aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/Scalar/SeparateConstOffsetFromGEP.cpp
blob: f6a12fb13142225ead13eab73eb813667adda4f1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
//===- SeparateConstOffsetFromGEP.cpp -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Loop unrolling may create many similar GEPs for array accesses.
// e.g., a 2-level loop
//
// float a[32][32]; // global variable
//
// for (int i = 0; i < 2; ++i) {
//   for (int j = 0; j < 2; ++j) {
//     ...
//     ... = a[x + i][y + j];
//     ...
//   }
// }
//
// will probably be unrolled to:
//
// gep %a, 0, %x, %y; load
// gep %a, 0, %x, %y + 1; load
// gep %a, 0, %x + 1, %y; load
// gep %a, 0, %x + 1, %y + 1; load
//
// LLVM's GVN does not use partial redundancy elimination yet, and is thus
// unable to reuse (gep %a, 0, %x, %y). As a result, this misoptimization incurs
// significant slowdown in targets with limited addressing modes. For instance,
// because the PTX target does not support the reg+reg addressing mode, the
// NVPTX backend emits PTX code that literally computes the pointer address of
// each GEP, wasting tons of registers. It emits the following PTX for the
// first load and similar PTX for other loads.
//
// mov.u32         %r1, %x;
// mov.u32         %r2, %y;
// mul.wide.u32    %rl2, %r1, 128;
// mov.u64         %rl3, a;
// add.s64         %rl4, %rl3, %rl2;
// mul.wide.u32    %rl5, %r2, 4;
// add.s64         %rl6, %rl4, %rl5;
// ld.global.f32   %f1, [%rl6];
//
// To reduce the register pressure, the optimization implemented in this file
// merges the common part of a group of GEPs, so we can compute each pointer
// address by adding a simple offset to the common part, saving many registers.
//
// It works by splitting each GEP into a variadic base and a constant offset.
// The variadic base can be computed once and reused by multiple GEPs, and the
// constant offsets can be nicely folded into the reg+immediate addressing mode
// (supported by most targets) without using any extra register.
//
// For instance, we transform the four GEPs and four loads in the above example
// into:
//
// base = gep a, 0, x, y
// load base
// laod base + 1  * sizeof(float)
// load base + 32 * sizeof(float)
// load base + 33 * sizeof(float)
//
// Given the transformed IR, a backend that supports the reg+immediate
// addressing mode can easily fold the pointer arithmetics into the loads. For
// example, the NVPTX backend can easily fold the pointer arithmetics into the
// ld.global.f32 instructions, and the resultant PTX uses much fewer registers.
//
// mov.u32         %r1, %tid.x;
// mov.u32         %r2, %tid.y;
// mul.wide.u32    %rl2, %r1, 128;
// mov.u64         %rl3, a;
// add.s64         %rl4, %rl3, %rl2;
// mul.wide.u32    %rl5, %r2, 4;
// add.s64         %rl6, %rl4, %rl5;
// ld.global.f32   %f1, [%rl6]; // so far the same as unoptimized PTX
// ld.global.f32   %f2, [%rl6+4]; // much better
// ld.global.f32   %f3, [%rl6+128]; // much better
// ld.global.f32   %f4, [%rl6+132]; // much better
//
// Another improvement enabled by the LowerGEP flag is to lower a GEP with
// multiple indices to either multiple GEPs with a single index or arithmetic
// operations (depending on whether the target uses alias analysis in codegen).
// Such transformation can have following benefits:
// (1) It can always extract constants in the indices of structure type.
// (2) After such Lowering, there are more optimization opportunities such as
//     CSE, LICM and CGP.
//
// E.g. The following GEPs have multiple indices:
//  BB1:
//    %p = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 3
//    load %p
//    ...
//  BB2:
//    %p2 = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 2
//    load %p2
//    ...
//
// We can not do CSE to the common part related to index "i64 %i". Lowering
// GEPs can achieve such goals.
// If the target does not use alias analysis in codegen, this pass will
// lower a GEP with multiple indices into arithmetic operations:
//  BB1:
//    %1 = ptrtoint [10 x %struct]* %ptr to i64    ; CSE opportunity
//    %2 = mul i64 %i, length_of_10xstruct         ; CSE opportunity
//    %3 = add i64 %1, %2                          ; CSE opportunity
//    %4 = mul i64 %j1, length_of_struct
//    %5 = add i64 %3, %4
//    %6 = add i64 %3, struct_field_3              ; Constant offset
//    %p = inttoptr i64 %6 to i32*
//    load %p
//    ...
//  BB2:
//    %7 = ptrtoint [10 x %struct]* %ptr to i64    ; CSE opportunity
//    %8 = mul i64 %i, length_of_10xstruct         ; CSE opportunity
//    %9 = add i64 %7, %8                          ; CSE opportunity
//    %10 = mul i64 %j2, length_of_struct
//    %11 = add i64 %9, %10
//    %12 = add i64 %11, struct_field_2            ; Constant offset
//    %p = inttoptr i64 %12 to i32*
//    load %p2
//    ...
//
// If the target uses alias analysis in codegen, this pass will lower a GEP
// with multiple indices into multiple GEPs with a single index:
//  BB1:
//    %1 = bitcast [10 x %struct]* %ptr to i8*     ; CSE opportunity
//    %2 = mul i64 %i, length_of_10xstruct         ; CSE opportunity
//    %3 = getelementptr i8* %1, i64 %2            ; CSE opportunity
//    %4 = mul i64 %j1, length_of_struct
//    %5 = getelementptr i8* %3, i64 %4
//    %6 = getelementptr i8* %5, struct_field_3    ; Constant offset
//    %p = bitcast i8* %6 to i32*
//    load %p
//    ...
//  BB2:
//    %7 = bitcast [10 x %struct]* %ptr to i8*     ; CSE opportunity
//    %8 = mul i64 %i, length_of_10xstruct         ; CSE opportunity
//    %9 = getelementptr i8* %7, i64 %8            ; CSE opportunity
//    %10 = mul i64 %j2, length_of_struct
//    %11 = getelementptr i8* %9, i64 %10
//    %12 = getelementptr i8* %11, struct_field_2  ; Constant offset
//    %p2 = bitcast i8* %12 to i32*
//    load %p2
//    ...
//
// Lowering GEPs can also benefit other passes such as LICM and CGP.
// LICM (Loop Invariant Code Motion) can not hoist/sink a GEP of multiple
// indices if one of the index is variant. If we lower such GEP into invariant
// parts and variant parts, LICM can hoist/sink those invariant parts.
// CGP (CodeGen Prepare) tries to sink address calculations that match the
// target's addressing modes. A GEP with multiple indices may not match and will
// not be sunk. If we lower such GEP into smaller parts, CGP may sink some of
// them. So we end up with a better addressing mode.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Scalar.h"
#include <cassert>
#include <cstdint>
#include <string>

using namespace llvm;
using namespace llvm::PatternMatch;

static cl::opt<bool> DisableSeparateConstOffsetFromGEP(
    "disable-separate-const-offset-from-gep", cl::init(false),
    cl::desc("Do not separate the constant offset from a GEP instruction"),
    cl::Hidden);

