aboutsummaryrefslogtreecommitdiff
path: root/module/os/linux/zfs/abd_os.c
blob: d3255dcbc0f78781d6f324b3f4c01d4ddb6cc52d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or https://opensource.org/licenses/CDDL-1.0.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright (c) 2014 by Chunwei Chen. All rights reserved.
 * Copyright (c) 2019 by Delphix. All rights reserved.
 * Copyright (c) 2023, 2024, Klara Inc.
 */

/*
 * See abd.c for a general overview of the arc buffered data (ABD).
 *
 * Linear buffers act exactly like normal buffers and are always mapped into the
 * kernel's virtual memory space, while scattered ABD data chunks are allocated
 * as physical pages and then mapped in only while they are actually being
 * accessed through one of the abd_* library functions. Using scattered ABDs
 * provides several benefits:
 *
 *  (1) They avoid use of kmem_*, preventing performance problems where running
 *      kmem_reap on very large memory systems never finishes and causes
 *      constant TLB shootdowns.
 *
 *  (2) Fragmentation is less of an issue since when we are at the limit of
 *      allocatable space, we won't have to search around for a long free
 *      hole in the VA space for large ARC allocations. Each chunk is mapped in
 *      individually, so even if we are using HIGHMEM (see next point) we
 *      wouldn't need to worry about finding a contiguous address range.
 *
 *  (3) If we are not using HIGHMEM, then all physical memory is always
 *      mapped into the kernel's address space, so we also avoid the map /
 *      unmap costs on each ABD access.
 *
 * If we are not using HIGHMEM, scattered buffers which have only one chunk
 * can be treated as linear buffers, because they are contiguous in the
 * kernel's virtual address space.  See abd_alloc_chunks() for details.
 */

#include <sys/abd_impl.h>
#include <sys/param.h>
#include <sys/zio.h>
#include <sys/arc.h>
#include <sys/zfs_context.h>
#include <sys/zfs_znode.h>
#ifdef _KERNEL
#include <linux/kmap_compat.h>
#include <linux/mm_compat.h>
#include <linux/scatterlist.h>
#include <linux/version.h>
#endif

#ifdef _KERNEL
#if defined(MAX_ORDER)
#define	ABD_MAX_ORDER	(MAX_ORDER)
#elif defined(MAX_PAGE_ORDER)
#define	ABD_MAX_ORDER	(MAX_PAGE_ORDER)
#endif
#else
#define	ABD_MAX_ORDER	(1)
#endif

typedef struct abd_stats {
	kstat_named_t abdstat_struct_size;
	kstat_named_t abdstat_linear_cnt;
	kstat_named_t abdstat_linear_data_size;
	kstat_named_t abdstat_scatter_cnt;
	kstat_named_t abdstat_scatter_data_size;
	kstat_named_t abdstat_scatter_chunk_waste;
	kstat_named_t abdstat_scatter_orders[ABD_MAX_ORDER];
	kstat_named_t abdstat_scatter_page_multi_chunk;
	kstat_named_t abdstat_scatter_page_multi_zone;
	kstat_named_t abdstat_scatter_page_alloc_retry;
	kstat_named_t abdstat_scatter_sg_table_retry;
} abd_stats_t;

static abd_stats_t abd_stats = {
	/* Amount of memory occupied by all of the abd_t struct allocations */
	{ "struct_size",			KSTAT_DATA_UINT64 },
	/*
	 * The number of linear ABDs which are currently allocated, excluding
	 * ABDs which don't own their data (for instance the ones which were
	 * allocated through abd_get_offset() and abd_get_from_buf()). If an
	 * ABD takes ownership of its buf then it will become tracked.
	 */
	{ "linear_cnt",				KSTAT_DATA_UINT64 },
	/* Amount of data stored in all linear ABDs tracked by linear_cnt */
	{ "linear_data_size",			KSTAT_DATA_UINT64 },
	/*
	 * The number of scatter ABDs which are currently allocated, excluding
	 * ABDs which don't own their data (for instance the ones which were
	 * allocated through abd_get_offset()).
	 */
	{ "scatter_cnt",			KSTAT_DATA_UINT64 },
	/* Amount of data stored in all scatter ABDs tracked by scatter_cnt */
	{ "scatter_data_size",			KSTAT_DATA_UINT64 },
	/*
	 * The amount of space wasted at the end of the last chunk across all
	 * scatter ABDs tracked by scatter_cnt.
	 */
	{ "scatter_chunk_waste",		KSTAT_DATA_UINT64 },
	/*
	 * The number of compound allocations of a given order.  These
	 * allocations are spread over all currently allocated ABDs, and
	 * act as a measure of memory fragmentation.
	 */
	{ { "scatter_order_N",			KSTAT_DATA_UINT64 } },
	/*
	 * The number of scatter ABDs which contain multiple chunks.
	 * ABDs are preferentially allocated from the minimum number of
	 * contiguous multi-page chunks, a single chunk is optimal.
	 */
	{ "scatter_page_multi_chunk",		KSTAT_DATA_UINT64 },
	/*
	 * The number of scatter ABDs which are split across memory zones.
	 * ABDs are preferentially allocated using pages from a single zone.
	 */
	{ "scatter_page_multi_zone",		KSTAT_DATA_UINT64 },
	/*
	 *  The total number of retries encountered when attempting to
	 *  allocate the pages to populate the scatter ABD.
	 */
	{ "scatter_page_alloc_retry",		KSTAT_DATA_UINT64 },
	/*
	 *  The total number of retries encountered when attempting to
	 *  allocate the sg table for an ABD.
	 */
	{ "scatter_sg_table_retry",		KSTAT_DATA_UINT64 },
};

static struct {
	wmsum_t abdstat_struct_size;
	wmsum_t abdstat_linear_cnt;
	wmsum_t abdstat_linear_data_size;
	wmsum_t abdstat_scatter_cnt;
	wmsum_t abdstat_scatter_data_size;
	wmsum_t abdstat_scatter_chunk_waste;
	wmsum_t abdstat_scatter_orders[ABD_MAX_ORDER];
	wmsum_t abdstat_scatter_page_multi_chunk;
	wmsum_t abdstat_scatter_page_multi_zone;
	wmsum_t abdstat_scatter_page_alloc_retry;
	wmsum_t abdstat_scatter_sg_table_retry;
} abd_sums;

