aboutsummaryrefslogtreecommitdiff
path: root/lld/ELF/Arch/PPC64.cpp
blob: 019c073bd541b62879b0b12e5e2b640f9734bd8d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
//===- PPC64.cpp ----------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "InputFiles.h"
#include "OutputSections.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "Thunks.h"
#include "lld/Common/CommonLinkerContext.h"
#include "llvm/Support/Endian.h"

using namespace llvm;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf;

constexpr uint64_t ppc64TocOffset = 0x8000;
constexpr uint64_t dynamicThreadPointerOffset = 0x8000;

namespace {
// The instruction encoding of bits 21-30 from the ISA for the Xform and Dform
// instructions that can be used as part of the initial exec TLS sequence.
enum XFormOpcd {
  LBZX = 87,
  LHZX = 279,
  LWZX = 23,
  LDX = 21,
  STBX = 215,
  STHX = 407,
  STWX = 151,
  STDX = 149,
  LHAX = 343,
  LWAX = 341,
  LFSX = 535,
  LFDX = 599,
  STFSX = 663,
  STFDX = 727,
  ADD = 266,
};

enum DFormOpcd {
  LBZ = 34,
  LBZU = 35,
  LHZ = 40,
  LHZU = 41,
  LHAU = 43,
  LWZ = 32,
  LWZU = 33,
  LFSU = 49,
  LFDU = 51,
  STB = 38,
  STBU = 39,
  STH = 44,
  STHU = 45,
  STW = 36,
  STWU = 37,
  STFSU = 53,
  STFDU = 55,
  LHA = 42,
  LFS = 48,
  LFD = 50,
  STFS = 52,
  STFD = 54,
  ADDI = 14
};

enum DSFormOpcd {
  LD = 58,
  LWA = 58,
  STD = 62
};

constexpr uint32_t NOP = 0x60000000;

enum class PPCLegacyInsn : uint32_t {
  NOINSN = 0,
  // Loads.
  LBZ = 0x88000000,
  LHZ = 0xa0000000,
  LWZ = 0x80000000,
  LHA = 0xa8000000,
  LWA = 0xe8000002,
  LD = 0xe8000000,
  LFS = 0xC0000000,
  LXSSP = 0xe4000003,
  LFD = 0xc8000000,
  LXSD = 0xe4000002,
  LXV = 0xf4000001,
  LXVP = 0x18000000,

  // Stores.
  STB = 0x98000000,
  STH = 0xb0000000,
  STW = 0x90000000,
  STD = 0xf8000000,
  STFS = 0xd0000000,
  STXSSP = 0xf4000003,
  STFD = 0xd8000000,
  STXSD = 0xf4000002,
  STXV = 0xf4000005,
  STXVP = 0x18000001
};
enum class PPCPrefixedInsn : uint64_t {
  NOINSN = 0,
  PREFIX_MLS = 0x0610000000000000,
  PREFIX_8LS = 0x0410000000000000,

  // Loads.
  PLBZ = PREFIX_MLS,
  PLHZ = PREFIX_MLS,
  PLWZ = PREFIX_MLS,
  PLHA = PREFIX_MLS,
  PLWA = PREFIX_8LS | 0xa4000000,
  PLD = PREFIX_8LS | 0xe4000000,
  PLFS = PREFIX_MLS,
  PLXSSP = PREFIX_8LS | 0xac000000,
  PLFD = PREFIX_MLS,
  PLXSD = PREFIX_8LS | 0xa8000000,
  PLXV = PREFIX_8LS | 0xc8000000,
  PLXVP = PREFIX_8LS | 0xe8000000,

  // Stores.
  PSTB = PREFIX_MLS,
  PSTH = PREFIX_MLS,
  PSTW = PREFIX_MLS,
  PSTD = PREFIX_8LS | 0xf4000000,
  PSTFS = PREFIX_MLS,
  PSTXSSP = PREFIX_8LS | 0xbc000000,
  PSTFD = PREFIX_MLS,
  PSTXSD = PREFIX_8LS | 0xb8000000,
  PSTXV = PREFIX_8LS | 0xd8000000,
  PSTXVP = PREFIX_8LS | 0xf8000000
};

static bool checkPPCLegacyInsn(uint32_t encoding) {
  PPCLegacyInsn insn = static_cast<PPCLegacyInsn>(encoding);
  if (insn == PPCLegacyInsn::NOINSN)
    return false;
#define PCREL_OPT(Legacy, PCRel, InsnMask)                                     \
  if (insn == PPCLegacyInsn::Legacy)                                           \
    return true;
#include "PPCInsns.def"
#undef PCREL_OPT
  return false;
}

// Masks to apply to legacy instructions when converting them to prefixed,
// pc-relative versions. For the most part, the primary opcode is shared
// between the legacy instruction and the suffix of its prefixed version.
// However, there are some instances where that isn't the case (DS-Form and
// DQ-form instructions).
enum class LegacyToPrefixMask : uint64_t {
  NOMASK = 0x0,
  OPC_AND_RST = 0xffe00000, // Primary opc (0-5) and R[ST] (6-10).
  ONLY_RST = 0x3e00000,     // [RS]T (6-10).
  ST_STX28_TO5 =
      0x8000000003e00000, // S/T (6-10) - The [S/T]X bit moves from 28 to 5.
};

class PPC64 final : public TargetInfo {
public:
  PPC64();
  int getTlsGdRelaxSkip(RelType type) const override;
  uint32_t calcEFlags() const override;
  RelExpr getRelExpr(RelType type, const Symbol &s,
                     const uint8_t *loc) const override;
  RelType getDynRel(RelType type) const override;
  int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
  void writePltHeader(uint8_t *buf) const override;
  void writePlt(uint8_t *buf, const Symbol &sym,
                uint64_t pltEntryAddr) const override;
  void writeIplt(uint8_t *buf, const Symbol &sym,
                 uint64_t pltEntryAddr) const override;
  void relocate(uint8_t *loc, const Relocation &rel,
                uint64_t val) const override;
  void writeGotHeader(uint8_t *buf) const override;
  bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
                  uint64_t branchAddr, const Symbol &s,
                  int64_t a) const override;
  uint32_t getThunkSectionSpacing() const override;
  bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
  RelExpr adjustTlsExpr(RelType type, RelExpr expr) const override;
  RelExpr adjustGotPcExpr(RelType type, int64_t addend,
                          const uint8_t *loc) const override;
  void relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) const;
  void relocateAlloc(InputSectionBase &sec, uint8_t *buf) const override;

  bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
                                        uint8_t stOther) const override;

private:
  void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
  void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
  void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
  void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
};
} // namespace

uint64_t elf::getPPC64TocBase() {
  // The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The
  // TOC starts where the first of these sections starts. We always create a
  // .got when we see a relocation that uses it, so for us the start is always
  // the .got.
  uint64_t tocVA = in.got->getVA();

  // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
  // thus permitting a full 64 Kbytes segment. Note that the glibc startup
  // code (crt1.o) assumes that you can get from the TOC base to the
  // start of the .toc section with only a single (signed) 16-bit relocation.
  return tocVA + ppc64TocOffset;
}

unsigned elf::getPPC64GlobalEntryToLocalEntryOffset(uint8_t stOther) {
  // The offset is encoded into the 3 most significant bits of the st_other
  // field, with some special values described in section 3.4.1 of the ABI:
  // 0   --> Zero offset between the GEP and LEP, and the function does NOT use
  //         the TOC pointer (r2). r2 will hold the same value on returning from
  //         the function as it did on entering the function.
  // 1   --> Zero offset between the GEP and LEP, and r2 should be treated as a
  //         caller-saved register for all callers.
  // 2-6 --> The  binary logarithm of the offset eg:
  //         2 --> 2^2 = 4 bytes -->  1 instruction.
  //         6 --> 2^6 = 64 bytes --> 16 instructions.
  // 7   --> Reserved.
  uint8_t gepToLep = (stOther >> 5) & 7;
  if (gepToLep < 2)
    return 0;

  // The value encoded in the st_other bits is the
  // log-base-2(offset).
  if (gepToLep < 7)
    return 1 << gepToLep;

  error("reserved value of 7 in the 3 most-significant-bits of st_other");
  return 0;
}

void elf::writePrefixedInstruction(uint8_t *loc, uint64_t insn) {
  insn = config->isLE ? insn << 32 | insn >> 32 : insn;
  write64(loc, insn);
}

static bool addOptional(StringRef name, uint64_t value,
                        std::vector<Defined *> &defined) {
  Symbol *sym = symtab.find(name);
  if (!sym || sym->isDefined())
    return false;
  sym->resolve(Defined{ctx.internalFile, StringRef(), STB_GLOBAL, STV_HIDDEN,
                       STT_FUNC, value,
                       /*size=*/0, /*section=*/nullptr});
  defined.push_back(cast<Defined>(sym));
  return true;
}

