aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/Hexagon/HexagonHardwareLoops.cpp
blob: cecbaedb6d70e7ad59d63ec9175d19c2f0844a20 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
//===- HexagonHardwareLoops.cpp - Identify and generate hardware loops ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass identifies loops where we can generate the Hexagon hardware
// loop instruction.  The hardware loop can perform loop branches with a
// zero-cycle overhead.
//
// The pattern that defines the induction variable can changed depending on
// prior optimizations.  For example, the IndVarSimplify phase run by 'opt'
// normalizes induction variables, and the Loop Strength Reduction pass
// run by 'llc' may also make changes to the induction variable.
// The pattern detected by this phase is due to running Strength Reduction.
//
// Criteria for hardware loops:
//  - Countable loops (w/ ind. var for a trip count)
//  - Assumes loops are normalized by IndVarSimplify
//  - Try inner-most loops first
//  - No function calls in loops.
//
//===----------------------------------------------------------------------===//

#include "HexagonInstrInfo.h"
#include "HexagonSubtarget.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <iterator>
#include <map>
#include <set>
#include <string>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "hwloops"

#ifndef NDEBUG
static cl::opt<int> HWLoopLimit("hexagon-max-hwloop", cl::Hidden, cl::init(-1));

// Option to create preheader only for a specific function.
static cl::opt<std::string> PHFn("hexagon-hwloop-phfn", cl::Hidden,
                                 cl::init(""));
#endif

// Option to create a preheader if one doesn't exist.
static cl::opt<bool> HWCreatePreheader("hexagon-hwloop-preheader",
    cl::Hidden, cl::init(true),
    cl::desc("Add a preheader to a hardware loop if one doesn't exist"));

// Turn it off by default. If a preheader block is not created here, the
// software pipeliner may be unable to find a block suitable to serve as
// a preheader. In that case SWP will not run.
static cl::opt<bool> SpecPreheader("hwloop-spec-preheader", cl::init(false),
  cl::Hidden, cl::ZeroOrMore, cl::desc("Allow speculation of preheader "
  "instructions"));

STATISTIC(NumHWLoops, "Number of loops converted to hardware loops");

namespace llvm {

  FunctionPass *createHexagonHardwareLoops();
  void initializeHexagonHardwareLoopsPass(PassRegistry&);

} // end namespace llvm

namespace {

  class CountValue;

  struct HexagonHardwareLoops : public MachineFunctionPass {
    MachineLoopInfo            *MLI;
    MachineRegisterInfo        *MRI;
    MachineDominatorTree       *MDT;
    const HexagonInstrInfo     *TII;
    const HexagonRegisterInfo  *TRI;
#ifndef NDEBUG
    static int Counter;
#endif

  public:
    static char ID;

    HexagonHardwareLoops() : MachineFunctionPass(ID) {}

    bool runOnMachineFunction(MachineFunction &MF) override;

    StringRef getPassName() const override { return "Hexagon Hardware Loops"; }

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<MachineDominatorTree>();
      AU.addRequired<MachineLoopInfo>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }

  private:
    using LoopFeederMap = std::map<unsigned, MachineInstr *>;

    /// Kinds of comparisons in the compare instructions.
    struct Comparison {
      enum Kind {
        EQ  = 0x01,
        NE  = 0x02,
        L   = 0x04,
        G   = 0x08,
        U   = 0x40,
        LTs = L,
        LEs = L | EQ,
        GTs = G,
        GEs = G | EQ,
        LTu = L      | U,
        LEu = L | EQ | U,
        GTu = G      | U,
        GEu = G | EQ | U
      };

      static Kind getSwappedComparison(Kind Cmp) {
        assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator");
        if ((Cmp & L) || (Cmp & G))
          return (Kind)(Cmp ^ (L|G));
        return Cmp;
      }

      static Kind getNegatedComparison(Kind Cmp) {
        if ((Cmp & L) || (Cmp & G))
          return (Kind)((Cmp ^ (L | G)) ^ EQ);
        if ((Cmp & NE) || (Cmp & EQ))
          return (Kind)(Cmp ^ (EQ | NE));
        return (Kind)0;
      }

      static bool isSigned(Kind Cmp) {
        return (Cmp & (L | G) && !(Cmp & U));
      }

      static bool isUnsigned(Kind Cmp) {
        return (Cmp & U);
      }
    };

    /// Find the register that contains the loop controlling
    /// induction variable.
    /// If successful, it will return true and set the \p Reg, \p IVBump
    /// and \p IVOp arguments.  Otherwise it will return false.
    /// The returned induction register is the register R that follows the
    /// following induction pattern:
    /// loop:
    ///   R = phi ..., [ R.next, LatchBlock ]
    ///   R.next = R + #bump
    ///   if (R.next < #N) goto loop
    /// IVBump is the immediate value added to R, and IVOp is the instruction
    /// "R.next = R + #bump".
    bool findInductionRegister(MachineLoop *L, unsigned &Reg,
                               int64_t &IVBump, MachineInstr *&IVOp) const;

    /// Return the comparison kind for the specified opcode.
    Comparison::Kind getComparisonKind(unsigned CondOpc,
                                       MachineOperand *InitialValue,
                                       const MachineOperand *Endvalue,
                                       int64_t IVBump) const;

    /// Analyze the statements in a loop to determine if the loop
    /// has a computable trip count and, if so, return a value that represents
    /// the trip count expression.
    CountValue *getLoopTripCount(MachineLoop *L,
                                 SmallVectorImpl<MachineInstr *> &OldInsts);

    /// Return the expression that represents the number of times
    /// a loop iterates.  The function takes the operands that represent the
    /// loop start value, loop end value, and induction value.  Based upon
    /// these operands, the function attempts to compute the trip count.
    /// If the trip count is not directly available (as an immediate value,
    /// or a register), the function will attempt to insert computation of it
    /// to the loop's preheader.
    CountValue *computeCount(MachineLoop *Loop, const MachineOperand *Start,
                             const MachineOperand *End, unsigned IVReg,
                             int64_t IVBump, Comparison::Kind Cmp) const;

    /// Return true if the instruction is not valid within a hardware
    /// loop.
    bool isInvalidLoopOperation(const MachineInstr *MI,
                                bool IsInnerHWLoop) const;

    /// Return true if the loop contains an instruction that inhibits
    /// using the hardware loop.
    bool containsInvalidInstruction(MachineLoop *L, bool IsInnerHWLoop) const;

    /// Given a loop, check if we can convert it to a hardware loop.
    /// If so, then perform the conversion and return true.
    bool convertToHardwareLoop(MachineLoop *L, bool &L0used, bool &L1used);

    /// Return true if the instruction is now dead.
    bool isDead(const MachineInstr *MI,
                SmallVectorImpl<MachineInstr *> &DeadPhis) const;

    /// Remove the instruction if it is now dead.
    void removeIfDead(MachineInstr *MI);

    /// Make sure that the "bump" instruction executes before the
    /// compare.  We need that for the IV fixup, so that the compare
    /// instruction would not use a bumped value that has not yet been
    /// defined.  If the instructions are out of order, try to reorder them.
    bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI);

    /// Return true if MO and MI pair is visited only once. If visited
    /// more than once, this indicates there is recursion. In such a case,
    /// return false.
    bool isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, MachineInstr *MI,
                      const MachineOperand *MO,
                      LoopFeederMap &LoopFeederPhi) const;

    /// Return true if the Phi may generate a value that may underflow,
    /// or may wrap.
    bool phiMayWrapOrUnderflow(MachineInstr *Phi, const MachineOperand *EndVal,
                               MachineBasicBlock *MBB, MachineLoop *L,
                               LoopFeederMap &LoopFeederPhi) const;

    /// Return true if the induction variable may underflow an unsigned
    /// value in the first iteration.
    bool loopCountMayWrapOrUnderFlow(const MachineOperand *InitVal,
                                     const MachineOperand *EndVal,
                                     MachineBasicBlock *MBB, MachineLoop *L,
                                     LoopFeederMap &LoopFeederPhi) const;

    /// Check if the given operand has a compile-time known constant
    /// value. Return true if yes, and false otherwise. When returning true, set
    /// Val to the corresponding constant value.
    bool checkForImmediate(const MachineOperand &MO, int64_t &Val) const;

    /// Check if the operand has a compile-time known constant value.
    bool isImmediate(const MachineOperand &MO) const {
      int64_t V;
      return checkForImmediate(MO, V);
    }

    /// Return the immediate for the specified operand.
    int64_t getImmediate(const MachineOperand &MO) const {
      int64_t V;
      if (!checkForImmediate(MO, V))
        llvm_unreachable("Invalid operand");
      return V;
    }

    /// Reset the given machine operand to now refer to a new immediate
    /// value.  Assumes that the operand was already referencing an immediate
    /// value, either directly, or via a register.
    void setImmediate(MachineOperand &MO, int64_t Val);

