aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Target/RISCV/RISCVTargetTransformInfo.cpp
blob: 66dab70d455ff40fa0baf3da5fa80c8b8a93737f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
//===-- RISCVTargetTransformInfo.cpp - RISC-V specific TTI ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "RISCVTargetTransformInfo.h"
#include "MCTargetDesc/RISCVMatInt.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/BasicTTIImpl.h"
#include "llvm/CodeGen/CostTable.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/IR/Instructions.h"
#include <cmath>
#include <optional>
using namespace llvm;

#define DEBUG_TYPE "riscvtti"

static cl::opt<unsigned> RVVRegisterWidthLMUL(
    "riscv-v-register-bit-width-lmul",
    cl::desc(
        "The LMUL to use for getRegisterBitWidth queries. Affects LMUL used "
        "by autovectorized code. Fractional LMULs are not supported."),
    cl::init(2), cl::Hidden);

static cl::opt<unsigned> SLPMaxVF(
    "riscv-v-slp-max-vf",
    cl::desc(
        "Overrides result used for getMaximumVF query which is used "
        "exclusively by SLP vectorizer."),
    cl::Hidden);

InstructionCost
RISCVTTIImpl::getRISCVInstructionCost(ArrayRef<unsigned> OpCodes, MVT VT,
                                      TTI::TargetCostKind CostKind) {
  // Check if the type is valid for all CostKind
  if (!VT.isVector())
    return InstructionCost::getInvalid();
  size_t NumInstr = OpCodes.size();
  if (CostKind == TTI::TCK_CodeSize)
    return NumInstr;
  InstructionCost LMULCost = TLI->getLMULCost(VT);
  if ((CostKind != TTI::TCK_RecipThroughput) && (CostKind != TTI::TCK_Latency))
    return LMULCost * NumInstr;
  InstructionCost Cost = 0;
  for (auto Op : OpCodes) {
    switch (Op) {
    case RISCV::VRGATHER_VI:
      Cost += TLI->getVRGatherVICost(VT);
      break;
    case RISCV::VRGATHER_VV:
      Cost += TLI->getVRGatherVVCost(VT);
      break;
    case RISCV::VSLIDEUP_VI:
    case RISCV::VSLIDEDOWN_VI:
      Cost += TLI->getVSlideVICost(VT);
      break;
    case RISCV::VSLIDEUP_VX:
    case RISCV::VSLIDEDOWN_VX:
      Cost += TLI->getVSlideVXCost(VT);
      break;
    case RISCV::VREDMAX_VS:
    case RISCV::VREDMIN_VS:
    case RISCV::VREDMAXU_VS:
    case RISCV::VREDMINU_VS:
    case RISCV::VREDSUM_VS:
    case RISCV::VREDAND_VS:
    case RISCV::VREDOR_VS:
    case RISCV::VREDXOR_VS:
    case RISCV::VFREDMAX_VS:
    case RISCV::VFREDMIN_VS:
    case RISCV::VFREDUSUM_VS: {
      unsigned VL = VT.getVectorMinNumElements();
      if (!VT.isFixedLengthVector())
        VL *= *getVScaleForTuning();
      Cost += Log2_32_Ceil(VL);
      break;
    }
    case RISCV::VFREDOSUM_VS: {
      unsigned VL = VT.getVectorMinNumElements();
      if (!VT.isFixedLengthVector())
        VL *= *getVScaleForTuning();
      Cost += VL;
      break;
    }
    case RISCV::VMV_X_S:
    case RISCV::VMV_S_X:
      Cost += 1;
      break;
    default:
      Cost += LMULCost;
    }
  }
  return Cost;
}

InstructionCost RISCVTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
                                            TTI::TargetCostKind CostKind) {
  assert(Ty->isIntegerTy() &&
         "getIntImmCost can only estimate cost of materialising integers");

  // We have a Zero register, so 0 is always free.
  if (Imm == 0)
    return TTI::TCC_Free;

  // Otherwise, we check how many instructions it will take to materialise.
  const DataLayout &DL = getDataLayout();
  return RISCVMatInt::getIntMatCost(Imm, DL.getTypeSizeInBits(Ty), *getST());
}

// Look for patterns of shift followed by AND that can be turned into a pair of
// shifts. We won't need to materialize an immediate for the AND so these can
// be considered free.
static bool canUseShiftPair(Instruction *Inst, const APInt &Imm) {
  uint64_t Mask = Imm.getZExtValue();
  auto *BO = dyn_cast<BinaryOperator>(Inst->getOperand(0));
  if (!BO || !BO->hasOneUse())
    return false;

  if (BO->getOpcode() != Instruction::Shl)
    return false;

  if (!isa<ConstantInt>(BO->getOperand(1)))
    return false;

  unsigned ShAmt = cast<ConstantInt>(BO->getOperand(1))->getZExtValue();
  // (and (shl x, c2), c1) will be matched to (srli (slli x, c2+c3), c3) if c1
  // is a mask shifted by c2 bits with c3 leading zeros.
  if (isShiftedMask_64(Mask)) {
    unsigned Trailing = llvm::countr_zero(Mask);
    if (ShAmt == Trailing)
      return true;
  }

  return false;
}

InstructionCost RISCVTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
                                                const APInt &Imm, Type *Ty,
                                                TTI::TargetCostKind CostKind,
                                                Instruction *Inst) {
  assert(Ty->isIntegerTy() &&
         "getIntImmCost can only estimate cost of materialising integers");

  // We have a Zero register, so 0 is always free.
  if (Imm == 0)
    return TTI::TCC_Free;

  // Some instructions in RISC-V can take a 12-bit immediate. Some of these are
  // commutative, in others the immediate comes from a specific argument index.
  bool Takes12BitImm = false;
  unsigned ImmArgIdx = ~0U;

  switch (Opcode) {
  case Instruction::GetElementPtr:
    // Never hoist any arguments to a GetElementPtr. CodeGenPrepare will
    // split up large offsets in GEP into better parts than ConstantHoisting
    // can.
    return TTI::TCC_Free;
  case Instruction::And:
    // zext.h
    if (Imm == UINT64_C(0xffff) && ST->hasStdExtZbb())
      return TTI::TCC_Free;
    // zext.w
    if (Imm == UINT64_C(0xffffffff) && ST->hasStdExtZba())
      return TTI::TCC_Free;
    // bclri
    if (ST->hasStdExtZbs() && (~Imm).isPowerOf2())
      return TTI::TCC_Free;
    if (Inst && Idx == 1 && Imm.getBitWidth() <= ST->getXLen() &&
        canUseShiftPair(Inst, Imm))
      return TTI::TCC_Free;
    Takes12BitImm = true;
    break;
  case Instruction::Add:
    Takes12BitImm = true;
    break;
  case Instruction::Or:
  case Instruction::Xor:
    // bseti/binvi
    if (ST->hasStdExtZbs() && Imm.isPowerOf2())
      return TTI::TCC_Free;
    Takes12BitImm = true;
    break;
  case Instruction::Mul:
    // Power of 2 is a shift. Negated power of 2 is a shift and a negate.
    if (Imm.isPowerOf2() || Imm.isNegatedPowerOf2())
      return TTI::TCC_Free;
    // One more or less than a power of 2 can use SLLI+ADD/SUB.
    if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2())
      return TTI::TCC_Free;
    // FIXME: There is no MULI instruction.
    Takes12BitImm = true;
    break;
  case Instruction::Sub:
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
    Takes12BitImm = true;
    ImmArgIdx = 1;
    break;
  default:
    break;
  }

  if (Takes12BitImm) {
    // Check immediate is the correct argument...
    if (Instruction::isCommutative(Opcode) || Idx == ImmArgIdx) {
      // ... and fits into the 12-bit immediate.
      if (Imm.getSignificantBits() <= 64 &&
          getTLI()->isLegalAddImmediate(Imm.getSExtValue())) {
        return TTI::TCC_Free;
      }
    }

