aboutsummaryrefslogtreecommitdiff
path: root/lld/ELF/Arch/X86_64.cpp
blob: a85bf3aa0c09d11ed39a0eb351321c8f839dd587 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
//===- X86_64.cpp ---------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "OutputSections.h"
#include "Relocations.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "lld/Common/ErrorHandler.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/MathExtras.h"

using namespace llvm;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf;

namespace {
class X86_64 : public TargetInfo {
public:
  X86_64();
  int getTlsGdRelaxSkip(RelType type) const override;
  RelExpr getRelExpr(RelType type, const Symbol &s,
                     const uint8_t *loc) const override;
  RelType getDynRel(RelType type) const override;
  void writeGotPltHeader(uint8_t *buf) const override;
  void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
  void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
  void writePltHeader(uint8_t *buf) const override;
  void writePlt(uint8_t *buf, const Symbol &sym,
                uint64_t pltEntryAddr) const override;
  void relocate(uint8_t *loc, const Relocation &rel,
                uint64_t val) const override;
  int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
  void applyJumpInstrMod(uint8_t *loc, JumpModType type,
                         unsigned size) const override;
  RelExpr adjustGotPcExpr(RelType type, int64_t addend,
                          const uint8_t *loc) const override;
  void relocateAlloc(InputSectionBase &sec, uint8_t *buf) const override;
  bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
                                        uint8_t stOther) const override;
  bool deleteFallThruJmpInsn(InputSection &is, InputFile *file,
                             InputSection *nextIS) const override;
  bool relaxOnce(int pass) const override;
};
} // namespace

// This is vector of NOP instructions of sizes from 1 to 8 bytes.  The
// appropriately sized instructions are used to fill the gaps between sections
// which are executed during fall through.
static const std::vector<std::vector<uint8_t>> nopInstructions = {
    {0x90},
    {0x66, 0x90},
    {0x0f, 0x1f, 0x00},
    {0x0f, 0x1f, 0x40, 0x00},
    {0x0f, 0x1f, 0x44, 0x00, 0x00},
    {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
    {0x0F, 0x1F, 0x80, 0x00, 0x00, 0x00, 0x00},
    {0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
    {0x66, 0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}};

X86_64::X86_64() {
  copyRel = R_X86_64_COPY;
  gotRel = R_X86_64_GLOB_DAT;
  pltRel = R_X86_64_JUMP_SLOT;
  relativeRel = R_X86_64_RELATIVE;
  iRelativeRel = R_X86_64_IRELATIVE;
  symbolicRel = R_X86_64_64;
  tlsDescRel = R_X86_64_TLSDESC;
  tlsGotRel = R_X86_64_TPOFF64;
  tlsModuleIndexRel = R_X86_64_DTPMOD64;
  tlsOffsetRel = R_X86_64_DTPOFF64;
  gotBaseSymInGotPlt = true;
  gotEntrySize = 8;
  pltHeaderSize = 16;
  pltEntrySize = 16;
  ipltEntrySize = 16;
  trapInstr = {0xcc, 0xcc, 0xcc, 0xcc}; // 0xcc = INT3
  nopInstrs = nopInstructions;

  // Align to the large page size (known as a superpage or huge page).
  // FreeBSD automatically promotes large, superpage-aligned allocations.
  defaultImageBase = 0x200000;
}

int X86_64::getTlsGdRelaxSkip(RelType type) const {
  // TLSDESC relocations are processed separately. See relaxTlsGdToLe below.
  return type == R_X86_64_GOTPC32_TLSDESC || type == R_X86_64_TLSDESC_CALL ? 1
                                                                           : 2;
}

// Opcodes for the different X86_64 jmp instructions.
enum JmpInsnOpcode : uint32_t {
  J_JMP_32,
  J_JNE_32,
  J_JE_32,
  J_JG_32,
  J_JGE_32,
  J_JB_32,
  J_JBE_32,
  J_JL_32,
  J_JLE_32,
  J_JA_32,
  J_JAE_32,
  J_UNKNOWN,
};

// Given the first (optional) and second byte of the insn's opcode, this
// returns the corresponding enum value.
static JmpInsnOpcode getJmpInsnType(const uint8_t *first,
                                    const uint8_t *second) {
  if (*second == 0xe9)
    return J_JMP_32;

  if (first == nullptr)
    return J_UNKNOWN;

  if (*first == 0x0f) {
    switch (*second) {
    case 0x84:
      return J_JE_32;
    case 0x85:
      return J_JNE_32;
    case 0x8f:
      return J_JG_32;
    case 0x8d:
      return J_JGE_32;
    case 0x82:
      return J_JB_32;
    case 0x86:
      return J_JBE_32;
    case 0x8c:
      return J_JL_32;
    case 0x8e:
      return J_JLE_32;
    case 0x87:
      return J_JA_32;
    case 0x83:
      return J_JAE_32;
    }
  }
  return J_UNKNOWN;
}

// Return the relocation index for input section IS with a specific Offset.
// Returns the maximum size of the vector if no such relocation is found.
static unsigned getRelocationWithOffset(const InputSection &is,
                                        uint64_t offset) {
  unsigned size = is.relocs().size();
  for (unsigned i = size - 1; i + 1 > 0; --i) {
    if (is.relocs()[i].offset == offset && is.relocs()[i].expr != R_NONE)
      return i;
  }
  return size;
}

// Returns true if R corresponds to a relocation used for a jump instruction.
// TODO: Once special relocations for relaxable jump instructions are available,
// this should be modified to use those relocations.
static bool isRelocationForJmpInsn(Relocation &R) {
  return R.type == R_X86_64_PLT32 || R.type == R_X86_64_PC32 ||
         R.type == R_X86_64_PC8;
}

// Return true if Relocation R points to the first instruction in the
// next section.
// TODO: Delete this once psABI reserves a new relocation type for fall thru
// jumps.
static bool isFallThruRelocation(InputSection &is, InputFile *file,
                                 InputSection *nextIS, Relocation &r) {
  if (!isRelocationForJmpInsn(r))
    return false;

  uint64_t addrLoc = is.getOutputSection()->addr + is.outSecOff + r.offset;
  uint64_t targetOffset = InputSectionBase::getRelocTargetVA(
      file, r.type, r.addend, addrLoc, *r.sym, r.expr);

