aboutsummaryrefslogtreecommitdiff
path: root/test/support/test_allocator.h
blob: e77796b676e748b86f8870e2281b15f5f10e8767 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
//===----------------------------------------------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#ifndef TEST_ALLOCATOR_H
#define TEST_ALLOCATOR_H

#include <type_traits>
#include <new>
#include <memory>
#include <utility>
#include <cstddef>
#include <cstdlib>
#include <climits>
#include <cassert>

#include "test_macros.h"

template <class Alloc>
inline typename std::allocator_traits<Alloc>::size_type
alloc_max_size(Alloc const &a) {
  typedef std::allocator_traits<Alloc> AT;
  return AT::max_size(a);
}

class test_alloc_base
{
protected:
    static int time_to_throw;
public:
    static int throw_after;
    static int count;
    static int alloc_count;
};

int test_alloc_base::count = 0;
int test_alloc_base::time_to_throw = 0;
int test_alloc_base::alloc_count = 0;
int test_alloc_base::throw_after = INT_MAX;

template <class T>
class test_allocator
    : public test_alloc_base
{
    int data_; // participates in equality
    int id_; // unique identifier, doesn't participate in equality
    template <class U> friend class test_allocator;
public:

    typedef unsigned                                                   size_type;
    typedef int                                                        difference_type;
    typedef T                                                          value_type;
    typedef value_type*                                                pointer;
    typedef const value_type*                                          const_pointer;
    typedef typename std::add_lvalue_reference<value_type>::type       reference;
    typedef typename std::add_lvalue_reference<const value_type>::type const_reference;

    template <class U> struct rebind {typedef test_allocator<U> other;};

    test_allocator() TEST_NOEXCEPT : data_(0), id_(0) {++count;}
    explicit test_allocator(int i, int id = 0) TEST_NOEXCEPT : data_(i), id_(id)
      {++count;}
    test_allocator(const test_allocator& a) TEST_NOEXCEPT
        : data_(a.data_), id_(a.id_) {++count;}
    template <class U> test_allocator(const test_allocator<U>& a) TEST_NOEXCEPT
        : data_(a.data_), id_(a.id_) {++count;}
    ~test_allocator() TEST_NOEXCEPT {
      assert(data_ >= 0); assert(id_ >= 0);
      --count; data_ = -1; id_ = -1;
    }
    pointer address(reference x) const {return &x;}
    const_pointer address(const_reference x) const {return &x;}
    pointer allocate(size_type n, const void* = 0)
        {
            assert(data_ >= 0);
            if (time_to_throw >= throw_after) {
#ifndef TEST_HAS_NO_EXCEPTIONS
                throw std::bad_alloc();
#else
                std::terminate();
#endif
            }
            ++time_to_throw;
            ++alloc_count;
            return (pointer)::operator new(n * sizeof(T));
        }
    void deallocate(pointer p, size_type)
        {assert(data_ >= 0); --alloc_count; ::operator delete((void*)p);}
    size_type max_size() const TEST_NOEXCEPT
        {return UINT_MAX / sizeof(T);}
#if TEST_STD_VER < 11
    void construct(pointer p, const T& val)
        {::new(static_cast<void*>(p)) T(val);}
#else
    template <class U> void construct(pointer p, U&& val)
        {::new(static_cast<void*>(p)) T(std::forward<U>(val));}
#endif
    void destroy(pointer p)
        {p->~T();}
    friend bool operator==(const test_allocator& x, const test_allocator& y)
        {return x.data_ == y.data_;}
    friend bool operator!=(const test_allocator& x, const test_allocator& y)
        {return !(x == y);}

    int get_data() const { return data_; }
    int get_id() const { return id_; }
};

template <class T>
class non_default_test_allocator
    : public test_alloc_base
{
    int data_;

    template <class U> friend class non_default_test_allocator;
public:

    typedef unsigned                                                   size_type;
    typedef int                                                        difference_type;
    typedef T                                                          value_type;
    typedef value_type*                                                pointer;
    typedef const value_type*                                          const_pointer;
    typedef typename std::add_lvalue_reference<value_type>::type       reference;
    typedef typename std::add_lvalue_reference<const value_type>::type const_reference;

    template <class U> struct rebind {typedef non_default_test_allocator<U> other;};

