aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/clang/lib/StaticAnalyzer/Core/CallEvent.cpp
diff options
context:
space:
mode:
authorDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
committerDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
commit0b57cec536236d46e3dba9bd041533462f33dbb7 (patch)
tree56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm-project/clang/lib/StaticAnalyzer/Core/CallEvent.cpp
parent718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff)
Notes
Diffstat (limited to 'contrib/llvm-project/clang/lib/StaticAnalyzer/Core/CallEvent.cpp')
-rw-r--r--contrib/llvm-project/clang/lib/StaticAnalyzer/Core/CallEvent.cpp1437
1 files changed, 1437 insertions, 0 deletions
diff --git a/contrib/llvm-project/clang/lib/StaticAnalyzer/Core/CallEvent.cpp b/contrib/llvm-project/clang/lib/StaticAnalyzer/Core/CallEvent.cpp
new file mode 100644
index 000000000000..a5f7500e6307
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/StaticAnalyzer/Core/CallEvent.cpp
@@ -0,0 +1,1437 @@
+//===- CallEvent.cpp - Wrapper for all function and method calls ----------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file This file defines CallEvent and its subclasses, which represent path-
+/// sensitive instances of different kinds of function and method calls
+/// (C, C++, and Objective-C).
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclBase.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/AST/ParentMap.h"
+#include "clang/AST/Stmt.h"
+#include "clang/AST/Type.h"
+#include "clang/Analysis/AnalysisDeclContext.h"
+#include "clang/Analysis/CFG.h"
+#include "clang/Analysis/CFGStmtMap.h"
+#include "clang/Analysis/ProgramPoint.h"
+#include "clang/CrossTU/CrossTranslationUnit.h"
+#include "clang/Basic/IdentifierTable.h"
+#include "clang/Basic/LLVM.h"
+#include "clang/Basic/SourceLocation.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/Specifiers.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/None.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/PointerIntPair.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cassert>
+#include <utility>
+
+#define DEBUG_TYPE "static-analyzer-call-event"
+
+using namespace clang;
+using namespace ento;
+
+QualType CallEvent::getResultType() const {
+ ASTContext &Ctx = getState()->getStateManager().getContext();
+ const Expr *E = getOriginExpr();
+ if (!E)
+ return Ctx.VoidTy;
+ assert(E);
+
+ QualType ResultTy = E->getType();
+
+ // A function that returns a reference to 'int' will have a result type
+ // of simply 'int'. Check the origin expr's value kind to recover the
+ // proper type.
+ switch (E->getValueKind()) {
+ case VK_LValue:
+ ResultTy = Ctx.getLValueReferenceType(ResultTy);
+ break;
+ case VK_XValue:
+ ResultTy = Ctx.getRValueReferenceType(ResultTy);
+ break;
+ case VK_RValue:
+ // No adjustment is necessary.
+ break;
+ }
+
+ return ResultTy;
+}
+
+static bool isCallback(QualType T) {
+ // If a parameter is a block or a callback, assume it can modify pointer.
+ if (T->isBlockPointerType() ||
+ T->isFunctionPointerType() ||
+ T->isObjCSelType())
+ return true;
+
+ // Check if a callback is passed inside a struct (for both, struct passed by
+ // reference and by value). Dig just one level into the struct for now.
+
+ if (T->isAnyPointerType() || T->isReferenceType())
+ T = T->getPointeeType();
+
+ if (const RecordType *RT = T->getAsStructureType()) {
+ const RecordDecl *RD = RT->getDecl();
+ for (const auto *I : RD->fields()) {
+ QualType FieldT = I->getType();
+ if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
+ return true;
+ }
+ }
+ return false;
+}
+
+static bool isVoidPointerToNonConst(QualType T) {
+ if (const auto *PT = T->getAs<PointerType>()) {
+ QualType PointeeTy = PT->getPointeeType();
+ if (PointeeTy.isConstQualified())
+ return false;
+ return PointeeTy->isVoidType();
+ } else
+ return false;
+}
+
+bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const {
+ unsigned NumOfArgs = getNumArgs();
+
+ // If calling using a function pointer, assume the function does not
+ // satisfy the callback.