  // If this jmp is a fall thru, the target offset is the beginning of the
  // next section.
  uint64_t nextSectionOffset =
      nextIS->getOutputSection()->addr + nextIS->outSecOff;
  return (addrLoc + 4 + targetOffset) == nextSectionOffset;
}

// Return the jmp instruction opcode that is the inverse of the given
// opcode.  For example, JE inverted is JNE.
static JmpInsnOpcode invertJmpOpcode(const JmpInsnOpcode opcode) {
  switch (opcode) {
  case J_JE_32:
    return J_JNE_32;
  case J_JNE_32:
    return J_JE_32;
  case J_JG_32:
    return J_JLE_32;
  case J_JGE_32:
    return J_JL_32;
  case J_JB_32:
    return J_JAE_32;
  case J_JBE_32:
    return J_JA_32;
  case J_JL_32:
    return J_JGE_32;
  case J_JLE_32:
    return J_JG_32;
  case J_JA_32:
    return J_JBE_32;
  case J_JAE_32:
    return J_JB_32;
  default:
    return J_UNKNOWN;
  }
}

// Deletes direct jump instruction in input sections that jumps to the
// following section as it is not required.  If there are two consecutive jump
// instructions, it checks if they can be flipped and one can be deleted.
// For example:
// .section .text
// a.BB.foo:
//    ...
//    10: jne aa.BB.foo
//    16: jmp bar
// aa.BB.foo:
//    ...
//
// can be converted to:
// a.BB.foo:
//   ...
//   10: je bar  #jne flipped to je and the jmp is deleted.
// aa.BB.foo:
//   ...
bool X86_64::deleteFallThruJmpInsn(InputSection &is, InputFile *file,
                                   InputSection *nextIS) const {
  const unsigned sizeOfDirectJmpInsn = 5;

  if (nextIS == nullptr)
    return false;

  if (is.getSize() < sizeOfDirectJmpInsn)
    return false;

  // If this jmp insn can be removed, it is the last insn and the
  // relocation is 4 bytes before the end.
  unsigned rIndex = getRelocationWithOffset(is, is.getSize() - 4);
  if (rIndex == is.relocs().size())
    return false;

  Relocation &r = is.relocs()[rIndex];

  // Check if the relocation corresponds to a direct jmp.
  const uint8_t *secContents = is.content().data();
  // If it is not a direct jmp instruction, there is nothing to do here.
  if (*(secContents + r.offset - 1) != 0xe9)
    return false;

  if (isFallThruRelocation(is, file, nextIS, r)) {
    // This is a fall thru and can be deleted.
    r.expr = R_NONE;
    r.offset = 0;
    is.drop_back(sizeOfDirectJmpInsn);
    is.nopFiller = true;
    return true;
  }

  // Now, check if flip and delete is possible.
  const unsigned sizeOfJmpCCInsn = 6;
  // To flip, there must be at least one JmpCC and one direct jmp.
  if (is.getSize() < sizeOfDirectJmpInsn + sizeOfJmpCCInsn)
    return false;

  unsigned rbIndex =
      getRelocationWithOffset(is, (is.getSize() - sizeOfDirectJmpInsn - 4));
  if (rbIndex == is.relocs().size())
    return false;

  Relocation &rB = is.relocs()[rbIndex];

  const uint8_t *jmpInsnB = secContents + rB.offset - 1;
  JmpInsnOpcode jmpOpcodeB = getJmpInsnType(jmpInsnB - 1, jmpInsnB);
  if (jmpOpcodeB == J_UNKNOWN)
    return false;

  if (!isFallThruRelocation(is, file, nextIS, rB))
    return false;

  // jmpCC jumps to the fall thru block, the branch can be flipped and the
  // jmp can be deleted.
  JmpInsnOpcode jInvert = invertJmpOpcode(jmpOpcodeB);
  if (jInvert == J_UNKNOWN)
    return false;
  is.jumpInstrMod = make<JumpInstrMod>();
  *is.jumpInstrMod = {rB.offset - 1, jInvert, 4};
  // Move R's values to rB except the offset.
  rB = {r.expr, r.type, rB.offset, r.addend, r.sym};
  // Cancel R
  r.expr = R_NONE;
  r.offset = 0;
  is.drop_back(sizeOfDirectJmpInsn);
  is.nopFiller = true;
  return true;
}

bool X86_64::relaxOnce(int pass) const {
  uint64_t minVA = UINT64_MAX, maxVA = 0;
  for (OutputSection *osec : outputSections) {
    minVA = std::min(minVA, osec->addr);
    maxVA = std::max(maxVA, osec->addr + osec->size);
  }
  // If the max VA difference is under 2^31, GOT-generating relocations with a 32-bit range cannot overflow.
  if (isUInt<31>(maxVA - minVA))
    return false;

  SmallVector<InputSection *, 0> storage;
  bool changed = false;
  for (OutputSection *osec : outputSections) {
    if (!(osec->flags & SHF_EXECINSTR))
      continue;
    for (InputSection *sec : getInputSections(*osec, storage)) {
      for (Relocation &rel : sec->relocs()) {
        if (rel.expr != R_RELAX_GOT_PC)
          continue;

        uint64_t v = sec->getRelocTargetVA(sec->file, rel.type, rel.addend,
                                           sec->getOutputSection()->addr +
                                               sec->outSecOff + rel.offset,
                                           *rel.sym, rel.expr);
        if (isInt<32>(v))
          continue;
        if (rel.sym->auxIdx == 0) {
          rel.sym->allocateAux();
          addGotEntry(*rel.sym);
          changed = true;
        }
        rel.expr = R_GOT_PC;
      }
    }
  }
  return changed;
}

