //
  // For global address space:
  //   s_getpc_b64 s[0:1]
  //   s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
  //   s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
  //
  //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
  //   fixups or relocations are emitted to replace $symbol@*@lo and
  //   $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
  //   which is a 64-bit pc-relative offset from the encoding of the $symbol
  //   operand to the global variable.
  //
  // What we want here is an offset from the value returned by s_getpc
  // (which is the address of the s_add_u32 instruction) to the global
  // variable, but since the encoding of $symbol starts 4 bytes after the start
  // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
  // small. This requires us to add 4 to the global variable offset in order to
  // compute the correct address.

  LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);

  Register PCReg = PtrTy.getSizeInBits() != 32 ? DstReg :
    B.getMRI()->createGenericVirtualRegister(ConstPtrTy);

  MachineInstrBuilder MIB = B.buildInstr(AMDGPU::SI_PC_ADD_REL_OFFSET)
    .addDef(PCReg);

  MIB.addGlobalAddress(GV, Offset + 4, GAFlags);
  if (GAFlags == SIInstrInfo::MO_NONE)
    MIB.addImm(0);
  else
    MIB.addGlobalAddress(GV, Offset + 4, GAFlags + 1);

  B.getMRI()->setRegClass(PCReg, &AMDGPU::SReg_64RegClass);

  if (PtrTy.getSizeInBits() == 32)
    B.buildExtract(DstReg, PCReg, 0);
  return true;
 }

bool AMDGPULegalizerInfo::legalizeGlobalValue(
  MachineInstr &MI, MachineRegisterInfo &MRI,
  MachineIRBuilder &B) const {
  Register DstReg = MI.getOperand(0).getReg();
  LLT Ty = MRI.getType(DstReg);
  unsigned AS = Ty.getAddressSpace();

  const GlobalValue *GV = MI.getOperand(1).getGlobal();
  MachineFunction &MF = B.getMF();
  SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
  B.setInstr(MI);

  if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
    if (!MFI->isEntryFunction()) {
      const Function &Fn = MF.getFunction();
      DiagnosticInfoUnsupported BadLDSDecl(
        Fn, "local memory global used by non-kernel function", MI.getDebugLoc());
      Fn.getContext().diagnose(BadLDSDecl);
    }

    // TODO: We could emit code to handle the initialization somewhere.
    if (!AMDGPUTargetLowering::hasDefinedInitializer(GV)) {
      B.buildConstant(DstReg, MFI->allocateLDSGlobal(B.getDataLayout(), *GV));
      MI.eraseFromParent();
      return true;
    }

    const Function &Fn = MF.getFunction();
    DiagnosticInfoUnsupported BadInit(
      Fn, "unsupported initializer for address space", MI.getDebugLoc());
    Fn.getContext().diagnose(BadInit);
    return true;
  }

  const SITargetLowering *TLI = ST.getTargetLowering();

  if (TLI->shouldEmitFixup(GV)) {
    buildPCRelGlobalAddress(DstReg, Ty, B, GV, 0);
    MI.eraseFromParent();
    return true;
  }

  if (TLI->shouldEmitPCReloc(GV)) {
    buildPCRelGlobalAddress(DstReg, Ty, B, GV, 0, SIInstrInfo::MO_REL32);
    MI.eraseFromParent();
    return true;
  }

  LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
  Register GOTAddr = MRI.createGenericVirtualRegister(PtrTy);

  MachineMemOperand *GOTMMO = MF.getMachineMemOperand(
    MachinePointerInfo::getGOT(MF),
    MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
    MachineMemOperand::MOInvariant,
    8 /*Size*/, 8 /*Align*/);

  buildPCRelGlobalAddress(GOTAddr, PtrTy, B, GV, 0, SIInstrInfo::MO_GOTPCREL32);

  if (Ty.getSizeInBits() == 32) {
    // Truncate if this is a 32-bit constant adrdess.
    auto Load = B.buildLoad(PtrTy, GOTAddr, *GOTMMO);
    B.buildExtract(DstReg, Load, 0);
  } else
    B.buildLoad(DstReg, GOTAddr, *GOTMMO);