+ // TODO: We could check the types of the arguments here.
+ if (!getDecl())
+ return false;
+
+ unsigned Idx = 0;
+ for (CallEvent::param_type_iterator I = param_type_begin(),
+ E = param_type_end();
+ I != E && Idx < NumOfArgs; ++I, ++Idx) {
+ // If the parameter is 0, it's harmless.
+ if (getArgSVal(Idx).isZeroConstant())
+ continue;
+
+ if (Condition(*I))
+ return true;
+ }
+ return false;
+}
+
+bool CallEvent::hasNonZeroCallbackArg() const {
+ return hasNonNullArgumentsWithType(isCallback);
+}
+
+bool CallEvent::hasVoidPointerToNonConstArg() const {
+ return hasNonNullArgumentsWithType(isVoidPointerToNonConst);
+}
+
+bool CallEvent::isGlobalCFunction(StringRef FunctionName) const {
+ const auto *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
+ if (!FD)
+ return false;
+
+ return CheckerContext::isCLibraryFunction(FD, FunctionName);
+}
+
+AnalysisDeclContext *CallEvent::getCalleeAnalysisDeclContext() const {
+ const Decl *D = getDecl();
+ if (!D)
+ return nullptr;
+
+ // TODO: For now we skip functions without definitions, even if we have
+ // our own getDecl(), because it's hard to find out which re-declaration
+ // is going to be used, and usually clients don't really care about this
+ // situation because there's a loss of precision anyway because we cannot
+ // inline the call.
+ RuntimeDefinition RD = getRuntimeDefinition();
+ if (!RD.getDecl())
+ return nullptr;
+
+ AnalysisDeclContext *ADC =
+ LCtx->getAnalysisDeclContext()->getManager()->getContext(D);
+
+ // TODO: For now we skip virtual functions, because this also rises
+ // the problem of which decl to use, but now it's across different classes.
+ if (RD.mayHaveOtherDefinitions() || RD.getDecl() != ADC->getDecl())
+ return nullptr;
+
+ return ADC;
+}
+
+const StackFrameContext *CallEvent::getCalleeStackFrame() const {
+ AnalysisDeclContext *ADC = getCalleeAnalysisDeclContext();
+ if (!ADC)
+ return nullptr;
+
+ const Expr *E = getOriginExpr();
+ if (!E)
+ return nullptr;
+
+ // Recover CFG block via reverse lookup.
+ // TODO: If we were to keep CFG element information as part of the CallEvent
+ // instead of doing this reverse lookup, we would be able to build the stack
+ // frame for non-expression-based calls, and also we wouldn't need the reverse
+ // lookup.
+ CFGStmtMap *Map = LCtx->getAnalysisDeclContext()->getCFGStmtMap();
+ const CFGBlock *B = Map->getBlock(E);
+ assert(B);
+
+ // Also recover CFG index by scanning the CFG block.
+ unsigned Idx = 0, Sz = B->size();
+ for (; Idx < Sz; ++Idx)
+ if (auto StmtElem = (*B)[Idx].getAs<CFGStmt>())
+ if (StmtElem->getStmt() == E)
+ break;
+ assert(Idx < Sz);
+
+ return ADC->getManager()->getStackFrame(ADC, LCtx, E, B, Idx);
+}
+
+const VarRegion *CallEvent::getParameterLocation(unsigned Index) const {
+ const StackFrameContext *SFC = getCalleeStackFrame();
+ // We cannot construct a VarRegion without a stack frame.
+ if (!SFC)
+ return nullptr;
+
+ // Retrieve parameters of the definition, which are different from
+ // CallEvent's parameters() because getDecl() isn't necessarily
+ // the definition. SFC contains the definition that would be used
+ // during analysis.
+ const Decl *D = SFC->getDecl();
+
+ // TODO: Refactor into a virtual method of CallEvent, like parameters().