RelExpr X86_64::getRelExpr(RelType type, const Symbol &s,
                           const uint8_t *loc) const {
  switch (type) {
  case R_X86_64_8:
  case R_X86_64_16:
  case R_X86_64_32:
  case R_X86_64_32S:
  case R_X86_64_64:
    return R_ABS;
  case R_X86_64_DTPOFF32:
  case R_X86_64_DTPOFF64:
    return R_DTPREL;
  case R_X86_64_TPOFF32:
  case R_X86_64_TPOFF64:
    return R_TPREL;
  case R_X86_64_TLSDESC_CALL:
    return R_TLSDESC_CALL;
  case R_X86_64_TLSLD:
    return R_TLSLD_PC;
  case R_X86_64_TLSGD:
    return R_TLSGD_PC;
  case R_X86_64_SIZE32:
  case R_X86_64_SIZE64:
    return R_SIZE;
  case R_X86_64_PLT32:
    return R_PLT_PC;
  case R_X86_64_PC8:
  case R_X86_64_PC16:
  case R_X86_64_PC32:
  case R_X86_64_PC64:
    return R_PC;
  case R_X86_64_GOT32:
  case R_X86_64_GOT64:
    return R_GOTPLT;
  case R_X86_64_GOTPC32_TLSDESC:
    return R_TLSDESC_PC;
  case R_X86_64_GOTPCREL:
  case R_X86_64_GOTPCRELX:
  case R_X86_64_REX_GOTPCRELX:
  case R_X86_64_GOTTPOFF:
    return R_GOT_PC;
  case R_X86_64_GOTOFF64:
    return R_GOTPLTREL;
  case R_X86_64_PLTOFF64:
    return R_PLT_GOTPLT;
  case R_X86_64_GOTPC32:
  case R_X86_64_GOTPC64:
    return R_GOTPLTONLY_PC;
  case R_X86_64_NONE:
    return R_NONE;
  default:
    error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
          ") against symbol " + toString(s));
    return R_NONE;
  }
}

void X86_64::writeGotPltHeader(uint8_t *buf) const {
  // The first entry holds the link-time address of _DYNAMIC. It is documented
  // in the psABI and glibc before Aug 2021 used the entry to compute run-time
  // load address of the shared object (note that this is relevant for linking
  // ld.so, not any other program).
  write64le(buf, mainPart->dynamic->getVA());
}

void X86_64::writeGotPlt(uint8_t *buf, const Symbol &s) const {
  // See comments in X86::writeGotPlt.
  write64le(buf, s.getPltVA() + 6);
}

void X86_64::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
  // An x86 entry is the address of the ifunc resolver function (for -z rel).
  if (config->writeAddends)
    write64le(buf, s.getVA());
}

void X86_64::writePltHeader(uint8_t *buf) const {
  const uint8_t pltData[] = {
      0xff, 0x35, 0, 0, 0, 0, // pushq GOTPLT+8(%rip)
      0xff, 0x25, 0, 0, 0, 0, // jmp *GOTPLT+16(%rip)
      0x0f, 0x1f, 0x40, 0x00, // nop
  };
  memcpy(buf, pltData, sizeof(pltData));
  uint64_t gotPlt = in.gotPlt->getVA();
  uint64_t plt = in.ibtPlt ? in.ibtPlt->getVA() : in.plt->getVA();
  write32le(buf + 2, gotPlt - plt + 2); // GOTPLT+8
  write32le(buf + 8, gotPlt - plt + 4); // GOTPLT+16
}

void X86_64::writePlt(uint8_t *buf, const Symbol &sym,
                      uint64_t pltEntryAddr) const {
  const uint8_t inst[] = {
      0xff, 0x25, 0, 0, 0, 0, // jmpq *got(%rip)
      0x68, 0, 0, 0, 0,       // pushq <relocation index>
      0xe9, 0, 0, 0, 0,       // jmpq plt[0]
  };
  memcpy(buf, inst, sizeof(inst));

  write32le(buf + 2, sym.getGotPltVA() - pltEntryAddr - 6);
  write32le(buf + 7, sym.getPltIdx());
  write32le(buf + 12, in.plt->getVA() - pltEntryAddr - 16);
}

RelType X86_64::getDynRel(RelType type) const {
  if (type == R_X86_64_64 || type == R_X86_64_PC64 || type == R_X86_64_SIZE32 ||
      type == R_X86_64_SIZE64)
    return type;
  return R_X86_64_NONE;
}

static void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) {
  if (rel.type == R_X86_64_TLSGD) {
    // Convert
    //   .byte 0x66
    //   leaq x@tlsgd(%rip), %rdi
    //   .word 0x6666
    //   rex64
    //   call __tls_get_addr@plt
    // to the following two instructions.
    const uint8_t inst[] = {
        0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00,
        0x00, 0x00,                            // mov %fs:0x0,%rax
        0x48, 0x8d, 0x80, 0,    0,    0,    0, // lea x@tpoff,%rax
    };
    memcpy(loc - 4, inst, sizeof(inst));

    // The original code used a pc relative relocation and so we have to
    // compensate for the -4 in had in the addend.
    write32le(loc + 8, val + 4);
  } else if (rel.type == R_X86_64_GOTPC32_TLSDESC) {
    // Convert leaq x@tlsdesc(%rip), %REG to movq $x@tpoff, %REG.
    if ((loc[-3] & 0xfb) != 0x48 || loc[-2] != 0x8d ||
        (loc[-1] & 0xc7) != 0x05) {
      errorOrWarn(getErrorLocation(loc - 3) +
                  "R_X86_64_GOTPC32_TLSDESC must be used "
                  "in leaq x@tlsdesc(%rip), %REG");
      return;
    }
    loc[-3] = 0x48 | ((loc[-3] >> 2) & 1);
    loc[-2] = 0xc7;
    loc[-1] = 0xc0 | ((loc[-1] >> 3) & 7);
    write32le(loc, val + 4);
  } else {
    // Convert call *x@tlsdesc(%REG) to xchg ax, ax.
    assert(rel.type == R_X86_64_TLSDESC_CALL);
    loc[0] = 0x66;
    loc[1] = 0x90;
  }
}

static void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, uint64_t val) {
  if (rel.type == R_X86_64_TLSGD) {
    // Convert
    //   .byte 0x66
    //   leaq x@tlsgd(%rip), %rdi
    //   .word 0x6666
    //   rex64
    //   call __tls_get_addr@plt
    // to the following two instructions.
    const uint8_t inst[] = {
        0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00,
        0x00, 0x00,                            // mov %fs:0x0,%rax
        0x48, 0x03, 0x05, 0,    0,    0,    0, // addq x@gottpoff(%rip),%rax
    };
    memcpy(loc - 4, inst, sizeof(inst));