#define	abd_for_each_sg(abd, sg, n, i)	\
	for_each_sg(ABD_SCATTER(abd).abd_sgl, sg, n, i)

/*
 * zfs_abd_scatter_min_size is the minimum allocation size to use scatter
 * ABD's.  Smaller allocations will use linear ABD's which uses
 * zio_[data_]buf_alloc().
 *
 * Scatter ABD's use at least one page each, so sub-page allocations waste
 * some space when allocated as scatter (e.g. 2KB scatter allocation wastes
 * half of each page).  Using linear ABD's for small allocations means that
 * they will be put on slabs which contain many allocations.  This can
 * improve memory efficiency, but it also makes it much harder for ARC
 * evictions to actually free pages, because all the buffers on one slab need
 * to be freed in order for the slab (and underlying pages) to be freed.
 * Typically, 512B and 1KB kmem caches have 16 buffers per slab, so it's
 * possible for them to actually waste more memory than scatter (one page per
 * buf = wasting 3/4 or 7/8th; one buf per slab = wasting 15/16th).
 *
 * Spill blocks are typically 512B and are heavily used on systems running
 * selinux with the default dnode size and the `xattr=sa` property set.
 *
 * By default we use linear allocations for 512B and 1KB, and scatter
 * allocations for larger (1.5KB and up).
 */
static int zfs_abd_scatter_min_size = 512 * 3;

/*
 * We use a scattered SPA_MAXBLOCKSIZE sized ABD whose pages are
 * just a single zero'd page. This allows us to conserve memory by
 * only using a single zero page for the scatterlist.
 */
abd_t *abd_zero_scatter = NULL;

struct page;
/*
 * _KERNEL   - Will point to ZERO_PAGE if it is available or it will be
 *             an allocated zero'd PAGESIZE buffer.
 * Userspace - Will be an allocated zero'ed PAGESIZE buffer.
 *
 * abd_zero_page is assigned to each of the pages of abd_zero_scatter.
 */
static struct page *abd_zero_page = NULL;

static kmem_cache_t *abd_cache = NULL;
static kstat_t *abd_ksp;

static uint_t
abd_chunkcnt_for_bytes(size_t size)
{
	return (P2ROUNDUP(size, PAGESIZE) / PAGESIZE);
}

abd_t *
abd_alloc_struct_impl(size_t size)
{
	/*
	 * In Linux we do not use the size passed in during ABD
	 * allocation, so we just ignore it.
	 */
	(void) size;
	abd_t *abd = kmem_cache_alloc(abd_cache, KM_PUSHPAGE);
	ASSERT3P(abd, !=, NULL);
	ABDSTAT_INCR(abdstat_struct_size, sizeof (abd_t));

	return (abd);
}

void
abd_free_struct_impl(abd_t *abd)
{
	kmem_cache_free(abd_cache, abd);
	ABDSTAT_INCR(abdstat_struct_size, -(int)sizeof (abd_t));
}

#ifdef _KERNEL
static unsigned zfs_abd_scatter_max_order = ABD_MAX_ORDER - 1;

/*
 * Mark zfs data pages so they can be excluded from kernel crash dumps
 */
#ifdef _LP64
#define	ABD_FILE_CACHE_PAGE	0x2F5ABDF11ECAC4E

static inline void
abd_mark_zfs_page(struct page *page)
{
	get_page(page);
	SetPagePrivate(page);
	set_page_private(page, ABD_FILE_CACHE_PAGE);
}

static inline void
abd_unmark_zfs_page(struct page *page)
{
	set_page_private(page, 0UL);
	ClearPagePrivate(page);
	put_page(page);
}
#else
#define	abd_mark_zfs_page(page)
#define	abd_unmark_zfs_page(page)
#endif /* _LP64 */

#ifndef CONFIG_HIGHMEM

#ifndef __GFP_RECLAIM
#define	__GFP_RECLAIM		__GFP_WAIT
#endif

/*
 * The goal is to minimize fragmentation by preferentially populating ABDs
 * with higher order compound pages from a single zone.  Allocation size is
 * progressively decreased until it can be satisfied without performing
 * reclaim or compaction.  When necessary this function will degenerate to
 * allocating individual pages and allowing reclaim to satisfy allocations.
 */
void
abd_alloc_chunks(abd_t *abd, size_t size)
{
	struct list_head pages;
	struct sg_table table;
	struct scatterlist *sg;
	struct page *page, *tmp_page = NULL;
	gfp_t gfp = __GFP_NOWARN | GFP_NOIO;
	gfp_t gfp_comp = (gfp | __GFP_NORETRY | __GFP_COMP) & ~__GFP_RECLAIM;
	unsigned int max_order = MIN(zfs_abd_scatter_max_order,
	    ABD_MAX_ORDER - 1);
	unsigned int nr_pages = abd_chunkcnt_for_bytes(size);
	unsigned int chunks = 0, zones = 0;
	size_t remaining_size;
	int nid = NUMA_NO_NODE;
	unsigned int alloc_pages = 0;

	INIT_LIST_HEAD(&pages);