    /// Fix the data flow of the induction variable.
    /// The desired flow is: phi ---> bump -+-> comparison-in-latch.
    ///                                     |
    ///                                     +-> back to phi
    /// where "bump" is the increment of the induction variable:
    ///   iv = iv + #const.
    /// Due to some prior code transformations, the actual flow may look
    /// like this:
    ///   phi -+-> bump ---> back to phi
    ///        |
    ///        +-> comparison-in-latch (against upper_bound-bump),
    /// i.e. the comparison that controls the loop execution may be using
    /// the value of the induction variable from before the increment.
    ///
    /// Return true if the loop's flow is the desired one (i.e. it's
    /// either been fixed, or no fixing was necessary).
    /// Otherwise, return false.  This can happen if the induction variable
    /// couldn't be identified, or if the value in the latch's comparison
    /// cannot be adjusted to reflect the post-bump value.
    bool fixupInductionVariable(MachineLoop *L);

    /// Given a loop, if it does not have a preheader, create one.
    /// Return the block that is the preheader.
    MachineBasicBlock *createPreheaderForLoop(MachineLoop *L);
  };

  char HexagonHardwareLoops::ID = 0;
#ifndef NDEBUG
  int HexagonHardwareLoops::Counter = 0;
#endif

  /// Abstraction for a trip count of a loop. A smaller version
  /// of the MachineOperand class without the concerns of changing the
  /// operand representation.
  class CountValue {
  public:
    enum CountValueType {
      CV_Register,
      CV_Immediate
    };

  private:
    CountValueType Kind;
    union Values {
      struct {
        unsigned Reg;
        unsigned Sub;
      } R;
      unsigned ImmVal;
    } Contents;

  public:
    explicit CountValue(CountValueType t, unsigned v, unsigned u = 0) {
      Kind = t;
      if (Kind == CV_Register) {
        Contents.R.Reg = v;
        Contents.R.Sub = u;
      } else {
        Contents.ImmVal = v;
      }
    }

    bool isReg() const { return Kind == CV_Register; }
    bool isImm() const { return Kind == CV_Immediate; }

    unsigned getReg() const {
      assert(isReg() && "Wrong CountValue accessor");
      return Contents.R.Reg;
    }

    unsigned getSubReg() const {
      assert(isReg() && "Wrong CountValue accessor");
      return Contents.R.Sub;
    }

    unsigned getImm() const {
      assert(isImm() && "Wrong CountValue accessor");
      return Contents.ImmVal;
    }

    void print(raw_ostream &OS, const TargetRegisterInfo *TRI = nullptr) const {
      if (isReg()) { OS << printReg(Contents.R.Reg, TRI, Contents.R.Sub); }
      if (isImm()) { OS << Contents.ImmVal; }
    }
  };

} // end anonymous namespace

INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops",
                      "Hexagon Hardware Loops", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops",
                    "Hexagon Hardware Loops", false, false)

FunctionPass *llvm::createHexagonHardwareLoops() {
  return new HexagonHardwareLoops();
}

bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) {
  LLVM_DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n");
  if (skipFunction(MF.getFunction()))
    return false;

  bool Changed = false;

  MLI = &getAnalysis<MachineLoopInfo>();
  MRI = &MF.getRegInfo();
  MDT = &getAnalysis<MachineDominatorTree>();
  const HexagonSubtarget &HST = MF.getSubtarget<HexagonSubtarget>();
  TII = HST.getInstrInfo();
  TRI = HST.getRegisterInfo();

  for (auto &L : *MLI)
    if (!L->getParentLoop()) {
      bool L0Used = false;
      bool L1Used = false;
      Changed |= convertToHardwareLoop(L, L0Used, L1Used);
    }

  return Changed;
}

bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L,
                                                 unsigned &Reg,
                                                 int64_t &IVBump,
                                                 MachineInstr *&IVOp
                                                 ) const {
  MachineBasicBlock *Header = L->getHeader();
  MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader);
  MachineBasicBlock *Latch = L->getLoopLatch();
  MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
  if (!Header || !Preheader || !Latch || !ExitingBlock)
    return false;

  // This pair represents an induction register together with an immediate
  // value that will be added to it in each loop iteration.
  using RegisterBump = std::pair<unsigned, int64_t>;

  // Mapping:  R.next -> (R, bump), where R, R.next and bump are derived
  // from an induction operation
  //   R.next = R + bump
  // where bump is an immediate value.
  using InductionMap = std::map<unsigned, RegisterBump>;

  InductionMap IndMap;

  using instr_iterator = MachineBasicBlock::instr_iterator;

  for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
       I != E && I->isPHI(); ++I) {
    MachineInstr *Phi = &*I;

    // Have a PHI instruction.  Get the operand that corresponds to the
    // latch block, and see if is a result of an addition of form "reg+imm",
    // where the "reg" is defined by the PHI node we are looking at.
    for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) {
      if (Phi->getOperand(i+1).getMBB() != Latch)
        continue;

      unsigned PhiOpReg = Phi->getOperand(i).getReg();
      MachineInstr *DI = MRI->getVRegDef(PhiOpReg);

      if (DI->getDesc().isAdd()) {
        // If the register operand to the add is the PHI we're looking at, this
        // meets the induction pattern.
        unsigned IndReg = DI->getOperand(1).getReg();
        MachineOperand &Opnd2 = DI->getOperand(2);
        int64_t V;
        if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) {
          unsigned UpdReg = DI->getOperand(0).getReg();
          IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
        }
      }
    }  // for (i)
  }  // for (instr)

  SmallVector<MachineOperand,2> Cond;
  MachineBasicBlock *TB = nullptr, *FB = nullptr;
  bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false);
  if (NotAnalyzed)
    return false;

  unsigned PredR, PredPos, PredRegFlags;
  if (!TII->getPredReg(Cond, PredR, PredPos, PredRegFlags))
    return false;

  MachineInstr *PredI = MRI->getVRegDef(PredR);
  if (!PredI->isCompare())
    return false;

  unsigned CmpReg1 = 0, CmpReg2 = 0;
  int CmpImm = 0, CmpMask = 0;
  bool CmpAnalyzed =
      TII->analyzeCompare(*PredI, CmpReg1, CmpReg2, CmpMask, CmpImm);
  // Fail if the compare was not analyzed, or it's not comparing a register
  // with an immediate value.  Not checking the mask here, since we handle
  // the individual compare opcodes (including A4_cmpb*) later on.
  if (!CmpAnalyzed)
    return false;

  // Exactly one of the input registers to the comparison should be among
  // the induction registers.
  InductionMap::iterator IndMapEnd = IndMap.end();
  InductionMap::iterator F = IndMapEnd;
  if (CmpReg1 != 0) {
    InductionMap::iterator F1 = IndMap.find(CmpReg1);
    if (F1 != IndMapEnd)
      F = F1;
  }
  if (CmpReg2 != 0) {
    InductionMap::iterator F2 = IndMap.find(CmpReg2);
    if (F2 != IndMapEnd) {
      if (F != IndMapEnd)
        return false;
      F = F2;
    }
  }
  if (F == IndMapEnd)
    return false;

  Reg = F->second.first;
  IVBump = F->second.second;
  IVOp = MRI->getVRegDef(F->first);
  return true;
}

// Return the comparison kind for the specified opcode.
HexagonHardwareLoops::Comparison::Kind
HexagonHardwareLoops::getComparisonKind(unsigned CondOpc,
                                        MachineOperand *InitialValue,
                                        const MachineOperand *EndValue,
                                        int64_t IVBump) const {
  Comparison::Kind Cmp = (Comparison::Kind)0;
  switch (CondOpc) {
  case Hexagon::C2_cmpeq:
  case Hexagon::C2_cmpeqi:
  case Hexagon::C2_cmpeqp:
    Cmp = Comparison::EQ;
    break;
  case Hexagon::C4_cmpneq:
  case Hexagon::C4_cmpneqi:
    Cmp = Comparison::NE;
    break;
  case Hexagon::C2_cmplt:
    Cmp = Comparison::LTs;
    break;
  case Hexagon::C2_cmpltu:
    Cmp = Comparison::LTu;
    break;
  case Hexagon::C4_cmplte:
  case Hexagon::C4_cmpltei:
    Cmp = Comparison::LEs;
    break;
  case Hexagon::C4_cmplteu:
  case Hexagon::C4_cmplteui:
    Cmp = Comparison::LEu;
    break;
  case Hexagon::C2_cmpgt:
  case Hexagon::C2_cmpgti:
  case Hexagon::C2_cmpgtp:
    Cmp = Comparison::GTs;
    break;
  case Hexagon::C2_cmpgtu:
  case Hexagon::C2_cmpgtui:
  case Hexagon::C2_cmpgtup:
    Cmp = Comparison::GTu;
    break;
  case Hexagon::C2_cmpgei:
    Cmp = Comparison::GEs;
    break;
  case Hexagon::C2_cmpgeui:
    Cmp = Comparison::GEs;
    break;
  default:
    return (Comparison::Kind)0;
  }
  return Cmp;
}

