diff options
| author | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 | 
|---|---|---|
| committer | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 | 
| commit | 0b57cec536236d46e3dba9bd041533462f33dbb7 (patch) | |
| tree | 56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm-project/clang/lib/CodeGen/CGExprAgg.cpp | |
| parent | 718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff) | |
Notes
Diffstat (limited to 'contrib/llvm-project/clang/lib/CodeGen/CGExprAgg.cpp')
| -rw-r--r-- | contrib/llvm-project/clang/lib/CodeGen/CGExprAgg.cpp | 2023 | 
1 files changed, 2023 insertions, 0 deletions
| diff --git a/contrib/llvm-project/clang/lib/CodeGen/CGExprAgg.cpp b/contrib/llvm-project/clang/lib/CodeGen/CGExprAgg.cpp new file mode 100644 index 000000000000..0a57870a7c58 --- /dev/null +++ b/contrib/llvm-project/clang/lib/CodeGen/CGExprAgg.cpp @@ -0,0 +1,2023 @@ +//===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This contains code to emit Aggregate Expr nodes as LLVM code. +// +//===----------------------------------------------------------------------===// + +#include "CodeGenFunction.h" +#include "CGCXXABI.h" +#include "CGObjCRuntime.h" +#include "CodeGenModule.h" +#include "ConstantEmitter.h" +#include "clang/AST/ASTContext.h" +#include "clang/AST/DeclCXX.h" +#include "clang/AST/DeclTemplate.h" +#include "clang/AST/StmtVisitor.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/IntrinsicInst.h" +using namespace clang; +using namespace CodeGen; + +//===----------------------------------------------------------------------===// +//                        Aggregate Expression Emitter +//===----------------------------------------------------------------------===// + +namespace  { +class AggExprEmitter : public StmtVisitor<AggExprEmitter> { +  CodeGenFunction &CGF; +  CGBuilderTy &Builder; +  AggValueSlot Dest; +  bool IsResultUnused; + +  AggValueSlot EnsureSlot(QualType T) { +    if (!Dest.isIgnored()) return Dest; +    return CGF.CreateAggTemp(T, "agg.tmp.ensured"); +  } +  void EnsureDest(QualType T) { +    if (!Dest.isIgnored()) return; +    Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured"); +  } + +  // Calls `Fn` with a valid return value slot, potentially creating a temporary +  // to do so. If a temporary is created, an appropriate copy into `Dest` will +  // be emitted, as will lifetime markers. +  // +  // The given function should take a ReturnValueSlot, and return an RValue that +  // points to said slot. +  void withReturnValueSlot(const Expr *E, +                           llvm::function_ref<RValue(ReturnValueSlot)> Fn); + +public: +  AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused) +    : CGF(cgf), Builder(CGF.Builder), Dest(Dest), +    IsResultUnused(IsResultUnused) { } + +  //===--------------------------------------------------------------------===// +  //                               Utilities +  //===--------------------------------------------------------------------===// + +  /// EmitAggLoadOfLValue - Given an expression with aggregate type that +  /// represents a value lvalue, this method emits the address of the lvalue, +  /// then loads the result into DestPtr. +  void EmitAggLoadOfLValue(const Expr *E); + +  enum ExprValueKind { +    EVK_RValue, +    EVK_NonRValue +  }; + +  /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. +  /// SrcIsRValue is true if source comes from an RValue. +  void EmitFinalDestCopy(QualType type, const LValue &src, +                         ExprValueKind SrcValueKind = EVK_NonRValue); +  void EmitFinalDestCopy(QualType type, RValue src); +  void EmitCopy(QualType type, const AggValueSlot &dest, +                const AggValueSlot &src); + +  void EmitMoveFromReturnSlot(const Expr *E, RValue Src); + +  void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, +                     QualType ArrayQTy, InitListExpr *E); + +  AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) { +    if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T)) +      return AggValueSlot::NeedsGCBarriers; +    return AggValueSlot::DoesNotNeedGCBarriers; +  } + +  bool TypeRequiresGCollection(QualType T); + +  //===--------------------------------------------------------------------===// +  //                            Visitor Methods +  //===--------------------------------------------------------------------===// + +  void Visit(Expr *E) { +    ApplyDebugLocation DL(CGF, E); +    StmtVisitor<AggExprEmitter>::Visit(E); +  } + +  void VisitStmt(Stmt *S) { +    CGF.ErrorUnsupported(S, "aggregate expression"); +  } +  void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } +  void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { +    Visit(GE->getResultExpr()); +  } +  void VisitCoawaitExpr(CoawaitExpr *E) { +    CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused); +  } +  void VisitCoyieldExpr(CoyieldExpr *E) { +    CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused); +  } +  void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); } +  void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } +  void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { +    return Visit(E->getReplacement()); +  } + +  void VisitConstantExpr(ConstantExpr *E) { +    return Visit(E->getSubExpr()); +  } + +  // l-values. +  void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); } +  void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } +  void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } +  void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } +  void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); +  void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { +    EmitAggLoadOfLValue(E); +  } +  void VisitPredefinedExpr(const PredefinedExpr *E) { +    EmitAggLoadOfLValue(E); +  } + +  // Operators. +  void VisitCastExpr(CastExpr *E); +  void VisitCallExpr(const CallExpr *E); +  void VisitStmtExpr(const StmtExpr *E); +  void VisitBinaryOperator(const BinaryOperator *BO); +  void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); +  void VisitBinAssign(const BinaryOperator *E); +  void VisitBinComma(const BinaryOperator *E); +  void VisitBinCmp(const BinaryOperator *E); + +  void VisitObjCMessageExpr(ObjCMessageExpr *E); +  void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { +    EmitAggLoadOfLValue(E); +  } + +  void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E); +  void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); +  void VisitChooseExpr(const ChooseExpr *CE); +  void VisitInitListExpr(InitListExpr *E); +  void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, +                              llvm::Value *outerBegin = nullptr); +  void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); +  void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing. +  void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { +    CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); +    Visit(DAE->getExpr()); +  } +  void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { +    CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); +    Visit(DIE->getExpr()); +  } +  void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); +  void VisitCXXConstructExpr(const CXXConstructExpr *E); +  void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E); +  void VisitLambdaExpr(LambdaExpr *E); +  void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E); +  void VisitExprWithCleanups(ExprWithCleanups *E); +  void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); +  void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } +  void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); +  void VisitOpaqueValueExpr(OpaqueValueExpr *E); + +  void VisitPseudoObjectExpr(PseudoObjectExpr *E) { +    if (E->isGLValue()) { +      LValue LV = CGF.EmitPseudoObjectLValue(E); +      return EmitFinalDestCopy(E->getType(), LV); +    } + +    CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType())); +  } + +  void VisitVAArgExpr(VAArgExpr *E); + +  void EmitInitializationToLValue(Expr *E, LValue Address); +  void EmitNullInitializationToLValue(LValue Address); +  //  case Expr::ChooseExprClass: +  void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } +  void VisitAtomicExpr(AtomicExpr *E) { +    RValue Res = CGF.EmitAtomicExpr(E); +    EmitFinalDestCopy(E->getType(), Res); +  } +}; +}  // end anonymous namespace. + +//===----------------------------------------------------------------------===// +//                                Utilities +//===----------------------------------------------------------------------===// + +/// EmitAggLoadOfLValue - Given an expression with aggregate type that +/// represents a value lvalue, this method emits the address of the lvalue, +/// then loads the result into DestPtr. +void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { +  LValue LV = CGF.EmitLValue(E); + +  // If the type of the l-value is atomic, then do an atomic load. +  if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) { +    CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest); +    return; +  } + +  EmitFinalDestCopy(E->getType(), LV); +} + +/// True if the given aggregate type requires special GC API calls. +bool AggExprEmitter::TypeRequiresGCollection(QualType T) { +  // Only record types have members that might require garbage collection. +  const RecordType *RecordTy = T->getAs<RecordType>(); +  if (!RecordTy) return false; + +  // Don't mess with non-trivial C++ types. +  RecordDecl *Record = RecordTy->getDecl(); +  if (isa<CXXRecordDecl>(Record) && +      (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() || +       !