	ASSERT3U(alloc_pages, <, nr_pages);

	while (alloc_pages < nr_pages) {
		unsigned int chunk_pages;
		unsigned int order;

		order = MIN(highbit64(nr_pages - alloc_pages) - 1, max_order);
		chunk_pages = (1U << order);

		page = alloc_pages_node(nid, order ? gfp_comp : gfp, order);
		if (page == NULL) {
			if (order == 0) {
				ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
				schedule_timeout_interruptible(1);
			} else {
				max_order = MAX(0, order - 1);
			}
			continue;
		}

		list_add_tail(&page->lru, &pages);

		if ((nid != NUMA_NO_NODE) && (page_to_nid(page) != nid))
			zones++;

		nid = page_to_nid(page);
		ABDSTAT_BUMP(abdstat_scatter_orders[order]);
		chunks++;
		alloc_pages += chunk_pages;
	}

	ASSERT3S(alloc_pages, ==, nr_pages);

	while (sg_alloc_table(&table, chunks, gfp)) {
		ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
		schedule_timeout_interruptible(1);
	}

	sg = table.sgl;
	remaining_size = size;
	list_for_each_entry_safe(page, tmp_page, &pages, lru) {
		size_t sg_size = MIN(PAGESIZE << compound_order(page),
		    remaining_size);
		sg_set_page(sg, page, sg_size, 0);
		abd_mark_zfs_page(page);
		remaining_size -= sg_size;

		sg = sg_next(sg);
		list_del(&page->lru);
	}

	/*
	 * These conditions ensure that a possible transformation to a linear
	 * ABD would be valid.
	 */
	ASSERT(!PageHighMem(sg_page(table.sgl)));
	ASSERT0(ABD_SCATTER(abd).abd_offset);

	if (table.nents == 1) {
		/*
		 * Since there is only one entry, this ABD can be represented
		 * as a linear buffer.  All single-page (4K) ABD's can be
		 * represented this way.  Some multi-page ABD's can also be
		 * represented this way, if we were able to allocate a single
		 * "chunk" (higher-order "page" which represents a power-of-2
		 * series of physically-contiguous pages).  This is often the
		 * case for 2-page (8K) ABD's.
		 *
		 * Representing a single-entry scatter ABD as a linear ABD
		 * has the performance advantage of avoiding the copy (and
		 * allocation) in abd_borrow_buf_copy / abd_return_buf_copy.
		 * A performance increase of around 5% has been observed for
		 * ARC-cached reads (of small blocks which can take advantage
		 * of this).
		 *
		 * Note that this optimization is only possible because the
		 * pages are always mapped into the kernel's address space.
		 * This is not the case for highmem pages, so the
		 * optimization can not be made there.
		 */
		abd->abd_flags |= ABD_FLAG_LINEAR;
		abd->abd_flags |= ABD_FLAG_LINEAR_PAGE;
		abd->abd_u.abd_linear.abd_sgl = table.sgl;
		ABD_LINEAR_BUF(abd) = page_address(sg_page(table.sgl));
	} else if (table.nents > 1) {
		ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
		abd->abd_flags |= ABD_FLAG_MULTI_CHUNK;

		if (zones) {
			ABDSTAT_BUMP(abdstat_scatter_page_multi_zone);
			abd->abd_flags |= ABD_FLAG_MULTI_ZONE;
		}

		ABD_SCATTER(abd).abd_sgl = table.sgl;
		ABD_SCATTER(abd).abd_nents = table.nents;
	}
}
#else

/*
 * Allocate N individual pages to construct a scatter ABD.  This function
 * makes no attempt to request contiguous pages and requires the minimal
 * number of kernel interfaces.  It's designed for maximum compatibility.
 */
void
abd_alloc_chunks(abd_t *abd, size_t size)
{
	struct scatterlist *sg = NULL;
	struct sg_table table;
	struct page *page;
	gfp_t gfp = __GFP_NOWARN | GFP_NOIO;
	int nr_pages = abd_chunkcnt_for_bytes(size);
	int i = 0;

	while (sg_alloc_table(&table, nr_pages, gfp)) {
		ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
		schedule_timeout_interruptible(1);
	}

	ASSERT3U(table.nents, ==, nr_pages);
	ABD_SCATTER(abd).abd_sgl = table.sgl;
	ABD_SCATTER(abd).abd_nents = nr_pages;

	abd_for_each_sg(abd, sg, nr_pages, i) {
		while ((page = __page_cache_alloc(gfp)) == NULL) {
			ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
			schedule_timeout_interruptible(1);
		}

		ABDSTAT_BUMP(abdstat_scatter_orders[0]);
		sg_set_page(sg, page, PAGESIZE, 0);
		abd_mark_zfs_page(page);
	}

	if (nr_pages > 1) {
		ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
		abd->abd_flags |= ABD_FLAG_MULTI_CHUNK;
	}
}
#endif /* !CONFIG_HIGHMEM */

/*
 * This must be called if any of the sg_table allocation functions
 * are called.
 */
static void
abd_free_sg_table(abd_t *abd)
{
	struct sg_table table;

	table.sgl = ABD_SCATTER(abd).abd_sgl;
	table.nents = table.orig_nents = ABD_SCATTER(abd).abd_nents;
	sg_free_table(&table);
}

void
abd_free_chunks(abd_t *abd)
{
	struct scatterlist *sg = NULL;
	struct page *page;
	int nr_pages = ABD_SCATTER(abd).abd_nents;
	int order, i = 0;

	if (abd->abd_flags & ABD_FLAG_MULTI_ZONE)
		ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_zone);

	if (abd->abd_flags & ABD_FLAG_MULTI_CHUNK)
		ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk);

	abd_for_each_sg(abd, sg, nr_pages, i) {
		page = sg_page(sg);
		abd_unmark_zfs_page(page);
		order = compound_order(page);
		__free_pages(page, order);
		ASSERT3U(sg->length, <=, PAGE_SIZE << order);
		ABDSTAT_BUMPDOWN(abdstat_scatter_orders[order]);
	}
	abd_free_sg_table(abd);
}

