aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/IPO/Attributor.cpp
blob: 2a52c6b9b4ad93188342fcc1f5d3f2ae77c3ae3e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
//===- Attributor.cpp - Module-wide attribute deduction -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements an inter procedural pass that deduces and/or propagating
// attributes. This is done in an abstract interpretation style fixpoint
// iteration. See the Attributor.h file comment and the class descriptions in
// that file for more information.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/IPO/Attributor.h"

#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>

using namespace llvm;

#define DEBUG_TYPE "attributor"

STATISTIC(NumFnWithExactDefinition,
          "Number of function with exact definitions");
STATISTIC(NumFnWithoutExactDefinition,
          "Number of function without exact definitions");
STATISTIC(NumAttributesTimedOut,
          "Number of abstract attributes timed out before fixpoint");
STATISTIC(NumAttributesValidFixpoint,
          "Number of abstract attributes in a valid fixpoint state");
STATISTIC(NumAttributesManifested,
          "Number of abstract attributes manifested in IR");
STATISTIC(NumFnNoUnwind, "Number of functions marked nounwind");

STATISTIC(NumFnUniqueReturned, "Number of function with unique return");
STATISTIC(NumFnKnownReturns, "Number of function with known return values");
STATISTIC(NumFnArgumentReturned,
          "Number of function arguments marked returned");
STATISTIC(NumFnNoSync, "Number of functions marked nosync");
STATISTIC(NumFnNoFree, "Number of functions marked nofree");
STATISTIC(NumFnReturnedNonNull,
          "Number of function return values marked nonnull");
STATISTIC(NumFnArgumentNonNull, "Number of function arguments marked nonnull");
STATISTIC(NumCSArgumentNonNull, "Number of call site arguments marked nonnull");
STATISTIC(NumFnWillReturn, "Number of functions marked willreturn");

// TODO: Determine a good default value.
//
// In the LLVM-TS and SPEC2006, 32 seems to not induce compile time overheads
// (when run with the first 5 abstract attributes). The results also indicate
// that we never reach 32 iterations but always find a fixpoint sooner.
//
// This will become more evolved once we perform two interleaved fixpoint
// iterations: bottom-up and top-down.
static cl::opt<unsigned>
    MaxFixpointIterations("attributor-max-iterations", cl::Hidden,
                          cl::desc("Maximal number of fixpoint iterations."),
                          cl::init(32));

static cl::opt<bool> DisableAttributor(
    "attributor-disable", cl::Hidden,
    cl::desc("Disable the attributor inter-procedural deduction pass."),
    cl::init(true));

static cl::opt<bool> VerifyAttributor(
    "attributor-verify", cl::Hidden,
    cl::desc("Verify the Attributor deduction and "
             "manifestation of attributes -- may issue false-positive errors"),
    cl::init(false));

/// Logic operators for the change status enum class.
///
///{
ChangeStatus llvm::operator|(ChangeStatus l, ChangeStatus r) {
  return l == ChangeStatus::CHANGED ? l : r;
}
ChangeStatus llvm::operator&(ChangeStatus l, ChangeStatus r) {
  return l == ChangeStatus::UNCHANGED ? l : r;
}
///}

/// Helper to adjust the statistics.
static void bookkeeping(AbstractAttribute::ManifestPosition MP,
                        const Attribute &Attr) {
  if (!AreStatisticsEnabled())
    return;

  if (!Attr.isEnumAttribute())
    return;
  switch (Attr.getKindAsEnum()) {
  case Attribute::NoUnwind:
    NumFnNoUnwind++;
    return;
  case Attribute::Returned:
    NumFnArgumentReturned++;
    return;
  case Attribute::NoSync:
    NumFnNoSync++;
    break;
  case Attribute::NoFree:
    NumFnNoFree++;
    break;
  case Attribute::NonNull:
    switch (MP) {
    case AbstractAttribute::MP_RETURNED:
      NumFnReturnedNonNull++;
      break;
    case AbstractAttribute::MP_ARGUMENT:
      NumFnArgumentNonNull++;
      break;
    case AbstractAttribute::MP_CALL_SITE_ARGUMENT:
      NumCSArgumentNonNull++;
      break;
    default:
      break;
    }
    break;
  case Attribute::WillReturn:
    NumFnWillReturn++;
    break;
  default:
    return;
  }
}

template <typename StateTy>
using followValueCB_t = std::function<bool(Value *, StateTy &State)>;
template <typename StateTy>
using visitValueCB_t = std::function<void(Value *, StateTy &State)>;

/// Recursively visit all values that might become \p InitV at some point. This
/// will be done by looking through cast instructions, selects, phis, and calls
/// with the "returned" attribute. The callback \p FollowValueCB is asked before
/// a potential origin value is looked at. If no \p FollowValueCB is passed, a
/// default one is used that will make sure we visit every value only once. Once
/// we cannot look through the value any further, the callback \p VisitValueCB
/// is invoked and passed the current value and the \p State. To limit how much
/// effort is invested, we will never visit more than \p MaxValues values.
template <typename StateTy>
static bool genericValueTraversal(
    Value *InitV, StateTy &State, visitValueCB_t<StateTy> &VisitValueCB,
    followValueCB_t<StateTy> *FollowValueCB = nullptr, int MaxValues = 8) {

  SmallPtrSet<Value *, 16> Visited;
  followValueCB_t<bool> DefaultFollowValueCB = [&](Value *Val, bool &) {
    return Visited.insert(Val).second;
  };

  if (!FollowValueCB)
    FollowValueCB = &DefaultFollowValueCB;

  SmallVector<Value *, 16> Worklist;
  Worklist.push_back(InitV);

  int Iteration = 0;
  do {
    Value *V = Worklist.pop_back_val();

    // Check if we should process the current value. To prevent endless
    // recursion keep a record of the values we followed!
    if (!(*FollowValueCB)(V, State))
      continue;

    // Make sure we limit the compile time for complex expressions.
    if (Iteration++ >= MaxValues)
      return false;

    // Explicitly look through calls with a "returned" attribute if we do
    // not have a pointer as stripPointerCasts only works on them.
    if (V->getType()->isPointerTy()) {
      V = V->stripPointerCasts();
    } else {
      CallSite CS(V);
      if (CS && CS.getCalledFunction()) {
        Value *NewV = nullptr;
        for (Argument &Arg : CS.getCalledFunction()->args())
          if (Arg.hasReturnedAttr()) {
            NewV = CS.getArgOperand(Arg.getArgNo());
            break;
          }
        if (NewV) {
          Worklist.push_back(NewV);
          continue;
        }
      }
    }

    // Look through select instructions, visit both potential values.
    if (auto *SI = dyn_cast<SelectInst>(V)) {
      Worklist.push_back(SI->getTrueValue());
      Worklist.push_back(SI->getFalseValue());
      continue;
    }

    // Look through phi nodes, visit all operands.
    if (auto *PHI = dyn_cast<PHINode>(V)) {
      Worklist.append(PHI->op_begin(), PHI->op_end());
      continue;
    }

    // Once a leaf is reached we inform the user through the callback.
    VisitValueCB(V, State);
  } while (!Worklist.empty());