/// Analyze the statements in a loop to determine if the loop has
/// a computable trip count and, if so, return a value that represents
/// the trip count expression.
///
/// This function iterates over the phi nodes in the loop to check for
/// induction variable patterns that are used in the calculation for
/// the number of time the loop is executed.
CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L,
    SmallVectorImpl<MachineInstr *> &OldInsts) {
  MachineBasicBlock *TopMBB = L->getTopBlock();
  MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin();
  assert(PI != TopMBB->pred_end() &&
         "Loop must have more than one incoming edge!");
  MachineBasicBlock *Backedge = *PI++;
  if (PI == TopMBB->pred_end())  // dead loop?
    return nullptr;
  MachineBasicBlock *Incoming = *PI++;
  if (PI != TopMBB->pred_end())  // multiple backedges?
    return nullptr;

  // Make sure there is one incoming and one backedge and determine which
  // is which.
  if (L->contains(Incoming)) {
    if (L->contains(Backedge))
      return nullptr;
    std::swap(Incoming, Backedge);
  } else if (!L->contains(Backedge))
    return nullptr;

  // Look for the cmp instruction to determine if we can get a useful trip
  // count.  The trip count can be either a register or an immediate.  The
  // location of the value depends upon the type (reg or imm).
  MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
  if (!ExitingBlock)
    return nullptr;

  unsigned IVReg = 0;
  int64_t IVBump = 0;
  MachineInstr *IVOp;
  bool FoundIV = findInductionRegister(L, IVReg, IVBump, IVOp);
  if (!FoundIV)
    return nullptr;

  MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader);

  MachineOperand *InitialValue = nullptr;
  MachineInstr *IV_Phi = MRI->getVRegDef(IVReg);
  MachineBasicBlock *Latch = L->getLoopLatch();
  for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) {
    MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB();
    if (MBB == Preheader)
      InitialValue = &IV_Phi->getOperand(i);
    else if (MBB == Latch)
      IVReg = IV_Phi->getOperand(i).getReg();  // Want IV reg after bump.
  }
  if (!InitialValue)
    return nullptr;

  SmallVector<MachineOperand,2> Cond;
  MachineBasicBlock *TB = nullptr, *FB = nullptr;
  bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false);
  if (NotAnalyzed)
    return nullptr;

  MachineBasicBlock *Header = L->getHeader();
  // TB must be non-null.  If FB is also non-null, one of them must be
  // the header.  Otherwise, branch to TB could be exiting the loop, and
  // the fall through can go to the header.
  assert (TB && "Exit block without a branch?");
  if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) {
    MachineBasicBlock *LTB = nullptr, *LFB = nullptr;
    SmallVector<MachineOperand,2> LCond;
    bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false);
    if (NotAnalyzed)
      return nullptr;
    if (TB == Latch)
      TB = (LTB == Header) ? LTB : LFB;
    else
      FB = (LTB == Header) ? LTB: LFB;
  }
  assert ((!FB || TB == Header || FB == Header) && "Branches not to header?");
  if (!TB || (FB && TB != Header && FB != Header))
    return nullptr;

  // Branches of form "if (!P) ..." cause HexagonInstrInfo::AnalyzeBranch
  // to put imm(0), followed by P in the vector Cond.
  // If TB is not the header, it means that the "not-taken" path must lead
  // to the header.
  bool Negated = TII->predOpcodeHasNot(Cond) ^ (TB != Header);
  unsigned PredReg, PredPos, PredRegFlags;
  if (!TII->getPredReg(Cond, PredReg, PredPos, PredRegFlags))
    return nullptr;
  MachineInstr *CondI = MRI->getVRegDef(PredReg);
  unsigned CondOpc = CondI->getOpcode();

  unsigned CmpReg1 = 0, CmpReg2 = 0;
  int Mask = 0, ImmValue = 0;
  bool AnalyzedCmp =
      TII->analyzeCompare(*CondI, CmpReg1, CmpReg2, Mask, ImmValue);
  if (!AnalyzedCmp)
    return nullptr;

  // The comparison operator type determines how we compute the loop
  // trip count.
  OldInsts.push_back(CondI);
  OldInsts.push_back(IVOp);

  // Sadly, the following code gets information based on the position
  // of the operands in the compare instruction.  This has to be done
  // this way, because the comparisons check for a specific relationship
  // between the operands (e.g. is-less-than), rather than to find out
  // what relationship the operands are in (as on PPC).
  Comparison::Kind Cmp;
  bool isSwapped = false;
  const MachineOperand &Op1 = CondI->getOperand(1);
  const MachineOperand &Op2 = CondI->getOperand(2);
  const MachineOperand *EndValue = nullptr;

  if (Op1.isReg()) {
    if (Op2.isImm() || Op1.getReg() == IVReg)
      EndValue = &Op2;
    else {
      EndValue = &Op1;
      isSwapped = true;
    }
  }

  if (!EndValue)
    return nullptr;

  Cmp = getComparisonKind(CondOpc, InitialValue, EndValue, IVBump);
  if (!Cmp)
    return nullptr;
  if (Negated)
    Cmp = Comparison::getNegatedComparison(Cmp);
  if (isSwapped)
    Cmp = Comparison::getSwappedComparison(Cmp);

  if (InitialValue->isReg()) {
    unsigned R = InitialValue->getReg();
    MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent();
    if (!MDT->properlyDominates(DefBB, Header)) {
      int64_t V;
      if (!checkForImmediate(*InitialValue, V))
        return nullptr;
    }
    OldInsts.push_back(MRI->getVRegDef(R));
  }
  if (EndValue->isReg()) {
    unsigned R = EndValue->getReg();
    MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent();
    if (!MDT->properlyDominates(DefBB, Header)) {
      int64_t V;
      if (!checkForImmediate(*EndValue, V))
        return nullptr;
    }
    OldInsts.push_back(MRI->getVRegDef(R));
  }

  return computeCount(L, InitialValue, EndValue, IVReg, IVBump, Cmp);
}

/// Helper function that returns the expression that represents the
/// number of times a loop iterates.  The function takes the operands that
/// represent the loop start value, loop end value, and induction value.
/// Based upon these operands, the function attempts to compute the trip count.
CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop,
                                               const MachineOperand *Start,
                                               const MachineOperand *End,
                                               unsigned IVReg,
                                               int64_t IVBump,
                                               Comparison::Kind Cmp) const {
  // Cannot handle comparison EQ, i.e. while (A == B).
  if (Cmp == Comparison::EQ)
    return nullptr;

  // Check if either the start or end values are an assignment of an immediate.
  // If so, use the immediate value rather than the register.
  if (Start->isReg()) {
    const MachineInstr *StartValInstr = MRI->getVRegDef(Start->getReg());
    if (StartValInstr && (StartValInstr->getOpcode() == Hexagon::A2_tfrsi ||
                          StartValInstr->getOpcode() == Hexagon::A2_tfrpi))
      Start = &StartValInstr->getOperand(1);
  }
  if (End->isReg()) {
    const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg());
    if (EndValInstr && (EndValInstr->getOpcode() == Hexagon::A2_tfrsi ||
                        EndValInstr->getOpcode() == Hexagon::A2_tfrpi))
      End = &EndValInstr->getOperand(1);
  }

  if (!Start->isReg() && !Start->isImm())
    return nullptr;
  if (!End->isReg() && !End->isImm())
    return nullptr;

  bool CmpLess =     Cmp & Comparison::L;
  bool CmpGreater =  Cmp & Comparison::G;
  bool CmpHasEqual = Cmp & Comparison::EQ;

  // Avoid certain wrap-arounds.  This doesn't detect all wrap-arounds.
  if (CmpLess && IVBump < 0)
    // Loop going while iv is "less" with the iv value going down.  Must wrap.
    return nullptr;

  if (CmpGreater && IVBump > 0)
    // Loop going while iv is "greater" with the iv value going up.  Must wrap.
    return nullptr;

  // Phis that may feed into the loop.
  LoopFeederMap LoopFeederPhi;

  // Check if the initial value may be zero and can be decremented in the first
  // iteration. If the value is zero, the endloop instruction will not decrement
  // the loop counter, so we shouldn't generate a hardware loop in this case.
  if (loopCountMayWrapOrUnderFlow(Start, End, Loop->getLoopPreheader(), Loop,
                                  LoopFeederPhi))
      return nullptr;

  if (Start->isImm() && End->isImm()) {
    // Both, start and end are immediates.
    int64_t StartV = Start->getImm();
    int64_t EndV = End->getImm();
    int64_t Dist = EndV - StartV;
    if (Dist == 0)
      return nullptr;

    bool Exact = (Dist % IVBump) == 0;

    if (Cmp == Comparison::NE) {
      if (!Exact)
        return nullptr;
      if ((Dist < 0) ^ (IVBump < 0))
        return nullptr;
    }