/*
 * Allocate scatter ABD of size SPA_MAXBLOCKSIZE, where each page in
 * the scatterlist will be set to the zero'd out buffer abd_zero_page.
 */
static void
abd_alloc_zero_scatter(void)
{
	struct scatterlist *sg = NULL;
	struct sg_table table;
	gfp_t gfp = __GFP_NOWARN | GFP_NOIO;
	int nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE);
	int i = 0;

#if defined(HAVE_ZERO_PAGE_GPL_ONLY)
	gfp_t gfp_zero_page = gfp | __GFP_ZERO;
	while ((abd_zero_page = __page_cache_alloc(gfp_zero_page)) == NULL) {
		ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
		schedule_timeout_interruptible(1);
	}
	abd_mark_zfs_page(abd_zero_page);
#else
	abd_zero_page = ZERO_PAGE(0);
#endif /* HAVE_ZERO_PAGE_GPL_ONLY */

	while (sg_alloc_table(&table, nr_pages, gfp)) {
		ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
		schedule_timeout_interruptible(1);
	}
	ASSERT3U(table.nents, ==, nr_pages);

	abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE);
	abd_zero_scatter->abd_flags |= ABD_FLAG_OWNER;
	ABD_SCATTER(abd_zero_scatter).abd_offset = 0;
	ABD_SCATTER(abd_zero_scatter).abd_sgl = table.sgl;
	ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages;
	abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE;
	abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK | ABD_FLAG_ZEROS;

	abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) {
		sg_set_page(sg, abd_zero_page, PAGESIZE, 0);
	}

	ABDSTAT_BUMP(abdstat_scatter_cnt);
	ABDSTAT_INCR(abdstat_scatter_data_size, PAGESIZE);
	ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
}

#else /* _KERNEL */

#ifndef PAGE_SHIFT
#define	PAGE_SHIFT (highbit64(PAGESIZE)-1)
#endif

#define	zfs_kmap_atomic(chunk)		((void *)chunk)
#define	zfs_kunmap_atomic(addr)		do { (void)(addr); } while (0)
#define	local_irq_save(flags)		do { (void)(flags); } while (0)
#define	local_irq_restore(flags)	do { (void)(flags); } while (0)
#define	nth_page(pg, i) \
	((struct page *)((void *)(pg) + (i) * PAGESIZE))

struct scatterlist {
	struct page *page;
	int length;
	int end;
};

static void
sg_init_table(struct scatterlist *sg, int nr)
{
	memset(sg, 0, nr * sizeof (struct scatterlist));
	sg[nr - 1].end = 1;
}

/*
 * This must be called if any of the sg_table allocation functions
 * are called.
 */
static void
abd_free_sg_table(abd_t *abd)
{
	int nents = ABD_SCATTER(abd).abd_nents;
	vmem_free(ABD_SCATTER(abd).abd_sgl,
	    nents * sizeof (struct scatterlist));
}

#define	for_each_sg(sgl, sg, nr, i)	\
	for ((i) = 0, (sg) = (sgl); (i) < (nr); (i)++, (sg) = sg_next(sg))

static inline void
sg_set_page(struct scatterlist *sg, struct page *page, unsigned int len,
    unsigned int offset)
{
	/* currently we don't use offset */
	ASSERT(offset == 0);
	sg->page = page;
	sg->length = len;
}

static inline struct page *
sg_page(struct scatterlist *sg)
{
	return (sg->page);
}

static inline struct scatterlist *
sg_next(struct scatterlist *sg)
{
	if (sg->end)
		return (NULL);

	return (sg + 1);
}

void
abd_alloc_chunks(abd_t *abd, size_t size)
{
	unsigned nr_pages = abd_chunkcnt_for_bytes(size);
	struct scatterlist *sg;
	int i;

	ABD_SCATTER(abd).abd_sgl = vmem_alloc(nr_pages *
	    sizeof (struct scatterlist), KM_SLEEP);
	sg_init_table(ABD_SCATTER(abd).abd_sgl, nr_pages);

	abd_for_each_sg(abd, sg, nr_pages, i) {
		struct page *p = umem_alloc_aligned(PAGESIZE, 64, KM_SLEEP);
		sg_set_page(sg, p, PAGESIZE, 0);
	}
	ABD_SCATTER(abd).abd_nents = nr_pages;
}

void
abd_free_chunks(abd_t *abd)
{
	int i, n = ABD_SCATTER(abd).abd_nents;
	struct scatterlist *sg;

	abd_for_each_sg(abd, sg, n, i) {
		struct page *p = nth_page(sg_page(sg), 0);
		umem_free_aligned(p, PAGESIZE);
	}
	abd_free_sg_table(abd);
}

static void
abd_alloc_zero_scatter(void)
{
	unsigned nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE);
	struct scatterlist *sg;
	int i;

	abd_zero_page = umem_alloc_aligned(PAGESIZE, 64, KM_SLEEP);
	memset(abd_zero_page, 0, PAGESIZE);
	abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE);
	abd_zero_scatter->abd_flags |= ABD_FLAG_OWNER;
	abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK | ABD_FLAG_ZEROS;
	ABD_SCATTER(abd_zero_scatter).abd_offset = 0;
	ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages;
	abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE;
	ABD_SCATTER(abd_zero_scatter).abd_sgl = vmem_alloc(nr_pages *
	    sizeof (struct scatterlist), KM_SLEEP);

	sg_init_table(ABD_SCATTER(abd_zero_scatter).abd_sgl, nr_pages);

	abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) {
		sg_set_page(sg, abd_zero_page, PAGESIZE, 0);
	}