// Setting this flag may emit false positives when the input module already
// contains dead instructions. Therefore, we set it only in unit tests that are
// free of dead code.
static cl::opt<bool>
    VerifyNoDeadCode("reassociate-geps-verify-no-dead-code", cl::init(false),
                     cl::desc("Verify this pass produces no dead code"),
                     cl::Hidden);

namespace {

/// A helper class for separating a constant offset from a GEP index.
///
/// In real programs, a GEP index may be more complicated than a simple addition
/// of something and a constant integer which can be trivially splitted. For
/// example, to split ((a << 3) | 5) + b, we need to search deeper for the
/// constant offset, so that we can separate the index to (a << 3) + b and 5.
///
/// Therefore, this class looks into the expression that computes a given GEP
/// index, and tries to find a constant integer that can be hoisted to the
/// outermost level of the expression as an addition. Not every constant in an
/// expression can jump out. e.g., we cannot transform (b * (a + 5)) to (b * a +
/// 5); nor can we transform (3 * (a + 5)) to (3 * a + 5), however in this case,
/// -instcombine probably already optimized (3 * (a + 5)) to (3 * a + 15).
class ConstantOffsetExtractor {
public:
  /// Extracts a constant offset from the given GEP index. It returns the
  /// new index representing the remainder (equal to the original index minus
  /// the constant offset), or nullptr if we cannot extract a constant offset.
  /// \p Idx The given GEP index
  /// \p GEP The given GEP
  /// \p UserChainTail Outputs the tail of UserChain so that we can
  ///                  garbage-collect unused instructions in UserChain.
  static Value *Extract(Value *Idx, GetElementPtrInst *GEP,
                        User *&UserChainTail, const DominatorTree *DT);

  /// Looks for a constant offset from the given GEP index without extracting
  /// it. It returns the numeric value of the extracted constant offset (0 if
  /// failed). The meaning of the arguments are the same as Extract.
  static int64_t Find(Value *Idx, GetElementPtrInst *GEP,
                      const DominatorTree *DT);

private:
  ConstantOffsetExtractor(Instruction *InsertionPt, const DominatorTree *DT)
      : IP(InsertionPt), DL(InsertionPt->getModule()->getDataLayout()), DT(DT) {
  }

  /// Searches the expression that computes V for a non-zero constant C s.t.
  /// V can be reassociated into the form V' + C. If the searching is
  /// successful, returns C and update UserChain as a def-use chain from C to V;
  /// otherwise, UserChain is empty.
  ///
  /// \p V            The given expression
  /// \p SignExtended Whether V will be sign-extended in the computation of the
  ///                 GEP index
  /// \p ZeroExtended Whether V will be zero-extended in the computation of the
  ///                 GEP index
  /// \p NonNegative  Whether V is guaranteed to be non-negative. For example,
  ///                 an index of an inbounds GEP is guaranteed to be
  ///                 non-negative. Levaraging this, we can better split
  ///                 inbounds GEPs.
  APInt find(Value *V, bool SignExtended, bool ZeroExtended, bool NonNegative);

  /// A helper function to look into both operands of a binary operator.
  APInt findInEitherOperand(BinaryOperator *BO, bool SignExtended,
                            bool ZeroExtended);

  /// After finding the constant offset C from the GEP index I, we build a new
  /// index I' s.t. I' + C = I. This function builds and returns the new
  /// index I' according to UserChain produced by function "find".
  ///
  /// The building conceptually takes two steps:
  /// 1) iteratively distribute s/zext towards the leaves of the expression tree
  /// that computes I
  /// 2) reassociate the expression tree to the form I' + C.
  ///
  /// For example, to extract the 5 from sext(a + (b + 5)), we first distribute
  /// sext to a, b and 5 so that we have
  ///   sext(a) + (sext(b) + 5).
  /// Then, we reassociate it to
  ///   (sext(a) + sext(b)) + 5.
  /// Given this form, we know I' is sext(a) + sext(b).
  Value *rebuildWithoutConstOffset();

  /// After the first step of rebuilding the GEP index without the constant
  /// offset, distribute s/zext to the operands of all operators in UserChain.
  /// e.g., zext(sext(a + (b + 5)) (assuming no overflow) =>
  /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))).
  ///
  /// The function also updates UserChain to point to new subexpressions after
  /// distributing s/zext. e.g., the old UserChain of the above example is
  /// 5 -> b + 5 -> a + (b + 5) -> sext(...) -> zext(sext(...)),
  /// and the new UserChain is
  /// zext(sext(5)) -> zext(sext(b)) + zext(sext(5)) ->
  ///   zext(sext(a)) + (zext(sext(b)) + zext(sext(5))
  ///
  /// \p ChainIndex The index to UserChain. ChainIndex is initially
  ///               UserChain.size() - 1, and is decremented during
  ///               the recursion.
  Value *distributeExtsAndCloneChain(unsigned ChainIndex);

  /// Reassociates the GEP index to the form I' + C and returns I'.
  Value *removeConstOffset(unsigned ChainIndex);

  /// A helper function to apply ExtInsts, a list of s/zext, to value V.
  /// e.g., if ExtInsts = [sext i32 to i64, zext i16 to i32], this function
  /// returns "sext i32 (zext i16 V to i32) to i64".
  Value *applyExts(Value *V);

  /// A helper function that returns whether we can trace into the operands
  /// of binary operator BO for a constant offset.
  ///
  /// \p SignExtended Whether BO is surrounded by sext
  /// \p ZeroExtended Whether BO is surrounded by zext
  /// \p NonNegative Whether BO is known to be non-negative, e.g., an in-bound
  ///                array index.
  bool CanTraceInto(bool SignExtended, bool ZeroExtended, BinaryOperator *BO,
                    bool NonNegative);

  /// The path from the constant offset to the old GEP index. e.g., if the GEP
  /// index is "a * b + (c + 5)". After running function find, UserChain[0] will
  /// be the constant 5, UserChain[1] will be the subexpression "c + 5", and
  /// UserChain[2] will be the entire expression "a * b + (c + 5)".
  ///
  /// This path helps to rebuild the new GEP index.
  SmallVector<User *, 8> UserChain;