    // For comparisons that include the final value (i.e. include equality
    // with the final value), we need to increase the distance by 1.
    if (CmpHasEqual)
      Dist = Dist > 0 ? Dist+1 : Dist-1;

    // For the loop to iterate, CmpLess should imply Dist > 0.  Similarly,
    // CmpGreater should imply Dist < 0.  These conditions could actually
    // fail, for example, in unreachable code (which may still appear to be
    // reachable in the CFG).
    if ((CmpLess && Dist < 0) || (CmpGreater && Dist > 0))
      return nullptr;

    // "Normalized" distance, i.e. with the bump set to +-1.
    int64_t Dist1 = (IVBump > 0) ? (Dist +  (IVBump - 1)) / IVBump
                                 : (-Dist + (-IVBump - 1)) / (-IVBump);
    assert (Dist1 > 0 && "Fishy thing.  Both operands have the same sign.");

    uint64_t Count = Dist1;

    if (Count > 0xFFFFFFFFULL)
      return nullptr;

    return new CountValue(CountValue::CV_Immediate, Count);
  }

  // A general case: Start and End are some values, but the actual
  // iteration count may not be available.  If it is not, insert
  // a computation of it into the preheader.

  // If the induction variable bump is not a power of 2, quit.
  // Othwerise we'd need a general integer division.
  if (!isPowerOf2_64(std::abs(IVBump)))
    return nullptr;

  MachineBasicBlock *PH = MLI->findLoopPreheader(Loop, SpecPreheader);
  assert (PH && "Should have a preheader by now");
  MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator();
  DebugLoc DL;
  if (InsertPos != PH->end())
    DL = InsertPos->getDebugLoc();

  // If Start is an immediate and End is a register, the trip count
  // will be "reg - imm".  Hexagon's "subtract immediate" instruction
  // is actually "reg + -imm".

  // If the loop IV is going downwards, i.e. if the bump is negative,
  // then the iteration count (computed as End-Start) will need to be
  // negated.  To avoid the negation, just swap Start and End.
  if (IVBump < 0) {
    std::swap(Start, End);
    IVBump = -IVBump;
  }
  // Cmp may now have a wrong direction, e.g.  LEs may now be GEs.
  // Signedness, and "including equality" are preserved.

  bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm)
  bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg)

  int64_t StartV = 0, EndV = 0;
  if (Start->isImm())
    StartV = Start->getImm();
  if (End->isImm())
    EndV = End->getImm();

  int64_t AdjV = 0;
  // To compute the iteration count, we would need this computation:
  //   Count = (End - Start + (IVBump-1)) / IVBump
  // or, when CmpHasEqual:
  //   Count = (End - Start + (IVBump-1)+1) / IVBump
  // The "IVBump-1" part is the adjustment (AdjV).  We can avoid
  // generating an instruction specifically to add it if we can adjust
  // the immediate values for Start or End.

  if (CmpHasEqual) {
    // Need to add 1 to the total iteration count.
    if (Start->isImm())
      StartV--;
    else if (End->isImm())
      EndV++;
    else
      AdjV += 1;
  }

  if (Cmp != Comparison::NE) {
    if (Start->isImm())
      StartV -= (IVBump-1);
    else if (End->isImm())
      EndV += (IVBump-1);
    else
      AdjV += (IVBump-1);
  }

  unsigned R = 0, SR = 0;
  if (Start->isReg()) {
    R = Start->getReg();
    SR = Start->getSubReg();
  } else {
    R = End->getReg();
    SR = End->getSubReg();
  }
  const TargetRegisterClass *RC = MRI->getRegClass(R);
  // Hardware loops cannot handle 64-bit registers.  If it's a double
  // register, it has to have a subregister.
  if (!SR && RC == &Hexagon::DoubleRegsRegClass)
    return nullptr;
  const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass;

  // Compute DistR (register with the distance between Start and End).
  unsigned DistR, DistSR;

  // Avoid special case, where the start value is an imm(0).
  if (Start->isImm() && StartV == 0) {
    DistR = End->getReg();
    DistSR = End->getSubReg();
  } else {
    const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::A2_sub) :
                              (RegToImm ? TII->get(Hexagon::A2_subri) :
                                          TII->get(Hexagon::A2_addi));
    if (RegToReg || RegToImm) {
      unsigned SubR = MRI->createVirtualRegister(IntRC);
      MachineInstrBuilder SubIB =
        BuildMI(*PH, InsertPos, DL, SubD, SubR);

      if (RegToReg)
        SubIB.addReg(End->getReg(), 0, End->getSubReg())
          .addReg(Start->getReg(), 0, Start->getSubReg());
      else
        SubIB.addImm(EndV)
          .addReg(Start->getReg(), 0, Start->getSubReg());
      DistR = SubR;
    } else {
      // If the loop has been unrolled, we should use the original loop count
      // instead of recalculating the value. This will avoid additional
      // 'Add' instruction.
      const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg());
      if (EndValInstr->getOpcode() == Hexagon::A2_addi &&
          EndValInstr->getOperand(1).getSubReg() == 0 &&
          EndValInstr->getOperand(2).getImm() == StartV) {
        DistR = EndValInstr->getOperand(1).getReg();
      } else {
        unsigned SubR = MRI->createVirtualRegister(IntRC);
        MachineInstrBuilder SubIB =
          BuildMI(*PH, InsertPos, DL, SubD, SubR);
        SubIB.addReg(End->getReg(), 0, End->getSubReg())
             .addImm(-StartV);
        DistR = SubR;
      }
    }
    DistSR = 0;
  }

  // From DistR, compute AdjR (register with the adjusted distance).
  unsigned AdjR, AdjSR;

  if (AdjV == 0) {
    AdjR = DistR;
    AdjSR = DistSR;
  } else {
    // Generate CountR = ADD DistR, AdjVal
    unsigned AddR = MRI->createVirtualRegister(IntRC);
    MCInstrDesc const &AddD = TII->get(Hexagon::A2_addi);
    BuildMI(*PH, InsertPos, DL, AddD, AddR)
      .addReg(DistR, 0, DistSR)
      .addImm(AdjV);

    AdjR = AddR;
    AdjSR = 0;
  }

  // From AdjR, compute CountR (register with the final count).
  unsigned CountR, CountSR;

  if (IVBump == 1) {
    CountR = AdjR;
    CountSR = AdjSR;
  } else {
    // The IV bump is a power of two. Log_2(IV bump) is the shift amount.
    unsigned Shift = Log2_32(IVBump);

    // Generate NormR = LSR DistR, Shift.
    unsigned LsrR = MRI->createVirtualRegister(IntRC);
    const MCInstrDesc &LsrD = TII->get(Hexagon::S2_lsr_i_r);
    BuildMI(*PH, InsertPos, DL, LsrD, LsrR)
      .addReg(AdjR, 0, AdjSR)
      .addImm(Shift);

    CountR = LsrR;
    CountSR = 0;
  }

  return new CountValue(CountValue::CV_Register, CountR, CountSR);
}

/// Return true if the operation is invalid within hardware loop.
bool HexagonHardwareLoops::isInvalidLoopOperation(const MachineInstr *MI,
                                                  bool IsInnerHWLoop) const {
  // Call is not allowed because the callee may use a hardware loop except for
  // the case when the call never returns.
  if (MI->getDesc().isCall())
    return !TII->doesNotReturn(*MI);

  // Check if the instruction defines a hardware loop register.
  using namespace Hexagon;

  static const unsigned Regs01[] = { LC0, SA0, LC1, SA1 };
  static const unsigned Regs1[]  = { LC1, SA1 };
  auto CheckRegs = IsInnerHWLoop ? makeArrayRef(Regs01, array_lengthof(Regs01))
                                 : makeArrayRef(Regs1, array_lengthof(Regs1));
  for (unsigned R : CheckRegs)
    if (MI->modifiesRegister(R, TRI))
      return true;

  return false;
}

/// Return true if the loop contains an instruction that inhibits
/// the use of the hardware loop instruction.
bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L,
    bool IsInnerHWLoop) const {
  LLVM_DEBUG(dbgs() << "\nhw_loop head, "
                    << printMBBReference(**L->block_begin()));
  for (MachineBasicBlock *MBB : L->getBlocks()) {
    for (MachineBasicBlock::iterator
           MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) {
      const MachineInstr *MI = &*MII;
      if (isInvalidLoopOperation(MI, IsInnerHWLoop)) {
        LLVM_DEBUG(dbgs() << "\nCannot convert to hw_loop due to:";
                   MI->dump(););
        return true;
      }
    }
  }
  return false;
}