	ABDSTAT_BUMP(abdstat_scatter_cnt);
	ABDSTAT_INCR(abdstat_scatter_data_size, PAGESIZE);
	ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
}

#endif /* _KERNEL */

boolean_t
abd_size_alloc_linear(size_t size)
{
	return (!zfs_abd_scatter_enabled || size < zfs_abd_scatter_min_size);
}

void
abd_update_scatter_stats(abd_t *abd, abd_stats_op_t op)
{
	ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR);
	int waste = P2ROUNDUP(abd->abd_size, PAGESIZE) - abd->abd_size;
	if (op == ABDSTAT_INCR) {
		ABDSTAT_BUMP(abdstat_scatter_cnt);
		ABDSTAT_INCR(abdstat_scatter_data_size, abd->abd_size);
		ABDSTAT_INCR(abdstat_scatter_chunk_waste, waste);
		arc_space_consume(waste, ARC_SPACE_ABD_CHUNK_WASTE);
	} else {
		ABDSTAT_BUMPDOWN(abdstat_scatter_cnt);
		ABDSTAT_INCR(abdstat_scatter_data_size, -(int)abd->abd_size);
		ABDSTAT_INCR(abdstat_scatter_chunk_waste, -waste);
		arc_space_return(waste, ARC_SPACE_ABD_CHUNK_WASTE);
	}
}

void
abd_update_linear_stats(abd_t *abd, abd_stats_op_t op)
{
	ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR);
	if (op == ABDSTAT_INCR) {
		ABDSTAT_BUMP(abdstat_linear_cnt);
		ABDSTAT_INCR(abdstat_linear_data_size, abd->abd_size);
	} else {
		ABDSTAT_BUMPDOWN(abdstat_linear_cnt);
		ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size);
	}
}

void
abd_verify_scatter(abd_t *abd)
{
	size_t n;
	int i = 0;
	struct scatterlist *sg = NULL;

	ASSERT3U(ABD_SCATTER(abd).abd_nents, >, 0);
	ASSERT3U(ABD_SCATTER(abd).abd_offset, <,
	    ABD_SCATTER(abd).abd_sgl->length);
	n = ABD_SCATTER(abd).abd_nents;
	abd_for_each_sg(abd, sg, n, i) {
		ASSERT3P(sg_page(sg), !=, NULL);
	}
}

static void
abd_free_zero_scatter(void)
{
	ABDSTAT_BUMPDOWN(abdstat_scatter_cnt);
	ABDSTAT_INCR(abdstat_scatter_data_size, -(int)PAGESIZE);
	ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk);

	abd_free_sg_table(abd_zero_scatter);
	abd_free_struct(abd_zero_scatter);
	abd_zero_scatter = NULL;
	ASSERT3P(abd_zero_page, !=, NULL);
#if defined(_KERNEL)
#if defined(HAVE_ZERO_PAGE_GPL_ONLY)
	abd_unmark_zfs_page(abd_zero_page);
	__free_page(abd_zero_page);
#endif /* HAVE_ZERO_PAGE_GPL_ONLY */
#else
	umem_free_aligned(abd_zero_page, PAGESIZE);
#endif /* _KERNEL */
}

static int
abd_kstats_update(kstat_t *ksp, int rw)
{
	abd_stats_t *as = ksp->ks_data;

	if (rw == KSTAT_WRITE)
		return (EACCES);
	as->abdstat_struct_size.value.ui64 =
	    wmsum_value(&abd_sums.abdstat_struct_size);
	as->abdstat_linear_cnt.value.ui64 =
	    wmsum_value(&abd_sums.abdstat_linear_cnt);
	as->abdstat_linear_data_size.value.ui64 =
	    wmsum_value(&abd_sums.abdstat_linear_data_size);
	as->abdstat_scatter_cnt.value.ui64 =
	    wmsum_value(&abd_sums.abdstat_scatter_cnt);
	as->abdstat_scatter_data_size.value.ui64 =
	    wmsum_value(&abd_sums.abdstat_scatter_data_size);
	as->abdstat_scatter_chunk_waste.value.ui64 =
	    wmsum_value(&abd_sums.abdstat_scatter_chunk_waste);
	for (int i = 0; i < ABD_MAX_ORDER; i++) {
		as->abdstat_scatter_orders[i].value.ui64 =
		    wmsum_value(&abd_sums.abdstat_scatter_orders[i]);
	}
	as->abdstat_scatter_page_multi_chunk.value.ui64 =
	    wmsum_value(&abd_sums.abdstat_scatter_page_multi_chunk);
	as->abdstat_scatter_page_multi_zone.value.ui64 =
	    wmsum_value(&abd_sums.abdstat_scatter_page_multi_zone);
	as->abdstat_scatter_page_alloc_retry.value.ui64 =
	    wmsum_value(&abd_sums.abdstat_scatter_page_alloc_retry);
	as->abdstat_scatter_sg_table_retry.value.ui64 =
	    wmsum_value(&abd_sums.abdstat_scatter_sg_table_retry);
	return (0);
}

void
abd_init(void)
{
	int i;

	abd_cache = kmem_cache_create("abd_t", sizeof (abd_t),
	    0, NULL, NULL, NULL, NULL, NULL, 0);