    // Both code sequences are PC relatives, but since we are moving the
    // constant forward by 8 bytes we have to subtract the value by 8.
    write32le(loc + 8, val - 8);
  } else if (rel.type == R_X86_64_GOTPC32_TLSDESC) {
    // Convert leaq x@tlsdesc(%rip), %REG to movq x@gottpoff(%rip), %REG.
    assert(rel.type == R_X86_64_GOTPC32_TLSDESC);
    if ((loc[-3] & 0xfb) != 0x48 || loc[-2] != 0x8d ||
        (loc[-1] & 0xc7) != 0x05) {
      errorOrWarn(getErrorLocation(loc - 3) +
                  "R_X86_64_GOTPC32_TLSDESC must be used "
                  "in leaq x@tlsdesc(%rip), %REG");
      return;
    }
    loc[-2] = 0x8b;
    write32le(loc, val);
  } else {
    // Convert call *x@tlsdesc(%rax) to xchg ax, ax.
    assert(rel.type == R_X86_64_TLSDESC_CALL);
    loc[0] = 0x66;
    loc[1] = 0x90;
  }
}

// In some conditions, R_X86_64_GOTTPOFF relocation can be optimized to
// R_X86_64_TPOFF32 so that it does not use GOT.
static void relaxTlsIeToLe(uint8_t *loc, const Relocation &, uint64_t val) {
  uint8_t *inst = loc - 3;
  uint8_t reg = loc[-1] >> 3;
  uint8_t *regSlot = loc - 1;

  // Note that ADD with RSP or R12 is converted to ADD instead of LEA
  // because LEA with these registers needs 4 bytes to encode and thus
  // wouldn't fit the space.

  if (memcmp(inst, "\x48\x03\x25", 3) == 0) {
    // "addq foo@gottpoff(%rip),%rsp" -> "addq $foo,%rsp"
    memcpy(inst, "\x48\x81\xc4", 3);
  } else if (memcmp(inst, "\x4c\x03\x25", 3) == 0) {
    // "addq foo@gottpoff(%rip),%r12" -> "addq $foo,%r12"
    memcpy(inst, "\x49\x81\xc4", 3);
  } else if (memcmp(inst, "\x4c\x03", 2) == 0) {
    // "addq foo@gottpoff(%rip),%r[8-15]" -> "leaq foo(%r[8-15]),%r[8-15]"
    memcpy(inst, "\x4d\x8d", 2);
    *regSlot = 0x80 | (reg << 3) | reg;
  } else if (memcmp(inst, "\x48\x03", 2) == 0) {
    // "addq foo@gottpoff(%rip),%reg -> "leaq foo(%reg),%reg"
    memcpy(inst, "\x48\x8d", 2);
    *regSlot = 0x80 | (reg << 3) | reg;
  } else if (memcmp(inst, "\x4c\x8b", 2) == 0) {
    // "movq foo@gottpoff(%rip),%r[8-15]" -> "movq $foo,%r[8-15]"
    memcpy(inst, "\x49\xc7", 2);
    *regSlot = 0xc0 | reg;
  } else if (memcmp(inst, "\x48\x8b", 2) == 0) {
    // "movq foo@gottpoff(%rip),%reg" -> "movq $foo,%reg"
    memcpy(inst, "\x48\xc7", 2);
    *regSlot = 0xc0 | reg;
  } else {
    error(getErrorLocation(loc - 3) +
          "R_X86_64_GOTTPOFF must be used in MOVQ or ADDQ instructions only");
  }

  // The original code used a PC relative relocation.
  // Need to compensate for the -4 it had in the addend.
  write32le(loc, val + 4);
}

static void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) {
  const uint8_t inst[] = {
      0x66, 0x66,                                           // .word 0x6666
      0x66,                                                 // .byte 0x66
      0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0,%rax
  };

  if (loc[4] == 0xe8) {
    // Convert
    //   leaq bar@tlsld(%rip), %rdi           # 48 8d 3d <Loc>
    //   callq __tls_get_addr@PLT             # e8 <disp32>
    //   leaq bar@dtpoff(%rax), %rcx
    // to
    //   .word 0x6666
    //   .byte 0x66
    //   mov %fs:0,%rax
    //   leaq bar@tpoff(%rax), %rcx
    memcpy(loc - 3, inst, sizeof(inst));
    return;
  }

  if (loc[4] == 0xff && loc[5] == 0x15) {
    // Convert
    //   leaq  x@tlsld(%rip),%rdi               # 48 8d 3d <Loc>
    //   call *__tls_get_addr@GOTPCREL(%rip)    # ff 15 <disp32>
    // to
    //   .long  0x66666666
    //   movq   %fs:0,%rax
    // See "Table 11.9: LD -> LE Code Transition (LP64)" in
    // https://raw.githubusercontent.com/wiki/hjl-tools/x86-psABI/x86-64-psABI-1.0.pdf
    loc[-3] = 0x66;
    memcpy(loc - 2, inst, sizeof(inst));
    return;
  }

  error(getErrorLocation(loc - 3) +
        "expected R_X86_64_PLT32 or R_X86_64_GOTPCRELX after R_X86_64_TLSLD");
}