  // All values have been visited.
  return true;
}

/// Helper to identify the correct offset into an attribute list.
static unsigned getAttrIndex(AbstractAttribute::ManifestPosition MP,
                             unsigned ArgNo = 0) {
  switch (MP) {
  case AbstractAttribute::MP_ARGUMENT:
  case AbstractAttribute::MP_CALL_SITE_ARGUMENT:
    return ArgNo + AttributeList::FirstArgIndex;
  case AbstractAttribute::MP_FUNCTION:
    return AttributeList::FunctionIndex;
  case AbstractAttribute::MP_RETURNED:
    return AttributeList::ReturnIndex;
  }
  llvm_unreachable("Unknown manifest position!");
}

/// Return true if \p New is equal or worse than \p Old.
static bool isEqualOrWorse(const Attribute &New, const Attribute &Old) {
  if (!Old.isIntAttribute())
    return true;

  return Old.getValueAsInt() >= New.getValueAsInt();
}

/// Return true if the information provided by \p Attr was added to the
/// attribute list \p Attrs. This is only the case if it was not already present
/// in \p Attrs at the position describe by \p MP and \p ArgNo.
static bool addIfNotExistent(LLVMContext &Ctx, const Attribute &Attr,
                             AttributeList &Attrs,
                             AbstractAttribute::ManifestPosition MP,
                             unsigned ArgNo = 0) {
  unsigned AttrIdx = getAttrIndex(MP, ArgNo);

  if (Attr.isEnumAttribute()) {
    Attribute::AttrKind Kind = Attr.getKindAsEnum();
    if (Attrs.hasAttribute(AttrIdx, Kind))
      if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
        return false;
    Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
    return true;
  }
  if (Attr.isStringAttribute()) {
    StringRef Kind = Attr.getKindAsString();
    if (Attrs.hasAttribute(AttrIdx, Kind))
      if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
        return false;
    Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
    return true;
  }

  llvm_unreachable("Expected enum or string attribute!");
}

ChangeStatus AbstractAttribute::update(Attributor &A) {
  ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
  if (getState().isAtFixpoint())
    return HasChanged;

  LLVM_DEBUG(dbgs() << "[Attributor] Update: " << *this << "\n");

  HasChanged = updateImpl(A);

  LLVM_DEBUG(dbgs() << "[Attributor] Update " << HasChanged << " " << *this
                    << "\n");

  return HasChanged;
}

ChangeStatus AbstractAttribute::manifest(Attributor &A) {
  assert(getState().isValidState() &&
         "Attempted to manifest an invalid state!");
  assert(getAssociatedValue() &&
         "Attempted to manifest an attribute without associated value!");

  ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
  SmallVector<Attribute, 4> DeducedAttrs;
  getDeducedAttributes(DeducedAttrs);

  Function &ScopeFn = getAnchorScope();
  LLVMContext &Ctx = ScopeFn.getContext();
  ManifestPosition MP = getManifestPosition();

  AttributeList Attrs;
  SmallVector<unsigned, 4> ArgNos;

  // In the following some generic code that will manifest attributes in
  // DeducedAttrs if they improve the current IR. Due to the different
  // annotation positions we use the underlying AttributeList interface.
  // Note that MP_CALL_SITE_ARGUMENT can annotate multiple locations.

  switch (MP) {
  case MP_ARGUMENT:
    ArgNos.push_back(cast<Argument>(getAssociatedValue())->getArgNo());
    Attrs = ScopeFn.getAttributes();
    break;
  case MP_FUNCTION:
  case MP_RETURNED:
    ArgNos.push_back(0);
    Attrs = ScopeFn.getAttributes();
    break;
  case MP_CALL_SITE_ARGUMENT: {
    CallSite CS(&getAnchoredValue());
    for (unsigned u = 0, e = CS.getNumArgOperands(); u != e; u++)
      if (CS.getArgOperand(u) == getAssociatedValue())
        ArgNos.push_back(u);
    Attrs = CS.getAttributes();
  }
  }

  for (const Attribute &Attr : DeducedAttrs) {
    for (unsigned ArgNo : ArgNos) {
      if (!addIfNotExistent(Ctx, Attr, Attrs, MP, ArgNo))
        continue;

      HasChanged = ChangeStatus::CHANGED;
      bookkeeping(MP, Attr);
    }
  }

  if (HasChanged == ChangeStatus::UNCHANGED)
    return HasChanged;

  switch (MP) {
  case MP_ARGUMENT:
  case MP_FUNCTION:
  case MP_RETURNED:
    ScopeFn.setAttributes(Attrs);
    break;
  case MP_CALL_SITE_ARGUMENT:
    CallSite(&getAnchoredValue()).setAttributes(Attrs);
  }

  return HasChanged;
}

Function &AbstractAttribute::getAnchorScope() {
  Value &V = getAnchoredValue();
  if (isa<Function>(V))
    return cast<Function>(V);
  if (isa<Argument>(V))
    return *cast<Argument>(V).getParent();
  if (isa<Instruction>(V))
    return *cast<Instruction>(V).getFunction();
  llvm_unreachable("No scope for anchored value found!");
}

const Function &AbstractAttribute::getAnchorScope() const {
  return const_cast<AbstractAttribute *>(this)->getAnchorScope();
}

/// -----------------------NoUnwind Function Attribute--------------------------

struct AANoUnwindFunction : AANoUnwind, BooleanState {

  AANoUnwindFunction(Function &F, InformationCache &InfoCache)
      : AANoUnwind(F, InfoCache) {}

  /// See AbstractAttribute::getState()
  /// {
  AbstractState &getState() override { return *this; }
  const AbstractState &getState() const override { return *this; }
  /// }

  /// See AbstractAttribute::getManifestPosition().
  ManifestPosition getManifestPosition() const override { return MP_FUNCTION; }

  const std::string getAsStr() const override {
    return getAssumed() ? "nounwind" : "may-unwind";
  }

  /// See AbstractAttribute::updateImpl(...).
  ChangeStatus updateImpl(Attributor &A) override;

  /// See AANoUnwind::isAssumedNoUnwind().
  bool isAssumedNoUnwind() const override { return getAssumed(); }

  /// See AANoUnwind::isKnownNoUnwind().
  bool isKnownNoUnwind() const override { return getKnown(); }
};

ChangeStatus AANoUnwindFunction::updateImpl(Attributor &A) {
  Function &F = getAnchorScope();

  // The map from instruction opcodes to those instructions in the function.
  auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F);
  auto Opcodes = {
      (unsigned)Instruction::Invoke,      (unsigned)Instruction::CallBr,
      (unsigned)Instruction::Call,        (unsigned)Instruction::CleanupRet,
      (unsigned)Instruction::CatchSwitch, (unsigned)Instruction::Resume};

  for (unsigned Opcode : Opcodes) {
    for (Instruction *I : OpcodeInstMap[Opcode]) {
      if (!I->mayThrow())
        continue;

      auto *NoUnwindAA = A.getAAFor<AANoUnwind>(*this, *I);

      if (!NoUnwindAA || !NoUnwindAA->isAssumedNoUnwind()) {
        indicatePessimisticFixpoint();
        return ChangeStatus::CHANGED;
      }
    }
  }
  return ChangeStatus::UNCHANGED;
}

/// --------------------- Function Return Values -------------------------------

/// "Attribute" that collects all potential returned values and the return
/// instructions that they arise from.
///
/// If there is a unique returned value R, the manifest method will:
///   - mark R with the "returned" attribute, if R is an argument.
class AAReturnedValuesImpl final : public AAReturnedValues, AbstractState {

  /// Mapping of values potentially returned by the associated function to the
  /// return instructions that might return them.
  DenseMap<Value *, SmallPtrSet<ReturnInst *, 2>> ReturnedValues;