	wmsum_init(&abd_sums.abdstat_struct_size, 0);
	wmsum_init(&abd_sums.abdstat_linear_cnt, 0);
	wmsum_init(&abd_sums.abdstat_linear_data_size, 0);
	wmsum_init(&abd_sums.abdstat_scatter_cnt, 0);
	wmsum_init(&abd_sums.abdstat_scatter_data_size, 0);
	wmsum_init(&abd_sums.abdstat_scatter_chunk_waste, 0);
	for (i = 0; i < ABD_MAX_ORDER; i++)
		wmsum_init(&abd_sums.abdstat_scatter_orders[i], 0);
	wmsum_init(&abd_sums.abdstat_scatter_page_multi_chunk, 0);
	wmsum_init(&abd_sums.abdstat_scatter_page_multi_zone, 0);
	wmsum_init(&abd_sums.abdstat_scatter_page_alloc_retry, 0);
	wmsum_init(&abd_sums.abdstat_scatter_sg_table_retry, 0);

	abd_ksp = kstat_create("zfs", 0, "abdstats", "misc", KSTAT_TYPE_NAMED,
	    sizeof (abd_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
	if (abd_ksp != NULL) {
		for (i = 0; i < ABD_MAX_ORDER; i++) {
			snprintf(abd_stats.abdstat_scatter_orders[i].name,
			    KSTAT_STRLEN, "scatter_order_%d", i);
			abd_stats.abdstat_scatter_orders[i].data_type =
			    KSTAT_DATA_UINT64;
		}
		abd_ksp->ks_data = &abd_stats;
		abd_ksp->ks_update = abd_kstats_update;
		kstat_install(abd_ksp);
	}

	abd_alloc_zero_scatter();
}

void
abd_fini(void)
{
	abd_free_zero_scatter();

	if (abd_ksp != NULL) {
		kstat_delete(abd_ksp);
		abd_ksp = NULL;
	}

	wmsum_fini(&abd_sums.abdstat_struct_size);
	wmsum_fini(&abd_sums.abdstat_linear_cnt);
	wmsum_fini(&abd_sums.abdstat_linear_data_size);
	wmsum_fini(&abd_sums.abdstat_scatter_cnt);
	wmsum_fini(&abd_sums.abdstat_scatter_data_size);
	wmsum_fini(&abd_sums.abdstat_scatter_chunk_waste);
	for (int i = 0; i < ABD_MAX_ORDER; i++)
		wmsum_fini(&abd_sums.abdstat_scatter_orders[i]);
	wmsum_fini(&abd_sums.abdstat_scatter_page_multi_chunk);
	wmsum_fini(&abd_sums.abdstat_scatter_page_multi_zone);
	wmsum_fini(&abd_sums.abdstat_scatter_page_alloc_retry);
	wmsum_fini(&abd_sums.abdstat_scatter_sg_table_retry);

	if (abd_cache) {
		kmem_cache_destroy(abd_cache);
		abd_cache = NULL;
	}
}

void
abd_free_linear_page(abd_t *abd)
{
	/* Transform it back into a scatter ABD for freeing */
	struct scatterlist *sg = abd->abd_u.abd_linear.abd_sgl;
	abd->abd_flags &= ~ABD_FLAG_LINEAR;
	abd->abd_flags &= ~ABD_FLAG_LINEAR_PAGE;
	ABD_SCATTER(abd).abd_nents = 1;
	ABD_SCATTER(abd).abd_offset = 0;
	ABD_SCATTER(abd).abd_sgl = sg;
	abd_free_chunks(abd);

	abd_update_scatter_stats(abd, ABDSTAT_DECR);
}

/*
 * If we're going to use this ABD for doing I/O using the block layer, the
 * consumer of the ABD data doesn't care if it's scattered or not, and we don't
 * plan to store this ABD in memory for a long period of time, we should
 * allocate the ABD type that requires the least data copying to do the I/O.
 *
 * On Linux the optimal thing to do would be to use abd_get_offset() and
 * construct a new ABD which shares the original pages thereby eliminating
 * the copy.  But for the moment a new linear ABD is allocated until this
 * performance optimization can be implemented.
 */
abd_t *
abd_alloc_for_io(size_t size, boolean_t is_metadata)
{
	return (abd_alloc(size, is_metadata));
}

abd_t *
abd_get_offset_scatter(abd_t *abd, abd_t *sabd, size_t off,
    size_t size)
{
	(void) size;
	int i = 0;
	struct scatterlist *sg = NULL;

	abd_verify(sabd);
	ASSERT3U(off, <=, sabd->abd_size);

	size_t new_offset = ABD_SCATTER(sabd).abd_offset + off;

	if (abd == NULL)
		abd = abd_alloc_struct(0);

	/*
	 * Even if this buf is filesystem metadata, we only track that
	 * if we own the underlying data buffer, which is not true in
	 * this case. Therefore, we don't ever use ABD_FLAG_META here.
	 */

	abd_for_each_sg(sabd, sg, ABD_SCATTER(sabd).abd_nents, i) {
		if (new_offset < sg->length)
			break;
		new_offset -= sg->length;
	}

	ABD_SCATTER(abd).abd_sgl = sg;
	ABD_SCATTER(abd).abd_offset = new_offset;
	ABD_SCATTER(abd).abd_nents = ABD_SCATTER(sabd).abd_nents - i;

	return (abd);
}

/*
 * Initialize the abd_iter.
 */
void
abd_iter_init(struct abd_iter *aiter, abd_t *abd)
{
	ASSERT(!abd_is_gang(abd));
	abd_verify(abd);
	memset(aiter, 0, sizeof (struct abd_iter));
	aiter->iter_abd = abd;
	if (!abd_is_linear(abd)) {
		aiter->iter_offset = ABD_SCATTER(abd).abd_offset;
		aiter->iter_sg = ABD_SCATTER(abd).abd_sgl;
	}
}

/*
 * This is just a helper function to see if we have exhausted the
 * abd_iter and reached the end.
 */
boolean_t
abd_iter_at_end(struct abd_iter *aiter)
{
	ASSERT3U(aiter->iter_pos, <=, aiter->iter_abd->abd_size);
	return (aiter->iter_pos == aiter->iter_abd->abd_size);
}