  /// A data structure used in rebuildWithoutConstOffset. Contains all
  /// sext/zext instructions along UserChain.
  SmallVector<CastInst *, 16> ExtInsts;

  /// Insertion position of cloned instructions.
  Instruction *IP;

  const DataLayout &DL;
  const DominatorTree *DT;
};

/// A pass that tries to split every GEP in the function into a variadic
/// base and a constant offset. It is a FunctionPass because searching for the
/// constant offset may inspect other basic blocks.
class SeparateConstOffsetFromGEP : public FunctionPass {
public:
  static char ID;

  SeparateConstOffsetFromGEP(bool LowerGEP = false)
      : FunctionPass(ID), LowerGEP(LowerGEP) {
    initializeSeparateConstOffsetFromGEPPass(*PassRegistry::getPassRegistry());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<ScalarEvolutionWrapperPass>();
    AU.addRequired<TargetTransformInfoWrapperPass>();
    AU.addRequired<LoopInfoWrapperPass>();
    AU.setPreservesCFG();
    AU.addRequired<TargetLibraryInfoWrapperPass>();
  }

  bool doInitialization(Module &M) override {
    DL = &M.getDataLayout();
    return false;
  }

  bool runOnFunction(Function &F) override;

private:
  /// Tries to split the given GEP into a variadic base and a constant offset,
  /// and returns true if the splitting succeeds.
  bool splitGEP(GetElementPtrInst *GEP);

  /// Lower a GEP with multiple indices into multiple GEPs with a single index.
  /// Function splitGEP already split the original GEP into a variadic part and
  /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the
  /// variadic part into a set of GEPs with a single index and applies
  /// AccumulativeByteOffset to it.
  /// \p Variadic                  The variadic part of the original GEP.
  /// \p AccumulativeByteOffset    The constant offset.
  void lowerToSingleIndexGEPs(GetElementPtrInst *Variadic,
                              int64_t AccumulativeByteOffset);

  /// Lower a GEP with multiple indices into ptrtoint+arithmetics+inttoptr form.
  /// Function splitGEP already split the original GEP into a variadic part and
  /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the
  /// variadic part into a set of arithmetic operations and applies
  /// AccumulativeByteOffset to it.
  /// \p Variadic                  The variadic part of the original GEP.
  /// \p AccumulativeByteOffset    The constant offset.
  void lowerToArithmetics(GetElementPtrInst *Variadic,
                          int64_t AccumulativeByteOffset);

  /// Finds the constant offset within each index and accumulates them. If
  /// LowerGEP is true, it finds in indices of both sequential and structure
  /// types, otherwise it only finds in sequential indices. The output
  /// NeedsExtraction indicates whether we successfully find a non-zero constant
  /// offset.
  int64_t accumulateByteOffset(GetElementPtrInst *GEP, bool &NeedsExtraction);

  /// Canonicalize array indices to pointer-size integers. This helps to
  /// simplify the logic of splitting a GEP. For example, if a + b is a
  /// pointer-size integer, we have
  ///   gep base, a + b = gep (gep base, a), b
  /// However, this equality may not hold if the size of a + b is smaller than
  /// the pointer size, because LLVM conceptually sign-extends GEP indices to
  /// pointer size before computing the address
  /// (http://llvm.org/docs/LangRef.html#id181).
  ///
  /// This canonicalization is very likely already done in clang and
  /// instcombine. Therefore, the program will probably remain the same.
  ///
  /// Returns true if the module changes.
  ///
  /// Verified in @i32_add in split-gep.ll
  bool canonicalizeArrayIndicesToPointerSize(GetElementPtrInst *GEP);

  /// Optimize sext(a)+sext(b) to sext(a+b) when a+b can't sign overflow.
  /// SeparateConstOffsetFromGEP distributes a sext to leaves before extracting
  /// the constant offset. After extraction, it becomes desirable to reunion the
  /// distributed sexts. For example,
  ///
  ///                              &a[sext(i +nsw (j +nsw 5)]
  ///   => distribute              &a[sext(i) +nsw (sext(j) +nsw 5)]
  ///   => constant extraction     &a[sext(i) + sext(j)] + 5
  ///   => reunion                 &a[sext(i +nsw j)] + 5
  bool reuniteExts(Function &F);

  /// A helper that reunites sexts in an instruction.
  bool reuniteExts(Instruction *I);

  /// Find the closest dominator of <Dominatee> that is equivalent to <Key>.
  Instruction *findClosestMatchingDominator(const SCEV *Key,
                                            Instruction *Dominatee);
  /// Verify F is free of dead code.
  void verifyNoDeadCode(Function &F);

  bool hasMoreThanOneUseInLoop(Value *v, Loop *L);

  // Swap the index operand of two GEP.
  void swapGEPOperand(GetElementPtrInst *First, GetElementPtrInst *Second);

  // Check if it is safe to swap operand of two GEP.
  bool isLegalToSwapOperand(GetElementPtrInst *First, GetElementPtrInst *Second,
                            Loop *CurLoop);

  const DataLayout *DL = nullptr;
  DominatorTree *DT = nullptr;
  ScalarEvolution *SE;

  LoopInfo *LI;
  TargetLibraryInfo *TLI;

  /// Whether to lower a GEP with multiple indices into arithmetic operations or
  /// multiple GEPs with a single index.
  bool LowerGEP;

  DenseMap<const SCEV *, SmallVector<Instruction *, 2>> DominatingExprs;
};

} // end anonymous namespace

char SeparateConstOffsetFromGEP::ID = 0;

INITIALIZE_PASS_BEGIN(
    SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
    "Split GEPs to a variadic base and a constant offset for better CSE", false,
    false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(
    SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
    "Split GEPs to a variadic base and a constant offset for better CSE", false,
    false)

FunctionPass *llvm::createSeparateConstOffsetFromGEPPass(bool LowerGEP) {
  return new SeparateConstOffsetFromGEP(LowerGEP);
}

bool ConstantOffsetExtractor::CanTraceInto(bool SignExtended,
                                            bool ZeroExtended,
                                            BinaryOperator *BO,
                                            bool NonNegative) {
  // We only consider ADD, SUB and OR, because a non-zero constant found in
  // expressions composed of these operations can be easily hoisted as a
  // constant offset by reassociation.
  if (BO->getOpcode() != Instruction::Add &&
      BO->getOpcode() != Instruction::Sub &&
      BO->getOpcode() != Instruction::Or) {
    return false;
  }

