diff options
-rw-r--r-- | math/Makefile | 1 | ||||
-rw-r--r-- | math/py-spvcm/Makefile | 27 | ||||
-rw-r--r-- | math/py-spvcm/distinfo | 3 | ||||
-rw-r--r-- | math/py-spvcm/pkg-descr | 8 |
4 files changed, 39 insertions, 0 deletions
diff --git a/math/Makefile b/math/Makefile index ee8ffe942c88..5e3dc20f2c1b 100644 --- a/math/Makefile +++ b/math/Makefile @@ -848,6 +848,7 @@ SUBDIR += py-splot SUBDIR += py-spot SUBDIR += py-spreg + SUBDIR += py-spvcm SUBDIR += py-ssm SUBDIR += py-statsmodels SUBDIR += py-statsmodels010 diff --git a/math/py-spvcm/Makefile b/math/py-spvcm/Makefile new file mode 100644 index 000000000000..5f3e4e3f065d --- /dev/null +++ b/math/py-spvcm/Makefile @@ -0,0 +1,27 @@ +# Created by: Po-Chuan Hsieh <sunpoet@FreeBSD.org> +# $FreeBSD$ + +PORTNAME= spvcm +PORTVERSION= 0.3.0 +CATEGORIES= math python +MASTER_SITES= CHEESESHOP +PKGNAMEPREFIX= ${PYTHON_PKGNAMEPREFIX} + +MAINTAINER= sunpoet@FreeBSD.org +COMMENT= Fit spatial multilevel models and diagnose convergence + +LICENSE= BSD3CLAUSE + +RUN_DEPENDS= ${PYTHON_PKGNAMEPREFIX}libpysal>=0:science/py-libpysal@${PY_FLAVOR} \ + ${PYTHON_PKGNAMEPREFIX}numpy>=0,1:math/py-numpy@${PY_FLAVOR} \ + ${PYTHON_PKGNAMEPREFIX}pandas>=0,1:math/py-pandas@${PY_FLAVOR} \ + ${PYTHON_PKGNAMEPREFIX}scipy>=0:science/py-scipy@${PY_FLAVOR} \ + ${PYTHON_PKGNAMEPREFIX}seaborn>=0:math/py-seaborn@${PY_FLAVOR} \ + ${PYTHON_PKGNAMEPREFIX}spreg>=0:math/py-spreg@${PY_FLAVOR} + +USES= python:3.6+ +USE_PYTHON= autoplist concurrent distutils + +NO_ARCH= yes + +.include <bsd.port.mk> diff --git a/math/py-spvcm/distinfo b/math/py-spvcm/distinfo new file mode 100644 index 000000000000..6c43139a755b --- /dev/null +++ b/math/py-spvcm/distinfo @@ -0,0 +1,3 @@ +TIMESTAMP = 1609598753 +SHA256 (spvcm-0.3.0.tar.gz) = ce331bd5d6bcb64a07c4393093f3978763cfc8764ad0737e1866f3905e6cceae +SIZE (spvcm-0.3.0.tar.gz) = 5724408 diff --git a/math/py-spvcm/pkg-descr b/math/py-spvcm/pkg-descr new file mode 100644 index 000000000000..c216f65efce1 --- /dev/null +++ b/math/py-spvcm/pkg-descr @@ -0,0 +1,8 @@ +Gibbs sampling for spatially-correlated variance-components + +This is a package to estimate spatially-correlated variance components +models/varying intercept models. In addition to a general toolkit to conduct +Gibbs sampling in Python, the package also provides an interface to PyMC3 and +CODA. + +WWW: https://github.com/pysal/spvcm |