/*
 * Advance the iterator by a certain amount. Cannot be called when a chunk is
 * in use. This can be safely called when the aiter has already exhausted, in
 * which case this does nothing.
 */
void
abd_iter_advance(struct abd_iter *aiter, size_t amount)
{
	/*
	 * Ensure that last chunk is not in use. abd_iterate_*() must clear
	 * this state (directly or abd_iter_unmap()) before advancing.
	 */
	ASSERT3P(aiter->iter_mapaddr, ==, NULL);
	ASSERT0(aiter->iter_mapsize);
	ASSERT3P(aiter->iter_page, ==, NULL);
	ASSERT0(aiter->iter_page_doff);
	ASSERT0(aiter->iter_page_dsize);

	/* There's nothing left to advance to, so do nothing */
	if (abd_iter_at_end(aiter))
		return;

	aiter->iter_pos += amount;
	aiter->iter_offset += amount;
	if (!abd_is_linear(aiter->iter_abd)) {
		while (aiter->iter_offset >= aiter->iter_sg->length) {
			aiter->iter_offset -= aiter->iter_sg->length;
			aiter->iter_sg = sg_next(aiter->iter_sg);
			if (aiter->iter_sg == NULL) {
				ASSERT0(aiter->iter_offset);
				break;
			}
		}
	}
}

/*
 * Map the current chunk into aiter. This can be safely called when the aiter
 * has already exhausted, in which case this does nothing.
 */
void
abd_iter_map(struct abd_iter *aiter)
{
	void *paddr;
	size_t offset = 0;

	ASSERT3P(aiter->iter_mapaddr, ==, NULL);
	ASSERT0(aiter->iter_mapsize);

	/* There's nothing left to iterate over, so do nothing */
	if (abd_iter_at_end(aiter))
		return;

	if (abd_is_linear(aiter->iter_abd)) {
		ASSERT3U(aiter->iter_pos, ==, aiter->iter_offset);
		offset = aiter->iter_offset;
		aiter->iter_mapsize = aiter->iter_abd->abd_size - offset;
		paddr = ABD_LINEAR_BUF(aiter->iter_abd);
	} else {
		offset = aiter->iter_offset;
		aiter->iter_mapsize = MIN(aiter->iter_sg->length - offset,
		    aiter->iter_abd->abd_size - aiter->iter_pos);

		paddr = zfs_kmap_atomic(sg_page(aiter->iter_sg));
	}

	aiter->iter_mapaddr = (char *)paddr + offset;
}

/*
 * Unmap the current chunk from aiter. This can be safely called when the aiter
 * has already exhausted, in which case this does nothing.
 */
void
abd_iter_unmap(struct abd_iter *aiter)
{
	/* There's nothing left to unmap, so do nothing */
	if (abd_iter_at_end(aiter))
		return;

	if (!abd_is_linear(aiter->iter_abd)) {
		/* LINTED E_FUNC_SET_NOT_USED */
		zfs_kunmap_atomic(aiter->iter_mapaddr - aiter->iter_offset);
	}

	ASSERT3P(aiter->iter_mapaddr, !=, NULL);
	ASSERT3U(aiter->iter_mapsize, >, 0);

	aiter->iter_mapaddr = NULL;
	aiter->iter_mapsize = 0;
}

void
abd_cache_reap_now(void)
{
}

#if defined(_KERNEL)
/*
 * Yield the next page struct and data offset and size within it, without
 * mapping it into the address space.
 */
void
abd_iter_page(struct abd_iter *aiter)
{
	if (abd_iter_at_end(aiter)) {
		aiter->iter_page = NULL;
		aiter->iter_page_doff = 0;
		aiter->iter_page_dsize = 0;
		return;
	}

	struct page *page;
	size_t doff, dsize;

	if (abd_is_linear(aiter->iter_abd)) {
		ASSERT3U(aiter->iter_pos, ==, aiter->iter_offset);

		/* memory address at iter_pos */
		void *paddr = ABD_LINEAR_BUF(aiter->iter_abd) + aiter->iter_pos;

		/* struct page for address */
		page = is_vmalloc_addr(paddr) ?
		    vmalloc_to_page(paddr) : virt_to_page(paddr);

		/* offset of address within the page */
		doff = offset_in_page(paddr);

		/* total data remaining in abd from this position */
		dsize = aiter->iter_abd->abd_size - aiter->iter_offset;
	} else {
		ASSERT(!abd_is_gang(aiter->iter_abd));

		/* current scatter page */
		page = sg_page(aiter->iter_sg);

		/* position within page */
		doff = aiter->iter_offset;

		/* remaining data in scatterlist */
		dsize = MIN(aiter->iter_sg->length - aiter->iter_offset,
		    aiter->iter_abd->abd_size - aiter->iter_pos);
	}
	ASSERT(page);

#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 5, 0)
	if (PageTail(page)) {
		/*
		 * This page is part of a "compound page", which is a group of
		 * pages that can be referenced from a single struct page *.
		 * Its organised as a "head" page, followed by a series of
		 * "tail" pages.
		 *
		 * In OpenZFS, compound pages are allocated using the
		 * __GFP_COMP flag, which we get from scatter ABDs and SPL
		 * vmalloc slabs (ie >16K allocations). So a great many of the
		 * IO buffers we get are going to be of this type.
		 *
		 * The tail pages are just regular PAGE_SIZE pages, and can be
		 * safely used as-is. However, the head page has length
		 * covering itself and all the tail pages. If this ABD chunk
		 * spans multiple pages, then we can use the head page and a
		 * >PAGE_SIZE length, which is far more efficient.
		 *
		 * To do this, we need to adjust the offset to be counted from
		 * the head page. struct page for compound pages are stored
		 * contiguously, so we can just adjust by a simple offset.
		 *
		 * Before kernel 4.5, compound page heads were refcounted
		 * separately, such that moving back to the head page would
		 * require us to take a reference to it and releasing it once
		 * we're completely finished with it. In practice, that means
		 * when our caller is done with the ABD, which we have no
		 * insight into from here. Rather than contort this API to
		 * track head page references on such ancient kernels, we just
		 * compile this block out and use the tail pages directly. This
		 * is slightly less efficient, but makes everything far
		 * simpler.
		 */
		struct page *head = compound_head(page);
		doff += ((page - head) * PAGESIZE);
		page = head;
	}
#endif