// If from is 14, write ${prefix}14: firstInsn; ${prefix}15:
// firstInsn+0x200008; ...; ${prefix}31: firstInsn+(31-14)*0x200008; $tail
// The labels are defined only if they exist in the symbol table.
static void writeSequence(MutableArrayRef<uint32_t> buf, const char *prefix,
                          int from, uint32_t firstInsn,
                          ArrayRef<uint32_t> tail) {
  std::vector<Defined *> defined;
  char name[16];
  int first;
  uint32_t *ptr = buf.data();
  for (int r = from; r < 32; ++r) {
    format("%s%d", prefix, r).snprint(name, sizeof(name));
    if (addOptional(name, 4 * (r - from), defined) && defined.size() == 1)
      first = r - from;
    write32(ptr++, firstInsn + 0x200008 * (r - from));
  }
  for (uint32_t insn : tail)
    write32(ptr++, insn);
  assert(ptr == &*buf.end());

  if (defined.empty())
    return;
  // The full section content has the extent of [begin, end). We drop unused
  // instructions and write [first,end).
  auto *sec = make<InputSection>(
      nullptr, SHF_ALLOC, SHT_PROGBITS, 4,
      ArrayRef(reinterpret_cast<uint8_t *>(buf.data() + first),
               4 * (buf.size() - first)),
      ".text");
  ctx.inputSections.push_back(sec);
  for (Defined *sym : defined) {
    sym->section = sec;
    sym->value -= 4 * first;
  }
}

// Implements some save and restore functions as described by ELF V2 ABI to be
// compatible with GCC. With GCC -Os, when the number of call-saved registers
// exceeds a certain threshold, GCC generates _savegpr0_* _restgpr0_* calls and
// expects the linker to define them. See
// https://sourceware.org/pipermail/binutils/2002-February/017444.html and
// https://sourceware.org/pipermail/binutils/2004-August/036765.html . This is
// weird because libgcc.a would be the natural place. The linker generation
// approach has the advantage that the linker can generate multiple copies to
// avoid long branch thunks. However, we don't consider the advantage
// significant enough to complicate our trunk implementation, so we take the
// simple approach and synthesize .text sections providing the implementation.
void elf::addPPC64SaveRestore() {
  static uint32_t savegpr0[20], restgpr0[21], savegpr1[19], restgpr1[19];
  constexpr uint32_t blr = 0x4e800020, mtlr_0 = 0x7c0803a6;

  // _restgpr0_14: ld 14, -144(1); _restgpr0_15: ld 15, -136(1); ...
  // Tail: ld 0, 16(1); mtlr 0; blr
  writeSequence(restgpr0, "_restgpr0_", 14, 0xe9c1ff70,
                {0xe8010010, mtlr_0, blr});
  // _restgpr1_14: ld 14, -144(12); _restgpr1_15: ld 15, -136(12); ...
  // Tail: blr
  writeSequence(restgpr1, "_restgpr1_", 14, 0xe9ccff70, {blr});
  // _savegpr0_14: std 14, -144(1); _savegpr0_15: std 15, -136(1); ...
  // Tail: std 0, 16(1); blr
  writeSequence(savegpr0, "_savegpr0_", 14, 0xf9c1ff70, {0xf8010010, blr});
  // _savegpr1_14: std 14, -144(12); _savegpr1_15: std 15, -136(12); ...
  // Tail: blr
  writeSequence(savegpr1, "_savegpr1_", 14, 0xf9ccff70, {blr});
}

// Find the R_PPC64_ADDR64 in .rela.toc with matching offset.
template <typename ELFT>
static std::pair<Defined *, int64_t>
getRelaTocSymAndAddend(InputSectionBase *tocSec, uint64_t offset) {
  // .rela.toc contains exclusively R_PPC64_ADDR64 relocations sorted by
  // r_offset: 0, 8, 16, etc. For a given Offset, Offset / 8 gives us the
  // relocation index in most cases.
  //
  // In rare cases a TOC entry may store a constant that doesn't need an
  // R_PPC64_ADDR64, the corresponding r_offset is therefore missing. Offset / 8
  // points to a relocation with larger r_offset. Do a linear probe then.
  // Constants are extremely uncommon in .toc and the extra number of array
  // accesses can be seen as a small constant.
  ArrayRef<typename ELFT::Rela> relas =
      tocSec->template relsOrRelas<ELFT>().relas;
  if (relas.empty())
    return {};
  uint64_t index = std::min<uint64_t>(offset / 8, relas.size() - 1);
  for (;;) {
    if (relas[index].r_offset == offset) {
      Symbol &sym = tocSec->getFile<ELFT>()->getRelocTargetSym(relas[index]);
      return {dyn_cast<Defined>(&sym), getAddend<ELFT>(relas[index])};
    }
    if (relas[index].r_offset < offset || index == 0)
      break;
    --index;
  }
  return {};
}

// When accessing a symbol defined in another translation unit, compilers
// reserve a .toc entry, allocate a local label and generate toc-indirect
// instructions:
//
//   addis 3, 2, .LC0@toc@ha  # R_PPC64_TOC16_HA
//   ld    3, .LC0@toc@l(3)   # R_PPC64_TOC16_LO_DS, load the address from a .toc entry
//   ld/lwa 3, 0(3)           # load the value from the address
//
//   .section .toc,"aw",@progbits
//   .LC0: .tc var[TC],var
//
// If var is defined, non-preemptable and addressable with a 32-bit signed
// offset from the toc base, the address of var can be computed by adding an
// offset to the toc base, saving a load.
//
//   addis 3,2,var@toc@ha     # this may be relaxed to a nop,
//   addi  3,3,var@toc@l      # then this becomes addi 3,2,var@toc
//   ld/lwa 3, 0(3)           # load the value from the address
//
// Returns true if the relaxation is performed.
static bool tryRelaxPPC64TocIndirection(const Relocation &rel,
                                        uint8_t *bufLoc) {
  assert(config->tocOptimize);
  if (rel.addend < 0)
    return false;

  // If the symbol is not the .toc section, this isn't a toc-indirection.
  Defined *defSym = dyn_cast<Defined>(rel.sym);
  if (!defSym || !defSym->isSection() || defSym->section->name != ".toc")
    return false;

  Defined *d;
  int64_t addend;
  auto *tocISB = cast<InputSectionBase>(defSym->section);
  std::tie(d, addend) =
      config->isLE ? getRelaTocSymAndAddend<ELF64LE>(tocISB, rel.addend)
                   : getRelaTocSymAndAddend<ELF64BE>(tocISB, rel.addend);

  // Only non-preemptable defined symbols can be relaxed.
  if (!d || d->isPreemptible)
    return false;

  // R_PPC64_ADDR64 should have created a canonical PLT for the non-preemptable
  // ifunc and changed its type to STT_FUNC.
  assert(!d->isGnuIFunc());

  // Two instructions can materialize a 32-bit signed offset from the toc base.
  uint64_t tocRelative = d->getVA(addend) - getPPC64TocBase();
  if (!isInt<32>(tocRelative))
    return false;

  // Add PPC64TocOffset that will be subtracted by PPC64::relocate().
  static_cast<const PPC64 &>(*target).relaxGot(bufLoc, rel,
                                               tocRelative + ppc64TocOffset);
  return true;
}

// Relocation masks following the #lo(value), #hi(value), #ha(value),
// #higher(value), #highera(value), #highest(value), and #highesta(value)
// macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
// document.
static uint16_t lo(uint64_t v) { return v; }
static uint16_t hi(uint64_t v) { return v >> 16; }
static uint64_t ha(uint64_t v) { return (v + 0x8000) >> 16; }
static uint16_t higher(uint64_t v) { return v >> 32; }
static uint16_t highera(uint64_t v) { return (v + 0x8000) >> 32; }
static uint16_t highest(uint64_t v) { return v >> 48; }
static uint16_t highesta(uint64_t v) { return (v + 0x8000) >> 48; }

// Extracts the 'PO' field of an instruction encoding.
static uint8_t getPrimaryOpCode(uint32_t encoding) { return (encoding >> 26); }

static bool isDQFormInstruction(uint32_t encoding) {
  switch (getPrimaryOpCode(encoding)) {
  default:
    return false;
  case 6: // Power10 paired loads/stores (lxvp, stxvp).
  case 56:
    // The only instruction with a primary opcode of 56 is `lq`.
    return true;
  case 61:
    // There are both DS and DQ instruction forms with this primary opcode.
    // Namely `lxv` and `stxv` are the DQ-forms that use it.
    // The DS 'XO' bits being set to 01 is restricted to DQ form.
    return (encoding & 3) == 0x1;
  }
}

static bool isDSFormInstruction(PPCLegacyInsn insn) {
  switch (insn) {
  default:
    return false;
  case PPCLegacyInsn::LWA:
  case PPCLegacyInsn::LD:
  case PPCLegacyInsn::LXSD:
  case PPCLegacyInsn::LXSSP:
  case PPCLegacyInsn::STD:
  case PPCLegacyInsn::STXSD:
  case PPCLegacyInsn::STXSSP:
    return true;
  }
}

static PPCLegacyInsn getPPCLegacyInsn(uint32_t encoding) {
  uint32_t opc = encoding & 0xfc000000;

  // If the primary opcode is shared between multiple instructions, we need to
  // fix it up to match the actual instruction we are after.
  if ((opc == 0xe4000000 || opc == 0xe8000000 || opc == 0xf4000000 ||
       opc == 0xf8000000) &&
      !isDQFormInstruction(encoding))
    opc = encoding & 0xfc000003;
  else if (opc == 0xf4000000)
    opc = encoding & 0xfc000007;
  else if (opc == 0x18000000)
    opc = encoding & 0xfc00000f;

