aboutsummaryrefslogtreecommitdiff
path: root/math/tgamma128.c
blob: 65deacc49d99f9ae81255233779e11d06fca3c6c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
/*
 * Implementation of the true gamma function (as opposed to lgamma)
 * for 128-bit long double.
 *
 * Copyright (c) 2006-2024, Arm Limited.
 * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
 */

/*
 * This module implements the float128 gamma function under the name
 * tgamma128. It's expected to be suitable for integration into system
 * maths libraries under the standard name tgammal, if long double is
 * 128-bit. Such a library will probably want to check the error
 * handling and optimize the initial process of extracting the
 * exponent, which is done here by simple and portable (but
 * potentially slower) methods.
 */

#include <float.h>
#include <math.h>
#include <stdbool.h>
#include <stddef.h>

/* Only binary128 format is supported.  */
#if LDBL_MANT_DIG == 113

#include "tgamma128.h"

#define lenof(x) (sizeof(x)/sizeof(*(x)))

/*
 * Helper routine to evaluate a polynomial via Horner's rule
 */
static long double poly(const long double *coeffs, size_t n, long double x)
{
    long double result = coeffs[--n];

    while (n > 0)
        result = (result * x) + coeffs[--n];

    return result;
}

/*
 * Compute sin(pi*x) / pi, for use in the reflection formula that
 * relates gamma(-x) and gamma(x).
 */
static long double sin_pi_x_over_pi(long double x)
{
    int quo;
    long double fracpart = remquol(x, 0.5L, &quo);

    long double sign = 1.0L;
    if (quo & 2)
        sign = -sign;
    quo &= 1;

    if (quo == 0 && fabsl(fracpart) < 0x1.p-58L) {
        /* For numbers this size, sin(pi*x) is so close to pi*x that
         * sin(pi*x)/pi is indistinguishable from x in float128 */
        return sign * fracpart;
    }

    if (quo == 0) {
        return sign * sinl(pi*fracpart) / pi;
    } else {
        return sign * cosl(pi*fracpart) / pi;
    }
}

/* Return tgamma(x) on the assumption that x >= 8. */
static long double tgamma_large(long double x,
                                bool negative, long double negadjust)
{
    /*
     * In this range we compute gamma(x) as x^(x-1/2) * e^-x * K,
     * where K is a correction factor computed as a polynomial in 1/x.
     *
     * (Vaguely inspired by the form of the Lanczos approximation, but
     * I tried the Lanczos approximation itself and it suffers badly
     * from big cancellation leading to loss of significance.)
     */
    long double t = 1/x;
    long double p = poly(coeffs_large, lenof(coeffs_large), t);

    /*
     * To avoid overflow in cases where x^(x-0.5) does overflow
     * but gamma(x) does not, we split x^(x-0.5) in half and
     * multiply back up _after_ multiplying the shrinking factor
     * of exp(-(x-0.5)).
     *
     * Note that computing x-0.5 and (x-0.5)/2 is exact for the
     * relevant range of x, so the only sources of error are pow
     * and exp themselves, plus the multiplications.
     */
    long double powhalf = powl(x, (x-0.5L)/2.0L);
    long double expret = expl(-(x-0.5L));

    if (!negative) {
        return (expret * powhalf) * powhalf * p;
    } else {
        /*
         * Apply the reflection formula as commented below, but
         * carefully: negadjust has magnitude less than 1, so it can
         * turn a case where gamma(+x) would overflow into a case
         * where gamma(-x) doesn't underflow. Not only that, but the
         * FP format has greater range in the tiny domain due to
         * denormals. For both reasons, it's not good enough to
         * compute the positive result and then adjust it.
         */
        long double ret = 1 / ((expret * powhalf) * (x * negadjust) * p);
        return ret / powhalf;
    }
}