/// Returns true if the instruction is dead.  This was essentially
/// copied from DeadMachineInstructionElim::isDead, but with special cases
/// for inline asm, physical registers and instructions with side effects
/// removed.
bool HexagonHardwareLoops::isDead(const MachineInstr *MI,
                              SmallVectorImpl<MachineInstr *> &DeadPhis) const {
  // Examine each operand.
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg() || !MO.isDef())
      continue;

    unsigned Reg = MO.getReg();
    if (MRI->use_nodbg_empty(Reg))
      continue;

    using use_nodbg_iterator = MachineRegisterInfo::use_nodbg_iterator;

    // This instruction has users, but if the only user is the phi node for the
    // parent block, and the only use of that phi node is this instruction, then
    // this instruction is dead: both it (and the phi node) can be removed.
    use_nodbg_iterator I = MRI->use_nodbg_begin(Reg);
    use_nodbg_iterator End = MRI->use_nodbg_end();
    if (std::next(I) != End || !I->getParent()->isPHI())
      return false;

    MachineInstr *OnePhi = I->getParent();
    for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) {
      const MachineOperand &OPO = OnePhi->getOperand(j);
      if (!OPO.isReg() || !OPO.isDef())
        continue;

      unsigned OPReg = OPO.getReg();
      use_nodbg_iterator nextJ;
      for (use_nodbg_iterator J = MRI->use_nodbg_begin(OPReg);
           J != End; J = nextJ) {
        nextJ = std::next(J);
        MachineOperand &Use = *J;
        MachineInstr *UseMI = Use.getParent();

        // If the phi node has a user that is not MI, bail.
        if (MI != UseMI)
          return false;
      }
    }
    DeadPhis.push_back(OnePhi);
  }

  // If there are no defs with uses, the instruction is dead.
  return true;
}

void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) {
  // This procedure was essentially copied from DeadMachineInstructionElim.

  SmallVector<MachineInstr*, 1> DeadPhis;
  if (isDead(MI, DeadPhis)) {
    LLVM_DEBUG(dbgs() << "HW looping will remove: " << *MI);

    // It is possible that some DBG_VALUE instructions refer to this
    // instruction.  Examine each def operand for such references;
    // if found, mark the DBG_VALUE as undef (but don't delete it).
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      const MachineOperand &MO = MI->getOperand(i);
      if (!MO.isReg() || !MO.isDef())
        continue;
      unsigned Reg = MO.getReg();
      MachineRegisterInfo::use_iterator nextI;
      for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg),
           E = MRI->use_end(); I != E; I = nextI) {
        nextI = std::next(I);  // I is invalidated by the setReg
        MachineOperand &Use = *I;
        MachineInstr *UseMI = I->getParent();
        if (UseMI == MI)
          continue;
        if (Use.isDebug())
          UseMI->getOperand(0).setReg(0U);
      }
    }

    MI->eraseFromParent();
    for (unsigned i = 0; i < DeadPhis.size(); ++i)
      DeadPhis[i]->eraseFromParent();
  }
}

/// Check if the loop is a candidate for converting to a hardware
/// loop.  If so, then perform the transformation.
///
/// This function works on innermost loops first.  A loop can be converted
/// if it is a counting loop; either a register value or an immediate.
///
/// The code makes several assumptions about the representation of the loop
/// in llvm.
bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L,
                                                 bool &RecL0used,
                                                 bool &RecL1used) {
  // This is just for sanity.
  assert(L->getHeader() && "Loop without a header?");

  bool Changed = false;
  bool L0Used = false;
  bool L1Used = false;

  // Process nested loops first.
  for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) {
    Changed |= convertToHardwareLoop(*I, RecL0used, RecL1used);
    L0Used |= RecL0used;
    L1Used |= RecL1used;
  }

  // If a nested loop has been converted, then we can't convert this loop.
  if (Changed && L0Used && L1Used)
    return Changed;

  unsigned LOOP_i;
  unsigned LOOP_r;
  unsigned ENDLOOP;

  // Flag used to track loopN instruction:
  // 1 - Hardware loop is being generated for the inner most loop.
  // 0 - Hardware loop is being generated for the outer loop.
  unsigned IsInnerHWLoop = 1;

  if (L0Used) {
    LOOP_i = Hexagon::J2_loop1i;
    LOOP_r = Hexagon::J2_loop1r;
    ENDLOOP = Hexagon::ENDLOOP1;
    IsInnerHWLoop = 0;
  } else {
    LOOP_i = Hexagon::J2_loop0i;
    LOOP_r = Hexagon::J2_loop0r;
    ENDLOOP = Hexagon::ENDLOOP0;
  }

#ifndef NDEBUG
  // Stop trying after reaching the limit (if any).
  int Limit = HWLoopLimit;
  if (Limit >= 0) {
    if (Counter >= HWLoopLimit)
      return false;
    Counter++;
  }
#endif

  // Does the loop contain any invalid instructions?
  if (containsInvalidInstruction(L, IsInnerHWLoop))
    return false;

  MachineBasicBlock *LastMBB = L->findLoopControlBlock();
  // Don't generate hw loop if the loop has more than one exit.
  if (!LastMBB)
    return false;

  MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator();
  if (LastI == LastMBB->end())
    return false;

  // Is the induction variable bump feeding the latch condition?
  if (!fixupInductionVariable(L))
    return false;

  // Ensure the loop has a preheader: the loop instruction will be
  // placed there.
  MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader);
  if (!Preheader) {
    Preheader = createPreheaderForLoop(L);
    if (!Preheader)
      return false;
  }

  MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator();

  SmallVector<MachineInstr*, 2> OldInsts;
  // Are we able to determine the trip count for the loop?
  CountValue *TripCount = getLoopTripCount(L, OldInsts);
  if (!TripCount)
    return false;

  // Is the trip count available in the preheader?
  if (TripCount->isReg()) {
    // There will be a use of the register inserted into the preheader,
    // so make sure that the register is actually defined at that point.
    MachineInstr *TCDef = MRI->getVRegDef(TripCount->getReg());
    MachineBasicBlock *BBDef = TCDef->getParent();
    if (!MDT->dominates(BBDef, Preheader))
      return false;
  }

  // Determine the loop start.
  MachineBasicBlock *TopBlock = L->getTopBlock();
  MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
  MachineBasicBlock *LoopStart = nullptr;
  if (ExitingBlock !=  L->getLoopLatch()) {
    MachineBasicBlock *TB = nullptr, *FB = nullptr;
    SmallVector<MachineOperand, 2> Cond;

    if (TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false))
      return false;

    if (L->contains(TB))
      LoopStart = TB;
    else if (L->contains(FB))
      LoopStart = FB;
    else
      return false;
  }
  else
    LoopStart = TopBlock;

  // Convert the loop to a hardware loop.
  LLVM_DEBUG(dbgs() << "Change to hardware loop at "; L->dump());
  DebugLoc DL;
  if (InsertPos != Preheader->end())
    DL = InsertPos->getDebugLoc();

  if (TripCount->isReg()) {
    // Create a copy of the loop count register.
    unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
    BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY), CountReg)
      .addReg(TripCount->getReg(), 0, TripCount->getSubReg());
    // Add the Loop instruction to the beginning of the loop.
    BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r)).addMBB(LoopStart)
      .addReg(CountReg);
  } else {
    assert(TripCount->isImm() && "Expecting immediate value for trip count");
    // Add the Loop immediate instruction to the beginning of the loop,
    // if the immediate fits in the instructions.  Otherwise, we need to
    // create a new virtual register.
    int64_t CountImm = TripCount->getImm();
    if (!TII->isValidOffset(LOOP_i, CountImm, TRI)) {
      unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
      BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::A2_tfrsi), CountReg)
        .addImm(CountImm);
      BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r))
        .addMBB(LoopStart).addReg(CountReg);
    } else
      BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_i))
        .addMBB(LoopStart).addImm(CountImm);
  }

  // Make sure the loop start always has a reference in the CFG.  We need
  // to create a BlockAddress operand to get this mechanism to work both the
  // MachineBasicBlock and BasicBlock objects need the flag set.
  LoopStart->setHasAddressTaken();
  // This line is needed to set the hasAddressTaken flag on the BasicBlock
  // object.
  BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock()));

  // Replace the loop branch with an endloop instruction.
  DebugLoc LastIDL = LastI->getDebugLoc();
  BuildMI(*LastMBB, LastI, LastIDL, TII->get(ENDLOOP)).addMBB(LoopStart);