  /// State flags
  ///
  ///{
  bool IsFixed;
  bool IsValidState;
  bool HasOverdefinedReturnedCalls;
  ///}

  /// Collect values that could become \p V in the set \p Values, each mapped to
  /// \p ReturnInsts.
  void collectValuesRecursively(
      Attributor &A, Value *V, SmallPtrSetImpl<ReturnInst *> &ReturnInsts,
      DenseMap<Value *, SmallPtrSet<ReturnInst *, 2>> &Values) {

    visitValueCB_t<bool> VisitValueCB = [&](Value *Val, bool &) {
      assert(!isa<Instruction>(Val) ||
             &getAnchorScope() == cast<Instruction>(Val)->getFunction());
      Values[Val].insert(ReturnInsts.begin(), ReturnInsts.end());
    };

    bool UnusedBool;
    bool Success = genericValueTraversal(V, UnusedBool, VisitValueCB);

    // If we did abort the above traversal we haven't see all the values.
    // Consequently, we cannot know if the information we would derive is
    // accurate so we give up early.
    if (!Success)
      indicatePessimisticFixpoint();
  }

public:
  /// See AbstractAttribute::AbstractAttribute(...).
  AAReturnedValuesImpl(Function &F, InformationCache &InfoCache)
      : AAReturnedValues(F, InfoCache) {
    // We do not have an associated argument yet.
    AssociatedVal = nullptr;
  }

  /// See AbstractAttribute::initialize(...).
  void initialize(Attributor &A) override {
    // Reset the state.
    AssociatedVal = nullptr;
    IsFixed = false;
    IsValidState = true;
    HasOverdefinedReturnedCalls = false;
    ReturnedValues.clear();

    Function &F = cast<Function>(getAnchoredValue());

    // The map from instruction opcodes to those instructions in the function.
    auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F);

    // Look through all arguments, if one is marked as returned we are done.
    for (Argument &Arg : F.args()) {
      if (Arg.hasReturnedAttr()) {

        auto &ReturnInstSet = ReturnedValues[&Arg];
        for (Instruction *RI : OpcodeInstMap[Instruction::Ret])
          ReturnInstSet.insert(cast<ReturnInst>(RI));

        indicateOptimisticFixpoint();
        return;
      }
    }

    // If no argument was marked as returned we look at all return instructions
    // and collect potentially returned values.
    for (Instruction *RI : OpcodeInstMap[Instruction::Ret]) {
      SmallPtrSet<ReturnInst *, 1> RISet({cast<ReturnInst>(RI)});
      collectValuesRecursively(A, cast<ReturnInst>(RI)->getReturnValue(), RISet,
                               ReturnedValues);
    }
  }

  /// See AbstractAttribute::manifest(...).
  ChangeStatus manifest(Attributor &A) override;

  /// See AbstractAttribute::getState(...).
  AbstractState &getState() override { return *this; }

  /// See AbstractAttribute::getState(...).
  const AbstractState &getState() const override { return *this; }

  /// See AbstractAttribute::getManifestPosition().
  ManifestPosition getManifestPosition() const override { return MP_ARGUMENT; }

  /// See AbstractAttribute::updateImpl(Attributor &A).
  ChangeStatus updateImpl(Attributor &A) override;

  /// Return the number of potential return values, -1 if unknown.
  size_t getNumReturnValues() const {
    return isValidState() ? ReturnedValues.size() : -1;
  }

  /// Return an assumed unique return value if a single candidate is found. If
  /// there cannot be one, return a nullptr. If it is not clear yet, return the
  /// Optional::NoneType.
  Optional<Value *> getAssumedUniqueReturnValue() const;

  /// See AbstractState::checkForallReturnedValues(...).
  bool
  checkForallReturnedValues(std::function<bool(Value &)> &Pred) const override;

  /// Pretty print the attribute similar to the IR representation.
  const std::string getAsStr() const override;

  /// See AbstractState::isAtFixpoint().
  bool isAtFixpoint() const override { return IsFixed; }

  /// See AbstractState::isValidState().
  bool isValidState() const override { return IsValidState; }

  /// See AbstractState::indicateOptimisticFixpoint(...).
  void indicateOptimisticFixpoint() override {
    IsFixed = true;
    IsValidState &= true;
  }
  void indicatePessimisticFixpoint() override {
    IsFixed = true;
    IsValidState = false;
  }
};

ChangeStatus AAReturnedValuesImpl::manifest(Attributor &A) {
  ChangeStatus Changed = ChangeStatus::UNCHANGED;

  // Bookkeeping.
  assert(isValidState());
  NumFnKnownReturns++;

  // Check if we have an assumed unique return value that we could manifest.
  Optional<Value *> UniqueRV = getAssumedUniqueReturnValue();

  if (!UniqueRV.hasValue() || !UniqueRV.getValue())
    return Changed;

  // Bookkeeping.
  NumFnUniqueReturned++;

  // If the assumed unique return value is an argument, annotate it.
  if (auto *UniqueRVArg = dyn_cast<Argument>(UniqueRV.getValue())) {
    AssociatedVal = UniqueRVArg;
    Changed = AbstractAttribute::manifest(A) | Changed;
  }

  return Changed;
}

const std::string AAReturnedValuesImpl::getAsStr() const {
  return (isAtFixpoint() ? "returns(#" : "may-return(#") +
         (isValidState() ? std::to_string(getNumReturnValues()) : "?") + ")";
}

Optional<Value *> AAReturnedValuesImpl::getAssumedUniqueReturnValue() const {
  // If checkForallReturnedValues provides a unique value, ignoring potential
  // undef values that can also be present, it is assumed to be the actual
  // return value and forwarded to the caller of this method. If there are
  // multiple, a nullptr is returned indicating there cannot be a unique
  // returned value.
  Optional<Value *> UniqueRV;

  std::function<bool(Value &)> Pred = [&](Value &RV) -> bool {
    // If we found a second returned value and neither the current nor the saved
    // one is an undef, there is no unique returned value. Undefs are special
    // since we can pretend they have any value.
    if (UniqueRV.hasValue() && UniqueRV != &RV &&
        !(isa<UndefValue>(RV) || isa<UndefValue>(UniqueRV.getValue()))) {
      UniqueRV = nullptr;
      return false;
    }

    // Do not overwrite a value with an undef.
    if (!UniqueRV.hasValue() || !isa<UndefValue>(RV))
      UniqueRV = &RV;

    return true;
  };

  if (!checkForallReturnedValues(Pred))
    UniqueRV = nullptr;

  return UniqueRV;
}

bool AAReturnedValuesImpl::checkForallReturnedValues(
    std::function<bool(Value &)> &Pred) const {
  if (!isValidState())
    return false;

  // Check all returned values but ignore call sites as long as we have not
  // encountered an overdefined one during an update.
  for (auto &It : ReturnedValues) {
    Value *RV = It.first;

    ImmutableCallSite ICS(RV);
    if (ICS && !HasOverdefinedReturnedCalls)
      continue;

    if (!Pred(*RV))
      return false;
  }

  return true;
}

ChangeStatus AAReturnedValuesImpl::updateImpl(Attributor &A) {

  // Check if we know of any values returned by the associated function,
  // if not, we are done.
  if (getNumReturnValues() == 0) {
    indicateOptimisticFixpoint();
    return ChangeStatus::UNCHANGED;
  }