+ const ParmVarDecl *PVD = nullptr;
+ if (const auto *FD = dyn_cast<FunctionDecl>(D))
+ PVD = FD->parameters()[Index];
+ else if (const auto *BD = dyn_cast<BlockDecl>(D))
+ PVD = BD->parameters()[Index];
+ else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
+ PVD = MD->parameters()[Index];
+ else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
+ PVD = CD->parameters()[Index];
+ assert(PVD && "Unexpected Decl kind!");
+
+ const VarRegion *VR =
+ State->getStateManager().getRegionManager().getVarRegion(PVD, SFC);
+
+ // This sanity check would fail if our parameter declaration doesn't
+ // correspond to the stack frame's function declaration.
+ assert(VR->getStackFrame() == SFC);
+
+ return VR;
+}
+
+/// Returns true if a type is a pointer-to-const or reference-to-const
+/// with no further indirection.
+static bool isPointerToConst(QualType Ty) {
+ QualType PointeeTy = Ty->getPointeeType();
+ if (PointeeTy == QualType())
+ return false;
+ if (!PointeeTy.isConstQualified())
+ return false;
+ if (PointeeTy->isAnyPointerType())
+ return false;
+ return true;
+}
+
+// Try to retrieve the function declaration and find the function parameter
+// types which are pointers/references to a non-pointer const.
+// We will not invalidate the corresponding argument regions.
+static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs,
+ const CallEvent &Call) {
+ unsigned Idx = 0;
+ for (CallEvent::param_type_iterator I = Call.param_type_begin(),
+ E = Call.param_type_end();
+ I != E; ++I, ++Idx) {
+ if (isPointerToConst(*I))
+ PreserveArgs.insert(Idx);
+ }
+}
+
+ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
+ ProgramStateRef Orig) const {
+ ProgramStateRef Result = (Orig ? Orig : getState());
+
+ // Don't invalidate anything if the callee is marked pure/const.
+ if (const Decl *callee = getDecl())
+ if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>())
+ return Result;
+
+ SmallVector<SVal, 8> ValuesToInvalidate;
+ RegionAndSymbolInvalidationTraits ETraits;
+
+ getExtraInvalidatedValues(ValuesToInvalidate, &ETraits);
+
+ // Indexes of arguments whose values will be preserved by the call.
+ llvm::SmallSet<unsigned, 4> PreserveArgs;
+ if (!argumentsMayEscape())
+ findPtrToConstParams(PreserveArgs, *this);
+
+ for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
+ // Mark this region for invalidation. We batch invalidate regions
+ // below for efficiency.
+ if (PreserveArgs.count(Idx))
+ if (const MemRegion *MR = getArgSVal(Idx).getAsRegion())
+ ETraits.setTrait(MR->getBaseRegion(),
+ RegionAndSymbolInvalidationTraits::TK_PreserveContents);
+ // TODO: Factor this out + handle the lower level const pointers.
+
+ ValuesToInvalidate.push_back(getArgSVal(Idx));
+
+ // If a function accepts an object by argument (which would of course be a
+ // temporary that isn't lifetime-extended), invalidate the object itself,
+ // not only other objects reachable from it. This is necessary because the
+ // destructor has access to the temporary object after the call.
+ // TODO: Support placement arguments once we start
+ // constructing them directly.
+ // TODO: This is unnecessary when there's no destructor, but that's
+ // currently hard to figure out.
+ if (getKind() != CE_CXXAllocator)
+ if (isArgumentConstructedDirectly(Idx))
+ if (auto AdjIdx = getAdjustedParameterIndex(Idx))
+ if (const VarRegion *VR = getParameterLocation(*AdjIdx))
+ ValuesToInvalidate.push_back(loc::MemRegionVal(VR));
+ }
+
+ // Invalidate designated regions using the batch invalidation API.
+ // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
+ // global variables.