    // Otherwise, use the full materialisation cost.
    return getIntImmCost(Imm, Ty, CostKind);
  }

  // By default, prevent hoisting.
  return TTI::TCC_Free;
}

InstructionCost
RISCVTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
                                  const APInt &Imm, Type *Ty,
                                  TTI::TargetCostKind CostKind) {
  // Prevent hoisting in unknown cases.
  return TTI::TCC_Free;
}

TargetTransformInfo::PopcntSupportKind
RISCVTTIImpl::getPopcntSupport(unsigned TyWidth) {
  assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
  return ST->hasStdExtZbb() || ST->hasVendorXCVbitmanip()
             ? TTI::PSK_FastHardware
             : TTI::PSK_Software;
}

bool RISCVTTIImpl::shouldExpandReduction(const IntrinsicInst *II) const {
  // Currently, the ExpandReductions pass can't expand scalable-vector
  // reductions, but we still request expansion as RVV doesn't support certain
  // reductions and the SelectionDAG can't legalize them either.
  switch (II->getIntrinsicID()) {
  default:
    return false;
  // These reductions have no equivalent in RVV
  case Intrinsic::vector_reduce_mul:
  case Intrinsic::vector_reduce_fmul:
    return true;
  }
}

std::optional<unsigned> RISCVTTIImpl::getMaxVScale() const {
  if (ST->hasVInstructions())
    return ST->getRealMaxVLen() / RISCV::RVVBitsPerBlock;
  return BaseT::getMaxVScale();
}

std::optional<unsigned> RISCVTTIImpl::getVScaleForTuning() const {
  if (ST->hasVInstructions())
    if (unsigned MinVLen = ST->getRealMinVLen();
        MinVLen >= RISCV::RVVBitsPerBlock)
      return MinVLen / RISCV::RVVBitsPerBlock;
  return BaseT::getVScaleForTuning();
}

TypeSize
RISCVTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
  unsigned LMUL =
      llvm::bit_floor(std::clamp<unsigned>(RVVRegisterWidthLMUL, 1, 8));
  switch (K) {
  case TargetTransformInfo::RGK_Scalar:
    return TypeSize::getFixed(ST->getXLen());
  case TargetTransformInfo::RGK_FixedWidthVector:
    return TypeSize::getFixed(
        ST->useRVVForFixedLengthVectors() ? LMUL * ST->getRealMinVLen() : 0);
  case TargetTransformInfo::RGK_ScalableVector:
    return TypeSize::getScalable(
        (ST->hasVInstructions() &&
         ST->getRealMinVLen() >= RISCV::RVVBitsPerBlock)
            ? LMUL * RISCV::RVVBitsPerBlock
            : 0);
  }

  llvm_unreachable("Unsupported register kind");
}

InstructionCost
RISCVTTIImpl::getConstantPoolLoadCost(Type *Ty,  TTI::TargetCostKind CostKind) {
  // Add a cost of address generation + the cost of the load. The address
  // is expected to be a PC relative offset to a constant pool entry
  // using auipc/addi.
  return 2 + getMemoryOpCost(Instruction::Load, Ty, DL.getABITypeAlign(Ty),
                             /*AddressSpace=*/0, CostKind);
}

static VectorType *getVRGatherIndexType(MVT DataVT, const RISCVSubtarget &ST,
                                        LLVMContext &C) {
  assert((DataVT.getScalarSizeInBits() != 8 ||
          DataVT.getVectorNumElements() <= 256) && "unhandled case in lowering");
  MVT IndexVT = DataVT.changeTypeToInteger();
  if (IndexVT.getScalarType().bitsGT(ST.getXLenVT()))
    IndexVT = IndexVT.changeVectorElementType(MVT::i16);
  return cast<VectorType>(EVT(IndexVT).getTypeForEVT(C));
}

InstructionCost RISCVTTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
                                             VectorType *Tp, ArrayRef<int> Mask,
                                             TTI::TargetCostKind CostKind,
                                             int Index, VectorType *SubTp,
                                             ArrayRef<const Value *> Args) {
  Kind = improveShuffleKindFromMask(Kind, Mask, Tp, Index, SubTp);

  std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);

  // First, handle cases where having a fixed length vector enables us to
  // give a more accurate cost than falling back to generic scalable codegen.
  // TODO: Each of these cases hints at a modeling gap around scalable vectors.
  if (isa<FixedVectorType>(Tp)) {
    switch (Kind) {
    default:
      break;
    case TTI::SK_PermuteSingleSrc: {
      if (Mask.size() >= 2 && LT.second.isFixedLengthVector()) {
        MVT EltTp = LT.second.getVectorElementType();
        // If the size of the element is < ELEN then shuffles of interleaves and
        // deinterleaves of 2 vectors can be lowered into the following
        // sequences
        if (EltTp.getScalarSizeInBits() < ST->getELen()) {
          // Example sequence:
          //   vsetivli     zero, 4, e8, mf4, ta, ma (ignored)
          //   vwaddu.vv    v10, v8, v9
          //   li       a0, -1                   (ignored)
          //   vwmaccu.vx   v10, a0, v9
          if (ShuffleVectorInst::isInterleaveMask(Mask, 2, Mask.size()))
            return 2 * LT.first * TLI->getLMULCost(LT.second);

          if (Mask[0] == 0 || Mask[0] == 1) {
            auto DeinterleaveMask = createStrideMask(Mask[0], 2, Mask.size());
            // Example sequence:
            //   vnsrl.wi   v10, v8, 0
            if (equal(DeinterleaveMask, Mask))
              return LT.first * getRISCVInstructionCost(RISCV::VNSRL_WI,
                                                        LT.second, CostKind);
          }
        }
      }
      // vrgather + cost of generating the mask constant.
      // We model this for an unknown mask with a single vrgather.
      if (LT.second.isFixedLengthVector() && LT.first == 1 &&
          (LT.second.getScalarSizeInBits() != 8 ||
           LT.second.getVectorNumElements() <= 256)) {
        VectorType *IdxTy = getVRGatherIndexType(LT.second, *ST, Tp->getContext());
        InstructionCost IndexCost = getConstantPoolLoadCost(IdxTy, CostKind);
        return IndexCost +
               getRISCVInstructionCost(RISCV::VRGATHER_VV, LT.second, CostKind);
      }
      [[fallthrough]];
    }
    case TTI::SK_Transpose:
    case TTI::SK_PermuteTwoSrc: {
      // 2 x (vrgather + cost of generating the mask constant) + cost of mask
      // register for the second vrgather. We model this for an unknown
      // (shuffle) mask.
      if (LT.second.isFixedLengthVector() && LT.first == 1 &&
          (LT.second.getScalarSizeInBits() != 8 ||
           LT.second.getVectorNumElements() <= 256)) {
        auto &C = Tp->getContext();
        auto EC = Tp->getElementCount();
        VectorType *IdxTy = getVRGatherIndexType(LT.second, *ST, C);
        VectorType *MaskTy = VectorType::get(IntegerType::getInt1Ty(C), EC);
        InstructionCost IndexCost = getConstantPoolLoadCost(IdxTy, CostKind);
        InstructionCost MaskCost = getConstantPoolLoadCost(MaskTy, CostKind);
        return 2 * IndexCost +
               getRISCVInstructionCost({RISCV::VRGATHER_VV, RISCV::VRGATHER_VV},
                                       LT.second, CostKind) +
               MaskCost;
      }
      [[fallthrough]];
    }
    case TTI::SK_Select: {
      // We are going to permute multiple sources and the result will be in
      // multiple destinations. Providing an accurate cost only for splits where
      // the element type remains the same.
      if (!Mask.empty() && LT.first.isValid() && LT.first != 1 &&
          LT.second.isFixedLengthVector() &&
          LT.second.getVectorElementType().getSizeInBits() ==
              Tp->getElementType()->getPrimitiveSizeInBits() &&
          LT.second.getVectorNumElements() <
              cast<FixedVectorType>(Tp)->getNumElements() &&
          divideCeil(Mask.size(),
                     cast<FixedVectorType>(Tp)->getNumElements()) ==
              static_cast<unsigned>(*LT.first.getValue())) {
        unsigned NumRegs = *LT.first.getValue();
        unsigned VF = cast<FixedVectorType>(Tp)->getNumElements();
        unsigned SubVF = PowerOf2Ceil(VF / NumRegs);
        auto *SubVecTy = FixedVectorType::get(Tp->getElementType(), SubVF);