  // Check if any of the returned values is a call site we can refine.
  decltype(ReturnedValues) AddRVs;
  bool HasCallSite = false;

  // Look at all returned call sites.
  for (auto &It : ReturnedValues) {
    SmallPtrSet<ReturnInst *, 2> &ReturnInsts = It.second;
    Value *RV = It.first;
    LLVM_DEBUG(dbgs() << "[AAReturnedValues] Potentially returned value " << *RV
                      << "\n");

    // Only call sites can change during an update, ignore the rest.
    CallSite RetCS(RV);
    if (!RetCS)
      continue;

    // For now, any call site we see will prevent us from directly fixing the
    // state. However, if the information on the callees is fixed, the call
    // sites will be removed and we will fix the information for this state.
    HasCallSite = true;

    // Try to find a assumed unique return value for the called function.
    auto *RetCSAA = A.getAAFor<AAReturnedValuesImpl>(*this, *RV);
    if (!RetCSAA) {
      HasOverdefinedReturnedCalls = true;
      LLVM_DEBUG(dbgs() << "[AAReturnedValues] Returned call site (" << *RV
                        << ") with " << (RetCSAA ? "invalid" : "no")
                        << " associated state\n");
      continue;
    }

    // Try to find a assumed unique return value for the called function.
    Optional<Value *> AssumedUniqueRV = RetCSAA->getAssumedUniqueReturnValue();

    // If no assumed unique return value was found due to the lack of
    // candidates, we may need to resolve more calls (through more update
    // iterations) or the called function will not return. Either way, we simply
    // stick with the call sites as return values. Because there were not
    // multiple possibilities, we do not treat it as overdefined.
    if (!AssumedUniqueRV.hasValue())
      continue;

    // If multiple, non-refinable values were found, there cannot be a unique
    // return value for the called function. The returned call is overdefined!
    if (!AssumedUniqueRV.getValue()) {
      HasOverdefinedReturnedCalls = true;
      LLVM_DEBUG(dbgs() << "[AAReturnedValues] Returned call site has multiple "
                           "potentially returned values\n");
      continue;
    }

    LLVM_DEBUG({
      bool UniqueRVIsKnown = RetCSAA->isAtFixpoint();
      dbgs() << "[AAReturnedValues] Returned call site "
             << (UniqueRVIsKnown ? "known" : "assumed")
             << " unique return value: " << *AssumedUniqueRV << "\n";
    });

    // The assumed unique return value.
    Value *AssumedRetVal = AssumedUniqueRV.getValue();

    // If the assumed unique return value is an argument, lookup the matching
    // call site operand and recursively collect new returned values.
    // If it is not an argument, it is just put into the set of returned values
    // as we would have already looked through casts, phis, and similar values.
    if (Argument *AssumedRetArg = dyn_cast<Argument>(AssumedRetVal))
      collectValuesRecursively(A,
                               RetCS.getArgOperand(AssumedRetArg->getArgNo()),
                               ReturnInsts, AddRVs);
    else
      AddRVs[AssumedRetVal].insert(ReturnInsts.begin(), ReturnInsts.end());
  }

  // Keep track of any change to trigger updates on dependent attributes.
  ChangeStatus Changed = ChangeStatus::UNCHANGED;

  for (auto &It : AddRVs) {
    assert(!It.second.empty() && "Entry does not add anything.");
    auto &ReturnInsts = ReturnedValues[It.first];
    for (ReturnInst *RI : It.second)
      if (ReturnInsts.insert(RI).second) {
        LLVM_DEBUG(dbgs() << "[AAReturnedValues] Add new returned value "
                          << *It.first << " => " << *RI << "\n");
        Changed = ChangeStatus::CHANGED;
      }
  }

  // If there is no call site in the returned values we are done.
  if (!HasCallSite) {
    indicateOptimisticFixpoint();
    return ChangeStatus::CHANGED;
  }

  return Changed;
}

/// ------------------------ NoSync Function Attribute -------------------------

struct AANoSyncFunction : AANoSync, BooleanState {

  AANoSyncFunction(Function &F, InformationCache &InfoCache)
      : AANoSync(F, InfoCache) {}

  /// See AbstractAttribute::getState()
  /// {
  AbstractState &getState() override { return *this; }
  const AbstractState &getState() const override { return *this; }
  /// }

  /// See AbstractAttribute::getManifestPosition().
  ManifestPosition getManifestPosition() const override { return MP_FUNCTION; }

  const std::string getAsStr() const override {
    return getAssumed() ? "nosync" : "may-sync";
  }

  /// See AbstractAttribute::updateImpl(...).
  ChangeStatus updateImpl(Attributor &A) override;

  /// See AANoSync::isAssumedNoSync()
  bool isAssumedNoSync() const override { return getAssumed(); }

  /// See AANoSync::isKnownNoSync()
  bool isKnownNoSync() const override { return getKnown(); }

  /// Helper function used to determine whether an instruction is non-relaxed
  /// atomic. In other words, if an atomic instruction does not have unordered
  /// or monotonic ordering
  static bool isNonRelaxedAtomic(Instruction *I);

  /// Helper function used to determine whether an instruction is volatile.
  static bool isVolatile(Instruction *I);

  /// Helper function uset to check if intrinsic is volatile (memcpy, memmove,
  /// memset).
  static bool isNoSyncIntrinsic(Instruction *I);
};

bool AANoSyncFunction::isNonRelaxedAtomic(Instruction *I) {
  if (!I->isAtomic())
    return false;

  AtomicOrdering Ordering;
  switch (I->getOpcode()) {
  case Instruction::AtomicRMW:
    Ordering = cast<AtomicRMWInst>(I)->getOrdering();
    break;
  case Instruction::Store:
    Ordering = cast<StoreInst>(I)->getOrdering();
    break;
  case Instruction::Load:
    Ordering = cast<LoadInst>(I)->getOrdering();
    break;
  case Instruction::Fence: {
    auto *FI = cast<FenceInst>(I);
    if (FI->getSyncScopeID() == SyncScope::SingleThread)
      return false;
    Ordering = FI->getOrdering();
    break;
  }
  case Instruction::AtomicCmpXchg: {
    AtomicOrdering Success = cast<AtomicCmpXchgInst>(I)->getSuccessOrdering();
    AtomicOrdering Failure = cast<AtomicCmpXchgInst>(I)->getFailureOrdering();
    // Only if both are relaxed, than it can be treated as relaxed.
    // Otherwise it is non-relaxed.
    if (Success != AtomicOrdering::Unordered &&
        Success != AtomicOrdering::Monotonic)
      return true;
    if (Failure != AtomicOrdering::Unordered &&
        Failure != AtomicOrdering::Monotonic)
      return true;
    return false;
  }
  default:
    llvm_unreachable(
        "New atomic operations need to be known in the attributor.");
  }

  // Relaxed.
  if (Ordering == AtomicOrdering::Unordered ||
      Ordering == AtomicOrdering::Monotonic)
    return false;
  return true;
}