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) +    return false; + +  // Check whether the type has an object member. +  return Record->hasObjectMember(); +} + +void AggExprEmitter::withReturnValueSlot( +    const Expr *E, llvm::function_ref<RValue(ReturnValueSlot)> EmitCall) { +  QualType RetTy = E->getType(); +  bool RequiresDestruction = +      Dest.isIgnored() && +      RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct; + +  // If it makes no observable difference, save a memcpy + temporary. +  // +  // We need to always provide our own temporary if destruction is required. +  // Otherwise, EmitCall will emit its own, notice that it's "unused", and end +  // its lifetime before we have the chance to emit a proper destructor call. +  bool UseTemp = Dest.isPotentiallyAliased() || Dest.requiresGCollection() || +                 (RequiresDestruction && !Dest.getAddress().isValid()); + +  Address RetAddr = Address::invalid(); +  Address RetAllocaAddr = Address::invalid(); + +  EHScopeStack::stable_iterator LifetimeEndBlock; +  llvm::Value *LifetimeSizePtr = nullptr; +  llvm::IntrinsicInst *LifetimeStartInst = nullptr; +  if (!UseTemp) { +    RetAddr = Dest.getAddress(); +  } else { +    RetAddr = CGF.CreateMemTemp(RetTy, "tmp", &RetAllocaAddr); +    uint64_t Size = +        CGF.CGM.getDataLayout().getTypeAllocSize(CGF.ConvertTypeForMem(RetTy)); +    LifetimeSizePtr = CGF.EmitLifetimeStart(Size, RetAllocaAddr.getPointer()); +    if (LifetimeSizePtr) { +      LifetimeStartInst = +          cast<llvm::IntrinsicInst>(std::prev(Builder.GetInsertPoint())); +      assert(LifetimeStartInst->getIntrinsicID() == +                 llvm::Intrinsic::lifetime_start && +             "Last insertion wasn't a lifetime.start?"); + +      CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>( +          NormalEHLifetimeMarker, RetAllocaAddr, LifetimeSizePtr); +      LifetimeEndBlock = CGF.EHStack.stable_begin(); +    } +  } + +  RValue Src = +      EmitCall(ReturnValueSlot(RetAddr, Dest.isVolatile(), IsResultUnused)); + +  if (RequiresDestruction) +    CGF.pushDestroy(RetTy.isDestructedType(), Src.getAggregateAddress(), RetTy); + +  if (!UseTemp) +    return; + +  assert(Dest.getPointer() != Src.getAggregatePointer()); +  EmitFinalDestCopy(E->getType(), Src); + +  if (!RequiresDestruction && LifetimeStartInst) { +    // If there's no dtor to run, the copy was the last use of our temporary. +    // Since we're not guaranteed to be in an ExprWithCleanups, clean up +    // eagerly. +    CGF.DeactivateCleanupBlock(LifetimeEndBlock, LifetimeStartInst); +    CGF.EmitLifetimeEnd(LifetimeSizePtr, RetAllocaAddr.getPointer()); +  } +} + +/// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. +void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) { +  assert(src.isAggregate() && "value must be aggregate value!"); +  LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type); +  EmitFinalDestCopy(type, srcLV, EVK_RValue); +} + +/// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. +void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src, +                                       ExprValueKind SrcValueKind) { +  // If Dest is ignored, then we're evaluating an aggregate expression +  // in a context that doesn't care about the result.  Note that loads +  // from volatile l-values force the existence of a non-ignored +  // destination. +  if (Dest.isIgnored()) +    return; + +  // Copy non-trivial C structs here. +  LValue DstLV = CGF.MakeAddrLValue( +      Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type); + +  if (SrcValueKind == EVK_RValue) { +    if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) { +      if (Dest.isPotentiallyAliased()) +        CGF.callCStructMoveAssignmentOperator(DstLV, src); +      else +        CGF.callCStructMoveConstructor(DstLV, src); +      return; +    } +  } else { +    if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) { +      if (Dest.isPotentiallyAliased()) +        CGF.callCStructCopyAssignmentOperator(DstLV, src); +      else +        CGF.callCStructCopyConstructor(DstLV, src); +      return; +    } +  } + +  AggValueSlot srcAgg = +    AggValueSlot::forLValue(src, AggValueSlot::IsDestructed, +                            needsGC(type), AggValueSlot::IsAliased, +                            AggValueSlot::MayOverlap); +  EmitCopy(type, Dest, srcAgg); +} + +/// Perform a copy from the source into the destination. +/// +/// \param type - the type of the aggregate being copied; qualifiers are +///   ignored +void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest, +                              const AggValueSlot &src) { +  if (dest.requiresGCollection()) { +    CharUnits sz = dest.getPreferredSize(CGF.getContext(), type); +    llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity()); +    CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, +                                                      dest.getAddress(), +                                                      src.getAddress(), +                                                      size); +    return; +  } + +  // If the result of the assignment is used, copy the LHS there also. +  // It's volatile if either side is.  Use the minimum alignment of +  // the two sides. +  LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type); +  LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type); +  CGF.EmitAggregateCopy(DestLV, SrcLV, type, dest.mayOverlap(), +                        dest.isVolatile() || src.isVolatile()); +} + +/// Emit the initializer for a std::initializer_list initialized with a +/// real initializer list. +void +AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) { +  // Emit an array containing the elements.  The array is externally destructed +  // if the std::initializer_list object is. +  ASTContext &Ctx = CGF.getContext(); +  LValue Array = CGF.EmitLValue(E->getSubExpr()); +  assert(Array.isSimple() && "initializer_list array not a simple lvalue"); +  Address ArrayPtr = Array.getAddress(); + +  const ConstantArrayType *ArrayType = +      Ctx.getAsConstantArrayType(E->getSubExpr()->getType()); +  assert(ArrayType && "std::initializer_list constructed from non-array"); + +  // FIXME: Perform the checks on the field types in SemaInit. +  RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl(); +  RecordDecl::field_iterator Field = Record->field_begin(); +  if (Field == Record->field_end()) { +    CGF.ErrorUnsupported(E, "weird std::initializer_list"); +    return; +  } + +  // Start pointer. +  if (!Field->getType()->isPointerType() || +      !Ctx.hasSameType(Field->getType()->getPointeeType(), +                       ArrayType->getElementType())) { +    CGF.ErrorUnsupported(E, "weird std::initializer_list"); +    return; +  } + +  AggValueSlot Dest = EnsureSlot(E->getType()); +  LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); +  LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field); +  llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0); +  llvm::Value *IdxStart[] = { Zero, Zero }; +  llvm::Value *ArrayStart = +      Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart"); +  CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start); +  ++Field; + +  if (Field == Record->field_end()) { +    CGF.ErrorUnsupported(E, "weird std::initializer_list"); +    return; +  } + +  llvm::Value *Size = Builder.getInt(ArrayType->getSize()); +  LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field); +  if (Field->getType()->isPointerType() && +      Ctx.hasSameType(Field->getType()->getPointeeType(), +                      ArrayType->getElementType())) { +    // End pointer. +    llvm::Value *IdxEnd[] = { Zero, Size }; +    llvm::Value *ArrayEnd = +        Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend"); +    CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength); +  } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) { +    // Length. +    CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength); +  } else { +    CGF.ErrorUnsupported(E, "weird std::initializer_list"); +    return; +  } +} + +/// Determine if E is a trivial array filler, that is, one that is +/// equivalent to zero-initialization. +static bool isTrivialFiller(Expr *E) { +  if (!E) +    return true; + +  if (isa<ImplicitValueInitExpr>(E)) +    return true; + +  if (auto *ILE = dyn_cast<InitListExpr>(E)) { +    if (ILE->getNumInits()) +      return false; +    return isTrivialFiller(ILE->getArrayFiller()); +  } + +  if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E)) +    return Cons->getConstructor()->isDefaultConstructor() && +           Cons->getConstructor()->isTrivial(); + +  // FIXME: Are there other cases where we can avoid emitting an initializer? +  return false; +} + +/// Emit initialization of an array from an initializer list. +void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, +                                   QualType ArrayQTy, InitListExpr *E) { +  uint64_t NumInitElements = E->getNumInits(); + +  uint64_t NumArrayElements = AType->getNumElements(); +  assert(NumInitElements <= NumArrayElements); + +  QualType elementType = +      CGF.getContext().getAsArrayType(ArrayQTy)->getElementType(); + +  // DestPtr is an array*.  