        InstructionCost Cost = 0;
        for (unsigned I = 0; I < NumRegs; ++I) {
          bool IsSingleVector = true;
          SmallVector<int> SubMask(SubVF, PoisonMaskElem);
          transform(Mask.slice(I * SubVF,
                               I == NumRegs - 1 ? Mask.size() % SubVF : SubVF),
                    SubMask.begin(), [&](int I) {
                      bool SingleSubVector = I / VF == 0;
                      IsSingleVector &= SingleSubVector;
                      return (SingleSubVector ? 0 : 1) * SubVF + I % VF;
                    });
          Cost += getShuffleCost(IsSingleVector ? TTI::SK_PermuteSingleSrc
                                                : TTI::SK_PermuteTwoSrc,
                                 SubVecTy, SubMask, CostKind, 0, nullptr);
          return Cost;
        }
      }
      break;
    }
    }
  };

  // Handle scalable vectors (and fixed vectors legalized to scalable vectors).
  switch (Kind) {
  default:
    // Fallthrough to generic handling.
    // TODO: Most of these cases will return getInvalid in generic code, and
    // must be implemented here.
    break;
  case TTI::SK_ExtractSubvector:
    // Example sequence:
    // vsetivli     zero, 4, e8, mf2, tu, ma (ignored)
    // vslidedown.vi  v8, v9, 2
    return LT.first *
           getRISCVInstructionCost(RISCV::VSLIDEDOWN_VI, LT.second, CostKind);
  case TTI::SK_InsertSubvector:
    // Example sequence:
    // vsetivli     zero, 4, e8, mf2, tu, ma (ignored)
    // vslideup.vi  v8, v9, 2
    return LT.first *
           getRISCVInstructionCost(RISCV::VSLIDEUP_VI, LT.second, CostKind);
  case TTI::SK_Select: {
    // Example sequence:
    // li           a0, 90
    // vsetivli     zero, 8, e8, mf2, ta, ma (ignored)
    // vmv.s.x      v0, a0
    // vmerge.vvm   v8, v9, v8, v0
    // We use 2 for the cost of the mask materialization as this is the true
    // cost for small masks and most shuffles are small.  At worst, this cost
    // should be a very small constant for the constant pool load.  As such,
    // we may bias towards large selects slightly more than truely warranted.
    return LT.first *
           (1 + getRISCVInstructionCost({RISCV::VMV_S_X, RISCV::VMERGE_VVM},
                                        LT.second, CostKind));
  }
  case TTI::SK_Broadcast: {
    bool HasScalar = (Args.size() > 0) && (Operator::getOpcode(Args[0]) ==
                                           Instruction::InsertElement);
    if (LT.second.getScalarSizeInBits() == 1) {
      if (HasScalar) {
        // Example sequence:
        //   andi a0, a0, 1
        //   vsetivli zero, 2, e8, mf8, ta, ma (ignored)
        //   vmv.v.x v8, a0
        //   vmsne.vi v0, v8, 0
        return LT.first *
               (TLI->getLMULCost(LT.second) + // FIXME: should be 1 for andi
                getRISCVInstructionCost({RISCV::VMV_V_X, RISCV::VMSNE_VI},
                                        LT.second, CostKind));
      }
      // Example sequence:
      //   vsetivli  zero, 2, e8, mf8, ta, mu (ignored)
      //   vmv.v.i v8, 0
      //   vmerge.vim      v8, v8, 1, v0
      //   vmv.x.s a0, v8
      //   andi    a0, a0, 1
      //   vmv.v.x v8, a0
      //   vmsne.vi  v0, v8, 0

      return LT.first *
             (TLI->getLMULCost(LT.second) + // FIXME: this should be 1 for andi
              getRISCVInstructionCost({RISCV::VMV_V_I, RISCV::VMERGE_VIM,
                                       RISCV::VMV_X_S, RISCV::VMV_V_X,
                                       RISCV::VMSNE_VI},
                                      LT.second, CostKind));
    }

    if (HasScalar) {
      // Example sequence:
      //   vmv.v.x v8, a0
      return LT.first *
             getRISCVInstructionCost(RISCV::VMV_V_X, LT.second, CostKind);
    }

    // Example sequence:
    //   vrgather.vi     v9, v8, 0
    return LT.first *
           getRISCVInstructionCost(RISCV::VRGATHER_VI, LT.second, CostKind);
  }
  case TTI::SK_Splice: {
    // vslidedown+vslideup.
    // TODO: Multiplying by LT.first implies this legalizes into multiple copies
    // of similar code, but I think we expand through memory.
    unsigned Opcodes[2] = {RISCV::VSLIDEDOWN_VX, RISCV::VSLIDEUP_VX};
    if (Index >= 0 && Index < 32)
      Opcodes[0] = RISCV::VSLIDEDOWN_VI;
    else if (Index < 0 && Index > -32)
      Opcodes[1] = RISCV::VSLIDEUP_VI;
    return LT.first * getRISCVInstructionCost(Opcodes, LT.second, CostKind);
  }
  case TTI::SK_Reverse: {
    // TODO: Cases to improve here:
    // * Illegal vector types
    // * i64 on RV32
    // * i1 vector
    // At low LMUL, most of the cost is producing the vrgather index register.
    // At high LMUL, the cost of the vrgather itself will dominate.
    // Example sequence:
    //   csrr a0, vlenb
    //   srli a0, a0, 3
    //   addi a0, a0, -1
    //   vsetvli a1, zero, e8, mf8, ta, mu (ignored)
    //   vid.v v9
    //   vrsub.vx v10, v9, a0
    //   vrgather.vv v9, v8, v10
    InstructionCost LenCost = 3;
    if (LT.second.isFixedLengthVector())
      // vrsub.vi has a 5 bit immediate field, otherwise an li suffices
      LenCost = isInt<5>(LT.second.getVectorNumElements() - 1) ? 0 : 1;
    // FIXME: replace the constant `2` below with cost of {VID_V,VRSUB_VX}
    InstructionCost GatherCost =
        2 + getRISCVInstructionCost(RISCV::VRGATHER_VV, LT.second, CostKind);
    // Mask operation additionally required extend and truncate
    InstructionCost ExtendCost = Tp->getElementType()->isIntegerTy(1) ? 3 : 0;
    return LT.first * (LenCost + GatherCost + ExtendCost);
  }
  }
  return BaseT::getShuffleCost(Kind, Tp, Mask, CostKind, Index, SubTp);
}

InstructionCost
RISCVTTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
                                    unsigned AddressSpace,
                                    TTI::TargetCostKind CostKind) {
  if (!isLegalMaskedLoadStore(Src, Alignment) ||
      CostKind != TTI::TCK_RecipThroughput)
    return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
                                        CostKind);

  return getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind);
}

InstructionCost RISCVTTIImpl::getInterleavedMemoryOpCost(
    unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
    Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
    bool UseMaskForCond, bool UseMaskForGaps) {
  if (isa<ScalableVectorType>(VecTy))
    return InstructionCost::getInvalid();
  auto *FVTy = cast<FixedVectorType>(VecTy);
  InstructionCost MemCost =
      getMemoryOpCost(Opcode, VecTy, Alignment, AddressSpace, CostKind);
  unsigned VF = FVTy->getNumElements() / Factor;