/* Return tgamma(x) on the assumption that 0 <= x < 1/32. */
static long double tgamma_tiny(long double x,
                               bool negative, long double negadjust)
{
    /*
     * For x near zero, we use a polynomial approximation to
     * g = 1/(x*gamma(x)), and then return 1/(g*x).
     */
    long double g = poly(coeffs_tiny, lenof(coeffs_tiny), x);
    if (!negative)
        return 1.0L / (g*x);
    else
        return g / negadjust;
}

/* Return tgamma(x) on the assumption that 0 <= x < 2^-113. */
static long double tgamma_ultratiny(long double x, bool negative,
                                    long double negadjust)
{
    /* On this interval, gamma can't even be distinguished from 1/x,
     * so we skip the polynomial evaluation in tgamma_tiny, partly to
     * save time and partly to avoid the tiny intermediate values
     * setting the underflow exception flag. */
    if (!negative)
        return 1.0L / x;
    else
        return 1.0L / negadjust;
}

/* Return tgamma(x) on the assumption that 1 <= x <= 2. */
static long double tgamma_central(long double x)
{
    /*
     * In this central interval, our strategy is to finding the
     * difference between x and the point where gamma has a minimum,
     * and approximate based on that.
     */

    /* The difference between the input x and the minimum x. The first
     * subtraction is expected to be exact, since x and min_hi have
     * the same exponent (unless x=2, in which case it will still be
     * exact). */
    long double t = (x - min_x_hi) - min_x_lo;

    /*
     * Now use two different polynomials for the intervals [1,m] and
     * [m,2].
     */
    long double p;
    if (t < 0)
        p = poly(coeffs_central_neg, lenof(coeffs_central_neg), -t);
    else
        p = poly(coeffs_central_pos, lenof(coeffs_central_pos), t);

    return (min_y_lo + p * (t*t)) + min_y_hi;
}

long double tgamma128(long double x)
{
    /*
     * Start by extracting the number's sign and exponent, and ruling
     * out cases of non-normalized numbers.
     *
     * For an implementation integrated into a system libm, it would
     * almost certainly be quicker to do this by direct bitwise access
     * to the input float128 value, using whatever is the local idiom
     * for knowing its endianness.
     *
     * Integration into a system libc may also need to worry about
     * setting errno, if that's the locally preferred way to report
     * math.h errors.
     */
    int sign = signbit(x);
    int exponent;
    switch (fpclassify(x)) {
      case FP_NAN:
        return x+x; /* propagate QNaN, make SNaN throw an exception */
      case FP_ZERO:
        return 1/x; /* divide by zero on purpose to indicate a pole */
      case FP_INFINITE:
        if (sign) {
            return x-x; /* gamma(-inf) has indeterminate sign, so provoke an
                         * IEEE invalid operation exception to indicate that */
        }
        return x;     /* but gamma(+inf) is just +inf with no error */
      case FP_SUBNORMAL:
        exponent = -16384;
        break;
      default:
        frexpl(x, &exponent);
        exponent--;
        break;
    }

    bool negative = false;
    long double negadjust = 0.0L;

    if (sign) {
        /*
         * Euler's reflection formula is
         *
         *    gamma(1-x) gamma(x) = pi/sin(pi*x)
         *
         *                        pi
         * => gamma(x) = --------------------
         *               gamma(1-x) sin(pi*x)
         *
         * But computing 1-x is going to lose a lot of accuracy when x
         * is very small, so instead we transform using the recurrence
         * gamma(t+1)=t gamma(t). Setting t=-x, this gives us
         * gamma(1-x) = -x gamma(-x), so we now have
         *
         *                         pi
         *    gamma(x) = ----------------------
         *               -x gamma(-x) sin(pi*x)
         *
         * which relates gamma(x) to gamma(-x), which is much nicer,
         * since x can be turned into -x without rounding.
         */
        negadjust = sin_pi_x_over_pi(x);
        negative = true;
        x = -x;