Construct an elementType* by drilling +  // down a level. +  llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); +  llvm::Value *indices[] = { zero, zero }; +  llvm::Value *begin = +    Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin"); + +  CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); +  CharUnits elementAlign = +    DestPtr.getAlignment().alignmentOfArrayElement(elementSize); + +  // Consider initializing the array by copying from a global. For this to be +  // more efficient than per-element initialization, the size of the elements +  // with explicit initializers should be large enough. +  if (NumInitElements * elementSize.getQuantity() > 16 && +      elementType.isTriviallyCopyableType(CGF.getContext())) { +    CodeGen::CodeGenModule &CGM = CGF.CGM; +    ConstantEmitter Emitter(CGM); +    LangAS AS = ArrayQTy.getAddressSpace(); +    if (llvm::Constant *C = Emitter.tryEmitForInitializer(E, AS, ArrayQTy)) { +      auto GV = new llvm::GlobalVariable( +          CGM.getModule(), C->getType(), +          CGM.isTypeConstant(ArrayQTy, /* ExcludeCtorDtor= */ true), +          llvm::GlobalValue::PrivateLinkage, C, "constinit", +          /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal, +          CGM.getContext().getTargetAddressSpace(AS)); +      Emitter.finalize(GV); +      CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy); +      GV->setAlignment(Align.getQuantity()); +      EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GV, ArrayQTy, Align)); +      return; +    } +  } + +  // Exception safety requires us to destroy all the +  // already-constructed members if an initializer throws. +  // For that, we'll need an EH cleanup. +  QualType::DestructionKind dtorKind = elementType.isDestructedType(); +  Address endOfInit = Address::invalid(); +  EHScopeStack::stable_iterator cleanup; +  llvm::Instruction *cleanupDominator = nullptr; +  if (CGF.needsEHCleanup(dtorKind)) { +    // In principle we could tell the cleanup where we are more +    // directly, but the control flow can get so varied here that it +    // would actually be quite complex.  Therefore we go through an +    // alloca. +    endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(), +                                     "arrayinit.endOfInit"); +    cleanupDominator = Builder.CreateStore(begin, endOfInit); +    CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType, +                                         elementAlign, +                                         CGF.getDestroyer(dtorKind)); +    cleanup = CGF.EHStack.stable_begin(); + +  // Otherwise, remember that we didn't need a cleanup. +  } else { +    dtorKind = QualType::DK_none; +  } + +  llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); + +  // The 'current element to initialize'.  The invariants on this +  // variable are complicated.  Essentially, after each iteration of +  // the loop, it points to the last initialized element, except +  // that it points to the beginning of the array before any +  // elements have been initialized. +  llvm::Value *element = begin; + +  // Emit the explicit initializers. +  for (uint64_t i = 0; i != NumInitElements; ++i) { +    // Advance to the next element. +    if (i > 0) { +      element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element"); + +      // Tell the cleanup that it needs to destroy up to this +      // element.  TODO: some of these stores can be trivially +      // observed to be unnecessary. +      if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); +    } + +    LValue elementLV = +      CGF.MakeAddrLValue(Address(element, elementAlign), elementType); +    EmitInitializationToLValue(E->getInit(i), elementLV); +  } + +  // Check whether there's a non-trivial array-fill expression. +  Expr *filler = E->getArrayFiller(); +  bool hasTrivialFiller = isTrivialFiller(filler); + +  // Any remaining elements need to be zero-initialized, possibly +  // using the filler expression.  We can skip this if the we're +  // emitting to zeroed memory. +  if (NumInitElements != NumArrayElements && +      !(Dest.isZeroed() && hasTrivialFiller && +        CGF.getTypes().isZeroInitializable(elementType))) { + +    // Use an actual loop.  This is basically +    //   do { *array++ = filler; } while (array != end); + +    // Advance to the start of the rest of the array. +    if (NumInitElements) { +      element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start"); +      if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); +    } + +    // Compute the end of the array. +    llvm::Value *end = Builder.CreateInBoundsGEP(begin, +                      llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), +                                                 "arrayinit.end"); + +    llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); +    llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); + +    // Jump into the body. +    CGF.EmitBlock(bodyBB); +    llvm::PHINode *currentElement = +      Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); +    currentElement->addIncoming(element, entryBB); + +    // Emit the actual filler expression. +    { +      // C++1z [class.temporary]p5: +      //   when a default constructor is called to initialize an element of +      //   an array with no corresponding initializer [...] the destruction of +      //   every temporary created in a default argument is sequenced before +      //   the construction of the next array element, if any +      CodeGenFunction::RunCleanupsScope CleanupsScope(CGF); +      LValue elementLV = +        CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType); +      if (filler) +        EmitInitializationToLValue(filler, elementLV); +      else +        EmitNullInitializationToLValue(elementLV); +    } + +    // Move on to the next element. +    llvm::Value *nextElement = +      Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next"); + +    // Tell the EH cleanup that we finished with the last element. +    if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit); + +    // Leave the loop if we're done. +    llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, +                                             "arrayinit.done"); +    llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); +    Builder.CreateCondBr(done, endBB, bodyBB); +    currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); + +    CGF.EmitBlock(endBB); +  } + +  // Leave the partial-array cleanup if we entered one. +  if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator); +} + +//===----------------------------------------------------------------------===// +//                            Visitor Methods +//===----------------------------------------------------------------------===// + +void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ +  Visit(E->GetTemporaryExpr()); +} + +void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { +  // If this is a unique OVE, just visit its source expression. +  if (e->isUnique()) +    Visit(e->getSourceExpr()); +  else +    EmitFinalDestCopy(e->getType(), CGF.getOrCreateOpaqueLValueMapping(e)); +} + +void +AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { +  if (Dest.isPotentiallyAliased() && +      E->getType().isPODType(CGF.getContext())) { +    // For a POD type, just emit a load of the lvalue + a copy, because our +    // compound literal might alias the destination. +    EmitAggLoadOfLValue(E); +    return; +  } + +  AggValueSlot Slot = EnsureSlot(E->getType()); +  CGF.EmitAggExpr(E->getInitializer(), Slot); +} + +/// Attempt to look through various unimportant expressions to find a +/// cast of the given kind. +static Expr *findPeephole(Expr *op, CastKind kind) { +  while (true) { +    op = op->IgnoreParens(); +    if (CastExpr *castE = dyn_cast<CastExpr>(op)) { +      if (castE->getCastKind() == kind) +        return castE->getSubExpr(); +      if (castE->getCastKind() == CK_NoOp) +        continue; +    } +    return nullptr; +  } +} + +void AggExprEmitter::VisitCastExpr(CastExpr *E) { +  if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) +    CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); +  switch (E->getCastKind()) { +  case CK_Dynamic: { +    // FIXME: Can this actually happen? We have no test coverage for it. +    assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); +    LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(), +                                      CodeGenFunction::TCK_Load); +    // FIXME: Do we also need to handle property references here? +    if (LV.isSimple()) +      CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); +    else +      CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); + +    if (!Dest.isIgnored()) +      CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); +    break; +  } + +  case CK_ToUnion: { +    // Evaluate even if the destination is ignored. +    if (Dest.isIgnored()) { +      CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(), +                      /*ignoreResult=*/true); +      break; +    } + +    // GCC union extension +    QualType Ty = E->getSubExpr()->getType(); +    Address CastPtr = +      Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty)); +    EmitInitializationToLValue(E->getSubExpr(), +                               CGF.MakeAddrLValue(CastPtr, Ty)); +    break; +  } + +  case CK_LValueToRValueBitCast: { +    if (Dest.isIgnored()) { +      CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(), +                      /*ignoreResult=*/true); +      break; +    } + +    LValue SourceLV = CGF.EmitLValue(E->getSubExpr()); +    Address SourceAddress = +        Builder.CreateElementBitCast(SourceLV.getAddress(), CGF.Int8Ty); +    Address DestAddress = +        Builder.CreateElementBitCast(Dest.getAddress(), CGF.Int8Ty); +    llvm::Value *SizeVal = llvm::ConstantInt::get( +        CGF.SizeTy, +        CGF.getContext().getTypeSizeInChars(E->getType()).getQuantity()); +    Builder.CreateMemCpy(DestAddress, SourceAddress, SizeVal); +    break; +  } + +  case CK_DerivedToBase: +  case CK_BaseToDerived: +  case CK_UncheckedDerivedToBase: { +    llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: " +                "should have been unpacked before we got here"); +  } + +  case CK_NonAtomicToAtomic: +  case CK_AtomicToNonAtomic: { +    bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic); + +    // Determine the atomic and value types. +    QualType atomicType = E->getSubExpr()->getType(); +    QualType valueType = E->getType(); +    if (isToAtomic) std::swap(atomicType, valueType); + +    assert(atomicType->isAtomicType()); +    assert(CGF.getContext().hasSameUnqualifiedType(valueType, +                          atomicType->castAs<AtomicType>()->getValueType())); + +    // Just recurse normally if we're ignoring the result or the +    // atomic type doesn't change representation. +    if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) { +      return Visit(E->getSubExpr()); +    } + +    CastKind peepholeTarget = +      (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic); + +    // These two cases are reverses of each other; try to peephole them. +    if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) { +      assert(CGF.getContext().hasSameUnqualifiedType(op->getType(), +                                                     E->getType()) && +           "peephole significantly changed types?"); +      return Visit(op); +    } + +    // If we're converting an r-value of non-atomic type to an r-value +    // of atomic type, just emit directly into the relevant sub-object. +    if (isToAtomic) { +      AggValueSlot valueDest = Dest; +      if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) { +        // Zero-initialize.  (Strictly speaking, we only need to initialize +        // the padding at the end, but this is simpler.) +        if (!Dest.isZeroed()) +          CGF.EmitNullInitialization(Dest.getAddress(), atomicType); + +        // Build a GEP to refer to the subobject. +        Address valueAddr = +            CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0); +        valueDest = AggValueSlot::forAddr(valueAddr, +                                          valueDest.getQualifiers(), +                                          valueDest.isExternallyDestructed(), +                                          valueDest.requiresGCollection(), +                                          valueDest.isPotentiallyAliased(), +                                          AggValueSlot::DoesNotOverlap, +                                          AggValueSlot::IsZeroed); +      } + +      CGF.EmitAggExpr(E->getSubExpr(), valueDest); +      return; +    } + +    // Otherwise, we're converting an atomic type to a non-atomic type. +    // Make an atomic temporary, emit into that, and then copy the value out. +    AggValueSlot atomicSlot = +      CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp"); +    CGF.EmitAggExpr(E->getSubExpr(), atomicSlot); + +    Address valueAddr = Builder.CreateStructGEP(atomicSlot.getAddress(), 0); +    RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile()); +    return EmitFinalDestCopy(valueType, rvalue); +  } +  case CK_AddressSpaceConversion: +     return Visit(E->getSubExpr()); + +  case CK_LValueToRValue: +    // If we're loading from a volatile type, force the destination +    // into existence. +    if (E->getSubExpr()->getType().isVolatileQualified()) { +      EnsureDest(E->getType()); +      return Visit(E->getSubExpr()); +    } + +    LLVM_FALLTHROUGH; + + +  case CK_NoOp: +  case CK_UserDefinedConversion: +  case CK_ConstructorConversion: +    assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), +                                                   E->getType()) && +           "Implicit cast types must be compatible"); +    Visit(E->getSubExpr()); +    break; + +  case CK_LValueBitCast: +    llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); + +  case CK_Dependent: +  case CK_BitCast: +  case CK_ArrayToPointerDecay: +  case CK_FunctionToPointerDecay: +  case CK_NullToPointer: +  case CK_NullToMemberPointer: +  case CK_BaseToDerivedMemberPointer: +  case CK_DerivedToBaseMemberPointer: +  case CK_MemberPointerToBoolean: +  case CK_ReinterpretMemberPointer: +  case CK_IntegralToPointer: +  case CK_PointerToIntegral: +  case CK_PointerToBoolean: +  case CK_ToVoid: +  case CK_VectorSplat: +  case CK_IntegralCast: +  case CK_BooleanToSignedIntegral: +  case CK_IntegralToBoolean: +  case CK_IntegralToFloating: +  case CK_FloatingToIntegral: +  case CK_FloatingToBoolean: +  case CK_FloatingCast: +  case CK_CPointerToObjCPointerCast: +  case CK_BlockPointerToObjCPointerCast: +  case CK_AnyPointerToBlockPointerCast: +  case CK_ObjCObjectLValueCast: +  case CK_FloatingRealToComplex: +  case CK_FloatingComplexToReal: +  case CK_FloatingComplexToBoolean: +  case CK_FloatingComplexCast: +  case CK_FloatingComplexToIntegralComplex: +  case CK_IntegralRealToComplex: +  case CK_IntegralComplexToReal: +  case CK_IntegralComplexToBoolean: +  case CK_IntegralComplexCast: +  case CK_IntegralComplexToFloatingComplex: +  case CK_ARCProduceObject: +  case CK_ARCConsumeObject: +  case CK_ARCReclaimReturnedObject: +  case CK_ARCExtendBlockObject: +  case CK_CopyAndAutoreleaseBlockObject: +  case CK_BuiltinFnToFnPtr: +  case CK_ZeroToOCLOpaqueType: + +  case CK_IntToOCLSampler: +  case CK_FixedPointCast: +  case CK_FixedPointToBoolean: +  case CK_FixedPointToIntegral: +  case CK_IntegralToFixedPoint: +    llvm_unreachable("cast kind invalid for aggregate types"); +  } +} + +void AggExprEmitter::VisitCallExpr(const CallExpr *E) { +  if (E->getCallReturnType(CGF.getContext())->isReferenceType()) { +    EmitAggLoadOfLValue(E); +    return; +  } + +  withReturnValueSlot(E, [&](ReturnValueSlot Slot) { +    return CGF.EmitCallExpr(E, Slot); +  }); +} + +void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { +  withReturnValueSlot(E, [&](ReturnValueSlot Slot) { +    return CGF.EmitObjCMessageExpr(E, Slot); +  }); +} + +void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { +  CGF.EmitIgnoredExpr(E->getLHS()); +  Visit(E->getRHS()); +} + +void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { +  CodeGenFunction::StmtExprEvaluation eval(CGF); +  CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); +} + +enum CompareKind { +  CK_Less, +  CK_Greater, +  CK_Equal, +}; + +static llvm::Value *EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF, +                                const BinaryOperator *E, llvm::Value *LHS, +                                llvm::Value *RHS, CompareKind Kind, +                                const char *NameSuffix = "") { +  QualType ArgTy = E->getLHS()->getType(); +  if (const ComplexType *CT = ArgTy->getAs<ComplexType>()) +    ArgTy = CT->getElementType(); + +  if (const auto *MPT = ArgTy->getAs<MemberPointerType>()) { +    assert(Kind == CK_Equal && +           "member pointers may only be compared for equality"); +    return CGF.CGM.getCXXABI().EmitMemberPointerComparison( +        CGF, LHS, RHS, MPT, /*IsInequality*/ false); +  } + +  // Compute the comparison instructions for the specified comparison kind. +  struct CmpInstInfo { +    const char *Name; +    llvm::CmpInst::Predicate FCmp; +    llvm::CmpInst::Predicate SCmp; +    llvm::CmpInst::Predicate UCmp; +  }; +  CmpInstInfo InstInfo = [&]() -> CmpInstInfo { +    using FI = llvm::FCmpInst; +    using II = llvm::ICmpInst; +    switch (Kind) { +    case CK_Less: +      return {"cmp.lt", FI::FCMP_OLT, II::ICMP_SLT, II::ICMP_ULT}; +    case CK_Greater: +      return {"cmp.gt", FI::FCMP_OGT, II::ICMP_SGT, II::ICMP_UGT}; +    case CK_Equal: +      return {"cmp.eq", FI::FCMP_OEQ, II::ICMP_EQ, II::ICMP_EQ}; +    } +    llvm_unreachable("Unrecognised CompareKind enum"); +  }(); + +  if (ArgTy->hasFloatingRepresentation()) +    return Builder.CreateFCmp(InstInfo.FCmp, LHS, RHS, +                              llvm::Twine(InstInfo.Name) + NameSuffix); +  if (ArgTy->isIntegralOrEnumerationType() || ArgTy->isPointerType()) { +    auto Inst = +        ArgTy->hasSignedIntegerRepresentation() ? InstInfo.SCmp : InstInfo.UCmp; +    return Builder.CreateICmp(Inst, LHS, RHS, +                              llvm::Twine(InstInfo.Name) + NameSuffix); +  } + +  llvm_unreachable("unsupported aggregate binary expression should have " +                   "already been handled"); +} + +void AggExprEmitter::VisitBinCmp(const BinaryOperator *E) { +  using llvm::BasicBlock; +  using llvm::PHINode; +  using llvm::Value; +  assert(CGF.getContext().hasSameType(E->getLHS()->getType(), +                                      E->getRHS()->getType())); +  const ComparisonCategoryInfo &CmpInfo = +      CGF.getContext().CompCategories.getInfoForType(E->getType()); +  assert(CmpInfo.Record->isTriviallyCopyable() && +         "cannot copy non-trivially copyable aggregate"); + +  QualType ArgTy = E->getLHS()->getType(); + +  // TODO: Handle comparing these types. +  if (ArgTy->isVectorType()) +    return CGF.ErrorUnsupported( +        E, "aggregate three-way comparison with vector arguments"); +  if (!ArgTy->isIntegralOrEnumerationType() && !ArgTy->isRealFloatingType() && +      !ArgTy->isNullPtrType() && !ArgTy->isPointerType() && +      !ArgTy->isMemberPointerType() && !ArgTy->isAnyComplexType()) { +    return CGF.ErrorUnsupported(E, "aggregate three-way comparison"); +  } +  bool IsComplex = ArgTy->isAnyComplexType(); + +  // Evaluate the operands to the expression and extract their values. +  auto EmitOperand = [&](Expr *E) -> std::pair<Value *, Value *> { +    RValue RV = CGF.EmitAnyExpr(E); +    if (RV.isScalar()) +      return {RV.getScalarVal(), nullptr}; +    if (RV.isAggregate()) +      return {RV.getAggregatePointer(), nullptr}; +    assert(RV.isComplex()); +    return RV.getComplexVal(); +  }; +  auto LHSValues = EmitOperand(E->getLHS()), +       RHSValues = EmitOperand(E->getRHS()); + +  auto EmitCmp = [&](CompareKind K) { +    Value *Cmp = EmitCompare(Builder, CGF, E, LHSValues.first, RHSValues.first, +                             K, IsComplex ? ".r" : ""); +    if (!IsComplex) +      return Cmp; +    assert(K == CompareKind::CK_Equal); +    Value *CmpImag = EmitCompare(Builder, CGF, E, LHSValues.second, +                                 RHSValues.second, K, ".i"); +    return Builder.CreateAnd(Cmp, CmpImag, "and.eq"); +  }; +  auto EmitCmpRes = [&](const ComparisonCategoryInfo::ValueInfo *VInfo) { +    return Builder.getInt(VInfo->getIntValue()); +  }; + +  Value *Select; +  if (ArgTy->isNullPtrType()) { +    Select = EmitCmpRes(CmpInfo.getEqualOrEquiv()); +  } else if (CmpInfo.isEquality()) { +    Select = Builder.CreateSelect( +        EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()), +        EmitCmpRes(CmpInfo.getNonequalOrNonequiv()), "sel.eq"); +  } else if (!CmpInfo.isPartial()) { +    Value *SelectOne = +        Builder.CreateSelect(EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), +                             EmitCmpRes(CmpInfo.getGreater()), "sel.lt"); +    Select = Builder.CreateSelect(EmitCmp(CK_Equal), +                                  EmitCmpRes(CmpInfo.getEqualOrEquiv()), +                                  SelectOne, "sel.eq"); +  } else { +    Value *SelectEq = Builder.CreateSelect( +        EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()), +        EmitCmpRes(CmpInfo.getUnordered()), "sel.eq"); +    Value *SelectGT = Builder.CreateSelect(EmitCmp(CK_Greater), +                                           EmitCmpRes(CmpInfo.getGreater()), +                                           SelectEq, "sel.gt"); +    Select = Builder.CreateSelect( +        EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), SelectGT, "sel.lt"); +  } +  // Create the return value in the destination slot. +  EnsureDest(E->getType()); +  LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); + +  // Emit the address of the first (and only) field in the comparison category +  // type, and initialize it from the constant integer value selected above. +  LValue FieldLV = CGF.EmitLValueForFieldInitialization( +      DestLV, *CmpInfo.Record->field_begin()); +  CGF.EmitStoreThroughLValue(RValue::get(Select), FieldLV, /*IsInit*/ true); + +  // All done! The result is in the Dest slot. +} + +void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { +  if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) +    VisitPointerToDataMemberBinaryOperator(E); +  else +    CGF.ErrorUnsupported(E, "aggregate binary expression"); +} + +void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( +                                                    const BinaryOperator *E) { +  LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); +  EmitFinalDestCopy(E->getType(), LV); +} + +/// Is the value of the given expression possibly a reference to or +/// into a __block variable? +static bool isBlockVarRef(const Expr *E) { +  // Make sure we look through parens. +  E = E->IgnoreParens(); + +  // Check for a direct reference to a __block variable. +  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { +    const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl()); +    return (var && var->hasAttr<BlocksAttr>()); +  } + +  // More complicated stuff. + +  // Binary operators. +  if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) { +    // For an assignment or pointer-to-member operation, just care +    // about the LHS. +    if (op->isAssignmentOp() || op->isPtrMemOp()) +      return isBlockVarRef(op->getLHS()); + +    // For a comma, just care about the RHS. +    if (op->getOpcode() == BO_Comma) +      return isBlockVarRef(op->getRHS()); + +    // FIXME: pointer arithmetic? +    return false; + +  // Check both sides of a conditional operator. +  } else if (const AbstractConditionalOperator *op +               = dyn_cast<AbstractConditionalOperator>(E)) { +    return isBlockVarRef(op->getTrueExpr()) +        || isBlockVarRef(op->getFalseExpr()); + +  // OVEs are required to support BinaryConditionalOperators. +  } else if (const OpaqueValueExpr *op +               = dyn_cast<OpaqueValueExpr>(E)) { +    if (const Expr *src = op->getSourceExpr()) +      return isBlockVarRef(src); + +  // Casts are necessary to get things like (*(int*)&var) = foo(). +  // We don't really care about the kind of cast here, except +  // we don't want to look through l2r casts, because it's okay +  // to get the *value* in a __block variable. +  } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) { +    if (cast->getCastKind() == CK_LValueToRValue) +      return false; +    return isBlockVarRef(cast->getSubExpr()); + +  // Handle unary operators.  Again, just aggressively look through +  // it, ignoring the operation. +  } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) { +    return isBlockVarRef(uop->getSubExpr()); + +  // Look into the base of a field access. +  } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) { +    return isBlockVarRef(mem->getBase()); + +  // Look into the base of a subscript. +  } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) { +    return isBlockVarRef(sub->getBase()); +  } + +  return false; +} + +void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { +  // For an assignment to work, the value on the right has +  // to be compatible with the value on the left. +  assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), +                                                 E->getRHS()->getType()) +         && "Invalid assignment"); + +  // If the LHS might be a __block variable, and the RHS can +  // potentially cause a block copy, we need to evaluate the RHS first +  // so that the assignment goes the right place. +  // This is pretty semantically fragile. +  if (isBlockVarRef(E->getLHS()) && +      E->getRHS()->HasSideEffects(CGF.getContext())) { +    // Ensure that we have a destination, and evaluate the RHS into that. +    EnsureDest(E->getRHS()->getType()); +    Visit(E->getRHS()); + +    // Now emit the LHS and copy into it. +    LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); + +    // That copy is an atomic copy if the LHS is atomic. +    if (LHS.getType()->isAtomicType() || +        CGF.LValueIsSuitableForInlineAtomic(LHS)) { +      CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); +      return; +    } + +    EmitCopy(E->getLHS()->getType(), +             AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, +                                     needsGC(E->getLHS()->getType()), +                                     AggValueSlot::IsAliased, +                                     AggValueSlot::MayOverlap), +             Dest); +    return; +  } + +  LValue LHS = CGF.EmitLValue(E->getLHS()); + +  // If we have an atomic type, evaluate into the destination and then +  // do an atomic copy. +  if (LHS.getType()->isAtomicType() || +      CGF.LValueIsSuitableForInlineAtomic(LHS)) { +    EnsureDest(E->getRHS()->getType()); +    Visit(E->getRHS()); +    CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); +    return; +  } + +  // Codegen the RHS so that it stores directly into the LHS. +  AggValueSlot LHSSlot = +    AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, +                            needsGC(E->getLHS()->getType()), +                            AggValueSlot::IsAliased, +                            AggValueSlot::MayOverlap); +  // A non-volatile aggregate destination might have volatile member. +  if (!LHSSlot.isVolatile() && +      CGF.hasVolatileMember(E->getLHS()->getType())) +    LHSSlot.setVolatile(true); + +  CGF.EmitAggExpr(E->getRHS(), LHSSlot); + +  // Copy into the destination if the assignment isn't ignored. +  EmitFinalDestCopy(E->getType(), LHS); +} + +void AggExprEmitter:: +VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { +  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); +  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); +  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); + +  // Bind the common expression if necessary. +  CodeGenFunction::OpaqueValueMapping binding(CGF, E); + +  CodeGenFunction::ConditionalEvaluation eval(CGF); +  CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, +                           CGF.getProfileCount(E)); + +  // Save whether the destination's lifetime is externally managed. +  bool isExternallyDestructed = Dest.isExternallyDestructed(); + +  eval.begin(CGF); +  CGF.EmitBlock(LHSBlock); +  CGF.incrementProfileCounter(E); +  Visit(E->getTrueExpr()); +  eval.end(CGF); + +  assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); +  CGF.Builder.CreateBr(ContBlock); + +  // If the result of an agg expression is unused, then the emission +  // of the LHS might need to create a destination slot.  That's fine +  // with us, and we can safely emit the RHS into the same slot, but +  // we shouldn't claim that it's already being destructed. +  Dest.setExternallyDestructed(isExternallyDestructed); + +  eval.begin(CGF); +  CGF.EmitBlock(RHSBlock); +  Visit(E->getFalseExpr()); +  eval.end(CGF); + +  CGF.EmitBlock(ContBlock); +} + +void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { +  Visit(CE->getChosenSubExpr()); +} + +void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { +  Address ArgValue = Address::invalid(); +  Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); + +  // If EmitVAArg fails, emit an error. +  if (!ArgPtr.isValid()) { +    CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); +    return; +  } + +  EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType())); +} + +void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { +  // Ensure that we have a slot, but if we already do, remember +  // whether it was externally destructed. +  bool wasExternallyDestructed = Dest.isExternallyDestructed(); +  EnsureDest(E->getType()); + +  // We're going to push a destructor if there isn't already one. +  Dest.setExternallyDestructed(); + +  Visit(E->getSubExpr()); + +  // Push that destructor we promised. +  if (!wasExternallyDestructed) +    CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress()); +} + +void +AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { +  AggValueSlot Slot = EnsureSlot(E->getType()); +  CGF.EmitCXXConstructExpr(E, Slot); +} + +void AggExprEmitter::VisitCXXInheritedCtorInitExpr( +    