  Value *LHS = BO->getOperand(0), *RHS = BO->getOperand(1);
  // Do not trace into "or" unless it is equivalent to "add". If LHS and RHS
  // don't have common bits, (LHS | RHS) is equivalent to (LHS + RHS).
  // FIXME: this does not appear to be covered by any tests
  //        (with x86/aarch64 backends at least)
  if (BO->getOpcode() == Instruction::Or &&
      !haveNoCommonBitsSet(LHS, RHS, DL, nullptr, BO, DT))
    return false;

  // In addition, tracing into BO requires that its surrounding s/zext (if
  // any) is distributable to both operands.
  //
  // Suppose BO = A op B.
  //  SignExtended | ZeroExtended | Distributable?
  // --------------+--------------+----------------------------------
  //       0       |      0       | true because no s/zext exists
  //       0       |      1       | zext(BO) == zext(A) op zext(B)
  //       1       |      0       | sext(BO) == sext(A) op sext(B)
  //       1       |      1       | zext(sext(BO)) ==
  //               |              |     zext(sext(A)) op zext(sext(B))
  if (BO->getOpcode() == Instruction::Add && !ZeroExtended && NonNegative) {
    // If a + b >= 0 and (a >= 0 or b >= 0), then
    //   sext(a + b) = sext(a) + sext(b)
    // even if the addition is not marked nsw.
    //
    // Leveraging this invarient, we can trace into an sext'ed inbound GEP
    // index if the constant offset is non-negative.
    //
    // Verified in @sext_add in split-gep.ll.
    if (ConstantInt *ConstLHS = dyn_cast<ConstantInt>(LHS)) {
      if (!ConstLHS->isNegative())
        return true;
    }
    if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(RHS)) {
      if (!ConstRHS->isNegative())
        return true;
    }
  }

  // sext (add/sub nsw A, B) == add/sub nsw (sext A), (sext B)
  // zext (add/sub nuw A, B) == add/sub nuw (zext A), (zext B)
  if (BO->getOpcode() == Instruction::Add ||
      BO->getOpcode() == Instruction::Sub) {
    if (SignExtended && !BO->hasNoSignedWrap())
      return false;
    if (ZeroExtended && !BO->hasNoUnsignedWrap())
      return false;
  }

  return true;
}

APInt ConstantOffsetExtractor::findInEitherOperand(BinaryOperator *BO,
                                                   bool SignExtended,
                                                   bool ZeroExtended) {
  // BO being non-negative does not shed light on whether its operands are
  // non-negative. Clear the NonNegative flag here.
  APInt ConstantOffset = find(BO->getOperand(0), SignExtended, ZeroExtended,
                              /* NonNegative */ false);
  // If we found a constant offset in the left operand, stop and return that.
  // This shortcut might cause us to miss opportunities of combining the
  // constant offsets in both operands, e.g., (a + 4) + (b + 5) => (a + b) + 9.
  // However, such cases are probably already handled by -instcombine,
  // given this pass runs after the standard optimizations.
  if (ConstantOffset != 0) return ConstantOffset;
  ConstantOffset = find(BO->getOperand(1), SignExtended, ZeroExtended,
                        /* NonNegative */ false);
  // If U is a sub operator, negate the constant offset found in the right
  // operand.
  if (BO->getOpcode() == Instruction::Sub)
    ConstantOffset = -ConstantOffset;
  return ConstantOffset;
}

APInt ConstantOffsetExtractor::find(Value *V, bool SignExtended,
                                    bool ZeroExtended, bool NonNegative) {
  // TODO(jingyue): We could trace into integer/pointer casts, such as
  // inttoptr, ptrtoint, bitcast, and addrspacecast. We choose to handle only
  // integers because it gives good enough results for our benchmarks.
  unsigned BitWidth = cast<IntegerType>(V->getType())->getBitWidth();

  // We cannot do much with Values that are not a User, such as an Argument.
  User *U = dyn_cast<User>(V);
  if (U == nullptr) return APInt(BitWidth, 0);

  APInt ConstantOffset(BitWidth, 0);
  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    // Hooray, we found it!
    ConstantOffset = CI->getValue();
  } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V)) {
    // Trace into subexpressions for more hoisting opportunities.
    if (CanTraceInto(SignExtended, ZeroExtended, BO, NonNegative))
      ConstantOffset = findInEitherOperand(BO, SignExtended, ZeroExtended);
  } else if (isa<TruncInst>(V)) {
    ConstantOffset =
        find(U->getOperand(0), SignExtended, ZeroExtended, NonNegative)
            .trunc(BitWidth);
  } else if (isa<SExtInst>(V)) {
    ConstantOffset = find(U->getOperand(0), /* SignExtended */ true,
                          ZeroExtended, NonNegative).sext(BitWidth);
  } else if (isa<ZExtInst>(V)) {
    // As an optimization, we can clear the SignExtended flag because
    // sext(zext(a)) = zext(a). Verified in @sext_zext in split-gep.ll.
    //
    // Clear the NonNegative flag, because zext(a) >= 0 does not imply a >= 0.
    ConstantOffset =
        find(U->getOperand(0), /* SignExtended */ false,
             /* ZeroExtended */ true, /* NonNegative */ false).zext(BitWidth);
  }

  // If we found a non-zero constant offset, add it to the path for
  // rebuildWithoutConstOffset. Zero is a valid constant offset, but doesn't
  // help this optimization.
  if (ConstantOffset != 0)
    UserChain.push_back(U);
  return ConstantOffset;
}

Value *ConstantOffsetExtractor::applyExts(Value *V) {
  Value *Current = V;
  // ExtInsts is built in the use-def order. Therefore, we apply them to V
  // in the reversed order.
  for (auto I = ExtInsts.rbegin(), E = ExtInsts.rend(); I != E; ++I) {
    if (Constant *C = dyn_cast<Constant>(Current)) {
      // If Current is a constant, apply s/zext using ConstantExpr::getCast.
      // ConstantExpr::getCast emits a ConstantInt if C is a ConstantInt.
      Current = ConstantExpr::getCast((*I)->getOpcode(), C, (*I)->getType());
    } else {
      Instruction *Ext = (*I)->clone();
      Ext->setOperand(0, Current);
      Ext->insertBefore(IP);
      Current = Ext;
    }
  }
  return Current;
}

Value *ConstantOffsetExtractor::rebuildWithoutConstOffset() {
  distributeExtsAndCloneChain(UserChain.size() - 1);
  // Remove all nullptrs (used to be s/zext) from UserChain.
  unsigned NewSize = 0;
  for (User *I : UserChain) {
    if (I != nullptr) {
      UserChain[NewSize] = I;
      NewSize++;
    }
  }
  UserChain.resize(NewSize);
  return removeConstOffset(UserChain.size() - 1);
}