	/* final page and position within it */
	aiter->iter_page = page;
	aiter->iter_page_doff = doff;

	/* amount of data in the chunk, up to the end of the page */
	aiter->iter_page_dsize = MIN(dsize, page_size(page) - doff);
}

/*
 * Note: ABD BIO functions only needed to support vdev_classic. See comments in
 * vdev_disk.c.
 */

/*
 * bio_nr_pages for ABD.
 * @off is the offset in @abd
 */
unsigned long
abd_nr_pages_off(abd_t *abd, unsigned int size, size_t off)
{
	unsigned long pos;

	if (abd_is_gang(abd)) {
		unsigned long count = 0;

		for (abd_t *cabd = abd_gang_get_offset(abd, &off);
		    cabd != NULL && size != 0;
		    cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
			ASSERT3U(off, <, cabd->abd_size);
			int mysize = MIN(size, cabd->abd_size - off);
			count += abd_nr_pages_off(cabd, mysize, off);
			size -= mysize;
			off = 0;
		}
		return (count);
	}

	if (abd_is_linear(abd))
		pos = (unsigned long)abd_to_buf(abd) + off;
	else
		pos = ABD_SCATTER(abd).abd_offset + off;

	return (((pos + size + PAGESIZE - 1) >> PAGE_SHIFT) -
	    (pos >> PAGE_SHIFT));
}

static unsigned int
bio_map(struct bio *bio, void *buf_ptr, unsigned int bio_size)
{
	unsigned int offset, size, i;
	struct page *page;

	offset = offset_in_page(buf_ptr);
	for (i = 0; i < bio->bi_max_vecs; i++) {
		size = PAGE_SIZE - offset;

		if (bio_size <= 0)
			break;

		if (size > bio_size)
			size = bio_size;

		if (is_vmalloc_addr(buf_ptr))
			page = vmalloc_to_page(buf_ptr);
		else
			page = virt_to_page(buf_ptr);

		/*
		 * Some network related block device uses tcp_sendpage, which
		 * doesn't behave well when using 0-count page, this is a
		 * safety net to catch them.
		 */
		ASSERT3S(page_count(page), >, 0);

		if (bio_add_page(bio, page, size, offset) != size)
			break;

		buf_ptr += size;
		bio_size -= size;
		offset = 0;
	}

	return (bio_size);
}

/*
 * bio_map for gang ABD.
 */
static unsigned int
abd_gang_bio_map_off(struct bio *bio, abd_t *abd,
    unsigned int io_size, size_t off)
{
	ASSERT(abd_is_gang(abd));

	for (abd_t *cabd = abd_gang_get_offset(abd, &off);
	    cabd != NULL;
	    cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
		ASSERT3U(off, <, cabd->abd_size);
		int size = MIN(io_size, cabd->abd_size - off);
		int remainder = abd_bio_map_off(bio, cabd, size, off);
		io_size -= (size - remainder);
		if (io_size == 0 || remainder > 0)
			return (io_size);
		off = 0;
	}
	ASSERT0(io_size);
	return (io_size);
}

/*
 * bio_map for ABD.
 * @off is the offset in @abd
 * Remaining IO size is returned
 */
unsigned int
abd_bio_map_off(struct bio *bio, abd_t *abd,
    unsigned int io_size, size_t off)
{
	struct abd_iter aiter;

	ASSERT3U(io_size, <=, abd->abd_size - off);
	if (abd_is_linear(abd))
		return (bio_map(bio, ((char *)abd_to_buf(abd)) + off, io_size));

	ASSERT(!abd_is_linear(abd));
	if (abd_is_gang(abd))
		return (abd_gang_bio_map_off(bio, abd, io_size, off));

	abd_iter_init(&aiter, abd);
	abd_iter_advance(&aiter, off);

	for (int i = 0; i < bio->bi_max_vecs; i++) {
		struct page *pg;
		size_t len, sgoff, pgoff;
		struct scatterlist *sg;

		if (io_size <= 0)
			break;

		sg = aiter.iter_sg;
		sgoff = aiter.iter_offset;
		pgoff = sgoff & (PAGESIZE - 1);
		len = MIN(io_size, PAGESIZE - pgoff);
		ASSERT(len > 0);

		pg = nth_page(sg_page(sg), sgoff >> PAGE_SHIFT);
		if (bio_add_page(bio, pg, len, pgoff) != len)
			break;

		io_size -= len;
		abd_iter_advance(&aiter, len);
	}

	return (io_size);
}

/* Tunable Parameters */
module_param(zfs_abd_scatter_enabled, int, 0644);
MODULE_PARM_DESC(zfs_abd_scatter_enabled,
	"Toggle whether ABD allocations must be linear.");
module_param(zfs_abd_scatter_min_size, int, 0644);
MODULE_PARM_DESC(zfs_abd_scatter_min_size,
	"Minimum size of scatter allocations.");
/* CSTYLED */
module_param(zfs_abd_scatter_max_order, uint, 0644);
MODULE_PARM_DESC(zfs_abd_scatter_max_order,
	"Maximum order allocation used for a scatter ABD.");

#endif /* _KERNEL */