const CXXInheritedCtorInitExpr *E) { +  AggValueSlot Slot = EnsureSlot(E->getType()); +  CGF.EmitInheritedCXXConstructorCall( +      E->getConstructor(), E->constructsVBase(), Slot.getAddress(), +      E->inheritedFromVBase(), E); +} + +void +AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) { +  AggValueSlot Slot = EnsureSlot(E->getType()); +  LValue SlotLV = CGF.MakeAddrLValue(Slot.getAddress(), E->getType()); + +  // We'll need to enter cleanup scopes in case any of the element +  // initializers throws an exception. +  SmallVector<EHScopeStack::stable_iterator, 16> Cleanups; +  llvm::Instruction *CleanupDominator = nullptr; + +  CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); +  for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(), +                                               e = E->capture_init_end(); +       i != e; ++i, ++CurField) { +    // Emit initialization +    LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField); +    if (CurField->hasCapturedVLAType()) { +      CGF.EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV); +      continue; +    } + +    EmitInitializationToLValue(*i, LV); + +    // Push a destructor if necessary. +    if (QualType::DestructionKind DtorKind = +            CurField->getType().isDestructedType()) { +      assert(LV.isSimple()); +      if (CGF.needsEHCleanup(DtorKind)) { +        if (!CleanupDominator) +          CleanupDominator = CGF.Builder.CreateAlignedLoad( +              CGF.Int8Ty, +              llvm::Constant::getNullValue(CGF.Int8PtrTy), +              CharUnits::One()); // placeholder + +        CGF.pushDestroy(EHCleanup, LV.getAddress(), CurField->getType(), +                        CGF.getDestroyer(DtorKind), false); +        Cleanups.push_back(CGF.EHStack.stable_begin()); +      } +    } +  } + +  // Deactivate all the partial cleanups in reverse order, which +  // generally means popping them. +  for (unsigned i = Cleanups.size(); i != 0; --i) +    CGF.DeactivateCleanupBlock(Cleanups[i-1], CleanupDominator); + +  // Destroy the placeholder if we made one. +  if (CleanupDominator) +    CleanupDominator->eraseFromParent(); +} + +void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { +  CGF.enterFullExpression(E); +  CodeGenFunction::RunCleanupsScope cleanups(CGF); +  Visit(E->getSubExpr()); +} + +void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { +  QualType T = E->getType(); +  AggValueSlot Slot = EnsureSlot(T); +  EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); +} + +void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { +  QualType T = E->getType(); +  AggValueSlot Slot = EnsureSlot(T); +  EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); +} + +/// isSimpleZero - If emitting this value will obviously just cause a store of +/// zero to memory, return true.  This can return false if uncertain, so it just +/// handles simple cases. +static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { +  E = E->IgnoreParens(); + +  // 0 +  if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) +    return IL->getValue() == 0; +  // +0.0 +  if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) +    return FL->getValue().isPosZero(); +  // int() +  if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && +      CGF.getTypes().isZeroInitializable(E->getType())) +    return true; +  // (int*)0 - Null pointer expressions. +  if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) +    return ICE->getCastKind() == CK_NullToPointer && +           CGF.getTypes().isPointerZeroInitializable(E->getType()) && +           !E->HasSideEffects(CGF.getContext()); +  // '\0' +  if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) +    return CL->getValue() == 0; + +  // Otherwise, hard case: conservatively return false. +  return false; +} + + +void +AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) { +  QualType type = LV.getType(); +  // FIXME: Ignore result? +  // FIXME: Are initializers affected by volatile? +  if (Dest.isZeroed() && isSimpleZero(E, CGF)) { +    // Storing "i32 0" to a zero'd memory location is a noop. +    return; +  } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) { +    return EmitNullInitializationToLValue(LV); +  } else if (isa<NoInitExpr>(E)) { +    // Do nothing. +    return; +  } else if (type->isReferenceType()) { +    RValue RV = CGF.EmitReferenceBindingToExpr(E); +    return CGF.EmitStoreThroughLValue(RV, LV); +  } + +  switch (CGF.getEvaluationKind(type)) { +  case TEK_Complex: +    CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true); +    return; +  case TEK_Aggregate: +    CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, +                                               AggValueSlot::IsDestructed, +                                      AggValueSlot::DoesNotNeedGCBarriers, +                                               AggValueSlot::IsNotAliased, +                                               AggValueSlot::MayOverlap, +                                               Dest.isZeroed())); +    return; +  case TEK_Scalar: +    if (LV.isSimple()) { +      CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false); +    } else { +      CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); +    } +    return; +  } +  llvm_unreachable("bad evaluation kind"); +} + +void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { +  QualType type = lv.getType(); + +  // If the destination slot is already zeroed out before the aggregate is +  // copied into it, we don't have to emit any zeros here. +  if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) +    return; + +  if (CGF.hasScalarEvaluationKind(type)) { +    // For non-aggregates, we can store the appropriate null constant. +    llvm::Value *null = CGF.CGM.EmitNullConstant(type); +    // Note that the following is not equivalent to +    // EmitStoreThroughBitfieldLValue for ARC types. +    if (lv.isBitField()) { +      CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv); +    } else { +      assert(lv.isSimple()); +      CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true); +    } +  } else { +    // There's a potential optimization opportunity in combining +    // memsets; that would be easy for arrays, but relatively +    // difficult for structures with the current code. +    CGF.EmitNullInitialization(lv.getAddress(), lv.getType()); +  } +} + +void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { +#if 0 +  // FIXME: Assess perf here?  Figure out what cases are worth optimizing here +  // (Length of globals? Chunks of zeroed-out space?). +  // +  // If we can, prefer a copy from a global; this is a lot less code for long +  // globals, and it's easier for the current optimizers to analyze. +  if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { +    llvm::GlobalVariable* GV = +    new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, +                             llvm::GlobalValue::InternalLinkage, C, ""); +    EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType())); +    return; +  } +#endif +  if (E->hadArrayRangeDesignator()) +    CGF.ErrorUnsupported(E, "GNU array range designator extension"); + +  if (E->isTransparent()) +    return Visit(E->getInit(0)); + +  AggValueSlot Dest = EnsureSlot(E->getType()); + +  LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); + +  // Handle initialization of an array. +  if (E->getType()->isArrayType()) { +    auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType()); +    EmitArrayInit(Dest.getAddress(), AType, E->getType(), E); +    return; +  } + +  assert(E->getType()->isRecordType() && "Only support structs/unions here!"); + +  // Do struct initialization; this code just sets each individual member +  // to the approprate value.  This makes bitfield support automatic; +  // the disadvantage is that the generated code is more difficult for +  // the optimizer, especially with bitfields. +  unsigned NumInitElements = E->getNumInits(); +  RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl(); + +  // We'll need to enter cleanup scopes in case any of the element +  // initializers throws an exception. +  SmallVector<EHScopeStack::stable_iterator, 16> cleanups; +  llvm::Instruction *cleanupDominator = nullptr; +  auto addCleanup = [&](const EHScopeStack::stable_iterator &cleanup) { +    cleanups.push_back(cleanup); +    if (!cleanupDominator) // create placeholder once needed +      cleanupDominator = CGF.Builder.CreateAlignedLoad( +          CGF.Int8Ty, llvm::Constant::getNullValue(CGF.Int8PtrTy), +          CharUnits::One()); +  }; + +  unsigned curInitIndex = 0; + +  // Emit initialization of base classes. +  if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) { +    assert(E->getNumInits() >= CXXRD->getNumBases() && +           "missing initializer for base class"); +    for (auto &Base : CXXRD->bases()) { +      assert(!Base.isVirtual() && "should not see vbases here"); +      auto *BaseRD = Base.getType()->getAsCXXRecordDecl(); +      Address V = CGF.GetAddressOfDirectBaseInCompleteClass( +          Dest.getAddress(), CXXRD, BaseRD, +          /*isBaseVirtual*/ false); +      AggValueSlot AggSlot = AggValueSlot::forAddr( +          V, Qualifiers(), +          AggValueSlot::IsDestructed, +          AggValueSlot::DoesNotNeedGCBarriers, +          AggValueSlot::IsNotAliased, +          CGF.getOverlapForBaseInit(CXXRD, BaseRD, Base.isVirtual())); +      CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot); + +      if (QualType::DestructionKind dtorKind = +              Base.getType().isDestructedType()) { +        CGF.pushDestroy(dtorKind, V, Base.getType()); +        addCleanup(CGF.EHStack.stable_begin()); +      } +    } +  } + +  // Prepare a 'this' for CXXDefaultInitExprs. +  CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress()); + +  if (record->isUnion()) { +    // Only initialize one field of a union. The field itself is +    // specified by the initializer list. +    if (!E->getInitializedFieldInUnion()) { +      // Empty union; we have nothing to do. + +#ifndef NDEBUG +      // Make sure that it's really an empty and not a failure of +      // semantic analysis. +      for (const auto *Field : record->fields()) +        assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); +#endif +      return; +    } + +    // FIXME: volatility +    FieldDecl *Field = E->getInitializedFieldInUnion(); + +    LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field); +    if (NumInitElements) { +      // Store the initializer into the field +      EmitInitializationToLValue(E->getInit(0), FieldLoc); +    } else { +      // Default-initialize to null. +      EmitNullInitializationToLValue(FieldLoc); +    } + +    return; +  } + +  // Here we iterate over the fields; this makes it simpler to both +  // default-initialize fields and skip over unnamed fields. +  for (const auto *field : record->fields()) { +    // We're done once we hit the flexible array member. +    if (field->getType()->isIncompleteArrayType()) +      break; + +    // Always skip anonymous bitfields. +    if (field->isUnnamedBitfield()) +      continue; + +    // We're done if we reach the end of the explicit initializers, we +    // have a zeroed object, and the rest of the fields are +    // zero-initializable. +    if (curInitIndex == NumInitElements && Dest.isZeroed() && +        CGF.getTypes().isZeroInitializable(E->getType())) +      break; + + +    LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field); +    // We never generate write-barries for initialized fields. +    LV.setNonGC(true); + +    if (curInitIndex < NumInitElements) { +      // Store the initializer into the field. +      EmitInitializationToLValue(E->getInit(curInitIndex++), LV); +    } else { +      // We're out of initializers; default-initialize to null +      EmitNullInitializationToLValue(LV); +    } + +    // Push a destructor if necessary. +    // FIXME: if we have an array of structures, all explicitly +    // initialized, we can end up pushing a linear number of cleanups. +    bool pushedCleanup = false; +    if (QualType::DestructionKind dtorKind +          = field->getType().isDestructedType()) { +      assert(LV.isSimple()); +      if (CGF.needsEHCleanup(dtorKind)) { +        CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(), +                        CGF.getDestroyer(dtorKind), false); +        addCleanup(CGF.EHStack.stable_begin()); +        pushedCleanup = true; +      } +    } + +    // If the GEP didn't get used because of a dead zero init or something +    // else, clean it up for -O0 builds and general tidiness. +    if (!pushedCleanup && LV.isSimple()) +      if (llvm::GetElementPtrInst *GEP = +            dyn_cast<llvm::GetElementPtrInst>(LV.getPointer())) +        if (GEP->use_empty()) +          GEP->eraseFromParent(); +  } + +  // Deactivate all the partial cleanups in reverse order, which +  // generally means popping them. +  assert((cleanupDominator || cleanups.empty()) && +         "Missing cleanupDominator before deactivating cleanup blocks"); +  for (unsigned i = cleanups.size(); i != 0; --i) +    CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator); + +  // Destroy the placeholder if we made one. +  if (cleanupDominator) +    cleanupDominator->eraseFromParent(); +} + +void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, +                                            llvm::Value *outerBegin) { +  // Emit the common subexpression. +  CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr()); + +  Address destPtr = EnsureSlot(E->getType()).getAddress(); +  uint64_t numElements = E->getArraySize().getZExtValue(); + +  if (!numElements) +    return; + +  // destPtr is an array*. Construct an elementType* by drilling down a level. +  llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); +  llvm::Value *indices[] = {zero, zero}; +  llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getPointer(), indices, +                                                 "arrayinit.begin"); + +  // Prepare to special-case multidimensional array initialization: we avoid +  // emitting multiple destructor loops in that case. +  if (!outerBegin) +    outerBegin = begin; +  ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr()); + +  QualType elementType = +      CGF.getContext().getAsArrayType(E->getType())->getElementType(); +  CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); +  CharUnits elementAlign = +      destPtr.getAlignment().alignmentOfArrayElement(elementSize); + +  llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); +  llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); + +  // Jump into the body. +  CGF.EmitBlock(bodyBB); +  llvm::PHINode *index = +      Builder.CreatePHI(zero->getType(), 2, "arrayinit.index"); +  index->addIncoming(zero, entryBB); +  llvm::Value *element = Builder.CreateInBoundsGEP(begin, index); + +  // Prepare for a cleanup. +  QualType::DestructionKind dtorKind = elementType.isDestructedType(); +  EHScopeStack::stable_iterator cleanup; +  if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) { +    if (outerBegin->getType() != element->getType()) +      outerBegin = Builder.CreateBitCast(outerBegin, element->getType()); +    CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType, +                                       elementAlign, +                                       CGF.getDestroyer(dtorKind)); +    cleanup = CGF.EHStack.stable_begin(); +  } else { +    dtorKind = QualType::DK_none; +  } + +  // Emit the actual filler expression. +  { +    // Temporaries created in an array initialization loop are destroyed +    // at the end of each iteration. +    CodeGenFunction::RunCleanupsScope CleanupsScope(CGF); +    CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index); +    LValue elementLV = +        CGF.MakeAddrLValue(Address(element, elementAlign), elementType); + +    if (InnerLoop) { +      // If the subexpression is an ArrayInitLoopExpr, share its cleanup. +      auto elementSlot = AggValueSlot::forLValue( +          elementLV, AggValueSlot::IsDestructed, +          AggValueSlot::DoesNotNeedGCBarriers, +          AggValueSlot::IsNotAliased, +          AggValueSlot::DoesNotOverlap); +      AggExprEmitter(CGF, elementSlot, false) +          .VisitArrayInitLoopExpr(InnerLoop, outerBegin); +    } else +      EmitInitializationToLValue(E->getSubExpr(), elementLV); +  } + +  // Move on to the next element. +  llvm::Value *nextIndex = Builder.CreateNUWAdd( +      index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next"); +  index->addIncoming(nextIndex, Builder.GetInsertBlock()); + +  // Leave the loop if we're done. +  llvm::Value *done = Builder.CreateICmpEQ( +      nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements), +      "arrayinit.done"); +  llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); +  Builder.CreateCondBr(done, endBB, bodyBB); + +  CGF.EmitBlock(endBB); + +  // Leave the partial-array cleanup if we entered one. +  if (dtorKind) +    CGF.DeactivateCleanupBlock(cleanup, index); +} + +void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) { +  AggValueSlot Dest = EnsureSlot(E->getType()); + +  LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); +  EmitInitializationToLValue(E->getBase(), DestLV); +  VisitInitListExpr(E->getUpdater()); +} + +//===----------------------------------------------------------------------===// +//                        Entry Points into this File +//===----------------------------------------------------------------------===// + +/// GetNumNonZeroBytesInInit - Get an approximate count of the number of +/// non-zero bytes that will be stored when outputting the initializer for the +/// specified initializer expression. +static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { +  E = E->IgnoreParens(); + +  // 0 and 0.0 won't require any non-zero stores! +  if (isSimpleZero(E, CGF)) return CharUnits::Zero(); + +  // If this is an initlist expr, sum up the size of sizes of the (present) +  // elements.  If this is something weird, assume the whole thing is non-zero. +  const InitListExpr *ILE = dyn_cast<InitListExpr>(E); +  while (ILE && ILE->isTransparent()) +    ILE = dyn_cast<InitListExpr>(ILE->getInit(0)); +  if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType())) +    return CGF.getContext().getTypeSizeInChars(E->getType()); + +  // InitListExprs for structs have to be handled carefully.  If there are +  // reference members, we need to consider the size of the reference, not the +  // referencee.  InitListExprs for unions and arrays can't have references. +  if (const RecordType *RT = E->getType()->getAs<RecordType>()) { +    if (!RT->isUnionType()) { +      RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); +      CharUnits NumNonZeroBytes = CharUnits::Zero(); + +      unsigned ILEElement = 0; +      if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD)) +        while (ILEElement != CXXRD->getNumBases()) +          NumNonZeroBytes += +              GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF); +      for (const auto *Field : SD->fields()) { +        // We're done once we hit the flexible array member or run out of +        // InitListExpr elements. +        if (Field->getType()->isIncompleteArrayType() || +            ILEElement == ILE->getNumInits()) +          break; +        if (Field->isUnnamedBitfield()) +          continue; + +        const Expr *E = ILE->getInit(ILEElement++); + +        // Reference values are always non-null and have the width of a pointer. +        if (Field->getType()->isReferenceType()) +          NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( +              CGF.getTarget().getPointerWidth(0)); +        else +          NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); +      } + +      return NumNonZeroBytes; +    } +  } + + +  CharUnits NumNonZeroBytes = CharUnits::Zero(); +  for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) +    NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); +  return NumNonZeroBytes; +} + +/// CheckAggExprForMemSetUse - If the initializer is large and has a lot of +/// zeros in it, emit a memset and avoid storing the individual zeros. +/// +static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, +                                     CodeGenFunction &CGF) { +  // If the slot is already known to be zeroed, nothing to do.  