// A JumpInstrMod at a specific offset indicates that the jump instruction
// opcode at that offset must be modified.  This is specifically used to relax
// jump instructions with basic block sections.  This function looks at the
// JumpMod and effects the change.
void X86_64::applyJumpInstrMod(uint8_t *loc, JumpModType type,
                               unsigned size) const {
  switch (type) {
  case J_JMP_32:
    if (size == 4)
      *loc = 0xe9;
    else
      *loc = 0xeb;
    break;
  case J_JE_32:
    if (size == 4) {
      loc[-1] = 0x0f;
      *loc = 0x84;
    } else
      *loc = 0x74;
    break;
  case J_JNE_32:
    if (size == 4) {
      loc[-1] = 0x0f;
      *loc = 0x85;
    } else
      *loc = 0x75;
    break;
  case J_JG_32:
    if (size == 4) {
      loc[-1] = 0x0f;
      *loc = 0x8f;
    } else
      *loc = 0x7f;
    break;
  case J_JGE_32:
    if (size == 4) {
      loc[-1] = 0x0f;
      *loc = 0x8d;
    } else
      *loc = 0x7d;
    break;
  case J_JB_32:
    if (size == 4) {
      loc[-1] = 0x0f;
      *loc = 0x82;
    } else
      *loc = 0x72;
    break;
  case J_JBE_32:
    if (size == 4) {
      loc[-1] = 0x0f;
      *loc = 0x86;
    } else
      *loc = 0x76;
    break;
  case J_JL_32:
    if (size == 4) {
      loc[-1] = 0x0f;
      *loc = 0x8c;
    } else
      *loc = 0x7c;
    break;
  case J_JLE_32:
    if (size == 4) {
      loc[-1] = 0x0f;
      *loc = 0x8e;
    } else
      *loc = 0x7e;
    break;
  case J_JA_32:
    if (size == 4) {
      loc[-1] = 0x0f;
      *loc = 0x87;
    } else
      *loc = 0x77;
    break;
  case J_JAE_32:
    if (size == 4) {
      loc[-1] = 0x0f;
      *loc = 0x83;
    } else
      *loc = 0x73;
    break;
  case J_UNKNOWN:
    llvm_unreachable("Unknown Jump Relocation");
  }
}

int64_t X86_64::getImplicitAddend(const uint8_t *buf, RelType type) const {
  switch (type) {
  case R_X86_64_8:
  case R_X86_64_PC8:
    return SignExtend64<8>(*buf);
  case R_X86_64_16:
  case R_X86_64_PC16:
    return SignExtend64<16>(read16le(buf));
  case R_X86_64_32:
  case R_X86_64_32S:
  case R_X86_64_TPOFF32:
  case R_X86_64_GOT32:
  case R_X86_64_GOTPC32:
  case R_X86_64_GOTPC32_TLSDESC:
  case R_X86_64_GOTPCREL:
  case R_X86_64_GOTPCRELX:
  case R_X86_64_REX_GOTPCRELX:
  case R_X86_64_PC32:
  case R_X86_64_GOTTPOFF:
  case R_X86_64_PLT32:
  case R_X86_64_TLSGD:
  case R_X86_64_TLSLD:
  case R_X86_64_DTPOFF32:
  case R_X86_64_SIZE32:
    return SignExtend64<32>(read32le(buf));
  case R_X86_64_64:
  case R_X86_64_TPOFF64:
  case R_X86_64_DTPOFF64:
  case R_X86_64_DTPMOD64:
  case R_X86_64_PC64:
  case R_X86_64_SIZE64:
  case R_X86_64_GLOB_DAT:
  case R_X86_64_GOT64:
  case R_X86_64_GOTOFF64:
  case R_X86_64_GOTPC64:
  case R_X86_64_PLTOFF64:
  case R_X86_64_IRELATIVE:
  case R_X86_64_RELATIVE:
    return read64le(buf);
  case R_X86_64_TLSDESC:
    return read64le(buf + 8);
  case R_X86_64_JUMP_SLOT:
  case R_X86_64_NONE:
    // These relocations are defined as not having an implicit addend.
    return 0;
  default:
    internalLinkerError(getErrorLocation(buf),
                        "cannot read addend for relocation " + toString(type));
    return 0;
  }
}

static void relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val);

void X86_64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
  switch (rel.type) {
  case R_X86_64_8:
    checkIntUInt(loc, val, 8, rel);
    *loc = val;
    break;
  case R_X86_64_PC8:
    checkInt(loc, val, 8, rel);
    *loc = val;
    break;
  case R_X86_64_16:
    checkIntUInt(loc, val, 16, rel);
    write16le(loc, val);
    break;
  case R_X86_64_PC16:
    checkInt(loc, val, 16, rel);
    write16le(loc, val);
    break;
  case R_X86_64_32:
    checkUInt(loc, val, 32, rel);
    write32le(loc, val);
    break;
  case R_X86_64_32S:
  case R_X86_64_GOT32:
  case R_X86_64_GOTPC32:
  case R_X86_64_GOTPCREL:
  case R_X86_64_PC32:
  case R_X86_64_PLT32:
  case R_X86_64_DTPOFF32:
  case R_X86_64_SIZE32:
    checkInt(loc, val, 32, rel);
    write32le(loc, val);
    break;
  case R_X86_64_64:
  case R_X86_64_TPOFF64:
  case R_X86_64_DTPOFF64:
  case R_X86_64_PC64:
  case R_X86_64_SIZE64:
  case R_X86_64_GOT64:
  case R_X86_64_GOTOFF64:
  case R_X86_64_GOTPC64:
  case R_X86_64_PLTOFF64:
    write64le(loc, val);
    break;
  case R_X86_64_GOTPCRELX:
  case R_X86_64_REX_GOTPCRELX:
    if (rel.expr != R_GOT_PC) {
      relaxGot(loc, rel, val);
    } else {
      checkInt(loc, val, 32, rel);
      write32le(loc, val);
    }
    break;
  case R_X86_64_GOTPC32_TLSDESC:
  case R_X86_64_TLSDESC_CALL:
  case R_X86_64_TLSGD:
    if (rel.expr == R_RELAX_TLS_GD_TO_LE) {
      relaxTlsGdToLe(loc, rel, val);
    } else if (rel.expr == R_RELAX_TLS_GD_TO_IE) {
      relaxTlsGdToIe(loc, rel, val);
    } else {
      checkInt(loc, val, 32, rel);
      write32le(loc, val);
    }
    break;
  case R_X86_64_TLSLD:
    if (rel.expr == R_RELAX_TLS_LD_TO_LE) {
      relaxTlsLdToLe(loc, rel, val);
    } else {
      checkInt(loc, val, 32, rel);
      write32le(loc, val);
    }
    break;
  case R_X86_64_GOTTPOFF:
    if (rel.expr == R_RELAX_TLS_IE_TO_LE) {
      relaxTlsIeToLe(loc, rel, val);
    } else {
      checkInt(loc, val, 32, rel);
      write32le(loc, val);
    }
    break;
  case R_X86_64_TPOFF32:
    checkInt(loc, val, 32, rel);
    write32le(loc, val);
    break;