  // The loop ends with either:
  //  - a conditional branch followed by an unconditional branch, or
  //  - a conditional branch to the loop start.
  if (LastI->getOpcode() == Hexagon::J2_jumpt ||
      LastI->getOpcode() == Hexagon::J2_jumpf) {
    // Delete one and change/add an uncond. branch to out of the loop.
    MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB();
    LastI = LastMBB->erase(LastI);
    if (!L->contains(BranchTarget)) {
      if (LastI != LastMBB->end())
        LastI = LastMBB->erase(LastI);
      SmallVector<MachineOperand, 0> Cond;
      TII->insertBranch(*LastMBB, BranchTarget, nullptr, Cond, LastIDL);
    }
  } else {
    // Conditional branch to loop start; just delete it.
    LastMBB->erase(LastI);
  }
  delete TripCount;

  // The induction operation and the comparison may now be
  // unneeded. If these are unneeded, then remove them.
  for (unsigned i = 0; i < OldInsts.size(); ++i)
    removeIfDead(OldInsts[i]);

  ++NumHWLoops;

  // Set RecL1used and RecL0used only after hardware loop has been
  // successfully generated. Doing it earlier can cause wrong loop instruction
  // to be used.
  if (L0Used) // Loop0 was already used. So, the correct loop must be loop1.
    RecL1used = true;
  else
    RecL0used = true;

  return true;
}

bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI,
                                            MachineInstr *CmpI) {
  assert (BumpI != CmpI && "Bump and compare in the same instruction?");

  MachineBasicBlock *BB = BumpI->getParent();
  if (CmpI->getParent() != BB)
    return false;

  using instr_iterator = MachineBasicBlock::instr_iterator;

  // Check if things are in order to begin with.
  for (instr_iterator I(BumpI), E = BB->instr_end(); I != E; ++I)
    if (&*I == CmpI)
      return true;

  // Out of order.
  unsigned PredR = CmpI->getOperand(0).getReg();
  bool FoundBump = false;
  instr_iterator CmpIt = CmpI->getIterator(), NextIt = std::next(CmpIt);
  for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I) {
    MachineInstr *In = &*I;
    for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) {
      MachineOperand &MO = In->getOperand(i);
      if (MO.isReg() && MO.isUse()) {
        if (MO.getReg() == PredR)  // Found an intervening use of PredR.
          return false;
      }
    }

    if (In == BumpI) {
      BB->splice(++BumpI->getIterator(), BB, CmpI->getIterator());
      FoundBump = true;
      break;
    }
  }
  assert (FoundBump && "Cannot determine instruction order");
  return FoundBump;
}

/// This function is required to break recursion. Visiting phis in a loop may
/// result in recursion during compilation. We break the recursion by making
/// sure that we visit a MachineOperand and its definition in a
/// MachineInstruction only once. If we attempt to visit more than once, then
/// there is recursion, and will return false.
bool HexagonHardwareLoops::isLoopFeeder(MachineLoop *L, MachineBasicBlock *A,
                                        MachineInstr *MI,
                                        const MachineOperand *MO,
                                        LoopFeederMap &LoopFeederPhi) const {
  if (LoopFeederPhi.find(MO->getReg()) == LoopFeederPhi.end()) {
    LLVM_DEBUG(dbgs() << "\nhw_loop head, "
                      << printMBBReference(**L->block_begin()));
    // Ignore all BBs that form Loop.
    for (MachineBasicBlock *MBB : L->getBlocks()) {
      if (A == MBB)
        return false;
    }
    MachineInstr *Def = MRI->getVRegDef(MO->getReg());
    LoopFeederPhi.insert(std::make_pair(MO->getReg(), Def));
    return true;
  } else
    // Already visited node.
    return false;
}

/// Return true if a Phi may generate a value that can underflow.
/// This function calls loopCountMayWrapOrUnderFlow for each Phi operand.
bool HexagonHardwareLoops::phiMayWrapOrUnderflow(
    MachineInstr *Phi, const MachineOperand *EndVal, MachineBasicBlock *MBB,
    MachineLoop *L, LoopFeederMap &LoopFeederPhi) const {
  assert(Phi->isPHI() && "Expecting a Phi.");
  // Walk through each Phi, and its used operands. Make sure that
  // if there is recursion in Phi, we won't generate hardware loops.
  for (int i = 1, n = Phi->getNumOperands(); i < n; i += 2)
    if (isLoopFeeder(L, MBB, Phi, &(Phi->getOperand(i)), LoopFeederPhi))
      if (loopCountMayWrapOrUnderFlow(&(Phi->getOperand(i)), EndVal,
                                      Phi->getParent(), L, LoopFeederPhi))
        return true;
  return false;
}

/// Return true if the induction variable can underflow in the first iteration.
/// An example, is an initial unsigned value that is 0 and is decrement in the
/// first itertion of a do-while loop.  In this case, we cannot generate a
/// hardware loop because the endloop instruction does not decrement the loop
/// counter if it is <= 1. We only need to perform this analysis if the
/// initial value is a register.
///
/// This function assumes the initial value may underfow unless proven
/// otherwise. If the type is signed, then we don't care because signed
/// underflow is undefined. We attempt to prove the initial value is not
/// zero by perfoming a crude analysis of the loop counter. This function
/// checks if the initial value is used in any comparison prior to the loop
/// and, if so, assumes the comparison is a range check. This is inexact,
/// but will catch the simple cases.
bool HexagonHardwareLoops::loopCountMayWrapOrUnderFlow(
    const MachineOperand *InitVal, const MachineOperand *EndVal,
    MachineBasicBlock *MBB, MachineLoop *L,
    LoopFeederMap &LoopFeederPhi) const {
  // Only check register values since they are unknown.
  if (!InitVal->isReg())
    return false;

  if (!EndVal->isImm())
    return false;

  // A register value that is assigned an immediate is a known value, and it
  // won't underflow in the first iteration.
  int64_t Imm;
  if (checkForImmediate(*InitVal, Imm))
    return (EndVal->getImm() == Imm);

  unsigned Reg = InitVal->getReg();

  // We don't know the value of a physical register.
  if (!TargetRegisterInfo::isVirtualRegister(Reg))
    return true;

  MachineInstr *Def = MRI->getVRegDef(Reg);
  if (!Def)
    return true;

  // If the initial value is a Phi or copy and the operands may not underflow,
  // then the definition cannot be underflow either.
  if (Def->isPHI() && !phiMayWrapOrUnderflow(Def, EndVal, Def->getParent(),
                                             L, LoopFeederPhi))
    return false;
  if (Def->isCopy() && !loopCountMayWrapOrUnderFlow(&(Def->getOperand(1)),
                                                    EndVal, Def->getParent(),
                                                    L, LoopFeederPhi))
    return false;

  // Iterate over the uses of the initial value. If the initial value is used
  // in a compare, then we assume this is a range check that ensures the loop
  // doesn't underflow. This is not an exact test and should be improved.
  for (MachineRegisterInfo::use_instr_nodbg_iterator I = MRI->use_instr_nodbg_begin(Reg),
         E = MRI->use_instr_nodbg_end(); I != E; ++I) {
    MachineInstr *MI = &*I;
    unsigned CmpReg1 = 0, CmpReg2 = 0;
    int CmpMask = 0, CmpValue = 0;

    if (!TII->analyzeCompare(*MI, CmpReg1, CmpReg2, CmpMask, CmpValue))
      continue;

    MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
    SmallVector<MachineOperand, 2> Cond;
    if (TII->analyzeBranch(*MI->getParent(), TBB, FBB, Cond, false))
      continue;

    Comparison::Kind Cmp =
        getComparisonKind(MI->getOpcode(), nullptr, nullptr, 0);
    if (Cmp == 0)
      continue;
    if (TII->predOpcodeHasNot(Cond) ^ (TBB != MBB))
      Cmp = Comparison::getNegatedComparison(Cmp);
    if (CmpReg2 != 0 && CmpReg2 == Reg)
      Cmp = Comparison::getSwappedComparison(Cmp);

    // Signed underflow is undefined.
    if (Comparison::isSigned(Cmp))
      return false;

    // Check if there is a comparison of the initial value. If the initial value
    // is greater than or not equal to another value, then assume this is a
    // range check.
    if ((Cmp & Comparison::G) || Cmp == Comparison::NE)
      return false;
  }

  // OK - this is a hack that needs to be improved. We really need to analyze
  // the instructions performed on the initial value. This works on the simplest
  // cases only.
  if (!Def->isCopy() && !Def->isPHI())
    return false;

  return true;
}

bool HexagonHardwareLoops::checkForImmediate(const MachineOperand &MO,
                                             int64_t &Val) const {
  if (MO.isImm()) {
    Val = MO.getImm();
    return true;
  }
  if (!MO.isReg())
    return false;