Value *
ConstantOffsetExtractor::distributeExtsAndCloneChain(unsigned ChainIndex) {
  User *U = UserChain[ChainIndex];
  if (ChainIndex == 0) {
    assert(isa<ConstantInt>(U));
    // If U is a ConstantInt, applyExts will return a ConstantInt as well.
    return UserChain[ChainIndex] = cast<ConstantInt>(applyExts(U));
  }

  if (CastInst *Cast = dyn_cast<CastInst>(U)) {
    assert(
        (isa<SExtInst>(Cast) || isa<ZExtInst>(Cast) || isa<TruncInst>(Cast)) &&
        "Only following instructions can be traced: sext, zext & trunc");
    ExtInsts.push_back(Cast);
    UserChain[ChainIndex] = nullptr;
    return distributeExtsAndCloneChain(ChainIndex - 1);
  }

  // Function find only trace into BinaryOperator and CastInst.
  BinaryOperator *BO = cast<BinaryOperator>(U);
  // OpNo = which operand of BO is UserChain[ChainIndex - 1]
  unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
  Value *TheOther = applyExts(BO->getOperand(1 - OpNo));
  Value *NextInChain = distributeExtsAndCloneChain(ChainIndex - 1);

  BinaryOperator *NewBO = nullptr;
  if (OpNo == 0) {
    NewBO = BinaryOperator::Create(BO->getOpcode(), NextInChain, TheOther,
                                   BO->getName(), IP);
  } else {
    NewBO = BinaryOperator::Create(BO->getOpcode(), TheOther, NextInChain,
                                   BO->getName(), IP);
  }
  return UserChain[ChainIndex] = NewBO;
}

Value *ConstantOffsetExtractor::removeConstOffset(unsigned ChainIndex) {
  if (ChainIndex == 0) {
    assert(isa<ConstantInt>(UserChain[ChainIndex]));
    return ConstantInt::getNullValue(UserChain[ChainIndex]->getType());
  }

  BinaryOperator *BO = cast<BinaryOperator>(UserChain[ChainIndex]);
  assert(BO->getNumUses() <= 1 &&
         "distributeExtsAndCloneChain clones each BinaryOperator in "
         "UserChain, so no one should be used more than "
         "once");

  unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
  assert(BO->getOperand(OpNo) == UserChain[ChainIndex - 1]);
  Value *NextInChain = removeConstOffset(ChainIndex - 1);
  Value *TheOther = BO->getOperand(1 - OpNo);

  // If NextInChain is 0 and not the LHS of a sub, we can simplify the
  // sub-expression to be just TheOther.
  if (ConstantInt *CI = dyn_cast<ConstantInt>(NextInChain)) {
    if (CI->isZero() && !(BO->getOpcode() == Instruction::Sub && OpNo == 0))
      return TheOther;
  }

  BinaryOperator::BinaryOps NewOp = BO->getOpcode();
  if (BO->getOpcode() == Instruction::Or) {
    // Rebuild "or" as "add", because "or" may be invalid for the new
    // expression.
    //
    // For instance, given
    //   a | (b + 5) where a and b + 5 have no common bits,
    // we can extract 5 as the constant offset.
    //
    // However, reusing the "or" in the new index would give us
    //   (a | b) + 5
    // which does not equal a | (b + 5).
    //
    // Replacing the "or" with "add" is fine, because
    //   a | (b + 5) = a + (b + 5) = (a + b) + 5
    NewOp = Instruction::Add;
  }

  BinaryOperator *NewBO;
  if (OpNo == 0) {
    NewBO = BinaryOperator::Create(NewOp, NextInChain, TheOther, "", IP);
  } else {
    NewBO = BinaryOperator::Create(NewOp, TheOther, NextInChain, "", IP);
  }
  NewBO->takeName(BO);
  return NewBO;
}

Value *ConstantOffsetExtractor::Extract(Value *Idx, GetElementPtrInst *GEP,
                                        User *&UserChainTail,
                                        const DominatorTree *DT) {
  ConstantOffsetExtractor Extractor(GEP, DT);
  // Find a non-zero constant offset first.
  APInt ConstantOffset =
      Extractor.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
                     GEP->isInBounds());
  if (ConstantOffset == 0) {
    UserChainTail = nullptr;
    return nullptr;
  }
  // Separates the constant offset from the GEP index.
  Value *IdxWithoutConstOffset = Extractor.rebuildWithoutConstOffset();
  UserChainTail = Extractor.UserChain.back();
  return IdxWithoutConstOffset;
}

int64_t ConstantOffsetExtractor::Find(Value *Idx, GetElementPtrInst *GEP,
                                      const DominatorTree *DT) {
  // If Idx is an index of an inbound GEP, Idx is guaranteed to be non-negative.
  return ConstantOffsetExtractor(GEP, DT)
      .find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
            GEP->isInBounds())
      .getSExtValue();
}

bool SeparateConstOffsetFromGEP::canonicalizeArrayIndicesToPointerSize(
    GetElementPtrInst *GEP) {
  bool Changed = false;
  Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
  gep_type_iterator GTI = gep_type_begin(*GEP);
  for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end();
       I != E; ++I, ++GTI) {
    // Skip struct member indices which must be i32.
    if (GTI.isSequential()) {
      if ((*I)->getType() != IntPtrTy) {
        *I = CastInst::CreateIntegerCast(*I, IntPtrTy, true, "idxprom", GEP);
        Changed = true;
      }
    }
  }
  return Changed;
}

int64_t
SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst *GEP,
                                                 bool &NeedsExtraction) {
  NeedsExtraction = false;
  int64_t AccumulativeByteOffset = 0;
  gep_type_iterator GTI = gep_type_begin(*GEP);
  for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
    if (GTI.isSequential()) {
      // Tries to extract a constant offset from this GEP index.
      int64_t ConstantOffset =
          ConstantOffsetExtractor::Find(GEP->getOperand(I), GEP, DT);
      if (ConstantOffset != 0) {
        NeedsExtraction = true;
        // A GEP may have multiple indices.  We accumulate the extracted
        // constant offset to a byte offset, and later offset the remainder of
        // the original GEP with this byte offset.
        AccumulativeByteOffset +=
            ConstantOffset * DL->getTypeAllocSize(GTI.getIndexedType());
      }
    } else if (LowerGEP) {
      StructType *StTy = GTI.getStructType();
      uint64_t Field = cast<ConstantInt>(GEP->getOperand(I))->getZExtValue();
      // Skip field 0 as the offset is always 0.
      if (Field != 0) {
        NeedsExtraction = true;
        AccumulativeByteOffset +=
            DL->getStructLayout(StTy)->getElementOffset(Field);
      }
    }
  }
  return AccumulativeByteOffset;
}

void SeparateConstOffsetFromGEP::lowerToSingleIndexGEPs(
    GetElementPtrInst *Variadic, int64_t AccumulativeByteOffset) {
  IRBuilder<> Builder(Variadic);
  Type *IntPtrTy = DL->getIntPtrType(Variadic->getType());