  case R_X86_64_TLSDESC:
    // The addend is stored in the second 64-bit word.
    write64le(loc + 8, val);
    break;
  default:
    llvm_unreachable("unknown relocation");
  }
}

RelExpr X86_64::adjustGotPcExpr(RelType type, int64_t addend,
                                const uint8_t *loc) const {
  // Only R_X86_64_[REX_]GOTPCRELX can be relaxed. GNU as may emit GOTPCRELX
  // with addend != -4. Such an instruction does not load the full GOT entry, so
  // we cannot relax the relocation. E.g. movl x@GOTPCREL+4(%rip), %rax
  // (addend=0) loads the high 32 bits of the GOT entry.
  if (!config->relax || addend != -4 ||
      (type != R_X86_64_GOTPCRELX && type != R_X86_64_REX_GOTPCRELX))
    return R_GOT_PC;
  const uint8_t op = loc[-2];
  const uint8_t modRm = loc[-1];

  // FIXME: When PIC is disabled and foo is defined locally in the
  // lower 32 bit address space, memory operand in mov can be converted into
  // immediate operand. Otherwise, mov must be changed to lea. We support only
  // latter relaxation at this moment.
  if (op == 0x8b)
    return R_RELAX_GOT_PC;

  // Relax call and jmp.
  if (op == 0xff && (modRm == 0x15 || modRm == 0x25))
    return R_RELAX_GOT_PC;

  // We don't support test/binop instructions without a REX prefix.
  if (type == R_X86_64_GOTPCRELX)
    return R_GOT_PC;

  // Relaxation of test, adc, add, and, cmp, or, sbb, sub, xor.
  // If PIC then no relaxation is available.
  return config->isPic ? R_GOT_PC : R_RELAX_GOT_PC_NOPIC;
}

// A subset of relaxations can only be applied for no-PIC. This method
// handles such relaxations. Instructions encoding information was taken from:
// "Intel 64 and IA-32 Architectures Software Developer's Manual V2"
// (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/
//    64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf)
static void relaxGotNoPic(uint8_t *loc, uint64_t val, uint8_t op,
                          uint8_t modRm) {
  const uint8_t rex = loc[-3];
  // Convert "test %reg, foo@GOTPCREL(%rip)" to "test $foo, %reg".
  if (op == 0x85) {
    // See "TEST-Logical Compare" (4-428 Vol. 2B),
    // TEST r/m64, r64 uses "full" ModR / M byte (no opcode extension).

    // ModR/M byte has form XX YYY ZZZ, where
    // YYY is MODRM.reg(register 2), ZZZ is MODRM.rm(register 1).
    // XX has different meanings:
    // 00: The operand's memory address is in reg1.
    // 01: The operand's memory address is reg1 + a byte-sized displacement.
    // 10: The operand's memory address is reg1 + a word-sized displacement.
    // 11: The operand is reg1 itself.
    // If an instruction requires only one operand, the unused reg2 field
    // holds extra opcode bits rather than a register code
    // 0xC0 == 11 000 000 binary.
    // 0x38 == 00 111 000 binary.
    // We transfer reg2 to reg1 here as operand.
    // See "2.1.3 ModR/M and SIB Bytes" (Vol. 2A 2-3).
    loc[-1] = 0xc0 | (modRm & 0x38) >> 3; // ModR/M byte.

    // Change opcode from TEST r/m64, r64 to TEST r/m64, imm32
    // See "TEST-Logical Compare" (4-428 Vol. 2B).
    loc[-2] = 0xf7;

    // Move R bit to the B bit in REX byte.
    // REX byte is encoded as 0100WRXB, where
    // 0100 is 4bit fixed pattern.
    // REX.W When 1, a 64-bit operand size is used. Otherwise, when 0, the
    //   default operand size is used (which is 32-bit for most but not all
    //   instructions).
    // REX.R This 1-bit value is an extension to the MODRM.reg field.
    // REX.X This 1-bit value is an extension to the SIB.index field.
    // REX.B This 1-bit value is an extension to the MODRM.rm field or the
    // SIB.base field.
    // See "2.2.1.2 More on REX Prefix Fields " (2-8 Vol. 2A).
    loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2;
    write32le(loc, val);
    return;
  }

  // If we are here then we need to relax the adc, add, and, cmp, or, sbb, sub
  // or xor operations.

  // Convert "binop foo@GOTPCREL(%rip), %reg" to "binop $foo, %reg".
  // Logic is close to one for test instruction above, but we also
  // write opcode extension here, see below for details.
  loc[-1] = 0xc0 | (modRm & 0x38) >> 3 | (op & 0x3c); // ModR/M byte.