+ return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(),
+ BlockCount, getLocationContext(),
+ /*CausedByPointerEscape*/ true,
+ /*Symbols=*/nullptr, this, &ETraits);
+}
+
+ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
+ const ProgramPointTag *Tag) const {
+ if (const Expr *E = getOriginExpr()) {
+ if (IsPreVisit)
+ return PreStmt(E, getLocationContext(), Tag);
+ return PostStmt(E, getLocationContext(), Tag);
+ }
+
+ const Decl *D = getDecl();
+ assert(D && "Cannot get a program point without a statement or decl");
+
+ SourceLocation Loc = getSourceRange().getBegin();
+ if (IsPreVisit)
+ return PreImplicitCall(D, Loc, getLocationContext(), Tag);
+ return PostImplicitCall(D, Loc, getLocationContext(), Tag);
+}
+
+bool CallEvent::isCalled(const CallDescription &CD) const {
+ // FIXME: Add ObjC Message support.
+ if (getKind() == CE_ObjCMessage)
+ return false;
+
+ const IdentifierInfo *II = getCalleeIdentifier();
+ if (!II)
+ return false;
+ const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
+ if (!FD)
+ return false;
+
+ if (CD.Flags & CDF_MaybeBuiltin) {
+ return CheckerContext::isCLibraryFunction(FD, CD.getFunctionName()) &&
+ (!CD.RequiredArgs || CD.RequiredArgs <= getNumArgs());
+ }
+
+ if (!CD.IsLookupDone) {
+ CD.IsLookupDone = true;
+ CD.II = &getState()->getStateManager().getContext().Idents.get(
+ CD.getFunctionName());
+ }
+
+ if (II != CD.II)
+ return false;
+
+ // If CallDescription provides prefix names, use them to improve matching
+ // accuracy.
+ if (CD.QualifiedName.size() > 1 && FD) {
+ const DeclContext *Ctx = FD->getDeclContext();
+ // See if we'll be able to match them all.
+ size_t NumUnmatched = CD.QualifiedName.size() - 1;
+ for (; Ctx && isa<NamedDecl>(Ctx); Ctx = Ctx->getParent()) {
+ if (NumUnmatched == 0)
+ break;
+
+ if (const auto *ND = dyn_cast<NamespaceDecl>(Ctx)) {
+ if (ND->getName() == CD.QualifiedName[NumUnmatched - 1])
+ --NumUnmatched;
+ continue;
+ }
+
+ if (const auto *RD = dyn_cast<RecordDecl>(Ctx)) {
+ if (RD->getName() == CD.QualifiedName[NumUnmatched - 1])
+ --NumUnmatched;
+ continue;
+ }
+ }
+
+ if (NumUnmatched > 0)
+ return false;
+ }
+
+ return (!CD.RequiredArgs || CD.RequiredArgs == getNumArgs());
+}
+
+SVal CallEvent::getArgSVal(unsigned Index) const {
+ const Expr *ArgE = getArgExpr(Index);
+ if (!ArgE)
+ return UnknownVal();
+ return getSVal(ArgE);
+}
+
+SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
+ const Expr *ArgE = getArgExpr(Index);
+ if (!ArgE)
+ return {};
+ return ArgE->getSourceRange();
+}
+
+SVal CallEvent::getReturnValue() const {
+ const Expr *E = getOriginExpr();
+ if (!E)
+ return UndefinedVal();
+ return getSVal(E);
+}
+
+LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); }
+
+void CallEvent::dump(raw_ostream &Out) const {
+ ASTContext &Ctx = getState()->getStateManager().getContext();
+ if (const Expr *E = getOriginExpr()) {
+ E->printPretty(Out, nullptr, Ctx.getPrintingPolicy());
+ Out << "\n";
+ return;
+ }
+
+ if (const Decl *D = getDecl()) {
+ Out << "Call to ";
+ D->print(Out, Ctx.getPrintingPolicy());
+ return;
+ }
+
+ // FIXME: a string representation of the kind would be nice.
+ Out << "Unknown call (type " << getKind() << ")";
+}
+
+bool CallEvent::isCallStmt(const Stmt *S) {
+ return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S)
+ || isa<CXXConstructExpr>(S)
+ || isa<CXXNewExpr>(S);
+}
+
+QualType CallEvent::getDeclaredResultType(const Decl *D) {
+ assert(D);
+ if (const auto *FD = dyn_cast<FunctionDecl>(D))
+ return FD->getReturnType();
+ if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
+ return MD->getReturnType();
+ if (const auto *BD = dyn_cast<BlockDecl>(D)) {
+ // Blocks are difficult because the return type may not be stored in the
+ // BlockDecl itself. The AST should probably be enhanced, but for now we
+ // just do what we can.