  // The interleaved memory access pass will lower interleaved memory ops (i.e
  // a load and store followed by a specific shuffle) to vlseg/vsseg
  // intrinsics. In those cases then we can treat it as if it's just one (legal)
  // memory op
  if (!UseMaskForCond && !UseMaskForGaps &&
      Factor <= TLI->getMaxSupportedInterleaveFactor()) {
    std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(FVTy);
    // Need to make sure type has't been scalarized
    if (LT.second.isFixedLengthVector()) {
      auto *LegalFVTy = FixedVectorType::get(FVTy->getElementType(),
                                             LT.second.getVectorNumElements());
      // FIXME: We use the memory op cost of the *legalized* type here, becuase
      // it's getMemoryOpCost returns a really expensive cost for types like
      // <6 x i8>, which show up when doing interleaves of Factor=3 etc.
      // Should the memory op cost of these be cheaper?
      if (TLI->isLegalInterleavedAccessType(LegalFVTy, Factor, Alignment,
                                            AddressSpace, DL)) {
        InstructionCost LegalMemCost = getMemoryOpCost(
            Opcode, LegalFVTy, Alignment, AddressSpace, CostKind);
        return LT.first + LegalMemCost;
      }
    }
  }

  // An interleaved load will look like this for Factor=3:
  // %wide.vec = load <12 x i32>, ptr %3, align 4
  // %strided.vec = shufflevector %wide.vec, poison, <4 x i32> <stride mask>
  // %strided.vec1 = shufflevector %wide.vec, poison, <4 x i32> <stride mask>
  // %strided.vec2 = shufflevector %wide.vec, poison, <4 x i32> <stride mask>
  if (Opcode == Instruction::Load) {
    InstructionCost Cost = MemCost;
    for (unsigned Index : Indices) {
      FixedVectorType *SubVecTy =
          FixedVectorType::get(FVTy->getElementType(), VF * Factor);
      auto Mask = createStrideMask(Index, Factor, VF);
      InstructionCost ShuffleCost =
          getShuffleCost(TTI::ShuffleKind::SK_PermuteSingleSrc, SubVecTy, Mask,
                         CostKind, 0, nullptr, {});
      Cost += ShuffleCost;
    }
    return Cost;
  }

  // TODO: Model for NF > 2
  // We'll need to enhance getShuffleCost to model shuffles that are just
  // inserts and extracts into subvectors, since they won't have the full cost
  // of a vrgather.
  // An interleaved store for 3 vectors of 4 lanes will look like
  // %11 = shufflevector <4 x i32> %4, <4 x i32> %6, <8 x i32> <0...7>
  // %12 = shufflevector <4 x i32> %9, <4 x i32> poison, <8 x i32> <0...3>
  // %13 = shufflevector <8 x i32> %11, <8 x i32> %12, <12 x i32> <0...11>
  // %interleaved.vec = shufflevector %13, poison, <12 x i32> <interleave mask>
  // store <12 x i32> %interleaved.vec, ptr %10, align 4
  if (Factor != 2)
    return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
                                             Alignment, AddressSpace, CostKind,
                                             UseMaskForCond, UseMaskForGaps);

  assert(Opcode == Instruction::Store && "Opcode must be a store");
  // For an interleaving store of 2 vectors, we perform one large interleaving
  // shuffle that goes into the wide store
  auto Mask = createInterleaveMask(VF, Factor);
  InstructionCost ShuffleCost =
      getShuffleCost(TTI::ShuffleKind::SK_PermuteSingleSrc, FVTy, Mask,
                     CostKind, 0, nullptr, {});
  return MemCost + ShuffleCost;
}

InstructionCost RISCVTTIImpl::getGatherScatterOpCost(
    unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
    Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) {
  if (CostKind != TTI::TCK_RecipThroughput)
    return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
                                         Alignment, CostKind, I);

  if ((Opcode == Instruction::Load &&
       !isLegalMaskedGather(DataTy, Align(Alignment))) ||
      (Opcode == Instruction::Store &&
       !isLegalMaskedScatter(DataTy, Align(Alignment))))
    return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
                                         Alignment, CostKind, I);

  // Cost is proportional to the number of memory operations implied.  For
  // scalable vectors, we use an estimate on that number since we don't
  // know exactly what VL will be.
  auto &VTy = *cast<VectorType>(DataTy);
  InstructionCost MemOpCost =
      getMemoryOpCost(Opcode, VTy.getElementType(), Alignment, 0, CostKind,
                      {TTI::OK_AnyValue, TTI::OP_None}, I);
  unsigned NumLoads = getEstimatedVLFor(&VTy);
  return NumLoads * MemOpCost;
}

// Currently, these represent both throughput and codesize costs
// for the respective intrinsics.  The costs in this table are simply
// instruction counts with the following adjustments made:
// * One vsetvli is considered free.
static const CostTblEntry VectorIntrinsicCostTable[]{
    {Intrinsic::floor, MVT::f32, 9},
    {Intrinsic::floor, MVT::f64, 9},
    {Intrinsic::ceil, MVT::f32, 9},
    {Intrinsic::ceil, MVT::f64, 9},
    {Intrinsic::trunc, MVT::f32, 7},
    {Intrinsic::trunc, MVT::f64, 7},
    {Intrinsic::round, MVT::f32, 9},
    {Intrinsic::round, MVT::f64, 9},
    {Intrinsic::roundeven, MVT::f32, 9},
    {Intrinsic::roundeven, MVT::f64, 9},
    {Intrinsic::rint, MVT::f32, 7},
    {Intrinsic::rint, MVT::f64, 7},
    {Intrinsic::lrint, MVT::i32, 1},
    {Intrinsic::lrint, MVT::i64, 1},
    {Intrinsic::llrint, MVT::i64, 1},
    {Intrinsic::nearbyint, MVT::f32, 9},
    {Intrinsic::nearbyint, MVT::f64, 9},
    {Intrinsic::bswap, MVT::i16, 3},
    {Intrinsic::bswap, MVT::i32, 12},
    {Intrinsic::bswap, MVT::i64, 31},
    {Intrinsic::vp_bswap, MVT::i16, 3},
    {Intrinsic::vp_bswap, MVT::i32, 12},
    {Intrinsic::vp_bswap, MVT::i64, 31},
    {Intrinsic::vp_fshl, MVT::i8, 7},
    {Intrinsic::vp_fshl, MVT::i16, 7},
    {Intrinsic::vp_fshl, MVT::i32, 7},
    {Intrinsic::vp_fshl, MVT::i64, 7},
    {Intrinsic::vp_fshr, MVT::i8, 7},
    {Intrinsic::vp_fshr, MVT::i16, 7},
    {Intrinsic::vp_fshr, MVT::i32, 7},
    {Intrinsic::vp_fshr, MVT::i64, 7},
    {Intrinsic::bitreverse, MVT::i8, 17},
    {Intrinsic::bitreverse, MVT::i16, 24},
    {Intrinsic::bitreverse, MVT::i32, 33},
    {Intrinsic::bitreverse, MVT::i64, 52},
    {Intrinsic::vp_bitreverse, MVT::i8, 17},
    {Intrinsic::vp_bitreverse, MVT::i16, 24},
    {Intrinsic::vp_bitreverse, MVT::i32, 33},
    {Intrinsic::vp_bitreverse, MVT::i64, 52},
    {Intrinsic::ctpop, MVT::i8, 12},
    {Intrinsic::ctpop, MVT::i16, 19},
    {Intrinsic::ctpop, MVT::i32, 20},
    {Intrinsic::ctpop, MVT::i64, 21},
    {Intrinsic::vp_ctpop, MVT::i8, 12},
    {Intrinsic::vp_ctpop, MVT::i16, 19},
    {Intrinsic::vp_ctpop, MVT::i32, 20},
    {Intrinsic::vp_ctpop, MVT::i64, 21},
    {Intrinsic::vp_ctlz, MVT::i8, 19},
    {Intrinsic::vp_ctlz, MVT::i16, 28},
    {Intrinsic::vp_ctlz, MVT::i32, 31},
    {Intrinsic::vp_ctlz, MVT::i64, 35},
    {Intrinsic::vp_cttz, MVT::i8, 16},
    {Intrinsic::vp_cttz, MVT::i16, 23},
    {Intrinsic::vp_cttz, MVT::i32, 24},
    {Intrinsic::vp_cttz, MVT::i64, 25},
};