  // MO is a register. Check whether it is defined as an immediate value,
  // and if so, get the value of it in TV. That value will then need to be
  // processed to handle potential subregisters in MO.
  int64_t TV;

  unsigned R = MO.getReg();
  if (!TargetRegisterInfo::isVirtualRegister(R))
    return false;
  MachineInstr *DI = MRI->getVRegDef(R);
  unsigned DOpc = DI->getOpcode();
  switch (DOpc) {
    case TargetOpcode::COPY:
    case Hexagon::A2_tfrsi:
    case Hexagon::A2_tfrpi:
    case Hexagon::CONST32:
    case Hexagon::CONST64:
      // Call recursively to avoid an extra check whether operand(1) is
      // indeed an immediate (it could be a global address, for example),
      // plus we can handle COPY at the same time.
      if (!checkForImmediate(DI->getOperand(1), TV))
        return false;
      break;
    case Hexagon::A2_combineii:
    case Hexagon::A4_combineir:
    case Hexagon::A4_combineii:
    case Hexagon::A4_combineri:
    case Hexagon::A2_combinew: {
      const MachineOperand &S1 = DI->getOperand(1);
      const MachineOperand &S2 = DI->getOperand(2);
      int64_t V1, V2;
      if (!checkForImmediate(S1, V1) || !checkForImmediate(S2, V2))
        return false;
      TV = V2 | (static_cast<uint64_t>(V1) << 32);
      break;
    }
    case TargetOpcode::REG_SEQUENCE: {
      const MachineOperand &S1 = DI->getOperand(1);
      const MachineOperand &S3 = DI->getOperand(3);
      int64_t V1, V3;
      if (!checkForImmediate(S1, V1) || !checkForImmediate(S3, V3))
        return false;
      unsigned Sub2 = DI->getOperand(2).getImm();
      unsigned Sub4 = DI->getOperand(4).getImm();
      if (Sub2 == Hexagon::isub_lo && Sub4 == Hexagon::isub_hi)
        TV = V1 | (V3 << 32);
      else if (Sub2 == Hexagon::isub_hi && Sub4 == Hexagon::isub_lo)
        TV = V3 | (V1 << 32);
      else
        llvm_unreachable("Unexpected form of REG_SEQUENCE");
      break;
    }

    default:
      return false;
  }

  // By now, we should have successfully obtained the immediate value defining
  // the register referenced in MO. Handle a potential use of a subregister.
  switch (MO.getSubReg()) {
    case Hexagon::isub_lo:
      Val = TV & 0xFFFFFFFFULL;
      break;
    case Hexagon::isub_hi:
      Val = (TV >> 32) & 0xFFFFFFFFULL;
      break;
    default:
      Val = TV;
      break;
  }
  return true;
}

void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) {
  if (MO.isImm()) {
    MO.setImm(Val);
    return;
  }

  assert(MO.isReg());
  unsigned R = MO.getReg();
  MachineInstr *DI = MRI->getVRegDef(R);

  const TargetRegisterClass *RC = MRI->getRegClass(R);
  unsigned NewR = MRI->createVirtualRegister(RC);
  MachineBasicBlock &B = *DI->getParent();
  DebugLoc DL = DI->getDebugLoc();
  BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR).addImm(Val);
  MO.setReg(NewR);
}

static bool isImmValidForOpcode(unsigned CmpOpc, int64_t Imm) {
  // These two instructions are not extendable.
  if (CmpOpc == Hexagon::A4_cmpbeqi)
    return isUInt<8>(Imm);
  if (CmpOpc == Hexagon::A4_cmpbgti)
    return isInt<8>(Imm);
  // The rest of the comparison-with-immediate instructions are extendable.
  return true;
}

bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) {
  MachineBasicBlock *Header = L->getHeader();
  MachineBasicBlock *Latch = L->getLoopLatch();
  MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();

  if (!(Header && Latch && ExitingBlock))
    return false;

  // These data structures follow the same concept as the corresponding
  // ones in findInductionRegister (where some comments are).
  using RegisterBump = std::pair<unsigned, int64_t>;
  using RegisterInduction = std::pair<unsigned, RegisterBump>;
  using RegisterInductionSet = std::set<RegisterInduction>;

  // Register candidates for induction variables, with their associated bumps.
  RegisterInductionSet IndRegs;

  // Look for induction patterns:
  //   %1 = PHI ..., [ latch, %2 ]
  //   %2 = ADD %1, imm
  using instr_iterator = MachineBasicBlock::instr_iterator;

  for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
       I != E && I->isPHI(); ++I) {
    MachineInstr *Phi = &*I;

    // Have a PHI instruction.
    for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) {
      if (Phi->getOperand(i+1).getMBB() != Latch)
        continue;

      unsigned PhiReg = Phi->getOperand(i).getReg();
      MachineInstr *DI = MRI->getVRegDef(PhiReg);

      if (DI->getDesc().isAdd()) {
        // If the register operand to the add/sub is the PHI we are looking
        // at, this meets the induction pattern.
        unsigned IndReg = DI->getOperand(1).getReg();
        MachineOperand &Opnd2 = DI->getOperand(2);
        int64_t V;
        if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) {
          unsigned UpdReg = DI->getOperand(0).getReg();
          IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
        }
      }
    }  // for (i)
  }  // for (instr)

  if (IndRegs.empty())
    return false;

  MachineBasicBlock *TB = nullptr, *FB = nullptr;
  SmallVector<MachineOperand,2> Cond;
  // AnalyzeBranch returns true if it fails to analyze branch.
  bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false);
  if (NotAnalyzed || Cond.empty())
    return false;

  if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) {
    MachineBasicBlock *LTB = nullptr, *LFB = nullptr;
    SmallVector<MachineOperand,2> LCond;
    bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false);
    if (NotAnalyzed)
      return false;

    // Since latch is not the exiting block, the latch branch should be an
    // unconditional branch to the loop header.
    if (TB == Latch)
      TB = (LTB == Header) ? LTB : LFB;
    else
      FB = (LTB == Header) ? LTB : LFB;
  }
  if (TB != Header) {
    if (FB != Header) {
      // The latch/exit block does not go back to the header.
      return false;
    }
    // FB is the header (i.e., uncond. jump to branch header)
    // In this case, the LoopBody -> TB should not be a back edge otherwise
    // it could result in an infinite loop after conversion to hw_loop.
    // This case can happen when the Latch has two jumps like this:
    // Jmp_c OuterLoopHeader <-- TB
    // Jmp   InnerLoopHeader <-- FB
    if (MDT->dominates(TB, FB))
      return false;
  }

  // Expecting a predicate register as a condition.  It won't be a hardware
  // predicate register at this point yet, just a vreg.
  // HexagonInstrInfo::AnalyzeBranch for negated branches inserts imm(0)
  // into Cond, followed by the predicate register.  For non-negated branches
  // it's just the register.
  unsigned CSz = Cond.size();
  if (CSz != 1 && CSz != 2)
    return false;

  if (!Cond[CSz-1].isReg())
    return false;

  unsigned P = Cond[CSz-1].getReg();
  MachineInstr *PredDef = MRI->getVRegDef(P);

  if (!PredDef->isCompare())
    return false;

  SmallSet<unsigned,2> CmpRegs;
  MachineOperand *CmpImmOp = nullptr;

  // Go over all operands to the compare and look for immediate and register
  // operands.  Assume that if the compare has a single register use and a
  // single immediate operand, then the register is being compared with the
  // immediate value.
  for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) {
    MachineOperand &MO = PredDef->getOperand(i);
    if (MO.isReg()) {
      // Skip all implicit references.  In one case there was:
      //   %140 = FCMPUGT32_rr %138, %139, implicit %usr
      if (MO.isImplicit())
        continue;
      if (MO.isUse()) {
        if (!isImmediate(MO)) {
          CmpRegs.insert(MO.getReg());
          continue;
        }
        // Consider the register to be the "immediate" operand.
        if (CmpImmOp)
          return false;
        CmpImmOp = &MO;
      }
    } else if (MO.isImm()) {
      if (CmpImmOp)    // A second immediate argument?  Confusing.  Bail out.
        return false;
      CmpImmOp = &MO;
    }
  }

  if (CmpRegs.empty())
    return false;

  // Check if the compared register follows the order we want.  Fix if needed.
  for (RegisterInductionSet::iterator I = IndRegs.begin(), E = IndRegs.end();
       I != E; ++I) {
    // This is a success.  If the register used in the comparison is one that
    // we have identified as a bumped (updated) induction register, there is
    // nothing to do.
    if (CmpRegs.count(I->first))
      return true;

    // Otherwise, if the register being compared comes out of a PHI node,
    // and has been recognized as following the induction pattern, and is
    // compared against an immediate, we can fix it.
    const RegisterBump &RB = I->second;
    if (CmpRegs.count(RB.first)) {
      if (!CmpImmOp) {
        // If both operands to the compare instruction are registers, see if
        // it can be changed to use induction register as one of the operands.
        MachineInstr *IndI = nullptr;
        MachineInstr *nonIndI = nullptr;
        MachineOperand *IndMO = nullptr;
        MachineOperand *nonIndMO = nullptr;

        for (unsigned i = 1, n = PredDef->getNumOperands(); i < n; ++i) {
          MachineOperand &MO = PredDef->getOperand(i);
          if (MO.isReg() && MO.getReg() == RB.first) {
            LLVM_DEBUG(dbgs() << "\n DefMI(" << i
                              << ") = " << *(MRI->getVRegDef(I->first)));
            if (IndI)
              return false;