  MI.eraseFromParent();
  return true;
}

bool AMDGPULegalizerInfo::legalizeLoad(
  MachineInstr &MI, MachineRegisterInfo &MRI,
  MachineIRBuilder &B, GISelChangeObserver &Observer) const {
  B.setInstr(MI);
  LLT ConstPtr = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
  auto Cast = B.buildAddrSpaceCast(ConstPtr, MI.getOperand(1).getReg());
  Observer.changingInstr(MI);
  MI.getOperand(1).setReg(Cast.getReg(0));
  Observer.changedInstr(MI);
  return true;
}

bool AMDGPULegalizerInfo::legalizeFMad(
  MachineInstr &MI, MachineRegisterInfo &MRI,
  MachineIRBuilder &B) const {
  LLT Ty = MRI.getType(MI.getOperand(0).getReg());
  assert(Ty.isScalar());

  // TODO: Always legal with future ftz flag.
  if (Ty == LLT::scalar(32) && !ST.hasFP32Denormals())
    return true;
  if (Ty == LLT::scalar(16) && !ST.hasFP16Denormals())
    return true;

  MachineFunction &MF = B.getMF();

  MachineIRBuilder HelperBuilder(MI);
  GISelObserverWrapper DummyObserver;
  LegalizerHelper Helper(MF, DummyObserver, HelperBuilder);
  HelperBuilder.setMBB(*MI.getParent());
  return Helper.lowerFMad(MI) == LegalizerHelper::Legalized;
}

// Return the use branch instruction, otherwise null if the usage is invalid.
static MachineInstr *verifyCFIntrinsic(MachineInstr &MI,
                                       MachineRegisterInfo &MRI) {
  Register CondDef = MI.getOperand(0).getReg();
  if (!MRI.hasOneNonDBGUse(CondDef))
    return nullptr;

  MachineInstr &UseMI = *MRI.use_instr_nodbg_begin(CondDef);
  return UseMI.getParent() == MI.getParent() &&
    UseMI.getOpcode() == AMDGPU::G_BRCOND ? &UseMI : nullptr;
}

Register AMDGPULegalizerInfo::getLiveInRegister(MachineRegisterInfo &MRI,
                                                Register Reg, LLT Ty) const {
  Register LiveIn = MRI.getLiveInVirtReg(Reg);
  if (LiveIn)
    return LiveIn;

  Register NewReg = MRI.createGenericVirtualRegister(Ty);
  MRI.addLiveIn(Reg, NewReg);
  return NewReg;
}

bool AMDGPULegalizerInfo::loadInputValue(Register DstReg, MachineIRBuilder &B,
                                         const ArgDescriptor *Arg) const {
  if (!Arg->isRegister() || !Arg->getRegister().isValid())
    return false; // TODO: Handle these

  assert(Arg->getRegister().isPhysical());

  MachineRegisterInfo &MRI = *B.getMRI();

  LLT Ty = MRI.getType(DstReg);
  Register LiveIn = getLiveInRegister(MRI, Arg->getRegister(), Ty);

  if (Arg->isMasked()) {
    // TODO: Should we try to emit this once in the entry block?
    const LLT S32 = LLT::scalar(32);
    const unsigned Mask = Arg->getMask();
    const unsigned Shift = countTrailingZeros<unsigned>(Mask);

    Register AndMaskSrc = LiveIn;

    if (Shift != 0) {
      auto ShiftAmt = B.buildConstant(S32, Shift);
      AndMaskSrc = B.buildLShr(S32, LiveIn, ShiftAmt).getReg(0);
    }

    B.buildAnd(DstReg, AndMaskSrc, B.buildConstant(S32, Mask >> Shift));
  } else
    B.buildCopy(DstReg, LiveIn);

  // Insert the argument copy if it doens't already exist.
  // FIXME: It seems EmitLiveInCopies isn't called anywhere?
  if (!MRI.getVRegDef(LiveIn)) {
    // FIXME: Should have scoped insert pt
    MachineBasicBlock &OrigInsBB = B.getMBB();
    auto OrigInsPt = B.getInsertPt();

    MachineBasicBlock &EntryMBB = B.getMF().front();
    EntryMBB.addLiveIn(Arg->getRegister());
    B.setInsertPt(EntryMBB, EntryMBB.begin());
    B.buildCopy(LiveIn, Arg->getRegister());