/// Checks if an intrinsic is nosync. Currently only checks mem* intrinsics.
/// FIXME: We should ipmrove the handling of intrinsics.
bool AANoSyncFunction::isNoSyncIntrinsic(Instruction *I) {
  if (auto *II = dyn_cast<IntrinsicInst>(I)) {
    switch (II->getIntrinsicID()) {
    /// Element wise atomic memory intrinsics are can only be unordered,
    /// therefore nosync.
    case Intrinsic::memset_element_unordered_atomic:
    case Intrinsic::memmove_element_unordered_atomic:
    case Intrinsic::memcpy_element_unordered_atomic:
      return true;
    case Intrinsic::memset:
    case Intrinsic::memmove:
    case Intrinsic::memcpy:
      if (!cast<MemIntrinsic>(II)->isVolatile())
        return true;
      return false;
    default:
      return false;
    }
  }
  return false;
}

bool AANoSyncFunction::isVolatile(Instruction *I) {
  assert(!ImmutableCallSite(I) && !isa<CallBase>(I) &&
         "Calls should not be checked here");

  switch (I->getOpcode()) {
  case Instruction::AtomicRMW:
    return cast<AtomicRMWInst>(I)->isVolatile();
  case Instruction::Store:
    return cast<StoreInst>(I)->isVolatile();
  case Instruction::Load:
    return cast<LoadInst>(I)->isVolatile();
  case Instruction::AtomicCmpXchg:
    return cast<AtomicCmpXchgInst>(I)->isVolatile();
  default:
    return false;
  }
}

ChangeStatus AANoSyncFunction::updateImpl(Attributor &A) {
  Function &F = getAnchorScope();

  /// We are looking for volatile instructions or Non-Relaxed atomics.
  /// FIXME: We should ipmrove the handling of intrinsics.
  for (Instruction *I : InfoCache.getReadOrWriteInstsForFunction(F)) {
    ImmutableCallSite ICS(I);
    auto *NoSyncAA = A.getAAFor<AANoSyncFunction>(*this, *I);

    if (isa<IntrinsicInst>(I) && isNoSyncIntrinsic(I))
      continue;

    if (ICS && (!NoSyncAA || !NoSyncAA->isAssumedNoSync()) &&
        !ICS.hasFnAttr(Attribute::NoSync)) {
      indicatePessimisticFixpoint();
      return ChangeStatus::CHANGED;
    }

    if (ICS)
      continue;

    if (!isVolatile(I) && !isNonRelaxedAtomic(I))
      continue;

    indicatePessimisticFixpoint();
    return ChangeStatus::CHANGED;
  }

  auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F);
  auto Opcodes = {(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr,
                  (unsigned)Instruction::Call};

  for (unsigned Opcode : Opcodes) {
    for (Instruction *I : OpcodeInstMap[Opcode]) {
      // At this point we handled all read/write effects and they are all
      // nosync, so they can be skipped.
      if (I->mayReadOrWriteMemory())
        continue;

      ImmutableCallSite ICS(I);

      // non-convergent and readnone imply nosync.
      if (!ICS.isConvergent())
        continue;

      indicatePessimisticFixpoint();
      return ChangeStatus::CHANGED;
    }
  }

  return ChangeStatus::UNCHANGED;
}

/// ------------------------ No-Free Attributes ----------------------------

struct AANoFreeFunction : AbstractAttribute, BooleanState {

  /// See AbstractAttribute::AbstractAttribute(...).
  AANoFreeFunction(Function &F, InformationCache &InfoCache)
      : AbstractAttribute(F, InfoCache) {}

  /// See AbstractAttribute::getState()
  ///{
  AbstractState &getState() override { return *this; }
  const AbstractState &getState() const override { return *this; }
  ///}

  /// See AbstractAttribute::getManifestPosition().
  ManifestPosition getManifestPosition() const override { return MP_FUNCTION; }

  /// See AbstractAttribute::getAsStr().
  const std::string getAsStr() const override {
    return getAssumed() ? "nofree" : "may-free";
  }

  /// See AbstractAttribute::updateImpl(...).
  ChangeStatus updateImpl(Attributor &A) override;

  /// See AbstractAttribute::getAttrKind().
  Attribute::AttrKind getAttrKind() const override { return ID; }

  /// Return true if "nofree" is assumed.
  bool isAssumedNoFree() const { return getAssumed(); }

  /// Return true if "nofree" is known.
  bool isKnownNoFree() const { return getKnown(); }

  /// The identifier used by the Attributor for this class of attributes.
  static constexpr Attribute::AttrKind ID = Attribute::NoFree;
};

ChangeStatus AANoFreeFunction::updateImpl(Attributor &A) {
  Function &F = getAnchorScope();

  // The map from instruction opcodes to those instructions in the function.
  auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F);

  for (unsigned Opcode :
       {(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr,
        (unsigned)Instruction::Call}) {
    for (Instruction *I : OpcodeInstMap[Opcode]) {

      auto ICS = ImmutableCallSite(I);
      auto *NoFreeAA = A.getAAFor<AANoFreeFunction>(*this, *I);

      if ((!NoFreeAA || !NoFreeAA->isAssumedNoFree()) &&
          !ICS.hasFnAttr(Attribute::NoFree)) {
        indicatePessimisticFixpoint();
        return ChangeStatus::CHANGED;
      }
    }
  }
  return ChangeStatus::UNCHANGED;
}

/// ------------------------ NonNull Argument Attribute ------------------------
struct AANonNullImpl : AANonNull, BooleanState {

  AANonNullImpl(Value &V, InformationCache &InfoCache)
      : AANonNull(V, InfoCache) {}

  AANonNullImpl(Value *AssociatedVal, Value &AnchoredValue,
                InformationCache &InfoCache)
      : AANonNull(AssociatedVal, AnchoredValue, InfoCache) {}

  /// See AbstractAttribute::getState()
  /// {
  AbstractState &getState() override { return *this; }
  const AbstractState &getState() const override { return *this; }
  /// }

  /// See AbstractAttribute::getAsStr().
  const std::string getAsStr() const override {
    return getAssumed() ? "nonnull" : "may-null";
  }

  /// See AANonNull::isAssumedNonNull().
  bool isAssumedNonNull() const override { return getAssumed(); }

  /// See AANonNull::isKnownNonNull().
  bool isKnownNonNull() const override { return getKnown(); }

  /// Generate a predicate that checks if a given value is assumed nonnull.
  /// The generated function returns true if a value satisfies any of
  /// following conditions.
  /// (i) A value is known nonZero(=nonnull).
  /// (ii) A value is associated with AANonNull and its isAssumedNonNull() is
  /// true.
  std::function<bool(Value &)> generatePredicate(Attributor &);
};

std::function<bool(Value &)> AANonNullImpl::generatePredicate(Attributor &A) {
  // FIXME: The `AAReturnedValues` should provide the predicate with the
  // `ReturnInst` vector as well such that we can use the control flow sensitive
  // version of `isKnownNonZero`. This should fix `test11` in
  // `test/Transforms/FunctionAttrs/nonnull.ll`

  std::function<bool(Value &)> Pred = [&](Value &RV) -> bool {
    if (isKnownNonZero(&RV, getAnchorScope().getParent()->getDataLayout()))
      return true;

    auto *NonNullAA = A.getAAFor<AANonNull>(*this, RV);

    ImmutableCallSite ICS(&RV);

    if ((!NonNullAA || !NonNullAA->isAssumedNonNull()) &&
        (!ICS || !ICS.hasRetAttr(Attribute::NonNull)))
      return false;

    return true;
  };

  return Pred;
}

/// NonNull attribute for function return value.
struct AANonNullReturned : AANonNullImpl {

  AANonNullReturned(Function &F, InformationCache &InfoCache)
      : AANonNullImpl(F, InfoCache) {}

  /// See AbstractAttribute::getManifestPosition().
  ManifestPosition getManifestPosition() const override { return MP_RETURNED; }