static unsigned getISDForVPIntrinsicID(Intrinsic::ID ID) {
  switch (ID) {
#define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
  case Intrinsic::VPID:                                                        \
    return ISD::VPSD;
#include "llvm/IR/VPIntrinsics.def"
#undef HELPER_MAP_VPID_TO_VPSD
  }
  return ISD::DELETED_NODE;
}

InstructionCost
RISCVTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
                                    TTI::TargetCostKind CostKind) {
  auto *RetTy = ICA.getReturnType();
  switch (ICA.getID()) {
  case Intrinsic::ceil:
  case Intrinsic::floor:
  case Intrinsic::trunc:
  case Intrinsic::rint:
  case Intrinsic::lrint:
  case Intrinsic::llrint:
  case Intrinsic::round:
  case Intrinsic::roundeven: {
    // These all use the same code.
    auto LT = getTypeLegalizationCost(RetTy);
    if (!LT.second.isVector() && TLI->isOperationCustom(ISD::FCEIL, LT.second))
      return LT.first * 8;
    break;
  }
  case Intrinsic::umin:
  case Intrinsic::umax:
  case Intrinsic::smin:
  case Intrinsic::smax: {
    auto LT = getTypeLegalizationCost(RetTy);
    if ((ST->hasVInstructions() && LT.second.isVector()) ||
        (LT.second.isScalarInteger() && ST->hasStdExtZbb()))
      return LT.first;
    break;
  }
  case Intrinsic::sadd_sat:
  case Intrinsic::ssub_sat:
  case Intrinsic::uadd_sat:
  case Intrinsic::usub_sat:
  case Intrinsic::fabs:
  case Intrinsic::sqrt: {
    auto LT = getTypeLegalizationCost(RetTy);
    if (ST->hasVInstructions() && LT.second.isVector())
      return LT.first;
    break;
  }
  case Intrinsic::ctpop: {
    auto LT = getTypeLegalizationCost(RetTy);
    if (ST->hasVInstructions() && ST->hasStdExtZvbb() && LT.second.isVector())
      return LT.first;
    break;
  }
  case Intrinsic::abs: {
    auto LT = getTypeLegalizationCost(RetTy);
    if (ST->hasVInstructions() && LT.second.isVector()) {
      // vrsub.vi v10, v8, 0
      // vmax.vv v8, v8, v10
      return LT.first * 2;
    }
    break;
  }
  // TODO: add more intrinsic
  case Intrinsic::experimental_stepvector: {
    unsigned Cost = 1; // vid
    auto LT = getTypeLegalizationCost(RetTy);
    return Cost + (LT.first - 1);
  }
  case Intrinsic::vp_rint: {
    // RISC-V target uses at least 5 instructions to lower rounding intrinsics.
    unsigned Cost = 5;
    auto LT = getTypeLegalizationCost(RetTy);
    if (TLI->isOperationCustom(ISD::VP_FRINT, LT.second))
      return Cost * LT.first;
    break;
  }
  case Intrinsic::vp_nearbyint: {
    // More one read and one write for fflags than vp_rint.
    unsigned Cost = 7;
    auto LT = getTypeLegalizationCost(RetTy);
    if (TLI->isOperationCustom(ISD::VP_FRINT, LT.second))
      return Cost * LT.first;
    break;
  }
  case Intrinsic::vp_ceil:
  case Intrinsic::vp_floor:
  case Intrinsic::vp_round:
  case Intrinsic::vp_roundeven:
  case Intrinsic::vp_roundtozero: {
    // Rounding with static rounding mode needs two more instructions to
    // swap/write FRM than vp_rint.
    unsigned Cost = 7;
    auto LT = getTypeLegalizationCost(RetTy);
    unsigned VPISD = getISDForVPIntrinsicID(ICA.getID());
    if (TLI->isOperationCustom(VPISD, LT.second))
      return Cost * LT.first;
    break;
  }
  }

  if (ST->hasVInstructions() && RetTy->isVectorTy()) {
    if (auto LT = getTypeLegalizationCost(RetTy);
        LT.second.isVector()) {
      MVT EltTy = LT.second.getVectorElementType();
      if (const auto *Entry = CostTableLookup(VectorIntrinsicCostTable,
                                              ICA.getID(), EltTy))
        return LT.first * Entry->Cost;
    }
  }

  return BaseT::getIntrinsicInstrCost(ICA, CostKind);
}

InstructionCost RISCVTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
                                               Type *Src,
                                               TTI::CastContextHint CCH,
                                               TTI::TargetCostKind CostKind,
                                               const Instruction *I) {
  if (isa<VectorType>(Dst) && isa<VectorType>(Src)) {
    // FIXME: Need to compute legalizing cost for illegal types.
    if (!isTypeLegal(Src) || !isTypeLegal(Dst))
      return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);

    // Skip if element size of Dst or Src is bigger than ELEN.
    if (Src->getScalarSizeInBits() > ST->getELen() ||
        Dst->getScalarSizeInBits() > ST->getELen())
      return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);

    int ISD = TLI->InstructionOpcodeToISD(Opcode);
    assert(ISD && "Invalid opcode");

    // FIXME: Need to consider vsetvli and lmul.
    int PowDiff = (int)Log2_32(Dst->getScalarSizeInBits()) -
                  (int)Log2_32(Src->getScalarSizeInBits());
    switch (ISD) {
    case ISD::SIGN_EXTEND:
    case ISD::ZERO_EXTEND:
      if (Src->getScalarSizeInBits() == 1) {
        // We do not use vsext/vzext to extend from mask vector.
        // Instead we use the following instructions to extend from mask vector:
        // vmv.v.i v8, 0
        // vmerge.vim v8, v8, -1, v0
        return 2;
      }
      return 1;
    case ISD::TRUNCATE:
      if (Dst->getScalarSizeInBits() == 1) {
        // We do not use several vncvt to truncate to mask vector. So we could
        // not use PowDiff to calculate it.
        // Instead we use the following instructions to truncate to mask vector:
        // vand.vi v8, v8, 1
        // vmsne.vi v0, v8, 0
        return 2;
      }
      [[fallthrough]];
    case ISD::FP_EXTEND:
    case ISD::FP_ROUND:
      // Counts of narrow/widen instructions.
      return std::abs(PowDiff);
    case ISD::FP_TO_SINT:
    case ISD::FP_TO_UINT:
    case ISD::SINT_TO_FP:
    case ISD::UINT_TO_FP:
      if (Src->getScalarSizeInBits() == 1 || Dst->getScalarSizeInBits() == 1) {
        // The cost of convert from or to mask vector is different from other
        // cases. We could not use PowDiff to calculate it.
        // For mask vector to fp, we should use the following instructions:
        // vmv.v.i v8, 0
        // vmerge.vim v8, v8, -1, v0
        // vfcvt.f.x.v v8, v8