  // Primary opcode is 0x81, opcode extension is one of:
  // 000b = ADD, 001b is OR, 010b is ADC, 011b is SBB,
  // 100b is AND, 101b is SUB, 110b is XOR, 111b is CMP.
  // This value was wrote to MODRM.reg in a line above.
  // See "3.2 INSTRUCTIONS (A-M)" (Vol. 2A 3-15),
  // "INSTRUCTION SET REFERENCE, N-Z" (Vol. 2B 4-1) for
  // descriptions about each operation.
  loc[-2] = 0x81;
  loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2;
  write32le(loc, val);
}

static void relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) {
  assert(isInt<32>(val) &&
         "GOTPCRELX should not have been relaxed if it overflows");
  const uint8_t op = loc[-2];
  const uint8_t modRm = loc[-1];

  // Convert "mov foo@GOTPCREL(%rip),%reg" to "lea foo(%rip),%reg".
  if (op == 0x8b) {
    loc[-2] = 0x8d;
    write32le(loc, val);
    return;
  }

  if (op != 0xff) {
    // We are relaxing a rip relative to an absolute, so compensate
    // for the old -4 addend.
    assert(!config->isPic);
    relaxGotNoPic(loc, val + 4, op, modRm);
    return;
  }

  // Convert call/jmp instructions.
  if (modRm == 0x15) {
    // ABI says we can convert "call *foo@GOTPCREL(%rip)" to "nop; call foo".
    // Instead we convert to "addr32 call foo" where addr32 is an instruction
    // prefix. That makes result expression to be a single instruction.
    loc[-2] = 0x67; // addr32 prefix
    loc[-1] = 0xe8; // call
    write32le(loc, val);
    return;
  }

  // Convert "jmp *foo@GOTPCREL(%rip)" to "jmp foo; nop".
  // jmp doesn't return, so it is fine to use nop here, it is just a stub.
  assert(modRm == 0x25);
  loc[-2] = 0xe9; // jmp
  loc[3] = 0x90;  // nop
  write32le(loc - 1, val + 1);
}

// A split-stack prologue starts by checking the amount of stack remaining
// in one of two ways:
// A) Comparing of the stack pointer to a field in the tcb.
// B) Or a load of a stack pointer offset with an lea to r10 or r11.
bool X86_64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
                                              uint8_t stOther) const {
  if (!config->is64) {
    error("target doesn't support split stacks");
    return false;
  }

  if (loc + 8 >= end)
    return false;

  // Replace "cmp %fs:0x70,%rsp" and subsequent branch
  // with "stc, nopl 0x0(%rax,%rax,1)"
  if (memcmp(loc, "\x64\x48\x3b\x24\x25", 5) == 0) {
    memcpy(loc, "\xf9\x0f\x1f\x84\x00\x00\x00\x00", 8);
    return true;
  }

  // Adjust "lea X(%rsp),%rYY" to lea "(X - 0x4000)(%rsp),%rYY" where rYY could
  // be r10 or r11. The lea instruction feeds a subsequent compare which checks
  // if there is X available stack space. Making X larger effectively reserves
  // that much additional space. The stack grows downward so subtract the value.
  if (memcmp(loc, "\x4c\x8d\x94\x24", 4) == 0 ||
      memcmp(loc, "\x4c\x8d\x9c\x24", 4) == 0) {
    // The offset bytes are encoded four bytes after the start of the
    // instruction.
    write32le(loc + 4, read32le(loc + 4) - 0x4000);
    return true;
  }
  return false;
}

void X86_64::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const {
  uint64_t secAddr = sec.getOutputSection()->addr;
  if (auto *s = dyn_cast<InputSection>(&sec))
    secAddr += s->outSecOff;
  else if (auto *ehIn = dyn_cast<EhInputSection>(&sec))
    secAddr += ehIn->getParent()->outSecOff;
  for (const Relocation &rel : sec.relocs()) {
    if (rel.expr == R_NONE) // See deleteFallThruJmpInsn
      continue;
    uint8_t *loc = buf + rel.offset;
    const uint64_t val =
        sec.getRelocTargetVA(sec.file, rel.type, rel.addend,
                             secAddr + rel.offset, *rel.sym, rel.expr);
    relocate(loc, rel, val);
  }
  if (sec.jumpInstrMod) {
    applyJumpInstrMod(buf + sec.jumpInstrMod->offset,
                      sec.jumpInstrMod->original, sec.jumpInstrMod->size);
  }
}

// If Intel Indirect Branch Tracking is enabled, we have to emit special PLT
// entries containing endbr64 instructions. A PLT entry will be split into two
// parts, one in .plt.sec (writePlt), and the other in .plt (writeIBTPlt).
namespace {
class IntelIBT : public X86_64 {
public:
  IntelIBT();
  void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
  void writePlt(uint8_t *buf, const Symbol &sym,
                uint64_t pltEntryAddr) const override;
  void writeIBTPlt(uint8_t *buf, size_t numEntries) const override;

  static const unsigned IBTPltHeaderSize = 16;
};
} // namespace

IntelIBT::IntelIBT() { pltHeaderSize = 0; }

void IntelIBT::writeGotPlt(uint8_t *buf, const Symbol &s) const {
  uint64_t va =
      in.ibtPlt->getVA() + IBTPltHeaderSize + s.getPltIdx() * pltEntrySize;
  write64le(buf, va);
}

void IntelIBT::writePlt(uint8_t *buf, const Symbol &sym,
                        uint64_t pltEntryAddr) const {
  const uint8_t Inst[] = {
      0xf3, 0x0f, 0x1e, 0xfa,       // endbr64
      0xff, 0x25, 0,    0,    0, 0, // jmpq *got(%rip)
      0x66, 0x0f, 0x1f, 0x44, 0, 0, // nop
  };
  memcpy(buf, Inst, sizeof(Inst));
  write32le(buf + 6, sym.getGotPltVA() - pltEntryAddr - 10);
}

void IntelIBT::writeIBTPlt(uint8_t *buf, size_t numEntries) const {
  writePltHeader(buf);
  buf += IBTPltHeaderSize;

  const uint8_t inst[] = {
      0xf3, 0x0f, 0x1e, 0xfa,    // endbr64
      0x68, 0,    0,    0,    0, // pushq <relocation index>
      0xe9, 0,    0,    0,    0, // jmpq plt[0]
      0x66, 0x90,                // nop
  };

  for (size_t i = 0; i < numEntries; ++i) {
    memcpy(buf, inst, sizeof(inst));
    write32le(buf + 5, i);
    write32le(buf + 10, -pltHeaderSize - sizeof(inst) * i - 30);
    buf += sizeof(inst);
  }
}