//    non_default_test_allocator() TEST_NOEXCEPT : data_(0) {++count;}
    explicit non_default_test_allocator(int i) TEST_NOEXCEPT : data_(i) {++count;}
    non_default_test_allocator(const non_default_test_allocator& a) TEST_NOEXCEPT
        : data_(a.data_) {++count;}
    template <class U> non_default_test_allocator(const non_default_test_allocator<U>& a) TEST_NOEXCEPT
        : data_(a.data_) {++count;}
    ~non_default_test_allocator() TEST_NOEXCEPT {assert(data_ >= 0); --count; data_ = -1;}
    pointer address(reference x) const {return &x;}
    const_pointer address(const_reference x) const {return &x;}
    pointer allocate(size_type n, const void* = 0)
        {
            assert(data_ >= 0);
            if (time_to_throw >= throw_after) {
#ifndef TEST_HAS_NO_EXCEPTIONS
                throw std::bad_alloc();
#else
                std::terminate();
#endif
            }
            ++time_to_throw;
            ++alloc_count;
            return (pointer)::operator new (n * sizeof(T));
        }
    void deallocate(pointer p, size_type)
        {assert(data_ >= 0); --alloc_count; ::operator delete((void*)p); }
    size_type max_size() const TEST_NOEXCEPT
        {return UINT_MAX / sizeof(T);}
#if TEST_STD_VER < 11
    void construct(pointer p, const T& val)
        {::new(static_cast<void*>(p)) T(val);}
#else
    template <class U> void construct(pointer p, U&& val)
        {::new(static_cast<void*>(p)) T(std::forward<U>(val));}
#endif
    void destroy(pointer p) {p->~T();}

    friend bool operator==(const non_default_test_allocator& x, const non_default_test_allocator& y)
        {return x.data_ == y.data_;}
    friend bool operator!=(const non_default_test_allocator& x, const non_default_test_allocator& y)
        {return !(x == y);}
};

template <>
class test_allocator<void>
    : public test_alloc_base
{
    int data_;
    int id_;

    template <class U> friend class test_allocator;
public:

    typedef unsigned                                                   size_type;
    typedef int                                                        difference_type;
    typedef void                                                       value_type;
    typedef value_type*                                                pointer;
    typedef const value_type*                                          const_pointer;

    template <class U> struct rebind {typedef test_allocator<U> other;};

    test_allocator() TEST_NOEXCEPT : data_(0), id_(0) {}
    explicit test_allocator(int i, int id = 0) TEST_NOEXCEPT : data_(i), id_(id) {}
    test_allocator(const test_allocator& a) TEST_NOEXCEPT
        : data_(a.data_), id_(a.id_) {}
    template <class U> test_allocator(const test_allocator<U>& a) TEST_NOEXCEPT
        : data_(a.data_), id_(a.id_) {}
    ~test_allocator() TEST_NOEXCEPT {data_ = -1; id_ = -1; }

    int get_id() const { return id_; }
    int get_data() const { return data_; }

    friend bool operator==(const test_allocator& x, const test_allocator& y)
        {return x.data_ == y.data_;}
    friend bool operator!=(const test_allocator& x, const test_allocator& y)
        {return !(x == y);}
};

template <class T>
class other_allocator
{
    int data_;

    template <class U> friend class other_allocator;

public:
    typedef T value_type;

    other_allocator() : data_(-1) {}
    explicit other_allocator(int i) : data_(i) {}
    template <class U> other_allocator(const other_allocator<U>& a)
        : data_(a.data_) {}
    T* allocate(std::size_t n)
        {return (T*)::operator new(n * sizeof(T));}
    void deallocate(T* p, std::size_t)
        {::operator delete((void*)p);}

    other_allocator select_on_container_copy_construction() const
        {return other_allocator(-2);}

    friend bool operator==(const other_allocator& x, const other_allocator& y)
        {return x.data_ == y.data_;}
    friend bool operator!=(const other_allocator& x, const other_allocator& y)
        {return !(x == y);}

    typedef std::true_type propagate_on_container_copy_assignment;
    typedef std::true_type propagate_on_container_move_assignment;
    typedef std::true_type propagate_on_container_swap;

#if TEST_STD_VER < 11
    std::size_t max_size() const
        {return UINT_MAX / sizeof(T);}
#endif

};

#if TEST_STD_VER >= 11

struct Ctor_Tag {};

template <typename T> class TaggingAllocator;

struct Tag_X {
  // All constructors must be passed the Tag type.