        // And for fp vector to mask, we use:
        // vfncvt.rtz.x.f.w v9, v8
        // vand.vi v8, v9, 1
        // vmsne.vi v0, v8, 0
        return 3;
      }
      if (std::abs(PowDiff) <= 1)
        return 1;
      // Backend could lower (v[sz]ext i8 to double) to vfcvt(v[sz]ext.f8 i8),
      // so it only need two conversion.
      if (Src->isIntOrIntVectorTy())
        return 2;
      // Counts of narrow/widen instructions.
      return std::abs(PowDiff);
    }
  }
  return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
}

unsigned RISCVTTIImpl::getEstimatedVLFor(VectorType *Ty) {
  if (isa<ScalableVectorType>(Ty)) {
    const unsigned EltSize = DL.getTypeSizeInBits(Ty->getElementType());
    const unsigned MinSize = DL.getTypeSizeInBits(Ty).getKnownMinValue();
    const unsigned VectorBits = *getVScaleForTuning() * RISCV::RVVBitsPerBlock;
    return RISCVTargetLowering::computeVLMAX(VectorBits, EltSize, MinSize);
  }
  return cast<FixedVectorType>(Ty)->getNumElements();
}

InstructionCost
RISCVTTIImpl::getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty,
                                     FastMathFlags FMF,
                                     TTI::TargetCostKind CostKind) {
  if (isa<FixedVectorType>(Ty) && !ST->useRVVForFixedLengthVectors())
    return BaseT::getMinMaxReductionCost(IID, Ty, FMF, CostKind);

  // Skip if scalar size of Ty is bigger than ELEN.
  if (Ty->getScalarSizeInBits() > ST->getELen())
    return BaseT::getMinMaxReductionCost(IID, Ty, FMF, CostKind);

  std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
  if (Ty->getElementType()->isIntegerTy(1))
    // vcpop sequences, see vreduction-mask.ll.  umax, smin actually only
    // cost 2, but we don't have enough info here so we slightly over cost.
    return (LT.first - 1) + 3;

  // IR Reduction is composed by two vmv and one rvv reduction instruction.
  InstructionCost BaseCost = 2;

  if (CostKind == TTI::TCK_CodeSize)
    return (LT.first - 1) + BaseCost;

  unsigned VL = getEstimatedVLFor(Ty);
  return (LT.first - 1) + BaseCost + Log2_32_Ceil(VL);
}

InstructionCost
RISCVTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
                                         std::optional<FastMathFlags> FMF,
                                         TTI::TargetCostKind CostKind) {
  if (isa<FixedVectorType>(Ty) && !ST->useRVVForFixedLengthVectors())
    return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);

  // Skip if scalar size of Ty is bigger than ELEN.
  if (Ty->getScalarSizeInBits() > ST->getELen())
    return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);

  int ISD = TLI->InstructionOpcodeToISD(Opcode);
  assert(ISD && "Invalid opcode");

  if (ISD != ISD::ADD && ISD != ISD::OR && ISD != ISD::XOR && ISD != ISD::AND &&
      ISD != ISD::FADD)
    return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);

  std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
  if (Ty->getElementType()->isIntegerTy(1))
    // vcpop sequences, see vreduction-mask.ll
    return (LT.first - 1) + (ISD == ISD::AND ? 3 : 2);

  // IR Reduction is composed by two vmv and one rvv reduction instruction.
  InstructionCost BaseCost = 2;

  if (CostKind == TTI::TCK_CodeSize)
    return (LT.first - 1) + BaseCost;

  unsigned VL = getEstimatedVLFor(Ty);
  if (TTI::requiresOrderedReduction(FMF))
    return (LT.first - 1) + BaseCost + VL;
  return (LT.first - 1) + BaseCost + Log2_32_Ceil(VL);
}

InstructionCost RISCVTTIImpl::getExtendedReductionCost(
    unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *ValTy,
    FastMathFlags FMF, TTI::TargetCostKind CostKind) {
  if (isa<FixedVectorType>(ValTy) && !ST->useRVVForFixedLengthVectors())
    return BaseT::getExtendedReductionCost(Opcode, IsUnsigned, ResTy, ValTy,
                                           FMF, CostKind);

  // Skip if scalar size of ResTy is bigger than ELEN.
  if (ResTy->getScalarSizeInBits() > ST->getELen())
    return BaseT::getExtendedReductionCost(Opcode, IsUnsigned, ResTy, ValTy,
                                           FMF, CostKind);

  if (Opcode != Instruction::Add && Opcode != Instruction::FAdd)
    return BaseT::getExtendedReductionCost(Opcode, IsUnsigned, ResTy, ValTy,
                                           FMF, CostKind);

  std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);

  if (ResTy->getScalarSizeInBits() != 2 * LT.second.getScalarSizeInBits())
    return BaseT::getExtendedReductionCost(Opcode, IsUnsigned, ResTy, ValTy,
                                           FMF, CostKind);

  return (LT.first - 1) +
         getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
}

InstructionCost RISCVTTIImpl::getStoreImmCost(Type *Ty,
                                              TTI::OperandValueInfo OpInfo,
                                              TTI::TargetCostKind CostKind) {
  assert(OpInfo.isConstant() && "non constant operand?");
  if (!isa<VectorType>(Ty))
    // FIXME: We need to account for immediate materialization here, but doing
    // a decent job requires more knowledge about the immediate than we
    // currently have here.
    return 0;

  if (OpInfo.isUniform())
    // vmv.x.i, vmv.v.x, or vfmv.v.f
    // We ignore the cost of the scalar constant materialization to be consistent
    // with how we treat scalar constants themselves just above.
    return 1;

  return getConstantPoolLoadCost(Ty, CostKind);
}


InstructionCost RISCVTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
                                              MaybeAlign Alignment,
                                              unsigned AddressSpace,
                                              TTI::TargetCostKind CostKind,
                                              TTI::OperandValueInfo OpInfo,
                                              const Instruction *I) {
  EVT VT = TLI->getValueType(DL, Src, true);
  // Type legalization can't handle structs
  if (VT == MVT::Other)
    return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
                                  CostKind, OpInfo, I);

  InstructionCost Cost = 0;
  if (Opcode == Instruction::Store && OpInfo.isConstant())
    Cost += getStoreImmCost(Src, OpInfo, CostKind);
  InstructionCost BaseCost =
    BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
                           CostKind, OpInfo, I);
  // Assume memory ops cost scale with the number of vector registers
  // possible accessed by the instruction.  Note that BasicTTI already
  // handles the LT.first term for us.
  if (std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Src);
      LT.second.isVector() && CostKind != TTI::TCK_CodeSize)
    BaseCost *= TLI->getLMULCost(LT.second);
  return Cost + BaseCost;

}

InstructionCost RISCVTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
                                                 Type *CondTy,
                                                 CmpInst::Predicate VecPred,
                                                 TTI::TargetCostKind CostKind,
                                                 const Instruction *I) {
  if (CostKind != TTI::TCK_RecipThroughput)
    return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
                                     I);

  if (isa<FixedVectorType>(ValTy) && !ST->useRVVForFixedLengthVectors())
    return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
                                     I);

  // Skip if scalar size of ValTy is bigger than ELEN.
  if (ValTy->isVectorTy() && ValTy->getScalarSizeInBits() > ST->getELen())
    return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
                                     I);

  if (Opcode == Instruction::Select && ValTy->isVectorTy()) {
    std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
    if (CondTy->isVectorTy()) {
      if (ValTy->getScalarSizeInBits() == 1) {
        // vmandn.mm v8, v8, v9
        // vmand.mm v9, v0, v9
        // vmor.mm v0, v9, v8
        return LT.first * 3;
      }
      // vselect and max/min are supported natively.
      return LT.first * 1;
    }

    if (ValTy->getScalarSizeInBits() == 1) {
      //  vmv.v.x v9, a0
      //  vmsne.vi v9, v9, 0
      //  vmandn.mm v8, v8, v9
      //  vmand.mm v9, v0, v9
      //  vmor.mm v0, v9, v8
      return LT.first * 5;
    }