  // If the value is not one of the enumerators in PPCLegacyInsn, we want to
  // return PPCLegacyInsn::NOINSN.
  if (!checkPPCLegacyInsn(opc))
    return PPCLegacyInsn::NOINSN;
  return static_cast<PPCLegacyInsn>(opc);
}

static PPCPrefixedInsn getPCRelativeForm(PPCLegacyInsn insn) {
  switch (insn) {
#define PCREL_OPT(Legacy, PCRel, InsnMask)                                     \
  case PPCLegacyInsn::Legacy:                                                  \
    return PPCPrefixedInsn::PCRel
#include "PPCInsns.def"
#undef PCREL_OPT
  }
  return PPCPrefixedInsn::NOINSN;
}

static LegacyToPrefixMask getInsnMask(PPCLegacyInsn insn) {
  switch (insn) {
#define PCREL_OPT(Legacy, PCRel, InsnMask)                                     \
  case PPCLegacyInsn::Legacy:                                                  \
    return LegacyToPrefixMask::InsnMask
#include "PPCInsns.def"
#undef PCREL_OPT
  }
  return LegacyToPrefixMask::NOMASK;
}
static uint64_t getPCRelativeForm(uint32_t encoding) {
  PPCLegacyInsn origInsn = getPPCLegacyInsn(encoding);
  PPCPrefixedInsn pcrelInsn = getPCRelativeForm(origInsn);
  if (pcrelInsn == PPCPrefixedInsn::NOINSN)
    return UINT64_C(-1);
  LegacyToPrefixMask origInsnMask = getInsnMask(origInsn);
  uint64_t pcrelEncoding =
      (uint64_t)pcrelInsn | (encoding & (uint64_t)origInsnMask);

  // If the mask requires moving bit 28 to bit 5, do that now.
  if (origInsnMask == LegacyToPrefixMask::ST_STX28_TO5)
    pcrelEncoding |= (encoding & 0x8) << 23;
  return pcrelEncoding;
}

static bool isInstructionUpdateForm(uint32_t encoding) {
  switch (getPrimaryOpCode(encoding)) {
  default:
    return false;
  case LBZU:
  case LHAU:
  case LHZU:
  case LWZU:
  case LFSU:
  case LFDU:
  case STBU:
  case STHU:
  case STWU:
  case STFSU:
  case STFDU:
    return true;
    // LWA has the same opcode as LD, and the DS bits is what differentiates
    // between LD/LDU/LWA
  case LD:
  case STD:
    return (encoding & 3) == 1;
  }
}

// Compute the total displacement between the prefixed instruction that gets
// to the start of the data and the load/store instruction that has the offset
// into the data structure.
// For example:
// paddi 3, 0, 1000, 1
// lwz 3, 20(3)
// Should add up to 1020 for total displacement.
static int64_t getTotalDisp(uint64_t prefixedInsn, uint32_t accessInsn) {
  int64_t disp34 = llvm::SignExtend64(
      ((prefixedInsn & 0x3ffff00000000) >> 16) | (prefixedInsn & 0xffff), 34);
  int32_t disp16 = llvm::SignExtend32(accessInsn & 0xffff, 16);
  // For DS and DQ form instructions, we need to mask out the XO bits.
  if (isDQFormInstruction(accessInsn))
    disp16 &= ~0xf;
  else if (isDSFormInstruction(getPPCLegacyInsn(accessInsn)))
    disp16 &= ~0x3;
  return disp34 + disp16;
}

// There are a number of places when we either want to read or write an
// instruction when handling a half16 relocation type. On big-endian the buffer
// pointer is pointing into the middle of the word we want to extract, and on
// little-endian it is pointing to the start of the word. These 2 helpers are to
// simplify reading and writing in that context.
static void writeFromHalf16(uint8_t *loc, uint32_t insn) {
  write32(config->isLE ? loc : loc - 2, insn);
}

static uint32_t readFromHalf16(const uint8_t *loc) {
  return read32(config->isLE ? loc : loc - 2);
}

static uint64_t readPrefixedInstruction(const uint8_t *loc) {
  uint64_t fullInstr = read64(loc);
  return config->isLE ? (fullInstr << 32 | fullInstr >> 32) : fullInstr;
}

PPC64::PPC64() {
  copyRel = R_PPC64_COPY;
  gotRel = R_PPC64_GLOB_DAT;
  pltRel = R_PPC64_JMP_SLOT;
  relativeRel = R_PPC64_RELATIVE;
  iRelativeRel = R_PPC64_IRELATIVE;
  symbolicRel = R_PPC64_ADDR64;
  pltHeaderSize = 60;
  pltEntrySize = 4;
  ipltEntrySize = 16; // PPC64PltCallStub::size
  gotHeaderEntriesNum = 1;
  gotPltHeaderEntriesNum = 2;
  needsThunks = true;

  tlsModuleIndexRel = R_PPC64_DTPMOD64;
  tlsOffsetRel = R_PPC64_DTPREL64;

  tlsGotRel = R_PPC64_TPREL64;

  needsMoreStackNonSplit = false;

  // We need 64K pages (at least under glibc/Linux, the loader won't
  // set different permissions on a finer granularity than that).
  defaultMaxPageSize = 65536;

  // The PPC64 ELF ABI v1 spec, says:
  //
  //   It is normally desirable to put segments with different characteristics
  //   in separate 256 Mbyte portions of the address space, to give the
  //   operating system full paging flexibility in the 64-bit address space.
  //
  // And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers
  // use 0x10000000 as the starting address.
  defaultImageBase = 0x10000000;

  write32(trapInstr.data(), 0x7fe00008);
}

int PPC64::getTlsGdRelaxSkip(RelType type) const {
  // A __tls_get_addr call instruction is marked with 2 relocations:
  //
  //   R_PPC64_TLSGD / R_PPC64_TLSLD: marker relocation
  //   R_PPC64_REL24: __tls_get_addr
  //
  // After the relaxation we no longer call __tls_get_addr and should skip both
  // relocations to not create a false dependence on __tls_get_addr being
  // defined.
  if (type == R_PPC64_TLSGD || type == R_PPC64_TLSLD)
    return 2;
  return 1;
}

static uint32_t getEFlags(InputFile *file) {
  if (file->ekind == ELF64BEKind)
    return cast<ObjFile<ELF64BE>>(file)->getObj().getHeader().e_flags;
  return cast<ObjFile<ELF64LE>>(file)->getObj().getHeader().e_flags;
}

// This file implements v2 ABI. This function makes sure that all
// object files have v2 or an unspecified version as an ABI version.
uint32_t PPC64::calcEFlags() const {
  for (InputFile *f : ctx.objectFiles) {
    uint32_t flag = getEFlags(f);
    if (flag == 1)
      error(toString(f) + ": ABI version 1 is not supported");
    else if (flag > 2)
      error(toString(f) + ": unrecognized e_flags: " + Twine(flag));
  }
  return 2;
}

void PPC64::relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) const {
  switch (rel.type) {
  case R_PPC64_TOC16_HA:
    // Convert "addis reg, 2, .LC0@toc@h" to "addis reg, 2, var@toc@h" or "nop".
    relocate(loc, rel, val);
    break;
  case R_PPC64_TOC16_LO_DS: {
    // Convert "ld reg, .LC0@toc@l(reg)" to "addi reg, reg, var@toc@l" or
    // "addi reg, 2, var@toc".
    uint32_t insn = readFromHalf16(loc);
    if (getPrimaryOpCode(insn) != LD)
      error("expected a 'ld' for got-indirect to toc-relative relaxing");
    writeFromHalf16(loc, (insn & 0x03ffffff) | 0x38000000);
    relocateNoSym(loc, R_PPC64_TOC16_LO, val);
    break;
  }
  case R_PPC64_GOT_PCREL34: {
    // Clear the first 8 bits of the prefix and the first 6 bits of the
    // instruction (the primary opcode).
    uint64_t insn = readPrefixedInstruction(loc);
    if ((insn & 0xfc000000) != 0xe4000000)
      error("expected a 'pld' for got-indirect to pc-relative relaxing");
    insn &= ~0xff000000fc000000;

    // Replace the cleared bits with the values for PADDI (0x600000038000000);
    insn |= 0x600000038000000;
    writePrefixedInstruction(loc, insn);
    relocate(loc, rel, val);
    break;
  }
  case R_PPC64_PCREL_OPT: {
    // We can only relax this if the R_PPC64_GOT_PCREL34 at this offset can
    // be relaxed. The eligibility for the relaxation needs to be determined
    // on that relocation since this one does not relocate a symbol.
    uint64_t insn = readPrefixedInstruction(loc);
    uint32_t accessInsn = read32(loc + rel.addend);
    uint64_t pcRelInsn = getPCRelativeForm(accessInsn);