  /// See AbstractAttriubute::initialize(...).
  void initialize(Attributor &A) override {
    Function &F = getAnchorScope();

    // Already nonnull.
    if (F.getAttributes().hasAttribute(AttributeList::ReturnIndex,
                                       Attribute::NonNull))
      indicateOptimisticFixpoint();
  }

  /// See AbstractAttribute::updateImpl(...).
  ChangeStatus updateImpl(Attributor &A) override;
};

ChangeStatus AANonNullReturned::updateImpl(Attributor &A) {
  Function &F = getAnchorScope();

  auto *AARetVal = A.getAAFor<AAReturnedValues>(*this, F);
  if (!AARetVal) {
    indicatePessimisticFixpoint();
    return ChangeStatus::CHANGED;
  }

  std::function<bool(Value &)> Pred = this->generatePredicate(A);
  if (!AARetVal->checkForallReturnedValues(Pred)) {
    indicatePessimisticFixpoint();
    return ChangeStatus::CHANGED;
  }
  return ChangeStatus::UNCHANGED;
}

/// NonNull attribute for function argument.
struct AANonNullArgument : AANonNullImpl {

  AANonNullArgument(Argument &A, InformationCache &InfoCache)
      : AANonNullImpl(A, InfoCache) {}

  /// See AbstractAttribute::getManifestPosition().
  ManifestPosition getManifestPosition() const override { return MP_ARGUMENT; }

  /// See AbstractAttriubute::initialize(...).
  void initialize(Attributor &A) override {
    Argument *Arg = cast<Argument>(getAssociatedValue());
    if (Arg->hasNonNullAttr())
      indicateOptimisticFixpoint();
  }

  /// See AbstractAttribute::updateImpl(...).
  ChangeStatus updateImpl(Attributor &A) override;
};

/// NonNull attribute for a call site argument.
struct AANonNullCallSiteArgument : AANonNullImpl {

  /// See AANonNullImpl::AANonNullImpl(...).
  AANonNullCallSiteArgument(CallSite CS, unsigned ArgNo,
                            InformationCache &InfoCache)
      : AANonNullImpl(CS.getArgOperand(ArgNo), *CS.getInstruction(), InfoCache),
        ArgNo(ArgNo) {}

  /// See AbstractAttribute::initialize(...).
  void initialize(Attributor &A) override {
    CallSite CS(&getAnchoredValue());
    if (isKnownNonZero(getAssociatedValue(),
                       getAnchorScope().getParent()->getDataLayout()) ||
        CS.paramHasAttr(ArgNo, getAttrKind()))
      indicateOptimisticFixpoint();
  }

  /// See AbstractAttribute::updateImpl(Attributor &A).
  ChangeStatus updateImpl(Attributor &A) override;

  /// See AbstractAttribute::getManifestPosition().
  ManifestPosition getManifestPosition() const override {
    return MP_CALL_SITE_ARGUMENT;
  };

  // Return argument index of associated value.
  int getArgNo() const { return ArgNo; }

private:
  unsigned ArgNo;
};
ChangeStatus AANonNullArgument::updateImpl(Attributor &A) {
  Function &F = getAnchorScope();
  Argument &Arg = cast<Argument>(getAnchoredValue());

  unsigned ArgNo = Arg.getArgNo();

  // Callback function
  std::function<bool(CallSite)> CallSiteCheck = [&](CallSite CS) {
    assert(CS && "Sanity check: Call site was not initialized properly!");

    auto *NonNullAA = A.getAAFor<AANonNull>(*this, *CS.getInstruction(), ArgNo);

    // Check that NonNullAA is AANonNullCallSiteArgument.
    if (NonNullAA) {
      ImmutableCallSite ICS(&NonNullAA->getAnchoredValue());
      if (ICS && CS.getInstruction() == ICS.getInstruction())
        return NonNullAA->isAssumedNonNull();
      return false;
    }

    if (CS.paramHasAttr(ArgNo, Attribute::NonNull))
      return true;

    Value *V = CS.getArgOperand(ArgNo);
    if (isKnownNonZero(V, getAnchorScope().getParent()->getDataLayout()))
      return true;

    return false;
  };
  if (!A.checkForAllCallSites(F, CallSiteCheck, true)) {
    indicatePessimisticFixpoint();
    return ChangeStatus::CHANGED;
  }
  return ChangeStatus::UNCHANGED;
}

ChangeStatus AANonNullCallSiteArgument::updateImpl(Attributor &A) {
  // NOTE: Never look at the argument of the callee in this method.
  //       If we do this, "nonnull" is always deduced because of the assumption.

  Value &V = *getAssociatedValue();

  auto *NonNullAA = A.getAAFor<AANonNull>(*this, V);

  if (!NonNullAA || !NonNullAA->isAssumedNonNull()) {
    indicatePessimisticFixpoint();
    return ChangeStatus::CHANGED;
  }

  return ChangeStatus::UNCHANGED;
}

/// ------------------------ Will-Return Attributes ----------------------------

struct AAWillReturnImpl : public AAWillReturn, BooleanState {

  /// See AbstractAttribute::AbstractAttribute(...).
  AAWillReturnImpl(Function &F, InformationCache &InfoCache)
      : AAWillReturn(F, InfoCache) {}

  /// See AAWillReturn::isKnownWillReturn().
  bool isKnownWillReturn() const override { return getKnown(); }

  /// See AAWillReturn::isAssumedWillReturn().
  bool isAssumedWillReturn() const override { return getAssumed(); }

  /// See AbstractAttribute::getState(...).
  AbstractState &getState() override { return *this; }

  /// See AbstractAttribute::getState(...).
  const AbstractState &getState() const override { return *this; }

  /// See AbstractAttribute::getAsStr()
  const std::string getAsStr() const override {
    return getAssumed() ? "willreturn" : "may-noreturn";
  }
};

struct AAWillReturnFunction final : AAWillReturnImpl {

  /// See AbstractAttribute::AbstractAttribute(...).
  AAWillReturnFunction(Function &F, InformationCache &InfoCache)
      : AAWillReturnImpl(F, InfoCache) {}

  /// See AbstractAttribute::getManifestPosition().
  ManifestPosition getManifestPosition() const override {
    return MP_FUNCTION;
  }

  /// See AbstractAttribute::initialize(...).
  void initialize(Attributor &A) override;

  /// See AbstractAttribute::updateImpl(...).
  ChangeStatus updateImpl(Attributor &A) override;
};

// Helper function that checks whether a function has any cycle.
// TODO: Replace with more efficent code
bool containsCycle(Function &F) {
  SmallPtrSet<BasicBlock *, 32> Visited;

  // Traverse BB by dfs and check whether successor is already visited.
  for (BasicBlock *BB : depth_first(&F)) {
    Visited.insert(BB);
    for (auto *SuccBB : successors(BB)) {
      if (Visited.count(SuccBB))
        return true;
    }
  }
  return false;
}

// Helper function that checks the function have a loop which might become an
// endless loop
// FIXME: Any cycle is regarded as endless loop for now.
//        We have to allow some patterns.
bool containsPossiblyEndlessLoop(Function &F) { return containsCycle(F); }

void AAWillReturnFunction::initialize(Attributor &A) {
  Function &F = getAnchorScope();

  if (containsPossiblyEndlessLoop(F))
    indicatePessimisticFixpoint();
}

ChangeStatus AAWillReturnFunction::updateImpl(Attributor &A) {
  Function &F = getAnchorScope();