  // DefaultInsertable into vector<X, TaggingAllocator<X>>,
  Tag_X(Ctor_Tag) {}
  // CopyInsertable into vector<X, TaggingAllocator<X>>,
  Tag_X(Ctor_Tag, const Tag_X&) {}
  // MoveInsertable into vector<X, TaggingAllocator<X>>, and
  Tag_X(Ctor_Tag, Tag_X&&) {}

  // EmplaceConstructible into vector<X, TaggingAllocator<X>> from args.
  template<typename... Args>
  Tag_X(Ctor_Tag, Args&&...) { }

  // not DefaultConstructible, CopyConstructible or MoveConstructible.
  Tag_X() = delete;
  Tag_X(const Tag_X&) = delete;
  Tag_X(Tag_X&&) = delete;

  // CopyAssignable.
  Tag_X& operator=(const Tag_X&) { return *this; }

  // MoveAssignable.
  Tag_X& operator=(Tag_X&&) { return *this; }

private:
  // Not Destructible.
  ~Tag_X() { }

  // Erasable from vector<X, TaggingAllocator<X>>.
  friend class TaggingAllocator<Tag_X>;
};


template<typename T>
class TaggingAllocator {
public:
    using value_type = T;
    TaggingAllocator() = default;

    template<typename U>
      TaggingAllocator(const TaggingAllocator<U>&) { }

    T* allocate(std::size_t n) { return std::allocator<T>{}.allocate(n); }

    void deallocate(T* p, std::size_t n) { std::allocator<T>{}.deallocate(p, n); }

    template<typename... Args>
    void construct(Tag_X* p, Args&&... args)
    { ::new((void*)p) Tag_X(Ctor_Tag{}, std::forward<Args>(args)...); }

    template<typename U, typename... Args>
    void construct(U* p, Args&&... args)
    { ::new((void*)p) U(std::forward<Args>(args)...); }

    template<typename U, typename... Args>
    void destroy(U* p)
    { p->~U(); }
};

template<typename T, typename U>
bool
operator==(const TaggingAllocator<T>&, const TaggingAllocator<U>&)
{ return true; }

template<typename T, typename U>
bool
operator!=(const TaggingAllocator<T>&, const TaggingAllocator<U>&)
{ return false; }
#endif

template <std::size_t MaxAllocs>
struct limited_alloc_handle {
  std::size_t outstanding_;
  void* last_alloc_;

  limited_alloc_handle() : outstanding_(0), last_alloc_(nullptr) {}

  template <class T>
  T *allocate(std::size_t N) {
    if (N + outstanding_ > MaxAllocs)
      TEST_THROW(std::bad_alloc());
    last_alloc_ = ::operator new(N*sizeof(T));
    outstanding_ += N;
    return static_cast<T*>(last_alloc_);
  }

  void deallocate(void* ptr, std::size_t N) {
    if (ptr == last_alloc_) {
      last_alloc_ = nullptr;
      assert(outstanding_ >= N);
      outstanding_ -= N;
    }
    ::operator delete(ptr);
  }
};

template <class T, std::size_t N>
class limited_allocator
{
    template <class U, std::size_t UN> friend class limited_allocator;
    typedef limited_alloc_handle<N> BuffT;
    std::shared_ptr<BuffT> handle_;
public:
    typedef T                 value_type;
    typedef value_type*       pointer;
    typedef const value_type* const_pointer;
    typedef value_type&       reference;
    typedef const value_type& const_reference;
    typedef std::size_t       size_type;
    typedef std::ptrdiff_t    difference_type;

    template <class U> struct rebind { typedef limited_allocator<U, N> other; };

    limited_allocator() : handle_(new BuffT) {}

    limited_allocator(limited_allocator const& other) : handle_(other.handle_) {}

    template <class U>
    explicit limited_allocator(limited_allocator<U, N> const& other)
        : handle_(other.handle_) {}

private:
    limited_allocator& operator=(const limited_allocator&);// = delete;

public:
    pointer allocate(size_type n) { return handle_->template allocate<T>(n); }
    void deallocate(pointer p, size_type n) { handle_->deallocate(p, n); }
    size_type max_size() const {return N;}

    BuffT* getHandle() const { return handle_.get(); }
};

template <class T, class U, std::size_t N>
inline bool operator==(limited_allocator<T, N> const& LHS,
                       limited_allocator<U, N> const& RHS) {
  return LHS.getHandle() == RHS.getHandle();
}

template <class T, class U, std::size_t N>
inline bool operator!=(limited_allocator<T, N> const& LHS,
                       limited_allocator<U, N> const& RHS) {
  return !(LHS == RHS);
}


#endif  // TEST_ALLOCATOR_H