    // vmv.v.x v10, a0
    // vmsne.vi v0, v10, 0
    // vmerge.vvm v8, v9, v8, v0
    return LT.first * 3;
  }

  if ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
      ValTy->isVectorTy()) {
    std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);

    // Support natively.
    if (CmpInst::isIntPredicate(VecPred))
      return LT.first * 1;

    // If we do not support the input floating point vector type, use the base
    // one which will calculate as:
    // ScalarizeCost + Num * Cost for fixed vector,
    // InvalidCost for scalable vector.
    if ((ValTy->getScalarSizeInBits() == 16 && !ST->hasVInstructionsF16()) ||
        (ValTy->getScalarSizeInBits() == 32 && !ST->hasVInstructionsF32()) ||
        (ValTy->getScalarSizeInBits() == 64 && !ST->hasVInstructionsF64()))
      return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
                                       I);
    switch (VecPred) {
      // Support natively.
    case CmpInst::FCMP_OEQ:
    case CmpInst::FCMP_OGT:
    case CmpInst::FCMP_OGE:
    case CmpInst::FCMP_OLT:
    case CmpInst::FCMP_OLE:
    case CmpInst::FCMP_UNE:
      return LT.first * 1;
    // TODO: Other comparisons?
    default:
      break;
    }
  }

  // TODO: Add cost for scalar type.

  return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
}

InstructionCost RISCVTTIImpl::getCFInstrCost(unsigned Opcode,
                                             TTI::TargetCostKind CostKind,
                                             const Instruction *I) {
  if (CostKind != TTI::TCK_RecipThroughput)
    return Opcode == Instruction::PHI ? 0 : 1;
  // Branches are assumed to be predicted.
  return 0;
}

InstructionCost RISCVTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
                                                 TTI::TargetCostKind CostKind,
                                                 unsigned Index, Value *Op0,
                                                 Value *Op1) {
  assert(Val->isVectorTy() && "This must be a vector type");

  if (Opcode != Instruction::ExtractElement &&
      Opcode != Instruction::InsertElement)
    return BaseT::getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1);

  // Legalize the type.
  std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Val);

  // This type is legalized to a scalar type.
  if (!LT.second.isVector()) {
    auto *FixedVecTy = cast<FixedVectorType>(Val);
    // If Index is a known constant, cost is zero.
    if (Index != -1U)
      return 0;
    // Extract/InsertElement with non-constant index is very costly when
    // scalarized; estimate cost of loads/stores sequence via the stack:
    // ExtractElement cost: store vector to stack, load scalar;
    // InsertElement cost: store vector to stack, store scalar, load vector.
    Type *ElemTy = FixedVecTy->getElementType();
    auto NumElems = FixedVecTy->getNumElements();
    auto Align = DL.getPrefTypeAlign(ElemTy);
    InstructionCost LoadCost =
        getMemoryOpCost(Instruction::Load, ElemTy, Align, 0, CostKind);
    InstructionCost StoreCost =
        getMemoryOpCost(Instruction::Store, ElemTy, Align, 0, CostKind);
    return Opcode == Instruction::ExtractElement
               ? StoreCost * NumElems + LoadCost
               : (StoreCost + LoadCost) * NumElems + StoreCost;
  }

  // For unsupported scalable vector.
  if (LT.second.isScalableVector() && !LT.first.isValid())
    return LT.first;

  if (!isTypeLegal(Val))
    return BaseT::getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1);

  // Mask vector extract/insert is expanded via e8.
  if (Val->getScalarSizeInBits() == 1) {
    VectorType *WideTy =
      VectorType::get(IntegerType::get(Val->getContext(), 8),
                      cast<VectorType>(Val)->getElementCount());
    if (Opcode == Instruction::ExtractElement) {
      InstructionCost ExtendCost
        = getCastInstrCost(Instruction::ZExt, WideTy, Val,
                           TTI::CastContextHint::None, CostKind);
      InstructionCost ExtractCost
        = getVectorInstrCost(Opcode, WideTy, CostKind, Index, nullptr, nullptr);
      return ExtendCost + ExtractCost;
    }
    InstructionCost ExtendCost
      = getCastInstrCost(Instruction::ZExt, WideTy, Val,
                         TTI::CastContextHint::None, CostKind);
    InstructionCost InsertCost
      = getVectorInstrCost(Opcode, WideTy, CostKind, Index, nullptr, nullptr);
    InstructionCost TruncCost
      = getCastInstrCost(Instruction::Trunc, Val, WideTy,
                         TTI::CastContextHint::None, CostKind);
    return ExtendCost + InsertCost + TruncCost;
  }


  // In RVV, we could use vslidedown + vmv.x.s to extract element from vector
  // and vslideup + vmv.s.x to insert element to vector.
  unsigned BaseCost = 1;
  // When insertelement we should add the index with 1 as the input of vslideup.
  unsigned SlideCost = Opcode == Instruction::InsertElement ? 2 : 1;

  if (Index != -1U) {
    // The type may be split. For fixed-width vectors we can normalize the
    // index to the new type.
    if (LT.second.isFixedLengthVector()) {
      unsigned Width = LT.second.getVectorNumElements();
      Index = Index % Width;
    }

    // We could extract/insert the first element without vslidedown/vslideup.
    if (Index == 0)
      SlideCost = 0;
    else if (Opcode == Instruction::InsertElement)
      SlideCost = 1; // With a constant index, we do not need to use addi.
  }

  // Extract i64 in the target that has XLEN=32 need more instruction.
  if (Val->getScalarType()->isIntegerTy() &&
      ST->getXLen() < Val->getScalarSizeInBits()) {
    // For extractelement, we need the following instructions:
    // vsetivli zero, 1, e64, m1, ta, mu (not count)
    // vslidedown.vx v8, v8, a0
    // vmv.x.s a0, v8
    // li a1, 32
    // vsrl.vx v8, v8, a1
    // vmv.x.s a1, v8

    // For insertelement, we need the following instructions:
    // vsetivli zero, 2, e32, m4, ta, mu (not count)
    // vmv.v.i v12, 0
    // vslide1up.vx v16, v12, a1
    // vslide1up.vx v12, v16, a0
    // addi a0, a2, 1
    // vsetvli zero, a0, e64, m4, tu, mu (not count)
    // vslideup.vx v8, v12, a2

    // TODO: should we count these special vsetvlis?
    BaseCost = Opcode == Instruction::InsertElement ? 3 : 4;
  }
  return BaseCost + SlideCost;
}

InstructionCost RISCVTTIImpl::getArithmeticInstrCost(
    unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
    TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info,
    ArrayRef<const Value *> Args, const Instruction *CxtI) {

  // TODO: Handle more cost kinds.
  if (CostKind != TTI::TCK_RecipThroughput)
    return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info,
                                         Args, CxtI);

  if (isa<FixedVectorType>(Ty) && !ST->useRVVForFixedLengthVectors())
    return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info,
                                         Args, CxtI);

  // Skip if scalar size of Ty is bigger than ELEN.
  if (isa<VectorType>(Ty) && Ty->getScalarSizeInBits() > ST->getELen())
    return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info,
                                         Args, CxtI);

  // Legalize the type.
  std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);