+ // If the block is declared without an explicit argument list, the
+ // signature-as-written just includes the return type, not the entire
+ // function type.
+ // FIXME: All blocks should have signatures-as-written, even if the return
+ // type is inferred. (That's signified with a dependent result type.)
+ if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) {
+ QualType Ty = TSI->getType();
+ if (const FunctionType *FT = Ty->getAs<FunctionType>())
+ Ty = FT->getReturnType();
+ if (!Ty->isDependentType())
+ return Ty;
+ }
+
+ return {};
+ }
+
+ llvm_unreachable("unknown callable kind");
+}
+
+bool CallEvent::isVariadic(const Decl *D) {
+ assert(D);
+
+ if (const auto *FD = dyn_cast<FunctionDecl>(D))
+ return FD->isVariadic();
+ if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
+ return MD->isVariadic();
+ if (const auto *BD = dyn_cast<BlockDecl>(D))
+ return BD->isVariadic();
+
+ llvm_unreachable("unknown callable kind");
+}
+
+static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
+ CallEvent::BindingsTy &Bindings,
+ SValBuilder &SVB,
+ const CallEvent &Call,
+ ArrayRef<ParmVarDecl*> parameters) {
+ MemRegionManager &MRMgr = SVB.getRegionManager();
+
+ // If the function has fewer parameters than the call has arguments, we simply
+ // do not bind any values to them.
+ unsigned NumArgs = Call.getNumArgs();
+ unsigned Idx = 0;
+ ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end();
+ for (; I != E && Idx < NumArgs; ++I, ++Idx) {
+ const ParmVarDecl *ParamDecl = *I;
+ assert(ParamDecl && "Formal parameter has no decl?");
+
+ // TODO: Support allocator calls.
+ if (Call.getKind() != CE_CXXAllocator)
+ if (Call.isArgumentConstructedDirectly(Idx))
+ continue;
+
+ // TODO: Allocators should receive the correct size and possibly alignment,
+ // determined in compile-time but not represented as arg-expressions,
+ // which makes getArgSVal() fail and return UnknownVal.
+ SVal ArgVal = Call.getArgSVal(Idx);
+ if (!ArgVal.isUnknown()) {
+ Loc ParamLoc = SVB.makeLoc(MRMgr.getVarRegion(ParamDecl, CalleeCtx));
+ Bindings.push_back(std::make_pair(ParamLoc, ArgVal));
+ }
+ }
+
+ // FIXME: Variadic arguments are not handled at all right now.
+}
+
+ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const {
+ const FunctionDecl *D = getDecl();
+ if (!D)
+ return None;
+ return D->parameters();
+}
+
+RuntimeDefinition AnyFunctionCall::getRuntimeDefinition() const {
+ const FunctionDecl *FD = getDecl();
+ if (!FD)
+ return {};
+
+ // Note that the AnalysisDeclContext will have the FunctionDecl with
+ // the definition (if one exists).
+ AnalysisDeclContext *AD =
+ getLocationContext()->getAnalysisDeclContext()->
+ getManager()->getContext(FD);
+ bool IsAutosynthesized;
+ Stmt* Body = AD->getBody(IsAutosynthesized);
+ LLVM_DEBUG({
+ if (IsAutosynthesized)
+ llvm::dbgs() << "Using autosynthesized body for " << FD->getName()
+ << "\n";
+ });
+ if (Body) {
+ const Decl* Decl = AD->getDecl();
+ return RuntimeDefinition(Decl);
+ }
+
+ SubEngine &Engine = getState()->getStateManager().getOwningEngine();
+ AnalyzerOptions &Opts = Engine.getAnalysisManager().options;
+
+ // Try to get CTU definition only if CTUDir is provided.