    // This error is not necessary for correctness but is emitted for now
    // to ensure we don't miss these opportunities in real code. It can be
    // removed at a later date.
    if (pcRelInsn == UINT64_C(-1)) {
      errorOrWarn(
          "unrecognized instruction for R_PPC64_PCREL_OPT relaxation: 0x" +
          Twine::utohexstr(accessInsn));
      break;
    }

    int64_t totalDisp = getTotalDisp(insn, accessInsn);
    if (!isInt<34>(totalDisp))
      break; // Displacement doesn't fit.
    // Convert the PADDI to the prefixed version of accessInsn and convert
    // accessInsn to a nop.
    writePrefixedInstruction(loc, pcRelInsn |
                                      ((totalDisp & 0x3ffff0000) << 16) |
                                      (totalDisp & 0xffff));
    write32(loc + rel.addend, NOP); // nop accessInsn.
    break;
  }
  default:
    llvm_unreachable("unexpected relocation type");
  }
}

void PPC64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
                           uint64_t val) const {
  // Reference: 3.7.4.2 of the 64-bit ELF V2 abi supplement.
  // The general dynamic code sequence for a global `x` will look like:
  // Instruction                    Relocation                Symbol
  // addis r3, r2, x@got@tlsgd@ha   R_PPC64_GOT_TLSGD16_HA      x
  // addi  r3, r3, x@got@tlsgd@l    R_PPC64_GOT_TLSGD16_LO      x
  // bl __tls_get_addr(x@tlsgd)     R_PPC64_TLSGD               x
  //                                R_PPC64_REL24               __tls_get_addr
  // nop                            None                       None

  // Relaxing to local exec entails converting:
  // addis r3, r2, x@got@tlsgd@ha    into      nop
  // addi  r3, r3, x@got@tlsgd@l     into      addis r3, r13, x@tprel@ha
  // bl __tls_get_addr(x@tlsgd)      into      nop
  // nop                             into      addi r3, r3, x@tprel@l

  switch (rel.type) {
  case R_PPC64_GOT_TLSGD16_HA:
    writeFromHalf16(loc, NOP);
    break;
  case R_PPC64_GOT_TLSGD16:
  case R_PPC64_GOT_TLSGD16_LO:
    writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13
    relocateNoSym(loc, R_PPC64_TPREL16_HA, val);
    break;
  case R_PPC64_GOT_TLSGD_PCREL34:
    // Relax from paddi r3, 0, x@got@tlsgd@pcrel, 1 to
    //            paddi r3, r13, x@tprel, 0
    writePrefixedInstruction(loc, 0x06000000386d0000);
    relocateNoSym(loc, R_PPC64_TPREL34, val);
    break;
  case R_PPC64_TLSGD: {
    // PC Relative Relaxation:
    // Relax from bl __tls_get_addr@notoc(x@tlsgd) to
    //            nop
    // TOC Relaxation:
    // Relax from bl __tls_get_addr(x@tlsgd)
    //            nop
    // to
    //            nop
    //            addi r3, r3, x@tprel@l
    const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
    if (locAsInt % 4 == 0) {
      write32(loc, NOP);            // nop
      write32(loc + 4, 0x38630000); // addi r3, r3
      // Since we are relocating a half16 type relocation and Loc + 4 points to
      // the start of an instruction we need to advance the buffer by an extra
      // 2 bytes on BE.
      relocateNoSym(loc + 4 + (config->ekind == ELF64BEKind ? 2 : 0),
                    R_PPC64_TPREL16_LO, val);
    } else if (locAsInt % 4 == 1) {
      write32(loc - 1, NOP);
    } else {
      errorOrWarn("R_PPC64_TLSGD has unexpected byte alignment");
    }
    break;
  }
  default:
    llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
  }
}

void PPC64::relaxTlsLdToLe(uint8_t *loc, const Relocation &rel,
                           uint64_t val) const {
  // Reference: 3.7.4.3 of the 64-bit ELF V2 abi supplement.
  // The local dynamic code sequence for a global `x` will look like:
  // Instruction                    Relocation                Symbol
  // addis r3, r2, x@got@tlsld@ha   R_PPC64_GOT_TLSLD16_HA      x
  // addi  r3, r3, x@got@tlsld@l    R_PPC64_GOT_TLSLD16_LO      x
  // bl __tls_get_addr(x@tlsgd)     R_PPC64_TLSLD               x
  //                                R_PPC64_REL24               __tls_get_addr
  // nop                            None                       None

  // Relaxing to local exec entails converting:
  // addis r3, r2, x@got@tlsld@ha   into      nop
  // addi  r3, r3, x@got@tlsld@l    into      addis r3, r13, 0
  // bl __tls_get_addr(x@tlsgd)     into      nop
  // nop                            into      addi r3, r3, 4096

  switch (rel.type) {
  case R_PPC64_GOT_TLSLD16_HA:
    writeFromHalf16(loc, NOP);
    break;
  case R_PPC64_GOT_TLSLD16_LO:
    writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13, 0
    break;
  case R_PPC64_GOT_TLSLD_PCREL34:
    // Relax from paddi r3, 0, x1@got@tlsld@pcrel, 1 to
    //            paddi r3, r13, 0x1000, 0
    writePrefixedInstruction(loc, 0x06000000386d1000);
    break;
  case R_PPC64_TLSLD: {
    // PC Relative Relaxation:
    // Relax from bl __tls_get_addr@notoc(x@tlsld)
    // to
    //            nop
    // TOC Relaxation:
    // Relax from bl __tls_get_addr(x@tlsld)
    //            nop
    // to
    //            nop
    //            addi r3, r3, 4096
    const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
    if (locAsInt % 4 == 0) {
      write32(loc, NOP);
      write32(loc + 4, 0x38631000); // addi r3, r3, 4096
    } else if (locAsInt % 4 == 1) {
      write32(loc - 1, NOP);
    } else {
      errorOrWarn("R_PPC64_TLSLD has unexpected byte alignment");
    }
    break;
  }
  case R_PPC64_DTPREL16:
  case R_PPC64_DTPREL16_HA:
  case R_PPC64_DTPREL16_HI:
  case R_PPC64_DTPREL16_DS:
  case R_PPC64_DTPREL16_LO:
  case R_PPC64_DTPREL16_LO_DS:
  case R_PPC64_DTPREL34:
    relocate(loc, rel, val);
    break;
  default:
    llvm_unreachable("unsupported relocation for TLS LD to LE relaxation");
  }
}

// Map X-Form instructions to their DS-Form counterparts, if applicable.
// The full encoding is returned here to distinguish between the different
// DS-Form instructions.
unsigned elf::getPPCDSFormOp(unsigned secondaryOp) {
  switch (secondaryOp) {
  case LWAX:
    return (LWA << 26) | 0x2;
  case LDX:
    return LD << 26;
  case STDX:
    return STD << 26;
  default:
    return 0;
  }
}

unsigned elf::getPPCDFormOp(unsigned secondaryOp) {
  switch (secondaryOp) {
  case LBZX:
    return LBZ << 26;
  case LHZX:
    return LHZ << 26;
  case LWZX:
    return LWZ << 26;
  case STBX:
    return STB << 26;
  case STHX:
    return STH << 26;
  case STWX:
    return STW << 26;
  case LHAX:
    return LHA << 26;
  case LFSX:
    return LFS << 26;
  case LFDX:
    return LFD << 26;
  case STFSX:
    return STFS << 26;
  case STFDX:
    return STFD << 26;
  case ADD:
    return ADDI << 26;
  default:
    return 0;
  }
}

void PPC64::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
                           uint64_t val) const {
  // The initial exec code sequence for a global `x` will look like:
  // Instruction                    Relocation                Symbol
  // addis r9, r2, x@got@tprel@ha   R_PPC64_GOT_TPREL16_HA      x
  // ld    r9, x@got@tprel@l(r9)    R_PPC64_GOT_TPREL16_LO_DS   x
  // add r9, r9, x@tls              R_PPC64_TLS                 x

  // Relaxing to local exec entails converting:
  // addis r9, r2, x@got@tprel@ha       into        nop
  // ld r9, x@got@tprel@l(r9)           into        addis r9, r13, x@tprel@ha
  // add r9, r9, x@tls                  into        addi r9, r9, x@tprel@l

  // x@tls R_PPC64_TLS is a relocation which does not compute anything,
  // it is replaced with r13 (thread pointer).