Don't mess with +  // volatile stores. +  if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid()) +    return; + +  // C++ objects with a user-declared constructor don't need zero'ing. +  if (CGF.getLangOpts().CPlusPlus) +    if (const RecordType *RT = CGF.getContext() +                       .getBaseElementType(E->getType())->getAs<RecordType>()) { +      const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); +      if (RD->hasUserDeclaredConstructor()) +        return; +    } + +  // If the type is 16-bytes or smaller, prefer individual stores over memset. +  CharUnits Size = Slot.getPreferredSize(CGF.getContext(), E->getType()); +  if (Size <= CharUnits::fromQuantity(16)) +    return; + +  // Check to see if over 3/4 of the initializer are known to be zero.  If so, +  // we prefer to emit memset + individual stores for the rest. +  CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); +  if (NumNonZeroBytes*4 > Size) +    return; + +  // Okay, it seems like a good idea to use an initial memset, emit the call. +  llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity()); + +  Address Loc = Slot.getAddress(); +  Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty); +  CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false); + +  // Tell the AggExprEmitter that the slot is known zero. +  Slot.setZeroed(); +} + + + + +/// EmitAggExpr - Emit the computation of the specified expression of aggregate +/// type.  The result is computed into DestPtr.  Note that if DestPtr is null, +/// the value of the aggregate expression is not needed.  If VolatileDest is +/// true, DestPtr cannot be 0. +void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) { +  assert(E && hasAggregateEvaluationKind(E->getType()) && +         "Invalid aggregate expression to emit"); +  assert((Slot.getAddress().isValid() || Slot.isIgnored()) && +         "slot has bits but no address"); + +  // Optimize the slot if possible. +  CheckAggExprForMemSetUse(Slot, E, *this); + +  AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E)); +} + +LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { +  assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!"); +  Address Temp = CreateMemTemp(E->getType()); +  LValue LV = MakeAddrLValue(Temp, E->getType()); +  EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed, +                                         AggValueSlot::DoesNotNeedGCBarriers, +                                         AggValueSlot::IsNotAliased, +                                         AggValueSlot::DoesNotOverlap)); +  return LV; +} + +AggValueSlot::Overlap_t +CodeGenFunction::getOverlapForFieldInit(const FieldDecl *FD) { +  if (!FD->hasAttr<NoUniqueAddressAttr>() || !FD->getType()->isRecordType()) +    return AggValueSlot::DoesNotOverlap; + +  // If the field lies entirely within the enclosing class's nvsize, its tail +  // padding cannot overlap any already-initialized object. (The only subobjects +  // with greater addresses that might already be initialized are vbases.) +  const RecordDecl *ClassRD = FD->getParent(); +  const ASTRecordLayout &Layout = getContext().getASTRecordLayout(ClassRD); +  if (Layout.getFieldOffset(FD->getFieldIndex()) + +          getContext().getTypeSize(FD->getType()) <= +      (uint64_t)getContext().toBits(Layout.getNonVirtualSize())) +    return AggValueSlot::DoesNotOverlap; + +  // The tail padding may contain values we need to preserve. +  return AggValueSlot::MayOverlap; +} + +AggValueSlot::Overlap_t CodeGenFunction::getOverlapForBaseInit( +    const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual) { +  // If the most-derived object is a field declared with [[no_unique_address]], +  // the tail padding of any virtual base could be reused for other subobjects +  // of that field's class. +  if (IsVirtual) +    return AggValueSlot::MayOverlap; + +  // If the base class is laid out entirely within the nvsize of the derived +  // class, its tail padding cannot yet be initialized, so we can issue +  // stores at the full width of the base class. +  const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); +  if (Layout.getBaseClassOffset(BaseRD) + +          getContext().getASTRecordLayout(BaseRD).getSize() <= +      Layout.getNonVirtualSize()) +    return AggValueSlot::DoesNotOverlap; + +  // The tail padding may contain values we need to preserve. +  return AggValueSlot::MayOverlap; +} + +void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, QualType Ty, +                                        AggValueSlot::Overlap_t MayOverlap, +                                        bool isVolatile) { +  assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); + +  Address DestPtr = Dest.getAddress(); +  Address SrcPtr = Src.getAddress(); + +  if (getLangOpts().CPlusPlus) { +    if (const RecordType *RT = Ty->getAs<RecordType>()) { +      CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); +      assert((Record->hasTrivialCopyConstructor() || +              Record->hasTrivialCopyAssignment() || +              Record->hasTrivialMoveConstructor() || +              Record->hasTrivialMoveAssignment() || +              Record->isUnion()) && +             "Trying to aggregate-copy a type without a trivial copy/move " +             "constructor or assignment operator"); +      // Ignore empty classes in C++. +      if (Record->isEmpty()) +        return; +    } +  } + +  // Aggregate assignment turns into llvm.memcpy.  This is almost valid per +  // C99 6.5.16.1p3, which states "If the value being stored in an object is +  // read from another object that overlaps in anyway the storage of the first +  // object, then the overlap shall be exact and the two objects shall have +  // qualified or unqualified versions of a compatible type." +  // +  // memcpy is not defined if the source and destination pointers are exactly +  // equal, but other compilers do this optimization, and almost every memcpy +  // implementation handles this case safely.  If there is a libc that does not +  // safely handle this, we can add a target hook. + +  // Get data size info for this aggregate. Don't copy the tail padding if this +  // might be a potentially-overlapping subobject, since the tail padding might +  // be occupied by a different object. Otherwise, copying it is fine. +  std::pair<CharUnits, CharUnits> TypeInfo; +  if (MayOverlap) +    TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty); +  else +    TypeInfo = getContext().getTypeInfoInChars(Ty); + +  llvm::Value *SizeVal = nullptr; +  if (TypeInfo.first.isZero()) { +    // But note that getTypeInfo returns 0 for a VLA. +    if (auto *VAT = dyn_cast_or_null<VariableArrayType>( +            getContext().getAsArrayType(Ty))) { +      QualType BaseEltTy; +      SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr); +      TypeInfo = getContext().getTypeInfoInChars(BaseEltTy); +      assert(!TypeInfo.first.isZero()); +      SizeVal = Builder.CreateNUWMul( +          SizeVal, +          llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity())); +    } +  } +  if (!SizeVal) { +    SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()); +  } + +  // FIXME: If we have a volatile struct, the optimizer can remove what might +  // appear to be `extra' memory ops: +  // +  // volatile struct { int i; } a, b; +  // +  // int main() { +  //   a = b; +  //   a = b; +  // } +  // +  // we need to use a different call here.  We use isVolatile to indicate when +  // either the source or the destination is volatile. + +  DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); +  SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty); + +  // Don't do any of the memmove_collectable tests if GC isn't set. +  if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { +    // fall through +  } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { +    RecordDecl *Record = RecordTy->getDecl(); +    if (Record->hasObjectMember()) { +      CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, +                                                    SizeVal); +      return; +    } +  } else if (Ty->isArrayType()) { +    QualType BaseType = getContext().getBaseElementType(Ty); +    if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { +      if (RecordTy->getDecl()->hasObjectMember()) { +        CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, +                                                      SizeVal); +        return; +      } +    } +  } + +  auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile); + +  // Determine the metadata to describe the position of any padding in this +  // memcpy, as well as the TBAA tags for the members of the struct, in case +  // the optimizer wishes to expand it in to scalar memory operations. +  if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty)) +    Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag); + +  if (CGM.getCodeGenOpts().NewStructPathTBAA) { +    TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer( +        Dest.getTBAAInfo(), Src.getTBAAInfo()); +    CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo); +  } +} | 