        /*
         * Now the ultimate answer we want is
         *
         *    1 / (gamma(x) * x * negadjust)
         *
         * where x is the positive value we've just turned it into.
         *
         * For some of the cases below, we'll compute gamma(x)
         * normally and then compute this adjusted value afterwards.
         * But for others, we can implement the reciprocal operation
         * in this formula by _avoiding_ an inversion that the
         * sub-case was going to do anyway.
         */

        if (negadjust == 0) {
            /*
             * Special case for negative integers. Applying the
             * reflection formula would cause division by zero, but
             * standards would prefer we treat this error case as an
             * invalid operation and return NaN instead. (Possibly
             * because otherwise you'd have to decide which sign of
             * infinity to return, and unlike the x=0 case, there's no
             * sign of zero available to disambiguate.)
             */
            return negadjust / negadjust;
        }
    }

    /*
     * Split the positive domain into various cases. For cases where
     * we do the negative-number adjustment the usual way, we'll leave
     * the answer in 'g' and drop out of the if statement.
     */
    long double g;

    if (exponent >= 11) {
        /*
         * gamma of any positive value this large overflows, and gamma
         * of any negative value underflows.
         */
        if (!negative) {
            long double huge = 0x1p+12288L;
            return huge * huge; /* provoke an overflow */
        } else {
            long double tiny = 0x1p-12288L;
            return tiny * tiny * negadjust; /* underflow, of the right sign */
        }
    } else if (exponent >= 3) {
        /* Negative-number adjustment happens inside here */
        return tgamma_large(x, negative, negadjust);
    } else if (exponent < -113) {
        /* Negative-number adjustment happens inside here */
        return tgamma_ultratiny(x, negative, negadjust);
    } else if (exponent < -5) {
        /* Negative-number adjustment happens inside here */
        return tgamma_tiny(x, negative, negadjust);
    } else if (exponent == 0) {
        g = tgamma_central(x);
    } else if (exponent < 0) {
        /*
         * For x in [1/32,1) we range-reduce upwards to the interval
         * [1,2), using the inverse of the normal recurrence formula:
         * gamma(x) = gamma(x+1)/x.
         */
        g = tgamma_central(1+x) / x;
    } else {
        /*
         * For x in [2,8) we range-reduce downwards to the interval
         * [1,2) by repeated application of the recurrence formula.
         *
         * Actually multiplying (x-1) by (x-2) by (x-3) and so on
         * would introduce multiple ULPs of rounding error. We can get
         * better accuracy by writing x = (k+1/2) + t, where k is an
         * integer and |t|<1/2, and expanding out the obvious factor
         * (x-1)(x-2)...(x-k+1) as a polynomial in t.
         */
        long double mult;
        int i = x;
        if (i == 2) { /* x in [2,3) */
            mult = (x-1);
        } else {
            long double t = x - (i + 0.5L);
            switch (i) {
                /* E.g. for x=3.5+t, we want
                 * (x-1)(x-2) = (2.5+t)(1.5+t) = 3.75 + 4t + t^2 */
              case 3:
                mult = 3.75L+t*(4.0L+t);
                break;
              case 4:
                mult = 13.125L+t*(17.75L+t*(7.5L+t));
                break;
              case 5:
                mult = 59.0625L+t*(93.0L+t*(51.50L+t*(12.0L+t)));
                break;
              case 6:
                mult = 324.84375L+t*(570.5625L+t*(376.250L+t*(
                    117.5L+t*(17.5L+t))));
                break;
              case 7:
                mult = 2111.484375L+t*(4033.5L+t*(3016.1875L+t*(
                    1140.0L+t*(231.25L+t*(24.0L+t)))));
                break;
            }
        }

        g = tgamma_central(x - (i-1)) * mult;
    }

    if (!negative) {
        /* Positive domain: return g unmodified */
        return g;
    } else {
        /* Negative domain: apply the reflection formula as commented above */
        return 1.0L / (g * x * negadjust);
    }
}

#endif