  // The map from instruction opcodes to those instructions in the function.
  auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F);

  for (unsigned Opcode :
       {(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr,
        (unsigned)Instruction::Call}) {
    for (Instruction *I : OpcodeInstMap[Opcode]) {
      auto ICS = ImmutableCallSite(I);

      if (ICS.hasFnAttr(Attribute::WillReturn))
        continue;

      auto *WillReturnAA = A.getAAFor<AAWillReturn>(*this, *I);
      if (!WillReturnAA || !WillReturnAA->isAssumedWillReturn()) {
        indicatePessimisticFixpoint();
        return ChangeStatus::CHANGED;
      }

      auto *NoRecurseAA = A.getAAFor<AANoRecurse>(*this, *I);

      // FIXME: (i) Prohibit any recursion for now.
      //        (ii) AANoRecurse isn't implemented yet so currently any call is
      //        regarded as having recursion.
      //       Code below should be
      //       if ((!NoRecurseAA || !NoRecurseAA->isAssumedNoRecurse()) &&
      if (!NoRecurseAA && !ICS.hasFnAttr(Attribute::NoRecurse)) {
        indicatePessimisticFixpoint();
        return ChangeStatus::CHANGED;
      }
    }
  }

  return ChangeStatus::UNCHANGED;
}

/// ----------------------------------------------------------------------------
///                               Attributor
/// ----------------------------------------------------------------------------

bool Attributor::checkForAllCallSites(Function &F,
                                      std::function<bool(CallSite)> &Pred,
                                      bool RequireAllCallSites) {
  // We can try to determine information from
  // the call sites. However, this is only possible all call sites are known,
  // hence the function has internal linkage.
  if (RequireAllCallSites && !F.hasInternalLinkage()) {
    LLVM_DEBUG(
        dbgs()
        << "Attributor: Function " << F.getName()
        << " has no internal linkage, hence not all call sites are known\n");
    return false;
  }

  for (const Use &U : F.uses()) {

    CallSite CS(U.getUser());
    if (!CS || !CS.isCallee(&U) || !CS.getCaller()->hasExactDefinition()) {
      if (!RequireAllCallSites)
        continue;

      LLVM_DEBUG(dbgs() << "Attributor: User " << *U.getUser()
                        << " is an invalid use of " << F.getName() << "\n");
      return false;
    }

    if (Pred(CS))
      continue;

    LLVM_DEBUG(dbgs() << "Attributor: Call site callback failed for "
                      << *CS.getInstruction() << "\n");
    return false;
  }

  return true;
}

ChangeStatus Attributor::run() {
  // Initialize all abstract attributes.
  for (AbstractAttribute *AA : AllAbstractAttributes)
    AA->initialize(*this);

  LLVM_DEBUG(dbgs() << "[Attributor] Identified and initialized "
                    << AllAbstractAttributes.size()
                    << " abstract attributes.\n");

  // Now that all abstract attributes are collected and initialized we start
  // the abstract analysis.

  unsigned IterationCounter = 1;

  SmallVector<AbstractAttribute *, 64> ChangedAAs;
  SetVector<AbstractAttribute *> Worklist;
  Worklist.insert(AllAbstractAttributes.begin(), AllAbstractAttributes.end());

  do {
    LLVM_DEBUG(dbgs() << "\n\n[Attributor] #Iteration: " << IterationCounter
                      << ", Worklist size: " << Worklist.size() << "\n");

    // Add all abstract attributes that are potentially dependent on one that
    // changed to the work list.
    for (AbstractAttribute *ChangedAA : ChangedAAs) {
      auto &QuerriedAAs = QueryMap[ChangedAA];
      Worklist.insert(QuerriedAAs.begin(), QuerriedAAs.end());
    }

    // Reset the changed set.
    ChangedAAs.clear();

    // Update all abstract attribute in the work list and record the ones that
    // changed.
    for (AbstractAttribute *AA : Worklist)
      if (AA->update(*this) == ChangeStatus::CHANGED)
        ChangedAAs.push_back(AA);

    // Reset the work list and repopulate with the changed abstract attributes.
    // Note that dependent ones are added above.
    Worklist.clear();
    Worklist.insert(ChangedAAs.begin(), ChangedAAs.end());

  } while (!Worklist.empty() && ++IterationCounter < MaxFixpointIterations);

  LLVM_DEBUG(dbgs() << "\n[Attributor] Fixpoint iteration done after: "
                    << IterationCounter << "/" << MaxFixpointIterations
                    << " iterations\n");

  bool FinishedAtFixpoint = Worklist.empty();

  // Reset abstract arguments not settled in a sound fixpoint by now. This
  // happens when we stopped the fixpoint iteration early. Note that only the
  // ones marked as "changed" *and* the ones transitively depending on them
  // need to be reverted to a pessimistic state. Others might not be in a
  // fixpoint state but we can use the optimistic results for them anyway.
  SmallPtrSet<AbstractAttribute *, 32> Visited;
  for (unsigned u = 0; u < ChangedAAs.size(); u++) {
    AbstractAttribute *ChangedAA = ChangedAAs[u];
    if (!Visited.insert(ChangedAA).second)
      continue;

    AbstractState &State = ChangedAA->getState();
    if (!State.isAtFixpoint()) {
      State.indicatePessimisticFixpoint();

      NumAttributesTimedOut++;
    }

    auto &QuerriedAAs = QueryMap[ChangedAA];
    ChangedAAs.append(QuerriedAAs.begin(), QuerriedAAs.end());
  }

  LLVM_DEBUG({
    if (!Visited.empty())
      dbgs() << "\n[Attributor] Finalized " << Visited.size()
             << " abstract attributes.\n";
  });

  unsigned NumManifested = 0;
  unsigned NumAtFixpoint = 0;
  ChangeStatus ManifestChange = ChangeStatus::UNCHANGED;
  for (AbstractAttribute *AA : AllAbstractAttributes) {
    AbstractState &State = AA->getState();

    // If there is not already a fixpoint reached, we can now take the
    // optimistic state. This is correct because we enforced a pessimistic one
    // on abstract attributes that were transitively dependent on a changed one
    // already above.
    if (!State.isAtFixpoint())
      State.indicateOptimisticFixpoint();

    // If the state is invalid, we do not try to manifest it.
    if (!State.isValidState())
      continue;

    // Manifest the state and record if we changed the IR.
    ChangeStatus LocalChange = AA->manifest(*this);
    ManifestChange = ManifestChange | LocalChange;

    NumAtFixpoint++;
    NumManifested += (LocalChange == ChangeStatus::CHANGED);
  }

  (void)NumManifested;
  (void)NumAtFixpoint;
  LLVM_DEBUG(dbgs() << "\n[Attributor] Manifested " << NumManifested
                    << " arguments while " << NumAtFixpoint
                    << " were in a valid fixpoint state\n");

  // If verification is requested, we finished this run at a fixpoint, and the
  // IR was changed, we re-run the whole fixpoint analysis, starting at
  // re-initialization of the arguments. This re-run should not result in an IR
  // change. Though, the (virtual) state of attributes at the end of the re-run
  // might be more optimistic than the known state or the IR state if the better
  // state cannot be manifested.
  if (VerifyAttributor && FinishedAtFixpoint &&
      ManifestChange == ChangeStatus::CHANGED) {
    VerifyAttributor = false;
    ChangeStatus VerifyStatus = run();
    if (VerifyStatus != ChangeStatus::UNCHANGED)
      llvm_unreachable(
          "Attributor verification failed, re-run did result in an IR change "
          "even after a fixpoint was reached in the original run. (False "
          "positives possible!)");
    VerifyAttributor = true;
  }