// These nonstandard PLT entries are to migtigate Spectre v2 security
// vulnerability. In order to mitigate Spectre v2, we want to avoid indirect
// branch instructions such as `jmp *GOTPLT(%rip)`. So, in the following PLT
// entries, we use a CALL followed by MOV and RET to do the same thing as an
// indirect jump. That instruction sequence is so-called "retpoline".
//
// We have two types of retpoline PLTs as a size optimization. If `-z now`
// is specified, all dynamic symbols are resolved at load-time. Thus, when
// that option is given, we can omit code for symbol lazy resolution.
namespace {
class Retpoline : public X86_64 {
public:
  Retpoline();
  void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
  void writePltHeader(uint8_t *buf) const override;
  void writePlt(uint8_t *buf, const Symbol &sym,
                uint64_t pltEntryAddr) const override;
};

class RetpolineZNow : public X86_64 {
public:
  RetpolineZNow();
  void writeGotPlt(uint8_t *buf, const Symbol &s) const override {}
  void writePltHeader(uint8_t *buf) const override;
  void writePlt(uint8_t *buf, const Symbol &sym,
                uint64_t pltEntryAddr) const override;
};
} // namespace

Retpoline::Retpoline() {
  pltHeaderSize = 48;
  pltEntrySize = 32;
  ipltEntrySize = 32;
}

void Retpoline::writeGotPlt(uint8_t *buf, const Symbol &s) const {
  write64le(buf, s.getPltVA() + 17);
}

void Retpoline::writePltHeader(uint8_t *buf) const {
  const uint8_t insn[] = {
      0xff, 0x35, 0,    0,    0,    0,          // 0:    pushq GOTPLT+8(%rip)
      0x4c, 0x8b, 0x1d, 0,    0,    0,    0,    // 6:    mov GOTPLT+16(%rip), %r11
      0xe8, 0x0e, 0x00, 0x00, 0x00,             // d:    callq next
      0xf3, 0x90,                               // 12: loop: pause
      0x0f, 0xae, 0xe8,                         // 14:   lfence
      0xeb, 0xf9,                               // 17:   jmp loop
      0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 19:   int3; .align 16
      0x4c, 0x89, 0x1c, 0x24,                   // 20: next: mov %r11, (%rsp)
      0xc3,                                     // 24:   ret
      0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 25:   int3; padding
      0xcc, 0xcc, 0xcc, 0xcc,                   // 2c:   int3; padding
  };
  memcpy(buf, insn, sizeof(insn));

  uint64_t gotPlt = in.gotPlt->getVA();
  uint64_t plt = in.plt->getVA();
  write32le(buf + 2, gotPlt - plt - 6 + 8);
  write32le(buf + 9, gotPlt - plt - 13 + 16);
}

void Retpoline::writePlt(uint8_t *buf, const Symbol &sym,
                         uint64_t pltEntryAddr) const {
  const uint8_t insn[] = {
      0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // 0:  mov foo@GOTPLT(%rip), %r11
      0xe8, 0,    0,    0,    0,    // 7:  callq plt+0x20
      0xe9, 0,    0,    0,    0,    // c:  jmp plt+0x12
      0x68, 0,    0,    0,    0,    // 11: pushq <relocation index>
      0xe9, 0,    0,    0,    0,    // 16: jmp plt+0
      0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1b: int3; padding
  };
  memcpy(buf, insn, sizeof(insn));

  uint64_t off = pltEntryAddr - in.plt->getVA();

  write32le(buf + 3, sym.getGotPltVA() - pltEntryAddr - 7);
  write32le(buf + 8, -off - 12 + 32);
  write32le(buf + 13, -off - 17 + 18);
  write32le(buf + 18, sym.getPltIdx());
  write32le(buf + 23, -off - 27);
}

RetpolineZNow::RetpolineZNow() {
  pltHeaderSize = 32;
  pltEntrySize = 16;
  ipltEntrySize = 16;
}

void RetpolineZNow::writePltHeader(uint8_t *buf) const {
  const uint8_t insn[] = {
      0xe8, 0x0b, 0x00, 0x00, 0x00, // 0:    call next
      0xf3, 0x90,                   // 5:  loop: pause
      0x0f, 0xae, 0xe8,             // 7:    lfence
      0xeb, 0xf9,                   // a:    jmp loop
      0xcc, 0xcc, 0xcc, 0xcc,       // c:    int3; .align 16
      0x4c, 0x89, 0x1c, 0x24,       // 10: next: mov %r11, (%rsp)
      0xc3,                         // 14:   ret
      0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 15:   int3; padding
      0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1a:   int3; padding
      0xcc,                         // 1f:   int3; padding
  };
  memcpy(buf, insn, sizeof(insn));
}

void RetpolineZNow::writePlt(uint8_t *buf, const Symbol &sym,
                             uint64_t pltEntryAddr) const {
  const uint8_t insn[] = {
      0x4c, 0x8b, 0x1d, 0,    0, 0, 0, // mov foo@GOTPLT(%rip), %r11
      0xe9, 0,    0,    0,    0,       // jmp plt+0
      0xcc, 0xcc, 0xcc, 0xcc,          // int3; padding
  };
  memcpy(buf, insn, sizeof(insn));

  write32le(buf + 3, sym.getGotPltVA() - pltEntryAddr - 7);
  write32le(buf + 8, in.plt->getVA() - pltEntryAddr - 12);
}

static TargetInfo *getTargetInfo() {
  if (config->zRetpolineplt) {
    if (config->zNow) {
      static RetpolineZNow t;
      return &t;
    }
    static Retpoline t;
    return &t;
  }

  if (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT) {
    static IntelIBT t;
    return &t;
  }

  static X86_64 t;
  return &t;
}

TargetInfo *elf::getX86_64TargetInfo() { return getTargetInfo(); }