  // The add instruction in the initial exec sequence has multiple variations
  // that need to be handled. If we are building an address it will use an add
  // instruction, if we are accessing memory it will use any of the X-form
  // indexed load or store instructions.

  unsigned offset = (config->ekind == ELF64BEKind) ? 2 : 0;
  switch (rel.type) {
  case R_PPC64_GOT_TPREL16_HA:
    write32(loc - offset, NOP);
    break;
  case R_PPC64_GOT_TPREL16_LO_DS:
  case R_PPC64_GOT_TPREL16_DS: {
    uint32_t regNo = read32(loc - offset) & 0x03E00000; // bits 6-10
    write32(loc - offset, 0x3C0D0000 | regNo);          // addis RegNo, r13
    relocateNoSym(loc, R_PPC64_TPREL16_HA, val);
    break;
  }
  case R_PPC64_GOT_TPREL_PCREL34: {
    const uint64_t pldRT = readPrefixedInstruction(loc) & 0x0000000003e00000;
    // paddi RT(from pld), r13, symbol@tprel, 0
    writePrefixedInstruction(loc, 0x06000000380d0000 | pldRT);
    relocateNoSym(loc, R_PPC64_TPREL34, val);
    break;
  }
  case R_PPC64_TLS: {
    const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
    if (locAsInt % 4 == 0) {
      uint32_t primaryOp = getPrimaryOpCode(read32(loc));
      if (primaryOp != 31)
        error("unrecognized instruction for IE to LE R_PPC64_TLS");
      uint32_t secondaryOp = (read32(loc) & 0x000007FE) >> 1; // bits 21-30
      uint32_t dFormOp = getPPCDFormOp(secondaryOp);
      uint32_t finalReloc;
      if (dFormOp == 0) { // Expecting a DS-Form instruction.
        dFormOp = getPPCDSFormOp(secondaryOp);
        if (dFormOp == 0)
          error("unrecognized instruction for IE to LE R_PPC64_TLS");
        finalReloc = R_PPC64_TPREL16_LO_DS;
      } else
        finalReloc = R_PPC64_TPREL16_LO;
      write32(loc, dFormOp | (read32(loc) & 0x03ff0000));
      relocateNoSym(loc + offset, finalReloc, val);
    } else if (locAsInt % 4 == 1) {
      // If the offset is not 4 byte aligned then we have a PCRel type reloc.
      // This version of the relocation is offset by one byte from the
      // instruction it references.
      uint32_t tlsInstr = read32(loc - 1);
      uint32_t primaryOp = getPrimaryOpCode(tlsInstr);
      if (primaryOp != 31)
        errorOrWarn("unrecognized instruction for IE to LE R_PPC64_TLS");
      uint32_t secondaryOp = (tlsInstr & 0x000007FE) >> 1; // bits 21-30
      // The add is a special case and should be turned into a nop. The paddi
      // that comes before it will already have computed the address of the
      // symbol.
      if (secondaryOp == 266) {
        // Check if the add uses the same result register as the input register.
        uint32_t rt = (tlsInstr & 0x03E00000) >> 21; // bits 6-10
        uint32_t ra = (tlsInstr & 0x001F0000) >> 16; // bits 11-15
        if (ra == rt) {
          write32(loc - 1, NOP);
        } else {
          // mr rt, ra
          write32(loc - 1, 0x7C000378 | (rt << 16) | (ra << 21) | (ra << 11));
        }
      } else {
        uint32_t dFormOp = getPPCDFormOp(secondaryOp);
        if (dFormOp == 0) { // Expecting a DS-Form instruction.
          dFormOp = getPPCDSFormOp(secondaryOp);
          if (dFormOp == 0)
            errorOrWarn("unrecognized instruction for IE to LE R_PPC64_TLS");
        }
        write32(loc - 1, (dFormOp | (tlsInstr & 0x03ff0000)));
      }
    } else {
      errorOrWarn("R_PPC64_TLS must be either 4 byte aligned or one byte "
                  "offset from 4 byte aligned");
    }
    break;
  }
  default:
    llvm_unreachable("unknown relocation for IE to LE");
    break;
  }
}

RelExpr PPC64::getRelExpr(RelType type, const Symbol &s,
                          const uint8_t *loc) const {
  switch (type) {
  case R_PPC64_NONE:
    return R_NONE;
  case R_PPC64_ADDR16:
  case R_PPC64_ADDR16_DS:
  case R_PPC64_ADDR16_HA:
  case R_PPC64_ADDR16_HI:
  case R_PPC64_ADDR16_HIGH:
  case R_PPC64_ADDR16_HIGHER:
  case R_PPC64_ADDR16_HIGHERA:
  case R_PPC64_ADDR16_HIGHEST:
  case R_PPC64_ADDR16_HIGHESTA:
  case R_PPC64_ADDR16_LO:
  case R_PPC64_ADDR16_LO_DS:
  case R_PPC64_ADDR32:
  case R_PPC64_ADDR64:
    return R_ABS;
  case R_PPC64_GOT16:
  case R_PPC64_GOT16_DS:
  case R_PPC64_GOT16_HA:
  case R_PPC64_GOT16_HI:
  case R_PPC64_GOT16_LO:
  case R_PPC64_GOT16_LO_DS:
    return R_GOT_OFF;
  case R_PPC64_TOC16:
  case R_PPC64_TOC16_DS:
  case R_PPC64_TOC16_HI:
  case R_PPC64_TOC16_LO:
    return R_GOTREL;
  case R_PPC64_GOT_PCREL34:
  case R_PPC64_GOT_TPREL_PCREL34:
  case R_PPC64_PCREL_OPT:
    return R_GOT_PC;
  case R_PPC64_TOC16_HA:
  case R_PPC64_TOC16_LO_DS:
    return config->tocOptimize ? R_PPC64_RELAX_TOC : R_GOTREL;
  case R_PPC64_TOC:
    return R_PPC64_TOCBASE;
  case R_PPC64_REL14:
  case R_PPC64_REL24:
    return R_PPC64_CALL_PLT;
  case R_PPC64_REL24_NOTOC:
    return R_PLT_PC;
  case R_PPC64_REL16_LO:
  case R_PPC64_REL16_HA:
  case R_PPC64_REL16_HI:
  case R_PPC64_REL32:
  case R_PPC64_REL64:
  case R_PPC64_PCREL34:
    return R_PC;
  case R_PPC64_GOT_TLSGD16:
  case R_PPC64_GOT_TLSGD16_HA:
  case R_PPC64_GOT_TLSGD16_HI:
  case R_PPC64_GOT_TLSGD16_LO:
    return R_TLSGD_GOT;
  case R_PPC64_GOT_TLSGD_PCREL34:
    return R_TLSGD_PC;
  case R_PPC64_GOT_TLSLD16:
  case R_PPC64_GOT_TLSLD16_HA:
  case R_PPC64_GOT_TLSLD16_HI:
  case R_PPC64_GOT_TLSLD16_LO:
    return R_TLSLD_GOT;
  case R_PPC64_GOT_TLSLD_PCREL34:
    return R_TLSLD_PC;
  case R_PPC64_GOT_TPREL16_HA:
  case R_PPC64_GOT_TPREL16_LO_DS:
  case R_PPC64_GOT_TPREL16_DS:
  case R_PPC64_GOT_TPREL16_HI:
    return R_GOT_OFF;
  case R_PPC64_GOT_DTPREL16_HA:
  case R_PPC64_GOT_DTPREL16_LO_DS:
  case R_PPC64_GOT_DTPREL16_DS:
  case R_PPC64_GOT_DTPREL16_HI:
    return R_TLSLD_GOT_OFF;
  case R_PPC64_TPREL16:
  case R_PPC64_TPREL16_HA:
  case R_PPC64_TPREL16_LO:
  case R_PPC64_TPREL16_HI:
  case R_PPC64_TPREL16_DS:
  case R_PPC64_TPREL16_LO_DS:
  case R_PPC64_TPREL16_HIGHER:
  case R_PPC64_TPREL16_HIGHERA:
  case R_PPC64_TPREL16_HIGHEST:
  case R_PPC64_TPREL16_HIGHESTA:
  case R_PPC64_TPREL34:
    return R_TPREL;
  case R_PPC64_DTPREL16:
  case R_PPC64_DTPREL16_DS:
  case R_PPC64_DTPREL16_HA:
  case R_PPC64_DTPREL16_HI:
  case R_PPC64_DTPREL16_HIGHER:
  case R_PPC64_DTPREL16_HIGHERA:
  case R_PPC64_DTPREL16_HIGHEST:
  case R_PPC64_DTPREL16_HIGHESTA:
  case R_PPC64_DTPREL16_LO:
  case R_PPC64_DTPREL16_LO_DS:
  case R_PPC64_DTPREL64:
  case R_PPC64_DTPREL34:
    return R_DTPREL;
  case R_PPC64_TLSGD:
    return R_TLSDESC_CALL;
  case R_PPC64_TLSLD:
    return R_TLSLD_HINT;
  case R_PPC64_TLS:
    return R_TLSIE_HINT;
  default:
    error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
          ") against symbol " + toString(s));
    return R_NONE;
  }
}

RelType PPC64::getDynRel(RelType type) const {
  if (type == R_PPC64_ADDR64 || type == R_PPC64_TOC)
    return R_PPC64_ADDR64;
  return R_PPC64_NONE;
}

int64_t PPC64::getImplicitAddend(const uint8_t *buf, RelType type) const {
  switch (type) {
  case R_PPC64_NONE:
  case R_PPC64_GLOB_DAT:
  case R_PPC64_JMP_SLOT:
    return 0;
  case R_PPC64_REL32:
    return SignExtend64<32>(read32(buf));
  case R_PPC64_ADDR64:
  case R_PPC64_REL64:
  case R_PPC64_RELATIVE:
  case R_PPC64_IRELATIVE:
  case R_PPC64_DTPMOD64:
  case R_PPC64_DTPREL64:
  case R_PPC64_TPREL64:
    return read64(buf);
  default:
    internalLinkerError(getErrorLocation(buf),
                        "cannot read addend for relocation " + toString(type));
    return 0;
  }
}

void PPC64::writeGotHeader(uint8_t *buf) const {
  write64(buf, getPPC64TocBase());
}

void PPC64::writePltHeader(uint8_t *buf) const {
  // The generic resolver stub goes first.
  write32(buf +  0, 0x7c0802a6); // mflr r0
  write32(buf +  4, 0x429f0005); // bcl  20,4*cr7+so,8 <_glink+0x8>
  write32(buf +  8, 0x7d6802a6); // mflr r11
  write32(buf + 12, 0x7c0803a6); // mtlr r0
  write32(buf + 16, 0x7d8b6050); // subf r12, r11, r12
  write32(buf + 20, 0x380cffcc); // subi r0,r12,52
  write32(buf + 24, 0x7800f082); // srdi r0,r0,62,2
  write32(buf + 28, 0xe98b002c); // ld   r12,44(r11)
  write32(buf + 32, 0x7d6c5a14); // add  r11,r12,r11
  write32(buf + 36, 0xe98b0000); // ld   r12,0(r11)
  write32(buf + 40, 0xe96b0008); // ld   r11,8(r11)
  write32(buf + 44, 0x7d8903a6); // mtctr   r12
  write32(buf + 48, 0x4e800420); // bctr