  // TODO: Handle scalar type.
  if (!LT.second.isVector())
    return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info,
                                         Args, CxtI);


  auto getConstantMatCost =
    [&](unsigned Operand, TTI::OperandValueInfo OpInfo) -> InstructionCost {
    if (OpInfo.isUniform() && TLI->canSplatOperand(Opcode, Operand))
      // Two sub-cases:
      // * Has a 5 bit immediate operand which can be splatted.
      // * Has a larger immediate which must be materialized in scalar register
      // We return 0 for both as we currently ignore the cost of materializing
      // scalar constants in GPRs.
      return 0;

    return getConstantPoolLoadCost(Ty, CostKind);
  };

  // Add the cost of materializing any constant vectors required.
  InstructionCost ConstantMatCost = 0;
  if (Op1Info.isConstant())
    ConstantMatCost += getConstantMatCost(0, Op1Info);
  if (Op2Info.isConstant())
    ConstantMatCost += getConstantMatCost(1, Op2Info);

  switch (TLI->InstructionOpcodeToISD(Opcode)) {
  case ISD::ADD:
  case ISD::SUB:
  case ISD::AND:
  case ISD::OR:
  case ISD::XOR:
  case ISD::SHL:
  case ISD::SRL:
  case ISD::SRA:
  case ISD::MUL:
  case ISD::MULHS:
  case ISD::MULHU:
  case ISD::FADD:
  case ISD::FSUB:
  case ISD::FMUL:
  case ISD::FNEG: {
    return ConstantMatCost + TLI->getLMULCost(LT.second) * LT.first * 1;
  }
  default:
    return ConstantMatCost +
           BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info,
                                         Args, CxtI);
  }
}

// TODO: Deduplicate from TargetTransformInfoImplCRTPBase.
InstructionCost RISCVTTIImpl::getPointersChainCost(
    ArrayRef<const Value *> Ptrs, const Value *Base,
    const TTI::PointersChainInfo &Info, Type *AccessTy,
    TTI::TargetCostKind CostKind) {
  InstructionCost Cost = TTI::TCC_Free;
  // In the basic model we take into account GEP instructions only
  // (although here can come alloca instruction, a value, constants and/or
  // constant expressions, PHIs, bitcasts ... whatever allowed to be used as a
  // pointer). Typically, if Base is a not a GEP-instruction and all the
  // pointers are relative to the same base address, all the rest are
  // either GEP instructions, PHIs, bitcasts or constants. When we have same
  // base, we just calculate cost of each non-Base GEP as an ADD operation if
  // any their index is a non-const.
  // If no known dependecies between the pointers cost is calculated as a sum
  // of costs of GEP instructions.
  for (auto [I, V] : enumerate(Ptrs)) {
    const auto *GEP = dyn_cast<GetElementPtrInst>(V);
    if (!GEP)
      continue;
    if (Info.isSameBase() && V != Base) {
      if (GEP->hasAllConstantIndices())
        continue;
      // If the chain is unit-stride and BaseReg + stride*i is a legal
      // addressing mode, then presume the base GEP is sitting around in a
      // register somewhere and check if we can fold the offset relative to
      // it.
      unsigned Stride = DL.getTypeStoreSize(AccessTy);
      if (Info.isUnitStride() &&
          isLegalAddressingMode(AccessTy,
                                /* BaseGV */ nullptr,
                                /* BaseOffset */ Stride * I,
                                /* HasBaseReg */ true,
                                /* Scale */ 0,
                                GEP->getType()->getPointerAddressSpace()))
        continue;
      Cost += getArithmeticInstrCost(Instruction::Add, GEP->getType(), CostKind,
                                     {TTI::OK_AnyValue, TTI::OP_None},
                                     {TTI::OK_AnyValue, TTI::OP_None},
                                     std::nullopt);
    } else {
      SmallVector<const Value *> Indices(GEP->indices());
      Cost += getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(),
                         Indices, AccessTy, CostKind);
    }
  }
  return Cost;
}

void RISCVTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
                                           TTI::UnrollingPreferences &UP,
                                           OptimizationRemarkEmitter *ORE) {
  // TODO: More tuning on benchmarks and metrics with changes as needed
  //       would apply to all settings below to enable performance.


  if (ST->enableDefaultUnroll())
    return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP, ORE);

  // Enable Upper bound unrolling universally, not dependant upon the conditions
  // below.
  UP.UpperBound = true;

  // Disable loop unrolling for Oz and Os.
  UP.OptSizeThreshold = 0;
  UP.PartialOptSizeThreshold = 0;
  if (L->getHeader()->getParent()->hasOptSize())
    return;

  SmallVector<BasicBlock *, 4> ExitingBlocks;
  L->getExitingBlocks(ExitingBlocks);
  LLVM_DEBUG(dbgs() << "Loop has:\n"
                    << "Blocks: " << L->getNumBlocks() << "\n"
                    << "Exit blocks: " << ExitingBlocks.size() << "\n");

  // Only allow another exit other than the latch. This acts as an early exit
  // as it mirrors the profitability calculation of the runtime unroller.
  if (ExitingBlocks.size() > 2)
    return;

  // Limit the CFG of the loop body for targets with a branch predictor.
  // Allowing 4 blocks permits if-then-else diamonds in the body.
  if (L->getNumBlocks() > 4)
    return;

  // Don't unroll vectorized loops, including the remainder loop
  if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
    return;

  // Scan the loop: don't unroll loops with calls as this could prevent
  // inlining.
  InstructionCost Cost = 0;
  for (auto *BB : L->getBlocks()) {
    for (auto &I : *BB) {
      // Initial setting - Don't unroll loops containing vectorized
      // instructions.
      if (I.getType()->isVectorTy())
        return;

      if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
        if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
          if (!isLoweredToCall(F))
            continue;
        }
        return;
      }

      SmallVector<const Value *> Operands(I.operand_values());
      Cost += getInstructionCost(&I, Operands,
                                 TargetTransformInfo::TCK_SizeAndLatency);
    }
  }

  LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n");

  UP.Partial = true;
  UP.Runtime = true;
  UP.UnrollRemainder = true;
  UP.UnrollAndJam = true;
  UP.UnrollAndJamInnerLoopThreshold = 60;

  // Force unrolling small loops can be very useful because of the branch
  // taken cost of the backedge.
  if (Cost < 12)
    UP.Force = true;
}

void RISCVTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
                                         TTI::PeelingPreferences &PP) {
  BaseT::getPeelingPreferences(L, SE, PP);
}

unsigned RISCVTTIImpl::getRegUsageForType(Type *Ty) {
  TypeSize Size = DL.getTypeSizeInBits(Ty);
  if (Ty->isVectorTy()) {
    if (Size.isScalable() && ST->hasVInstructions())
      return divideCeil(Size.getKnownMinValue(), RISCV::RVVBitsPerBlock);

    if (ST->useRVVForFixedLengthVectors())
      return divideCeil(Size, ST->getRealMinVLen());
  }

  return BaseT::getRegUsageForType(Ty);
}

unsigned RISCVTTIImpl::getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
  if (SLPMaxVF.getNumOccurrences())
    return SLPMaxVF;

  // Return how many elements can fit in getRegisterBitwidth.  This is the
  // same routine as used in LoopVectorizer.  We should probably be
  // accounting for whether we actually have instructions with the right
  // lane type, but we don't have enough information to do that without
  // some additional plumbing which hasn't been justified yet.
  TypeSize RegWidth =
    getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector);
  // If no vector registers, or absurd element widths, disable
  // vectorization by returning 1.
  return std::max<unsigned>(1U, RegWidth.getFixedValue() / ElemWidth);
}

bool RISCVTTIImpl::isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
                                 const TargetTransformInfo::LSRCost &C2) {
  // RISC-V specific here are "instruction number 1st priority".
  return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
                  C1.NumIVMuls, C1.NumBaseAdds,
                  C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
         std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
                  C2.NumIVMuls, C2.NumBaseAdds,
                  C2.ScaleCost, C2.ImmCost, C2.SetupCost);
}