  Type *I8PtrTy =
      Builder.getInt8PtrTy(Variadic->getType()->getPointerAddressSpace());
  Value *ResultPtr = Variadic->getOperand(0);
  Loop *L = LI->getLoopFor(Variadic->getParent());
  // Check if the base is not loop invariant or used more than once.
  bool isSwapCandidate =
      L && L->isLoopInvariant(ResultPtr) &&
      !hasMoreThanOneUseInLoop(ResultPtr, L);
  Value *FirstResult = nullptr;

  if (ResultPtr->getType() != I8PtrTy)
    ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);

  gep_type_iterator GTI = gep_type_begin(*Variadic);
  // Create an ugly GEP for each sequential index. We don't create GEPs for
  // structure indices, as they are accumulated in the constant offset index.
  for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) {
    if (GTI.isSequential()) {
      Value *Idx = Variadic->getOperand(I);
      // Skip zero indices.
      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
        if (CI->isZero())
          continue;

      APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
                                DL->getTypeAllocSize(GTI.getIndexedType()));
      // Scale the index by element size.
      if (ElementSize != 1) {
        if (ElementSize.isPowerOf2()) {
          Idx = Builder.CreateShl(
              Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2()));
        } else {
          Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize));
        }
      }
      // Create an ugly GEP with a single index for each index.
      ResultPtr =
          Builder.CreateGEP(Builder.getInt8Ty(), ResultPtr, Idx, "uglygep");
      if (FirstResult == nullptr)
        FirstResult = ResultPtr;
    }
  }

  // Create a GEP with the constant offset index.
  if (AccumulativeByteOffset != 0) {
    Value *Offset = ConstantInt::get(IntPtrTy, AccumulativeByteOffset);
    ResultPtr =
        Builder.CreateGEP(Builder.getInt8Ty(), ResultPtr, Offset, "uglygep");
  } else
    isSwapCandidate = false;

  // If we created a GEP with constant index, and the base is loop invariant,
  // then we swap the first one with it, so LICM can move constant GEP out
  // later.
  GetElementPtrInst *FirstGEP = dyn_cast_or_null<GetElementPtrInst>(FirstResult);
  GetElementPtrInst *SecondGEP = dyn_cast_or_null<GetElementPtrInst>(ResultPtr);
  if (isSwapCandidate && isLegalToSwapOperand(FirstGEP, SecondGEP, L))
    swapGEPOperand(FirstGEP, SecondGEP);

  if (ResultPtr->getType() != Variadic->getType())
    ResultPtr = Builder.CreateBitCast(ResultPtr, Variadic->getType());

  Variadic->replaceAllUsesWith(ResultPtr);
  Variadic->eraseFromParent();
}

void
SeparateConstOffsetFromGEP::lowerToArithmetics(GetElementPtrInst *Variadic,
                                               int64_t AccumulativeByteOffset) {
  IRBuilder<> Builder(Variadic);
  Type *IntPtrTy = DL->getIntPtrType(Variadic->getType());

  Value *ResultPtr = Builder.CreatePtrToInt(Variadic->getOperand(0), IntPtrTy);
  gep_type_iterator GTI = gep_type_begin(*Variadic);
  // Create ADD/SHL/MUL arithmetic operations for each sequential indices. We
  // don't create arithmetics for structure indices, as they are accumulated
  // in the constant offset index.
  for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) {
    if (GTI.isSequential()) {
      Value *Idx = Variadic->getOperand(I);
      // Skip zero indices.
      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
        if (CI->isZero())
          continue;

      APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
                                DL->getTypeAllocSize(GTI.getIndexedType()));
      // Scale the index by element size.
      if (ElementSize != 1) {
        if (ElementSize.isPowerOf2()) {
          Idx = Builder.CreateShl(
              Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2()));
        } else {
          Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize));
        }
      }
      // Create an ADD for each index.
      ResultPtr = Builder.CreateAdd(ResultPtr, Idx);
    }
  }

  // Create an ADD for the constant offset index.
  if (AccumulativeByteOffset != 0) {
    ResultPtr = Builder.CreateAdd(
        ResultPtr, ConstantInt::get(IntPtrTy, AccumulativeByteOffset));
  }

  ResultPtr = Builder.CreateIntToPtr(ResultPtr, Variadic->getType());
  Variadic->replaceAllUsesWith(ResultPtr);
  Variadic->eraseFromParent();
}

bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
  // Skip vector GEPs.
  if (GEP->getType()->isVectorTy())
    return false;

  // The backend can already nicely handle the case where all indices are
  // constant.
  if (GEP->hasAllConstantIndices())
    return false;

  bool Changed = canonicalizeArrayIndicesToPointerSize(GEP);

  bool NeedsExtraction;
  int64_t AccumulativeByteOffset = accumulateByteOffset(GEP, NeedsExtraction);

  if (!NeedsExtraction)
    return Changed;

  TargetTransformInfo &TTI =
      getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*GEP->getFunction());

  // If LowerGEP is disabled, before really splitting the GEP, check whether the
  // backend supports the addressing mode we are about to produce. If no, this
  // splitting probably won't be beneficial.
  // If LowerGEP is enabled, even the extracted constant offset can not match
  // the addressing mode, we can still do optimizations to other lowered parts
  // of variable indices. Therefore, we don't check for addressing modes in that
  // case.
  if (!LowerGEP) {
    unsigned AddrSpace = GEP->getPointerAddressSpace();
    if (!TTI.isLegalAddressingMode(GEP->getResultElementType(),
                                   /*BaseGV=*/nullptr, AccumulativeByteOffset,
                                   /*HasBaseReg=*/true, /*Scale=*/0,
                                   AddrSpace)) {
      return Changed;
    }
  }

  // Remove the constant offset in each sequential index. The resultant GEP
  // computes the variadic base.
  // Notice that we don't remove struct field indices here. If LowerGEP is
  // disabled, a structure index is not accumulated and we still use the old
  // one. If LowerGEP is enabled, a structure index is accumulated in the
  // constant offset. LowerToSingleIndexGEPs or lowerToArithmetics will later
  // handle the constant offset and won't need a new structure index.
  gep_type_iterator GTI = gep_type_begin(*GEP);
  for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
    if (GTI.isSequential()) {
      // Splits this GEP index into a variadic part and a constant offset, and
      // uses the variadic part as the new index.
      Value *OldIdx = GEP->getOperand(I);
      User *UserChainTail;
      Value *NewIdx =
          ConstantOffsetExtractor::Extract(OldIdx, GEP, UserChainTail, DT);
      if (NewIdx != nullptr) {
        // Switches to the index with the constant offset removed.
        GEP->setOperand(I, NewIdx);
        // After switching to the new index, we can garbage-collect UserChain
        // and the old index if they are not used.
        RecursivelyDeleteTriviallyDeadInstructions(UserChainTail);
        RecursivelyDeleteTriviallyDeadInstructions(OldIdx);
      }
    }
  }