  // The 'bcl' instruction will set the link register to the address of the
  // following instruction ('mflr r11'). Here we store the offset from that
  // instruction  to the first entry in the GotPlt section.
  int64_t gotPltOffset = in.gotPlt->getVA() - (in.plt->getVA() + 8);
  write64(buf + 52, gotPltOffset);
}

void PPC64::writePlt(uint8_t *buf, const Symbol &sym,
                     uint64_t /*pltEntryAddr*/) const {
  int32_t offset = pltHeaderSize + sym.getPltIdx() * pltEntrySize;
  // bl __glink_PLTresolve
  write32(buf, 0x48000000 | ((-offset) & 0x03FFFFFc));
}

void PPC64::writeIplt(uint8_t *buf, const Symbol &sym,
                      uint64_t /*pltEntryAddr*/) const {
  writePPC64LoadAndBranch(buf, sym.getGotPltVA() - getPPC64TocBase());
}

static std::pair<RelType, uint64_t> toAddr16Rel(RelType type, uint64_t val) {
  // Relocations relative to the toc-base need to be adjusted by the Toc offset.
  uint64_t tocBiasedVal = val - ppc64TocOffset;
  // Relocations relative to dtv[dtpmod] need to be adjusted by the DTP offset.
  uint64_t dtpBiasedVal = val - dynamicThreadPointerOffset;

  switch (type) {
  // TOC biased relocation.
  case R_PPC64_GOT16:
  case R_PPC64_GOT_TLSGD16:
  case R_PPC64_GOT_TLSLD16:
  case R_PPC64_TOC16:
    return {R_PPC64_ADDR16, tocBiasedVal};
  case R_PPC64_GOT16_DS:
  case R_PPC64_TOC16_DS:
  case R_PPC64_GOT_TPREL16_DS:
  case R_PPC64_GOT_DTPREL16_DS:
    return {R_PPC64_ADDR16_DS, tocBiasedVal};
  case R_PPC64_GOT16_HA:
  case R_PPC64_GOT_TLSGD16_HA:
  case R_PPC64_GOT_TLSLD16_HA:
  case R_PPC64_GOT_TPREL16_HA:
  case R_PPC64_GOT_DTPREL16_HA:
  case R_PPC64_TOC16_HA:
    return {R_PPC64_ADDR16_HA, tocBiasedVal};
  case R_PPC64_GOT16_HI:
  case R_PPC64_GOT_TLSGD16_HI:
  case R_PPC64_GOT_TLSLD16_HI:
  case R_PPC64_GOT_TPREL16_HI:
  case R_PPC64_GOT_DTPREL16_HI:
  case R_PPC64_TOC16_HI:
    return {R_PPC64_ADDR16_HI, tocBiasedVal};
  case R_PPC64_GOT16_LO:
  case R_PPC64_GOT_TLSGD16_LO:
  case R_PPC64_GOT_TLSLD16_LO:
  case R_PPC64_TOC16_LO:
    return {R_PPC64_ADDR16_LO, tocBiasedVal};
  case R_PPC64_GOT16_LO_DS:
  case R_PPC64_TOC16_LO_DS:
  case R_PPC64_GOT_TPREL16_LO_DS:
  case R_PPC64_GOT_DTPREL16_LO_DS:
    return {R_PPC64_ADDR16_LO_DS, tocBiasedVal};

  // Dynamic Thread pointer biased relocation types.
  case R_PPC64_DTPREL16:
    return {R_PPC64_ADDR16, dtpBiasedVal};
  case R_PPC64_DTPREL16_DS:
    return {R_PPC64_ADDR16_DS, dtpBiasedVal};
  case R_PPC64_DTPREL16_HA:
    return {R_PPC64_ADDR16_HA, dtpBiasedVal};
  case R_PPC64_DTPREL16_HI:
    return {R_PPC64_ADDR16_HI, dtpBiasedVal};
  case R_PPC64_DTPREL16_HIGHER:
    return {R_PPC64_ADDR16_HIGHER, dtpBiasedVal};
  case R_PPC64_DTPREL16_HIGHERA:
    return {R_PPC64_ADDR16_HIGHERA, dtpBiasedVal};
  case R_PPC64_DTPREL16_HIGHEST:
    return {R_PPC64_ADDR16_HIGHEST, dtpBiasedVal};
  case R_PPC64_DTPREL16_HIGHESTA:
    return {R_PPC64_ADDR16_HIGHESTA, dtpBiasedVal};
  case R_PPC64_DTPREL16_LO:
    return {R_PPC64_ADDR16_LO, dtpBiasedVal};
  case R_PPC64_DTPREL16_LO_DS:
    return {R_PPC64_ADDR16_LO_DS, dtpBiasedVal};
  case R_PPC64_DTPREL64:
    return {R_PPC64_ADDR64, dtpBiasedVal};

  default:
    return {type, val};
  }
}

static bool isTocOptType(RelType type) {
  switch (type) {
  case R_PPC64_GOT16_HA:
  case R_PPC64_GOT16_LO_DS:
  case R_PPC64_TOC16_HA:
  case R_PPC64_TOC16_LO_DS:
  case R_PPC64_TOC16_LO:
    return true;
  default:
    return false;
  }
}

void PPC64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
  RelType type = rel.type;
  bool shouldTocOptimize =  isTocOptType(type);
  // For dynamic thread pointer relative, toc-relative, and got-indirect
  // relocations, proceed in terms of the corresponding ADDR16 relocation type.
  std::tie(type, val) = toAddr16Rel(type, val);