    B.setInsertPt(OrigInsBB, OrigInsPt);
  }

  return true;
}

bool AMDGPULegalizerInfo::legalizePreloadedArgIntrin(
  MachineInstr &MI,
  MachineRegisterInfo &MRI,
  MachineIRBuilder &B,
  AMDGPUFunctionArgInfo::PreloadedValue ArgType) const {
  B.setInstr(MI);

  const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>();

  const ArgDescriptor *Arg;
  const TargetRegisterClass *RC;
  std::tie(Arg, RC) = MFI->getPreloadedValue(ArgType);
  if (!Arg) {
    LLVM_DEBUG(dbgs() << "Required arg register missing\n");
    return false;
  }

  if (loadInputValue(MI.getOperand(0).getReg(), B, Arg)) {
    MI.eraseFromParent();
    return true;
  }

  return false;
}

bool AMDGPULegalizerInfo::legalizeFDIV(MachineInstr &MI,
                                       MachineRegisterInfo &MRI,
                                       MachineIRBuilder &B) const {
  B.setInstr(MI);

  if (legalizeFastUnsafeFDIV(MI, MRI, B))
    return true;

  return false;
}

bool AMDGPULegalizerInfo::legalizeFastUnsafeFDIV(MachineInstr &MI,
                                                 MachineRegisterInfo &MRI,
                                                 MachineIRBuilder &B) const {
  Register Res = MI.getOperand(0).getReg();
  Register LHS = MI.getOperand(1).getReg();
  Register RHS = MI.getOperand(2).getReg();

  uint16_t Flags = MI.getFlags();

  LLT ResTy = MRI.getType(Res);
  LLT S32 = LLT::scalar(32);
  LLT S64 = LLT::scalar(64);

  const MachineFunction &MF = B.getMF();
  bool Unsafe =
    MF.getTarget().Options.UnsafeFPMath || MI.getFlag(MachineInstr::FmArcp);

  if (!MF.getTarget().Options.UnsafeFPMath && ResTy == S64)
    return false;

  if (!Unsafe && ResTy == S32 && ST.hasFP32Denormals())
    return false;

  if (auto CLHS = getConstantFPVRegVal(LHS, MRI)) {
    // 1 / x -> RCP(x)
    if (CLHS->isExactlyValue(1.0)) {
      B.buildIntrinsic(Intrinsic::amdgcn_rcp, Res, false)
        .addUse(RHS)
        .setMIFlags(Flags);

      MI.eraseFromParent();
      return true;
    }

    // -1 / x -> RCP( FNEG(x) )
    if (CLHS->isExactlyValue(-1.0)) {
      auto FNeg = B.buildFNeg(ResTy, RHS, Flags);
      B.buildIntrinsic(Intrinsic::amdgcn_rcp, Res, false)
        .addUse(FNeg.getReg(0))
        .setMIFlags(Flags);

      MI.eraseFromParent();
      return true;
    }
  }

  // x / y -> x * (1.0 / y)
  if (Unsafe) {
    auto RCP = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {ResTy}, false)
      .addUse(RHS)
      .setMIFlags(Flags);
    B.buildFMul(Res, LHS, RCP, Flags);

    MI.eraseFromParent();
    return true;
  }

  return false;
}

bool AMDGPULegalizerInfo::legalizeFDIVFastIntrin(MachineInstr &MI,
                                                 MachineRegisterInfo &MRI,
                                                 MachineIRBuilder &B) const {
  B.setInstr(MI);
  Register Res = MI.getOperand(0).getReg();
  Register LHS = MI.getOperand(2).getReg();
  Register RHS = MI.getOperand(3).getReg();
  uint16_t Flags = MI.getFlags();

  LLT S32 = LLT::scalar(32);
  LLT S1 = LLT::scalar(1);

  auto Abs = B.buildFAbs(S32, RHS, Flags);
  const APFloat C0Val(1.0f);

  auto C0 = B.buildConstant(S32, 0x6f800000);
  auto C1 = B.buildConstant(S32, 0x2f800000);
  auto C2 = B.buildConstant(S32, FloatToBits(1.0f));

  auto CmpRes = B.buildFCmp(CmpInst::FCMP_OGT, S1, Abs, C0, Flags);
  auto Sel = B.buildSelect(S32, CmpRes, C1, C2, Flags);

  auto Mul0 = B.buildFMul(S32, RHS, Sel, Flags);

  auto RCP = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S32}, false)
    .addUse(Mul0.getReg(0))
    .setMIFlags(Flags);

  auto Mul1 = B.buildFMul(S32, LHS, RCP, Flags);

  B.buildFMul(Res, Sel, Mul1, Flags);