  // Clear the inbounds attribute because the new index may be off-bound.
  // e.g.,
  //
  //   b     = add i64 a, 5
  //   addr  = gep inbounds float, float* p, i64 b
  //
  // is transformed to:
  //
  //   addr2 = gep float, float* p, i64 a ; inbounds removed
  //   addr  = gep inbounds float, float* addr2, i64 5
  //
  // If a is -4, although the old index b is in bounds, the new index a is
  // off-bound. http://llvm.org/docs/LangRef.html#id181 says "if the
  // inbounds keyword is not present, the offsets are added to the base
  // address with silently-wrapping two's complement arithmetic".
  // Therefore, the final code will be a semantically equivalent.
  //
  // TODO(jingyue): do some range analysis to keep as many inbounds as
  // possible. GEPs with inbounds are more friendly to alias analysis.
  bool GEPWasInBounds = GEP->isInBounds();
  GEP->setIsInBounds(false);

  // Lowers a GEP to either GEPs with a single index or arithmetic operations.
  if (LowerGEP) {
    // As currently BasicAA does not analyze ptrtoint/inttoptr, do not lower to
    // arithmetic operations if the target uses alias analysis in codegen.
    if (TTI.useAA())
      lowerToSingleIndexGEPs(GEP, AccumulativeByteOffset);
    else
      lowerToArithmetics(GEP, AccumulativeByteOffset);
    return true;
  }

  // No need to create another GEP if the accumulative byte offset is 0.
  if (AccumulativeByteOffset == 0)
    return true;

  // Offsets the base with the accumulative byte offset.
  //
  //   %gep                        ; the base
  //   ... %gep ...
  //
  // => add the offset
  //
  //   %gep2                       ; clone of %gep
  //   %new.gep = gep %gep2, <offset / sizeof(*%gep)>
  //   %gep                        ; will be removed
  //   ... %gep ...
  //
  // => replace all uses of %gep with %new.gep and remove %gep
  //
  //   %gep2                       ; clone of %gep
  //   %new.gep = gep %gep2, <offset / sizeof(*%gep)>
  //   ... %new.gep ...
  //
  // If AccumulativeByteOffset is not a multiple of sizeof(*%gep), we emit an
  // uglygep (http://llvm.org/docs/GetElementPtr.html#what-s-an-uglygep):
  // bitcast %gep2 to i8*, add the offset, and bitcast the result back to the
  // type of %gep.
  //
  //   %gep2                       ; clone of %gep
  //   %0       = bitcast %gep2 to i8*
  //   %uglygep = gep %0, <offset>
  //   %new.gep = bitcast %uglygep to <type of %gep>
  //   ... %new.gep ...
  Instruction *NewGEP = GEP->clone();
  NewGEP->insertBefore(GEP);

  // Per ANSI C standard, signed / unsigned = unsigned and signed % unsigned =
  // unsigned.. Therefore, we cast ElementTypeSizeOfGEP to signed because it is
  // used with unsigned integers later.
  int64_t ElementTypeSizeOfGEP = static_cast<int64_t>(
      DL->getTypeAllocSize(GEP->getResultElementType()));
  Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
  if (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0) {
    // Very likely. As long as %gep is naturally aligned, the byte offset we
    // extracted should be a multiple of sizeof(*%gep).
    int64_t Index = AccumulativeByteOffset / ElementTypeSizeOfGEP;
    NewGEP = GetElementPtrInst::Create(GEP->getResultElementType(), NewGEP,
                                       ConstantInt::get(IntPtrTy, Index, true),
                                       GEP->getName(), GEP);
    NewGEP->copyMetadata(*GEP);
    // Inherit the inbounds attribute of the original GEP.
    cast<GetElementPtrInst>(NewGEP)->setIsInBounds(GEPWasInBounds);
  } else {
    // Unlikely but possible. For example,
    // #pragma pack(1)
    // struct S {
    //   int a[3];
    //   int64 b[8];
    // };
    // #pragma pack()
    //
    // Suppose the gep before extraction is &s[i + 1].b[j + 3]. After
    // extraction, it becomes &s[i].b[j] and AccumulativeByteOffset is
    // sizeof(S) + 3 * sizeof(int64) = 100, which is not a multiple of
    // sizeof(int64).
    //
    // Emit an uglygep in this case.
    Type *I8PtrTy = Type::getInt8PtrTy(GEP->getContext(),
                                       GEP->getPointerAddressSpace());
    NewGEP = new BitCastInst(NewGEP, I8PtrTy, "", GEP);
    NewGEP = GetElementPtrInst::Create(
        Type::getInt8Ty(GEP->getContext()), NewGEP,
        ConstantInt::get(IntPtrTy, AccumulativeByteOffset, true), "uglygep",
        GEP);
    NewGEP->copyMetadata(*GEP);
    // Inherit the inbounds attribute of the original GEP.
    cast<GetElementPtrInst>(NewGEP)->setIsInBounds(GEPWasInBounds);
    if (GEP->getType() != I8PtrTy)
      NewGEP = new BitCastInst(NewGEP, GEP->getType(), GEP->getName(), GEP);
  }

  GEP->replaceAllUsesWith(NewGEP);
  GEP->eraseFromParent();

  return true;
}

bool SeparateConstOffsetFromGEP::runOnFunction(Function &F) {
  if (skipFunction(F))
    return false;

  if (DisableSeparateConstOffsetFromGEP)
    return false;

  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
  LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
  TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
  bool Changed = false;
  for (BasicBlock &B : F) {
    for (BasicBlock::iterator I = B.begin(), IE = B.end(); I != IE;)
      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I++))
        Changed |= splitGEP(GEP);
    // No need to split GEP ConstantExprs because all its indices are constant
    // already.
  }

