aboutsummaryrefslogtreecommitdiff
path: root/math/py-autograd
diff options
context:
space:
mode:
authorRuslan Makhmatkhanov <rm@FreeBSD.org>2019-02-27 22:11:15 +0000
committerRuslan Makhmatkhanov <rm@FreeBSD.org>2019-02-27 22:11:15 +0000
commitedc98fd01e771202aa5b15b23421e6318f37f156 (patch)
treec33c1e687df9a895b5ee28da9c42dd5d0af5a6cd /math/py-autograd
parentc7f0ef2cc127ee95eddaf51262de00291cb8391d (diff)
downloadports-edc98fd01e771202aa5b15b23421e6318f37f156.tar.gz
ports-edc98fd01e771202aa5b15b23421e6318f37f156.zip
Notes
Diffstat (limited to 'math/py-autograd')
-rw-r--r--math/py-autograd/Makefile22
-rw-r--r--math/py-autograd/distinfo3
-rw-r--r--math/py-autograd/pkg-descr10
3 files changed, 35 insertions, 0 deletions
diff --git a/math/py-autograd/Makefile b/math/py-autograd/Makefile
new file mode 100644
index 000000000000..9e9f5b8da2b3
--- /dev/null
+++ b/math/py-autograd/Makefile
@@ -0,0 +1,22 @@
+# $FreeBSD$
+
+PORTNAME= autograd
+DISTVERSION= 1.2
+CATEGORIES= math python
+MASTER_SITES= CHEESESHOP
+PKGNAMEPREFIX= ${PYTHON_PKGNAMEPREFIX}
+
+MAINTAINER= rm@FreeBSD.org
+COMMENT= Efficiently computes derivatives of numpy code
+
+LICENSE= MIT
+
+RUN_DEPENDS= ${PYNUMPY} \
+ ${PYTHON_PKGNAMEPREFIX}future>=0.15.2:devel/py-future@${PY_FLAVOR}
+
+USES= python
+USE_PYTHON= autoplist distutils
+
+NO_ARCH= yes
+
+.include <bsd.port.mk>
diff --git a/math/py-autograd/distinfo b/math/py-autograd/distinfo
new file mode 100644
index 000000000000..1cee31731d1c
--- /dev/null
+++ b/math/py-autograd/distinfo
@@ -0,0 +1,3 @@
+TIMESTAMP = 1551302910
+SHA256 (autograd-1.2.tar.gz) = a08bfa6d539b7a56e7c9f4d0881044afbef5e75f324a394c2494de963ea4a47d
+SIZE (autograd-1.2.tar.gz) = 32540
diff --git a/math/py-autograd/pkg-descr b/math/py-autograd/pkg-descr
new file mode 100644
index 000000000000..6f472f4ef6f7
--- /dev/null
+++ b/math/py-autograd/pkg-descr
@@ -0,0 +1,10 @@
+Autograd can automatically differentiate native Python and Numpy code. It can
+handle a large subset of Python's features, including loops, ifs, recursion and
+closures, and it can even take derivatives of derivatives of derivatives. It
+supports reverse-mode differentiation (a.k.a. backpropagation), which means it
+can efficiently take gradients of scalar-valued functions with respect to
+array-valued arguments, as well as forward-mode differentiation, and the two
+can be composed arbitrarily. The main intended application of Autograd is
+gradient-based optimization.
+
+WWW: https://github.com/HIPS/autograd