  NumAttributesManifested += NumManifested;
  NumAttributesValidFixpoint += NumAtFixpoint;

  return ManifestChange;
}

void Attributor::identifyDefaultAbstractAttributes(
    Function &F, InformationCache &InfoCache,
    DenseSet</* Attribute::AttrKind */ unsigned> *Whitelist) {

  // Every function can be nounwind.
  registerAA(*new AANoUnwindFunction(F, InfoCache));

  // Every function might be marked "nosync"
  registerAA(*new AANoSyncFunction(F, InfoCache));

  // Every function might be "no-free".
  registerAA(*new AANoFreeFunction(F, InfoCache));

  // Return attributes are only appropriate if the return type is non void.
  Type *ReturnType = F.getReturnType();
  if (!ReturnType->isVoidTy()) {
    // Argument attribute "returned" --- Create only one per function even
    // though it is an argument attribute.
    if (!Whitelist || Whitelist->count(AAReturnedValues::ID))
      registerAA(*new AAReturnedValuesImpl(F, InfoCache));

    // Every function with pointer return type might be marked nonnull.
    if (ReturnType->isPointerTy() &&
        (!Whitelist || Whitelist->count(AANonNullReturned::ID)))
      registerAA(*new AANonNullReturned(F, InfoCache));
  }

  // Every argument with pointer type might be marked nonnull.
  for (Argument &Arg : F.args()) {
    if (Arg.getType()->isPointerTy())
      registerAA(*new AANonNullArgument(Arg, InfoCache));
  }

  // Every function might be "will-return".
  registerAA(*new AAWillReturnFunction(F, InfoCache));

  // Walk all instructions to find more attribute opportunities and also
  // interesting instructions that might be queried by abstract attributes
  // during their initialization or update.
  auto &ReadOrWriteInsts = InfoCache.FuncRWInstsMap[&F];
  auto &InstOpcodeMap = InfoCache.FuncInstOpcodeMap[&F];

  for (Instruction &I : instructions(&F)) {
    bool IsInterestingOpcode = false;

    // To allow easy access to all instructions in a function with a given
    // opcode we store them in the InfoCache. As not all opcodes are interesting
    // to concrete attributes we only cache the ones that are as identified in
    // the following switch.
    // Note: There are no concrete attributes now so this is initially empty.
    switch (I.getOpcode()) {
    default:
      assert((!ImmutableCallSite(&I)) && (!isa<CallBase>(&I)) &&
             "New call site/base instruction type needs to be known int the "
             "attributor.");
      break;
    case Instruction::Call:
    case Instruction::CallBr:
    case Instruction::Invoke:
    case Instruction::CleanupRet:
    case Instruction::CatchSwitch:
    case Instruction::Resume:
    case Instruction::Ret:
      IsInterestingOpcode = true;
    }
    if (IsInterestingOpcode)
      InstOpcodeMap[I.getOpcode()].push_back(&I);
    if (I.mayReadOrWriteMemory())
      ReadOrWriteInsts.push_back(&I);

    CallSite CS(&I);
    if (CS && CS.getCalledFunction()) {
      for (int i = 0, e = CS.getCalledFunction()->arg_size(); i < e; i++) {
        if (!CS.getArgument(i)->getType()->isPointerTy())
          continue;

        // Call site argument attribute "non-null".
        registerAA(*new AANonNullCallSiteArgument(CS, i, InfoCache), i);
      }
    }
  }
}

/// Helpers to ease debugging through output streams and print calls.
///
///{
raw_ostream &llvm::operator<<(raw_ostream &OS, ChangeStatus S) {
  return OS << (S == ChangeStatus::CHANGED ? "changed" : "unchanged");
}

raw_ostream &llvm::operator<<(raw_ostream &OS,
                              AbstractAttribute::ManifestPosition AP) {
  switch (AP) {
  case AbstractAttribute::MP_ARGUMENT:
    return OS << "arg";
  case AbstractAttribute::MP_CALL_SITE_ARGUMENT:
    return OS << "cs_arg";
  case AbstractAttribute::MP_FUNCTION:
    return OS << "fn";
  case AbstractAttribute::MP_RETURNED:
    return OS << "fn_ret";
  }
  llvm_unreachable("Unknown attribute position!");
}

raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractState &S) {
  return OS << (!S.isValidState() ? "top" : (S.isAtFixpoint() ? "fix" : ""));
}

raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractAttribute &AA) {
  AA.print(OS);
  return OS;
}

void AbstractAttribute::print(raw_ostream &OS) const {
  OS << "[" << getManifestPosition() << "][" << getAsStr() << "]["
     << AnchoredVal.getName() << "]";
}
///}

/// ----------------------------------------------------------------------------
///                       Pass (Manager) Boilerplate
/// ----------------------------------------------------------------------------

static bool runAttributorOnModule(Module &M) {
  if (DisableAttributor)
    return false;

  LLVM_DEBUG(dbgs() << "[Attributor] Run on module with " << M.size()
                    << " functions.\n");

  // Create an Attributor and initially empty information cache that is filled
  // while we identify default attribute opportunities.
  Attributor A;
  InformationCache InfoCache;

  for (Function &F : M) {
    // TODO: Not all attributes require an exact definition. Find a way to
    //       enable deduction for some but not all attributes in case the
    //       definition might be changed at runtime, see also
    //       http://lists.llvm.org/pipermail/llvm-dev/2018-February/121275.html.
    // TODO: We could always determine abstract attributes and if sufficient
    //       information was found we could duplicate the functions that do not
    //       have an exact definition.
    if (!F.hasExactDefinition()) {
      NumFnWithoutExactDefinition++;
      continue;
    }

    // For now we ignore naked and optnone functions.
    if (F.hasFnAttribute(Attribute::Naked) ||
        F.hasFnAttribute(Attribute::OptimizeNone))
      continue;

    NumFnWithExactDefinition++;

    // Populate the Attributor with abstract attribute opportunities in the
    // function and the information cache with IR information.
    A.identifyDefaultAbstractAttributes(F, InfoCache);
  }

  return A.run() == ChangeStatus::CHANGED;
}

PreservedAnalyses AttributorPass::run(Module &M, ModuleAnalysisManager &AM) {
  if (runAttributorOnModule(M)) {
    // FIXME: Think about passes we will preserve and add them here.
    return PreservedAnalyses::none();
  }
  return PreservedAnalyses::all();
}

namespace {

struct AttributorLegacyPass : public ModulePass {
  static char ID;

  AttributorLegacyPass() : ModulePass(ID) {
    initializeAttributorLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnModule(Module &M) override {
    if (skipModule(M))
      return false;
    return runAttributorOnModule(M);
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    // FIXME: Think about passes we will preserve and add them here.
    AU.setPreservesCFG();
  }
};

} // end anonymous namespace

Pass *llvm::createAttributorLegacyPass() { return new AttributorLegacyPass(); }

char AttributorLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(AttributorLegacyPass, "attributor",
                      "Deduce and propagate attributes", false, false)
INITIALIZE_PASS_END(AttributorLegacyPass, "attributor",
                    "Deduce and propagate attributes", false, false)