  MI.eraseFromParent();
  return true;
}

bool AMDGPULegalizerInfo::legalizeImplicitArgPtr(MachineInstr &MI,
                                                 MachineRegisterInfo &MRI,
                                                 MachineIRBuilder &B) const {
  const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>();
  if (!MFI->isEntryFunction()) {
    return legalizePreloadedArgIntrin(MI, MRI, B,
                                      AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
  }

  B.setInstr(MI);

  uint64_t Offset =
    ST.getTargetLowering()->getImplicitParameterOffset(
      B.getMF(), AMDGPUTargetLowering::FIRST_IMPLICIT);
  Register DstReg = MI.getOperand(0).getReg();
  LLT DstTy = MRI.getType(DstReg);
  LLT IdxTy = LLT::scalar(DstTy.getSizeInBits());

  const ArgDescriptor *Arg;
  const TargetRegisterClass *RC;
  std::tie(Arg, RC)
    = MFI->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
  if (!Arg)
    return false;

  Register KernargPtrReg = MRI.createGenericVirtualRegister(DstTy);
  if (!loadInputValue(KernargPtrReg, B, Arg))
    return false;

  B.buildGEP(DstReg, KernargPtrReg, B.buildConstant(IdxTy, Offset).getReg(0));
  MI.eraseFromParent();
  return true;
}

bool AMDGPULegalizerInfo::legalizeIsAddrSpace(MachineInstr &MI,
                                              MachineRegisterInfo &MRI,
                                              MachineIRBuilder &B,
                                              unsigned AddrSpace) const {
  B.setInstr(MI);
  Register ApertureReg = getSegmentAperture(AddrSpace, MRI, B);
  auto Hi32 = B.buildExtract(LLT::scalar(32), MI.getOperand(2).getReg(), 32);
  B.buildICmp(ICmpInst::ICMP_EQ, MI.getOperand(0), Hi32, ApertureReg);
  MI.eraseFromParent();
  return true;
}

/// Handle register layout difference for f16 images for some subtargets.
Register AMDGPULegalizerInfo::handleD16VData(MachineIRBuilder &B,
                                             MachineRegisterInfo &MRI,
                                             Register Reg) const {
  if (!ST.hasUnpackedD16VMem())
    return Reg;

  const LLT S16 = LLT::scalar(16);
  const LLT S32 = LLT::scalar(32);
  LLT StoreVT = MRI.getType(Reg);
  assert(StoreVT.isVector() && StoreVT.getElementType() == S16);

  auto Unmerge = B.buildUnmerge(S16, Reg);

  SmallVector<Register, 4> WideRegs;
  for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
    WideRegs.push_back(B.buildAnyExt(S32, Unmerge.getReg(I)).getReg(0));

  int NumElts = StoreVT.getNumElements();

  return B.buildBuildVector(LLT::vector(NumElts, S32), WideRegs).getReg(0);
}

bool AMDGPULegalizerInfo::legalizeRawBufferStore(MachineInstr &MI,
                                                 MachineRegisterInfo &MRI,
                                                 MachineIRBuilder &B,
                                                 bool IsFormat) const {
  // TODO: Reject f16 format on targets where unsupported.
  Register VData = MI.getOperand(1).getReg();
  LLT Ty = MRI.getType(VData);

  B.setInstr(MI);

  const LLT S32 = LLT::scalar(32);
  const LLT S16 = LLT::scalar(16);

  // Fixup illegal register types for i8 stores.
  if (Ty == LLT::scalar(8) || Ty == S16) {
    Register AnyExt = B.buildAnyExt(LLT::scalar(32), VData).getReg(0);
    MI.getOperand(1).setReg(AnyExt);
    return true;
  }

  if (Ty.isVector()) {
    if (Ty.getElementType() == S16 && Ty.getNumElements() <= 4) {
      if (IsFormat)
        MI.getOperand(1).setReg(handleD16VData(B, MRI, VData));
      return true;
    }

    return Ty.getElementType() == S32 && Ty.getNumElements() <= 4;
  }

  return Ty == S32;
}

bool AMDGPULegalizerInfo::legalizeIntrinsic(MachineInstr &MI,
                                            MachineRegisterInfo &MRI,
                                            MachineIRBuilder &B) const {
  // Replace the use G_BRCOND with the exec manipulate and branch pseudos.
  switch (MI.getIntrinsicID()) {
  case Intrinsic::amdgcn_if: {
    if (MachineInstr *BrCond = verifyCFIntrinsic(MI, MRI)) {
      const SIRegisterInfo *TRI
        = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());