+ if (!Opts.IsNaiveCTUEnabled)
+ return {};
+
+ cross_tu::CrossTranslationUnitContext &CTUCtx =
+ *Engine.getCrossTranslationUnitContext();
+ llvm::Expected<const FunctionDecl *> CTUDeclOrError =
+ CTUCtx.getCrossTUDefinition(FD, Opts.CTUDir, Opts.CTUIndexName,
+ Opts.DisplayCTUProgress);
+
+ if (!CTUDeclOrError) {
+ handleAllErrors(CTUDeclOrError.takeError(),
+ [&](const cross_tu::IndexError &IE) {
+ CTUCtx.emitCrossTUDiagnostics(IE);
+ });
+ return {};
+ }
+
+ return RuntimeDefinition(*CTUDeclOrError);
+}
+
+void AnyFunctionCall::getInitialStackFrameContents(
+ const StackFrameContext *CalleeCtx,
+ BindingsTy &Bindings) const {
+ const auto *D = cast<FunctionDecl>(CalleeCtx->getDecl());
+ SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
+ addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
+ D->parameters());
+}
+
+bool AnyFunctionCall::argumentsMayEscape() const {
+ if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg())
+ return true;
+
+ const FunctionDecl *D = getDecl();
+ if (!D)
+ return true;
+
+ const IdentifierInfo *II = D->getIdentifier();
+ if (!II)
+ return false;
+
+ // This set of "escaping" APIs is
+
+ // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
+ // value into thread local storage. The value can later be retrieved with
+ // 'void *ptheread_getspecific(pthread_key)'. So even thought the
+ // parameter is 'const void *', the region escapes through the call.
+ if (II->isStr("pthread_setspecific"))
+ return true;
+
+ // - xpc_connection_set_context stores a value which can be retrieved later
+ // with xpc_connection_get_context.
+ if (II->isStr("xpc_connection_set_context"))
+ return true;
+
+ // - funopen - sets a buffer for future IO calls.
+ if (II->isStr("funopen"))
+ return true;
+
+ // - __cxa_demangle - can reallocate memory and can return the pointer to
+ // the input buffer.
+ if (II->isStr("__cxa_demangle"))
+ return true;
+
+ StringRef FName = II->getName();
+
+ // - CoreFoundation functions that end with "NoCopy" can free a passed-in
+ // buffer even if it is const.
+ if (FName.endswith("NoCopy"))
+ return true;
+
+ // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
+ // be deallocated by NSMapRemove.
+ if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos))
+ return true;
+
+ // - Many CF containers allow objects to escape through custom
+ // allocators/deallocators upon container construction. (PR12101)
+ if (FName.startswith("CF") || FName.startswith("CG")) {
+ return StrInStrNoCase(FName, "InsertValue") != StringRef::npos ||
+ StrInStrNoCase(FName, "AddValue") != StringRef::npos ||
+ StrInStrNoCase(FName, "SetValue") != StringRef::npos ||
+ StrInStrNoCase(FName, "WithData") != StringRef::npos ||
+ StrInStrNoCase(FName, "AppendValue") != StringRef::npos ||
+ StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
+ }
+
+ return false;
+}
+
+const FunctionDecl *SimpleFunctionCall::getDecl() const {
+ const FunctionDecl *D = getOriginExpr()->getDirectCallee();
+ if (D)
+ return D;
+
+ return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
+}
+
+const FunctionDecl *CXXInstanceCall::getDecl() const {
+ const auto *CE = cast_or_null<CallExpr>(getOriginExpr());
+ if (!CE)
+ return AnyFunctionCall::getDecl();
+
+ const FunctionDecl *D = CE->getDirectCallee();
+ if (D)
+ return D;
+
+ return getSVal(CE->getCallee()).getAsFunctionDecl();
+}
+
+void CXXInstanceCall::getExtraInvalidatedValues(
+ ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
+ SVal ThisVal = getCXXThisVal();
+ Values.push_back(ThisVal);
+
+ // Don't invalidate if the method is const and there are no mutable fields.