  switch (type) {
  case R_PPC64_ADDR14: {
    checkAlignment(loc, val, 4, rel);
    // Preserve the AA/LK bits in the branch instruction
    uint8_t aalk = loc[3];
    write16(loc + 2, (aalk & 3) | (val & 0xfffc));
    break;
  }
  case R_PPC64_ADDR16:
    checkIntUInt(loc, val, 16, rel);
    write16(loc, val);
    break;
  case R_PPC64_ADDR32:
    checkIntUInt(loc, val, 32, rel);
    write32(loc, val);
    break;
  case R_PPC64_ADDR16_DS:
  case R_PPC64_TPREL16_DS: {
    checkInt(loc, val, 16, rel);
    // DQ-form instructions use bits 28-31 as part of the instruction encoding
    // DS-form instructions only use bits 30-31.
    uint16_t mask = isDQFormInstruction(readFromHalf16(loc)) ? 0xf : 0x3;
    checkAlignment(loc, lo(val), mask + 1, rel);
    write16(loc, (read16(loc) & mask) | lo(val));
  } break;
  case R_PPC64_ADDR16_HA:
  case R_PPC64_REL16_HA:
  case R_PPC64_TPREL16_HA:
    if (config->tocOptimize && shouldTocOptimize && ha(val) == 0)
      writeFromHalf16(loc, NOP);
    else {
      checkInt(loc, val + 0x8000, 32, rel);
      write16(loc, ha(val));
    }
    break;
  case R_PPC64_ADDR16_HI:
  case R_PPC64_REL16_HI:
  case R_PPC64_TPREL16_HI:
    checkInt(loc, val, 32, rel);
    write16(loc, hi(val));
    break;
  case R_PPC64_ADDR16_HIGH:
    write16(loc, hi(val));
    break;
  case R_PPC64_ADDR16_HIGHER:
  case R_PPC64_TPREL16_HIGHER:
    write16(loc, higher(val));
    break;
  case R_PPC64_ADDR16_HIGHERA:
  case R_PPC64_TPREL16_HIGHERA:
    write16(loc, highera(val));
    break;
  case R_PPC64_ADDR16_HIGHEST:
  case R_PPC64_TPREL16_HIGHEST:
    write16(loc, highest(val));
    break;
  case R_PPC64_ADDR16_HIGHESTA:
  case R_PPC64_TPREL16_HIGHESTA:
    write16(loc, highesta(val));
    break;
  case R_PPC64_ADDR16_LO:
  case R_PPC64_REL16_LO:
  case R_PPC64_TPREL16_LO:
    // When the high-adjusted part of a toc relocation evaluates to 0, it is
    // changed into a nop. The lo part then needs to be updated to use the
    // toc-pointer register r2, as the base register.
    if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) {
      uint32_t insn = readFromHalf16(loc);
      if (isInstructionUpdateForm(insn))
        error(getErrorLocation(loc) +
              "can't toc-optimize an update instruction: 0x" +
              utohexstr(insn));
      writeFromHalf16(loc, (insn & 0xffe00000) | 0x00020000 | lo(val));
    } else {
      write16(loc, lo(val));
    }
    break;
  case R_PPC64_ADDR16_LO_DS:
  case R_PPC64_TPREL16_LO_DS: {
    // DQ-form instructions use bits 28-31 as part of the instruction encoding
    // DS-form instructions only use bits 30-31.
    uint32_t insn = readFromHalf16(loc);
    uint16_t mask = isDQFormInstruction(insn) ? 0xf : 0x3;
    checkAlignment(loc, lo(val), mask + 1, rel);
    if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) {
      // When the high-adjusted part of a toc relocation evaluates to 0, it is
      // changed into a nop. The lo part then needs to be updated to use the toc
      // pointer register r2, as the base register.
      if (isInstructionUpdateForm(insn))
        error(getErrorLocation(loc) +
              "Can't toc-optimize an update instruction: 0x" +
              Twine::utohexstr(insn));
      insn &= 0xffe00000 | mask;
      writeFromHalf16(loc, insn | 0x00020000 | lo(val));
    } else {
      write16(loc, (read16(loc) & mask) | lo(val));
    }
  } break;
  case R_PPC64_TPREL16:
    checkInt(loc, val, 16, rel);
    write16(loc, val);
    break;
  case R_PPC64_REL32:
    checkInt(loc, val, 32, rel);
    write32(loc, val);
    break;
  case R_PPC64_ADDR64:
  case R_PPC64_REL64:
  case R_PPC64_TOC:
    write64(loc, val);
    break;
  case R_PPC64_REL14: {
    uint32_t mask = 0x0000FFFC;
    checkInt(loc, val, 16, rel);
    checkAlignment(loc, val, 4, rel);
    write32(loc, (read32(loc) & ~mask) | (val & mask));
    break;
  }
  case R_PPC64_REL24:
  case R_PPC64_REL24_NOTOC: {
    uint32_t mask = 0x03FFFFFC;
    checkInt(loc, val, 26, rel);
    checkAlignment(loc, val, 4, rel);
    write32(loc, (read32(loc) & ~mask) | (val & mask));
    break;
  }
  case R_PPC64_DTPREL64:
    write64(loc, val - dynamicThreadPointerOffset);
    break;
  case R_PPC64_DTPREL34:
    // The Dynamic Thread Vector actually points 0x8000 bytes past the start
    // of the TLS block. Therefore, in the case of R_PPC64_DTPREL34 we first
    // need to subtract that value then fallthrough to the general case.
    val -= dynamicThreadPointerOffset;
    [[fallthrough]];
  case R_PPC64_PCREL34:
  case R_PPC64_GOT_PCREL34:
  case R_PPC64_GOT_TLSGD_PCREL34:
  case R_PPC64_GOT_TLSLD_PCREL34:
  case R_PPC64_GOT_TPREL_PCREL34:
  case R_PPC64_TPREL34: {
    const uint64_t si0Mask = 0x00000003ffff0000;
    const uint64_t si1Mask = 0x000000000000ffff;
    const uint64_t fullMask = 0x0003ffff0000ffff;
    checkInt(loc, val, 34, rel);

    uint64_t instr = readPrefixedInstruction(loc) & ~fullMask;
    writePrefixedInstruction(loc, instr | ((val & si0Mask) << 16) |
                             (val & si1Mask));
    break;
  }
  // If we encounter a PCREL_OPT relocation that we won't optimize.
  case R_PPC64_PCREL_OPT:
    break;
  default:
    llvm_unreachable("unknown relocation");
  }
}

bool PPC64::needsThunk(RelExpr expr, RelType type, const InputFile *file,
                       uint64_t branchAddr, const Symbol &s, int64_t a) const {
  if (type != R_PPC64_REL14 && type != R_PPC64_REL24 &&
      type != R_PPC64_REL24_NOTOC)
    return false;

  // If a function is in the Plt it needs to be called with a call-stub.
  if (s.isInPlt())
    return true;

  // This check looks at the st_other bits of the callee with relocation
  // R_PPC64_REL14 or R_PPC64_REL24. If the value is 1, then the callee
  // clobbers the TOC and we need an R2 save stub.
  if (type != R_PPC64_REL24_NOTOC && (s.stOther >> 5) == 1)
    return true;

  if (type == R_PPC64_REL24_NOTOC && (s.stOther >> 5) > 1)
    return true;

  // An undefined weak symbol not in a PLT does not need a thunk. If it is
  // hidden, its binding has been converted to local, so we just check
  // isUndefined() here. A undefined non-weak symbol has been errored.
  if (s.isUndefined())
    return false;

  // If the offset exceeds the range of the branch type then it will need
  // a range-extending thunk.
  // See the comment in getRelocTargetVA() about R_PPC64_CALL.
  return !inBranchRange(type, branchAddr,
                        s.getVA(a) +
                            getPPC64GlobalEntryToLocalEntryOffset(s.stOther));
}

uint32_t PPC64::getThunkSectionSpacing() const {
  // See comment in Arch/ARM.cpp for a more detailed explanation of
  // getThunkSectionSpacing(). For PPC64 we pick the constant here based on
  // R_PPC64_REL24, which is used by unconditional branch instructions.
  // 0x2000000 = (1 << 24-1) * 4
  return 0x2000000;
}

bool PPC64::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
  int64_t offset = dst - src;
  if (type == R_PPC64_REL14)
    return isInt<16>(offset);
  if (type == R_PPC64_REL24 || type == R_PPC64_REL24_NOTOC)
    return isInt<26>(offset);
  llvm_unreachable("unsupported relocation type used in branch");
}

RelExpr PPC64::adjustTlsExpr(RelType type, RelExpr expr) const {
  if (type != R_PPC64_GOT_TLSGD_PCREL34 && expr == R_RELAX_TLS_GD_TO_IE)
    return R_RELAX_TLS_GD_TO_IE_GOT_OFF;
  if (expr == R_RELAX_TLS_LD_TO_LE)
    return R_RELAX_TLS_LD_TO_LE_ABS;
  return expr;
}

RelExpr PPC64::adjustGotPcExpr(RelType type, int64_t addend,
                               const uint8_t *loc) const {
  if ((type == R_PPC64_GOT_PCREL34 || type == R_PPC64_PCREL_OPT) &&
      config->pcRelOptimize) {
    // It only makes sense to optimize pld since paddi means that the address
    // of the object in the GOT is required rather than the object itself.
    if ((readPrefixedInstruction(loc) & 0xfc000000) == 0xe4000000)
      return R_PPC64_RELAX_GOT_PC;
  }
  return R_GOT_PC;
}

// Reference: 3.7.4.1 of the 64-bit ELF V2 abi supplement.
// The general dynamic code sequence for a global `x` uses 4 instructions.
// Instruction                    Relocation                Symbol
// addis r3, r2, x@got@tlsgd@ha   R_PPC64_GOT_TLSGD16_HA      x
// addi  r3, r3, x@got@tlsgd@l    R_PPC64_GOT_TLSGD16_LO      x
// bl __tls_get_addr(x@tlsgd)     R_PPC64_TLSGD               x
//                                R_PPC64_REL24               __tls_get_addr
// nop                            None                       None
//
// Relaxing to initial-exec entails:
// 1) Convert the addis/addi pair that builds the address of the tls_index
//    struct for 'x' to an addis/ld pair that loads an offset from a got-entry.
// 2) Convert the call to __tls_get_addr to a nop.
// 3) Convert the nop following the call to an add of the loaded offset to the
//    thread pointer.
// Since the nop must directly follow the call, the R_PPC64_TLSGD relocation is
// used as the relaxation hint for both steps 2 and 3.
void PPC64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
                           uint64_t val) const {
  switch (rel.type) {
  case R_PPC64_GOT_TLSGD16_HA:
    // This is relaxed from addis rT, r2, sym@got@tlsgd@ha to
    //                      addis rT, r2, sym@got@tprel@ha.
    relocateNoSym(loc, R_PPC64_GOT_TPREL16_HA, val);
    return;
  case R_PPC64_GOT_TLSGD16:
  case R_PPC64_GOT_TLSGD16_LO: {
    // Relax from addi  r3, rA, sym@got@tlsgd@l to
    //            ld r3, sym@got@tprel@l(rA)
    uint32_t ra = (readFromHalf16(loc) & (0x1f << 16));
    writeFromHalf16(loc, 0xe8600000 | ra);
    relocateNoSym(loc, R_PPC64_GOT_TPREL16_LO_DS, val);
    return;
  }
  case R_PPC64_GOT_TLSGD_PCREL34: {
    // Relax from paddi r3, 0, sym@got@tlsgd@pcrel, 1 to
    //            pld r3, sym@got@tprel@pcrel
    writePrefixedInstruction(loc, 0x04100000e4600000);
    relocateNoSym(loc, R_PPC64_GOT_TPREL_PCREL34, val);
    return;
  }
  case R_PPC64_TLSGD: {
    // PC Relative Relaxation:
    // Relax from bl __tls_get_addr@notoc(x@tlsgd) to
    //            nop
    // TOC Relaxation:
    // Relax from bl __tls_get_addr(x@tlsgd)
    //            nop
    // to
    //            nop
    //            add r3, r3, r13
    const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
    if (locAsInt % 4 == 0) {
      write32(loc, NOP);            // bl __tls_get_addr(sym@tlsgd) --> nop
      write32(loc + 4, 0x7c636A14); // nop --> add r3, r3, r13
    } else if (locAsInt % 4 == 1) {
      // bl __tls_get_addr(sym@tlsgd) --> add r3, r3, r13
      write32(loc - 1, 0x7c636a14);
    } else {
      errorOrWarn("R_PPC64_TLSGD has unexpected byte alignment");
    }
    return;
  }
  default:
    llvm_unreachable("unsupported relocation for TLS GD to IE relaxation");
  }
}