            IndI = MRI->getVRegDef(I->first);
            IndMO = &MO;
          } else if (MO.isReg()) {
            LLVM_DEBUG(dbgs() << "\n DefMI(" << i
                              << ") = " << *(MRI->getVRegDef(MO.getReg())));
            if (nonIndI)
              return false;

            nonIndI = MRI->getVRegDef(MO.getReg());
            nonIndMO = &MO;
          }
        }
        if (IndI && nonIndI &&
            nonIndI->getOpcode() == Hexagon::A2_addi &&
            nonIndI->getOperand(2).isImm() &&
            nonIndI->getOperand(2).getImm() == - RB.second) {
          bool Order = orderBumpCompare(IndI, PredDef);
          if (Order) {
            IndMO->setReg(I->first);
            nonIndMO->setReg(nonIndI->getOperand(1).getReg());
            return true;
          }
        }
        return false;
      }

      // It is not valid to do this transformation on an unsigned comparison
      // because it may underflow.
      Comparison::Kind Cmp =
          getComparisonKind(PredDef->getOpcode(), nullptr, nullptr, 0);
      if (!Cmp || Comparison::isUnsigned(Cmp))
        return false;

      // If the register is being compared against an immediate, try changing
      // the compare instruction to use induction register and adjust the
      // immediate operand.
      int64_t CmpImm = getImmediate(*CmpImmOp);
      int64_t V = RB.second;
      // Handle Overflow (64-bit).
      if (((V > 0) && (CmpImm > INT64_MAX - V)) ||
          ((V < 0) && (CmpImm < INT64_MIN - V)))
        return false;
      CmpImm += V;
      // Most comparisons of register against an immediate value allow
      // the immediate to be constant-extended. There are some exceptions
      // though. Make sure the new combination will work.
      if (CmpImmOp->isImm())
        if (!isImmValidForOpcode(PredDef->getOpcode(), CmpImm))
          return false;

      // Make sure that the compare happens after the bump.  Otherwise,
      // after the fixup, the compare would use a yet-undefined register.
      MachineInstr *BumpI = MRI->getVRegDef(I->first);
      bool Order = orderBumpCompare(BumpI, PredDef);
      if (!Order)
        return false;

      // Finally, fix the compare instruction.
      setImmediate(*CmpImmOp, CmpImm);
      for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) {
        MachineOperand &MO = PredDef->getOperand(i);
        if (MO.isReg() && MO.getReg() == RB.first) {
          MO.setReg(I->first);
          return true;
        }
      }
    }
  }

  return false;
}

/// createPreheaderForLoop - Create a preheader for a given loop.
MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop(
      MachineLoop *L) {
  if (MachineBasicBlock *TmpPH = MLI->findLoopPreheader(L, SpecPreheader))
    return TmpPH;
  if (!HWCreatePreheader)
    return nullptr;

  MachineBasicBlock *Header = L->getHeader();
  MachineBasicBlock *Latch = L->getLoopLatch();
  MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
  MachineFunction *MF = Header->getParent();
  DebugLoc DL;

#ifndef NDEBUG
  if ((!PHFn.empty()) && (PHFn != MF->getName()))
    return nullptr;
#endif

  if (!Latch || !ExitingBlock || Header->hasAddressTaken())
    return nullptr;

  using instr_iterator = MachineBasicBlock::instr_iterator;

  // Verify that all existing predecessors have analyzable branches
  // (or no branches at all).
  using MBBVector = std::vector<MachineBasicBlock *>;

  MBBVector Preds(Header->pred_begin(), Header->pred_end());
  SmallVector<MachineOperand,2> Tmp1;
  MachineBasicBlock *TB = nullptr, *FB = nullptr;

  if (TII->analyzeBranch(*ExitingBlock, TB, FB, Tmp1, false))
    return nullptr;

  for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) {
    MachineBasicBlock *PB = *I;
    bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp1, false);
    if (NotAnalyzed)
      return nullptr;
  }

  MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock();
  MF->insert(Header->getIterator(), NewPH);

  if (Header->pred_size() > 2) {
    // Ensure that the header has only two predecessors: the preheader and
    // the loop latch.  Any additional predecessors of the header should
    // join at the newly created preheader. Inspect all PHI nodes from the
    // header and create appropriate corresponding PHI nodes in the preheader.

    for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
         I != E && I->isPHI(); ++I) {
      MachineInstr *PN = &*I;

      const MCInstrDesc &PD = TII->get(TargetOpcode::PHI);
      MachineInstr *NewPN = MF->CreateMachineInstr(PD, DL);
      NewPH->insert(NewPH->end(), NewPN);

      unsigned PR = PN->getOperand(0).getReg();
      const TargetRegisterClass *RC = MRI->getRegClass(PR);
      unsigned NewPR = MRI->createVirtualRegister(RC);
      NewPN->addOperand(MachineOperand::CreateReg(NewPR, true));

      // Copy all non-latch operands of a header's PHI node to the newly
      // created PHI node in the preheader.
      for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) {
        unsigned PredR = PN->getOperand(i).getReg();
        unsigned PredRSub = PN->getOperand(i).getSubReg();
        MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB();
        if (PredB == Latch)
          continue;

        MachineOperand MO = MachineOperand::CreateReg(PredR, false);
        MO.setSubReg(PredRSub);
        NewPN->addOperand(MO);
        NewPN->addOperand(MachineOperand::CreateMBB(PredB));
      }

      // Remove copied operands from the old PHI node and add the value
      // coming from the preheader's PHI.
      for (int i = PN->getNumOperands()-2; i > 0; i -= 2) {
        MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB();
        if (PredB != Latch) {
          PN->RemoveOperand(i+1);
          PN->RemoveOperand(i);
        }
      }
      PN->addOperand(MachineOperand::CreateReg(NewPR, false));
      PN->addOperand(MachineOperand::CreateMBB(NewPH));
    }
  } else {
    assert(Header->pred_size() == 2);

    // The header has only two predecessors, but the non-latch predecessor
    // is not a preheader (e.g. it has other successors, etc.)
    // In such a case we don't need any extra PHI nodes in the new preheader,
    // all we need is to adjust existing PHIs in the header to now refer to
    // the new preheader.
    for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
         I != E && I->isPHI(); ++I) {
      MachineInstr *PN = &*I;
      for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) {
        MachineOperand &MO = PN->getOperand(i+1);
        if (MO.getMBB() != Latch)
          MO.setMBB(NewPH);
      }
    }
  }

  // "Reroute" the CFG edges to link in the new preheader.
  // If any of the predecessors falls through to the header, insert a branch
  // to the new preheader in that place.
  SmallVector<MachineOperand,1> Tmp2;
  SmallVector<MachineOperand,1> EmptyCond;

  TB = FB = nullptr;

  for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) {
    MachineBasicBlock *PB = *I;
    if (PB != Latch) {
      Tmp2.clear();
      bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp2, false);
      (void)NotAnalyzed; // suppress compiler warning
      assert (!NotAnalyzed && "Should be analyzable!");
      if (TB != Header && (Tmp2.empty() || FB != Header))
        TII->insertBranch(*PB, NewPH, nullptr, EmptyCond, DL);
      PB->ReplaceUsesOfBlockWith(Header, NewPH);
    }
  }

  // It can happen that the latch block will fall through into the header.
  // Insert an unconditional branch to the header.
  TB = FB = nullptr;
  bool LatchNotAnalyzed = TII->analyzeBranch(*Latch, TB, FB, Tmp2, false);
  (void)LatchNotAnalyzed; // suppress compiler warning
  assert (!LatchNotAnalyzed && "Should be analyzable!");
  if (!TB && !FB)
    TII->insertBranch(*Latch, Header, nullptr, EmptyCond, DL);

  // Finally, the branch from the preheader to the header.
  TII->insertBranch(*NewPH, Header, nullptr, EmptyCond, DL);
  NewPH->addSuccessor(Header);

  MachineLoop *ParentLoop = L->getParentLoop();
  if (ParentLoop)
    ParentLoop->addBasicBlockToLoop(NewPH, MLI->getBase());

  // Update the dominator information with the new preheader.
  if (MDT) {
    if (MachineDomTreeNode *HN = MDT->getNode(Header)) {
      if (MachineDomTreeNode *DHN = HN->getIDom()) {
        MDT->addNewBlock(NewPH, DHN->getBlock());
        MDT->changeImmediateDominator(Header, NewPH);
      }
    }
  }

  return NewPH;
}