  Changed |= reuniteExts(F);

  if (VerifyNoDeadCode)
    verifyNoDeadCode(F);

  return Changed;
}

Instruction *SeparateConstOffsetFromGEP::findClosestMatchingDominator(
    const SCEV *Key, Instruction *Dominatee) {
  auto Pos = DominatingExprs.find(Key);
  if (Pos == DominatingExprs.end())
    return nullptr;

  auto &Candidates = Pos->second;
  // Because we process the basic blocks in pre-order of the dominator tree, a
  // candidate that doesn't dominate the current instruction won't dominate any
  // future instruction either. Therefore, we pop it out of the stack. This
  // optimization makes the algorithm O(n).
  while (!Candidates.empty()) {
    Instruction *Candidate = Candidates.back();
    if (DT->dominates(Candidate, Dominatee))
      return Candidate;
    Candidates.pop_back();
  }
  return nullptr;
}

bool SeparateConstOffsetFromGEP::reuniteExts(Instruction *I) {
  if (!SE->isSCEVable(I->getType()))
    return false;

  //   Dom: LHS+RHS
  //   I: sext(LHS)+sext(RHS)
  // If Dom can't sign overflow and Dom dominates I, optimize I to sext(Dom).
  // TODO: handle zext
  Value *LHS = nullptr, *RHS = nullptr;
  if (match(I, m_Add(m_SExt(m_Value(LHS)), m_SExt(m_Value(RHS)))) ||
      match(I, m_Sub(m_SExt(m_Value(LHS)), m_SExt(m_Value(RHS))))) {
    if (LHS->getType() == RHS->getType()) {
      const SCEV *Key =
          SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS));
      if (auto *Dom = findClosestMatchingDominator(Key, I)) {
        Instruction *NewSExt = new SExtInst(Dom, I->getType(), "", I);
        NewSExt->takeName(I);
        I->replaceAllUsesWith(NewSExt);
        RecursivelyDeleteTriviallyDeadInstructions(I);
        return true;
      }
    }
  }

  // Add I to DominatingExprs if it's an add/sub that can't sign overflow.
  if (match(I, m_NSWAdd(m_Value(LHS), m_Value(RHS))) ||
      match(I, m_NSWSub(m_Value(LHS), m_Value(RHS)))) {
    if (programUndefinedIfFullPoison(I)) {
      const SCEV *Key =
          SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS));
      DominatingExprs[Key].push_back(I);
    }
  }
  return false;
}

bool SeparateConstOffsetFromGEP::reuniteExts(Function &F) {
  bool Changed = false;
  DominatingExprs.clear();
  for (const auto Node : depth_first(DT)) {
    BasicBlock *BB = Node->getBlock();
    for (auto I = BB->begin(); I != BB->end(); ) {
      Instruction *Cur = &*I++;
      Changed |= reuniteExts(Cur);
    }
  }
  return Changed;
}

void SeparateConstOffsetFromGEP::verifyNoDeadCode(Function &F) {
  for (BasicBlock &B : F) {
    for (Instruction &I : B) {
      if (isInstructionTriviallyDead(&I)) {
        std::string ErrMessage;
        raw_string_ostream RSO(ErrMessage);
        RSO << "Dead instruction detected!\n" << I << "\n";
        llvm_unreachable(RSO.str().c_str());
      }
    }
  }
}

bool SeparateConstOffsetFromGEP::isLegalToSwapOperand(
    GetElementPtrInst *FirstGEP, GetElementPtrInst *SecondGEP, Loop *CurLoop) {
  if (!FirstGEP || !FirstGEP->hasOneUse())
    return false;

  if (!SecondGEP || FirstGEP->getParent() != SecondGEP->getParent())
    return false;

  if (FirstGEP == SecondGEP)
    return false;

  unsigned FirstNum = FirstGEP->getNumOperands();
  unsigned SecondNum = SecondGEP->getNumOperands();
  // Give up if the number of operands are not 2.
  if (FirstNum != SecondNum || FirstNum != 2)
    return false;

  Value *FirstBase = FirstGEP->getOperand(0);
  Value *SecondBase = SecondGEP->getOperand(0);
  Value *FirstOffset = FirstGEP->getOperand(1);
  // Give up if the index of the first GEP is loop invariant.
  if (CurLoop->isLoopInvariant(FirstOffset))
    return false;

  // Give up if base doesn't have same type.
  if (FirstBase->getType() != SecondBase->getType())
    return false;

  Instruction *FirstOffsetDef = dyn_cast<Instruction>(FirstOffset);

  // Check if the second operand of first GEP has constant coefficient.
  // For an example, for the following code,  we won't gain anything by
  // hoisting the second GEP out because the second GEP can be folded away.
  //   %scevgep.sum.ur159 = add i64 %idxprom48.ur, 256
  //   %67 = shl i64 %scevgep.sum.ur159, 2
  //   %uglygep160 = getelementptr i8* %65, i64 %67
  //   %uglygep161 = getelementptr i8* %uglygep160, i64 -1024

  // Skip constant shift instruction which may be generated by Splitting GEPs.
  if (FirstOffsetDef && FirstOffsetDef->isShift() &&
      isa<ConstantInt>(FirstOffsetDef->getOperand(1)))
    FirstOffsetDef = dyn_cast<Instruction>(FirstOffsetDef->getOperand(0));

  // Give up if FirstOffsetDef is an Add or Sub with constant.
  // Because it may not profitable at all due to constant folding.
  if (FirstOffsetDef)
    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FirstOffsetDef)) {
      unsigned opc = BO->getOpcode();
      if ((opc == Instruction::Add || opc == Instruction::Sub) &&
          (isa<ConstantInt>(BO->getOperand(0)) ||
           isa<ConstantInt>(BO->getOperand(1))))
        return false;
    }
  return true;
}

bool SeparateConstOffsetFromGEP::hasMoreThanOneUseInLoop(Value *V, Loop *L) {
  int UsesInLoop = 0;
  for (User *U : V->users()) {
    if (Instruction *User = dyn_cast<Instruction>(U))
      if (L->contains(User))
        if (++UsesInLoop > 1)
          return true;
  }
  return false;
}

void SeparateConstOffsetFromGEP::swapGEPOperand(GetElementPtrInst *First,
                                                GetElementPtrInst *Second) {
  Value *Offset1 = First->getOperand(1);
  Value *Offset2 = Second->getOperand(1);
  First->setOperand(1, Offset2);
  Second->setOperand(1, Offset1);

  // We changed p+o+c to p+c+o, p+c may not be inbound anymore.
  const DataLayout &DAL = First->getModule()->getDataLayout();
  APInt Offset(DAL.getIndexSizeInBits(
                   cast<PointerType>(First->getType())->getAddressSpace()),
               0);
  Value *NewBase =
      First->stripAndAccumulateInBoundsConstantOffsets(DAL, Offset);
  uint64_t ObjectSize;
  if (!getObjectSize(NewBase, ObjectSize, DAL, TLI) ||
     Offset.ugt(ObjectSize)) {
    First->setIsInBounds(false);
    Second->setIsInBounds(false);
  } else
    First->setIsInBounds(true);
}