void PPC64::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const {
  uint64_t secAddr = sec.getOutputSection()->addr;
  if (auto *s = dyn_cast<InputSection>(&sec))
    secAddr += s->outSecOff;
  else if (auto *ehIn = dyn_cast<EhInputSection>(&sec))
    secAddr += ehIn->getParent()->outSecOff;
  uint64_t lastPPCRelaxedRelocOff = -1;
  for (const Relocation &rel : sec.relocs()) {
    uint8_t *loc = buf + rel.offset;
    const uint64_t val =
        sec.getRelocTargetVA(sec.file, rel.type, rel.addend,
                             secAddr + rel.offset, *rel.sym, rel.expr);
    switch (rel.expr) {
    case R_PPC64_RELAX_GOT_PC: {
      // The R_PPC64_PCREL_OPT relocation must appear immediately after
      // R_PPC64_GOT_PCREL34 in the relocations table at the same offset.
      // We can only relax R_PPC64_PCREL_OPT if we have also relaxed
      // the associated R_PPC64_GOT_PCREL34 since only the latter has an
      // associated symbol. So save the offset when relaxing R_PPC64_GOT_PCREL34
      // and only relax the other if the saved offset matches.
      if (rel.type == R_PPC64_GOT_PCREL34)
        lastPPCRelaxedRelocOff = rel.offset;
      if (rel.type == R_PPC64_PCREL_OPT && rel.offset != lastPPCRelaxedRelocOff)
        break;
      relaxGot(loc, rel, val);
      break;
    }
    case R_PPC64_RELAX_TOC:
      // rel.sym refers to the STT_SECTION symbol associated to the .toc input
      // section. If an R_PPC64_TOC16_LO (.toc + addend) references the TOC
      // entry, there may be R_PPC64_TOC16_HA not paired with
      // R_PPC64_TOC16_LO_DS. Don't relax. This loses some relaxation
      // opportunities but is safe.
      if (ppc64noTocRelax.count({rel.sym, rel.addend}) ||
          !tryRelaxPPC64TocIndirection(rel, loc))
        relocate(loc, rel, val);
      break;
    case R_PPC64_CALL:
      // If this is a call to __tls_get_addr, it may be part of a TLS
      // sequence that has been relaxed and turned into a nop. In this
      // case, we don't want to handle it as a call.
      if (read32(loc) == 0x60000000) // nop
        break;

      // Patch a nop (0x60000000) to a ld.
      if (rel.sym->needsTocRestore()) {
        // gcc/gfortran 5.4, 6.3 and earlier versions do not add nop for
        // recursive calls even if the function is preemptible. This is not
        // wrong in the common case where the function is not preempted at
        // runtime. Just ignore.
        if ((rel.offset + 8 > sec.content().size() ||
             read32(loc + 4) != 0x60000000) &&
            rel.sym->file != sec.file) {
          // Use substr(6) to remove the "__plt_" prefix.
          errorOrWarn(getErrorLocation(loc) + "call to " +
                      lld::toString(*rel.sym).substr(6) +
                      " lacks nop, can't restore toc");
          break;
        }
        write32(loc + 4, 0xe8410018); // ld %r2, 24(%r1)
      }
      relocate(loc, rel, val);
      break;
    case R_RELAX_TLS_GD_TO_IE:
    case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
      relaxTlsGdToIe(loc, rel, val);
      break;
    case R_RELAX_TLS_GD_TO_LE:
      relaxTlsGdToLe(loc, rel, val);
      break;
    case R_RELAX_TLS_LD_TO_LE_ABS:
      relaxTlsLdToLe(loc, rel, val);
      break;
    case R_RELAX_TLS_IE_TO_LE:
      relaxTlsIeToLe(loc, rel, val);
      break;
    default:
      relocate(loc, rel, val);
      break;
    }
  }
}

// The prologue for a split-stack function is expected to look roughly
// like this:
//    .Lglobal_entry_point:
//      # TOC pointer initialization.
//      ...
//    .Llocal_entry_point:
//      # load the __private_ss member of the threads tcbhead.
//      ld r0,-0x7000-64(r13)
//      # subtract the functions stack size from the stack pointer.
//      addis r12, r1, ha(-stack-frame size)
//      addi  r12, r12, l(-stack-frame size)
//      # compare needed to actual and branch to allocate_more_stack if more
//      # space is needed, otherwise fallthrough to 'normal' function body.
//      cmpld cr7,r12,r0
//      blt- cr7, .Lallocate_more_stack
//
// -) The allocate_more_stack block might be placed after the split-stack
//    prologue and the `blt-` replaced with a `bge+ .Lnormal_func_body`
//    instead.
// -) If either the addis or addi is not needed due to the stack size being
//    smaller then 32K or a multiple of 64K they will be replaced with a nop,
//    but there will always be 2 instructions the linker can overwrite for the
//    adjusted stack size.
//
// The linkers job here is to increase the stack size used in the addis/addi
// pair by split-stack-size-adjust.
// addis r12, r1, ha(-stack-frame size - split-stack-adjust-size)
// addi  r12, r12, l(-stack-frame size - split-stack-adjust-size)
bool PPC64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
                                             uint8_t stOther) const {
  // If the caller has a global entry point adjust the buffer past it. The start
  // of the split-stack prologue will be at the local entry point.
  loc += getPPC64GlobalEntryToLocalEntryOffset(stOther);

  // At the very least we expect to see a load of some split-stack data from the
  // tcb, and 2 instructions that calculate the ending stack address this
  // function will require. If there is not enough room for at least 3
  // instructions it can't be a split-stack prologue.
  if (loc + 12 >= end)
    return false;

  // First instruction must be `ld r0, -0x7000-64(r13)`
  if (read32(loc) != 0xe80d8fc0)
    return false;

  int16_t hiImm = 0;
  int16_t loImm = 0;
  // First instruction can be either an addis if the frame size is larger then
  // 32K, or an addi if the size is less then 32K.
  int32_t firstInstr = read32(loc + 4);
  if (getPrimaryOpCode(firstInstr) == 15) {
    hiImm = firstInstr & 0xFFFF;
  } else if (getPrimaryOpCode(firstInstr) == 14) {
    loImm = firstInstr & 0xFFFF;
  } else {
    return false;
  }

  // Second instruction is either an addi or a nop. If the first instruction was
  // an addi then LoImm is set and the second instruction must be a nop.
  uint32_t secondInstr = read32(loc + 8);
  if (!loImm && getPrimaryOpCode(secondInstr) == 14) {
    loImm = secondInstr & 0xFFFF;
  } else if (secondInstr != NOP) {
    return false;
  }

  // The register operands of the first instruction should be the stack-pointer
  // (r1) as the input (RA) and r12 as the output (RT). If the second
  // instruction is not a nop, then it should use r12 as both input and output.
  auto checkRegOperands = [](uint32_t instr, uint8_t expectedRT,
                             uint8_t expectedRA) {
    return ((instr & 0x3E00000) >> 21 == expectedRT) &&
           ((instr & 0x1F0000) >> 16 == expectedRA);
  };
  if (!checkRegOperands(firstInstr, 12, 1))
    return false;
  if (secondInstr != NOP && !checkRegOperands(secondInstr, 12, 12))
    return false;

  int32_t stackFrameSize = (hiImm * 65536) + loImm;
  // Check that the adjusted size doesn't overflow what we can represent with 2
  // instructions.
  if (stackFrameSize < config->splitStackAdjustSize + INT32_MIN) {
    error(getErrorLocation(loc) + "split-stack prologue adjustment overflows");
    return false;
  }

  int32_t adjustedStackFrameSize =
      stackFrameSize - config->splitStackAdjustSize;

  loImm = adjustedStackFrameSize & 0xFFFF;
  hiImm = (adjustedStackFrameSize + 0x8000) >> 16;
  if (hiImm) {
    write32(loc + 4, 0x3D810000 | (uint16_t)hiImm);
    // If the low immediate is zero the second instruction will be a nop.
    secondInstr = loImm ? 0x398C0000 | (uint16_t)loImm : NOP;
    write32(loc + 8, secondInstr);
  } else {
    // addi r12, r1, imm
    write32(loc + 4, (0x39810000) | (uint16_t)loImm);
    write32(loc + 8, NOP);
  }

  return true;
}

TargetInfo *elf::getPPC64TargetInfo() {
  static PPC64 target;
  return &target;
}