      B.setInstr(*BrCond);
      Register Def = MI.getOperand(1).getReg();
      Register Use = MI.getOperand(3).getReg();
      B.buildInstr(AMDGPU::SI_IF)
        .addDef(Def)
        .addUse(Use)
        .addMBB(BrCond->getOperand(1).getMBB());

      MRI.setRegClass(Def, TRI->getWaveMaskRegClass());
      MRI.setRegClass(Use, TRI->getWaveMaskRegClass());
      MI.eraseFromParent();
      BrCond->eraseFromParent();
      return true;
    }

    return false;
  }
  case Intrinsic::amdgcn_loop: {
    if (MachineInstr *BrCond = verifyCFIntrinsic(MI, MRI)) {
      const SIRegisterInfo *TRI
        = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());

      B.setInstr(*BrCond);
      Register Reg = MI.getOperand(2).getReg();
      B.buildInstr(AMDGPU::SI_LOOP)
        .addUse(Reg)
        .addMBB(BrCond->getOperand(1).getMBB());
      MI.eraseFromParent();
      BrCond->eraseFromParent();
      MRI.setRegClass(Reg, TRI->getWaveMaskRegClass());
      return true;
    }

    return false;
  }
  case Intrinsic::amdgcn_kernarg_segment_ptr:
    return legalizePreloadedArgIntrin(
      MI, MRI, B, AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
  case Intrinsic::amdgcn_implicitarg_ptr:
    return legalizeImplicitArgPtr(MI, MRI, B);
  case Intrinsic::amdgcn_workitem_id_x:
    return legalizePreloadedArgIntrin(MI, MRI, B,
                                      AMDGPUFunctionArgInfo::WORKITEM_ID_X);
  case Intrinsic::amdgcn_workitem_id_y:
    return legalizePreloadedArgIntrin(MI, MRI, B,
                                      AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
  case Intrinsic::amdgcn_workitem_id_z:
    return legalizePreloadedArgIntrin(MI, MRI, B,
                                      AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
  case Intrinsic::amdgcn_workgroup_id_x:
    return legalizePreloadedArgIntrin(MI, MRI, B,
                                      AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
  case Intrinsic::amdgcn_workgroup_id_y:
    return legalizePreloadedArgIntrin(MI, MRI, B,
                                      AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
  case Intrinsic::amdgcn_workgroup_id_z:
    return legalizePreloadedArgIntrin(MI, MRI, B,
                                      AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
  case Intrinsic::amdgcn_dispatch_ptr:
    return legalizePreloadedArgIntrin(MI, MRI, B,
                                      AMDGPUFunctionArgInfo::DISPATCH_PTR);
  case Intrinsic::amdgcn_queue_ptr:
    return legalizePreloadedArgIntrin(MI, MRI, B,
                                      AMDGPUFunctionArgInfo::QUEUE_PTR);
  case Intrinsic::amdgcn_implicit_buffer_ptr:
    return legalizePreloadedArgIntrin(
      MI, MRI, B, AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
  case Intrinsic::amdgcn_dispatch_id:
    return legalizePreloadedArgIntrin(MI, MRI, B,
                                      AMDGPUFunctionArgInfo::DISPATCH_ID);
  case Intrinsic::amdgcn_fdiv_fast:
    return legalizeFDIVFastIntrin(MI, MRI, B);
  case Intrinsic::amdgcn_is_shared:
    return legalizeIsAddrSpace(MI, MRI, B, AMDGPUAS::LOCAL_ADDRESS);
  case Intrinsic::amdgcn_is_private:
    return legalizeIsAddrSpace(MI, MRI, B, AMDGPUAS::PRIVATE_ADDRESS);
  case Intrinsic::amdgcn_wavefrontsize: {
    B.setInstr(MI);
    B.buildConstant(MI.getOperand(0), ST.getWavefrontSize());
    MI.eraseFromParent();
    return true;
  }
  case Intrinsic::amdgcn_raw_buffer_store:
    return legalizeRawBufferStore(MI, MRI, B, false);
  case Intrinsic::amdgcn_raw_buffer_store_format:
    return legalizeRawBufferStore(MI, MRI, B, true);
  default:
    return true;
  }

  return true;
}