+ if (const auto *D = cast_or_null<CXXMethodDecl>(getDecl())) {
+ if (!D->isConst())
+ return;
+ // Get the record decl for the class of 'This'. D->getParent() may return a
+ // base class decl, rather than the class of the instance which needs to be
+ // checked for mutable fields.
+ // TODO: We might as well look at the dynamic type of the object.
+ const Expr *Ex = getCXXThisExpr()->ignoreParenBaseCasts();
+ QualType T = Ex->getType();
+ if (T->isPointerType()) // Arrow or implicit-this syntax?
+ T = T->getPointeeType();
+ const CXXRecordDecl *ParentRecord = T->getAsCXXRecordDecl();
+ assert(ParentRecord);
+ if (ParentRecord->hasMutableFields())
+ return;
+ // Preserve CXXThis.
+ const MemRegion *ThisRegion = ThisVal.getAsRegion();
+ if (!ThisRegion)
+ return;
+
+ ETraits->setTrait(ThisRegion->getBaseRegion(),
+ RegionAndSymbolInvalidationTraits::TK_PreserveContents);
+ }
+}
+
+SVal CXXInstanceCall::getCXXThisVal() const {
+ const Expr *Base = getCXXThisExpr();
+ // FIXME: This doesn't handle an overloaded ->* operator.
+ if (!Base)
+ return UnknownVal();
+
+ SVal ThisVal = getSVal(Base);
+ assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>());
+ return ThisVal;
+}
+
+RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
+ // Do we have a decl at all?
+ const Decl *D = getDecl();
+ if (!D)
+ return {};
+
+ // If the method is non-virtual, we know we can inline it.
+ const auto *MD = cast<CXXMethodDecl>(D);
+ if (!MD->isVirtual())
+ return AnyFunctionCall::getRuntimeDefinition();
+
+ // Do we know the implicit 'this' object being called?
+ const MemRegion *R = getCXXThisVal().getAsRegion();
+ if (!R)
+ return {};
+
+ // Do we know anything about the type of 'this'?
+ DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R);
+ if (!DynType.isValid())
+ return {};
+
+ // Is the type a C++ class? (This is mostly a defensive check.)
+ QualType RegionType = DynType.getType()->getPointeeType();
+ assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer.");
+
+ const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl();
+ if (!RD || !RD->hasDefinition())
+ return {};
+
+ // Find the decl for this method in that class.
+ const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
+ if (!Result) {
+ // We might not even get the original statically-resolved method due to
+ // some particularly nasty casting (e.g. casts to sister classes).
+ // However, we should at least be able to search up and down our own class
+ // hierarchy, and some real bugs have been caught by checking this.
+ assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method");
+
+ // FIXME: This is checking that our DynamicTypeInfo is at least as good as
+ // the static type. However, because we currently don't update
+ // DynamicTypeInfo when an object is cast, we can't actually be sure the
+ // DynamicTypeInfo is up to date. This assert should be re-enabled once
+ // this is fixed. <rdar://problem/12287087>
+ //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
+
+ return {};
+ }
+
+ // Does the decl that we found have an implementation?
+ const FunctionDecl *Definition;
+ if (!Result->hasBody(Definition)) {
+ if (!DynType.canBeASubClass())
+ return AnyFunctionCall::getRuntimeDefinition();
+ return {};
+ }
+
+ // We found a definition. If we're not sure that this devirtualization is
+ // actually what will happen at runtime, make sure to provide the region so
+ // that ExprEngine can decide what to do with it.
+ if (DynType.canBeASubClass())
+ return RuntimeDefinition(Definition, R->StripCasts());
+ return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr);
+}
+
+void CXXInstanceCall::getInitialStackFrameContents(
+ const StackFrameContext *CalleeCtx,
+ BindingsTy &Bindings) const {
+ AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
+
+ // Handle the binding of 'this' in the new stack frame.
+ SVal ThisVal = getCXXThisVal();
+ if (!ThisVal.isUnknown()) {
+ ProgramStateManager &StateMgr = getState()->getStateManager();
+ SValBuilder &SVB = StateMgr.getSValBuilder();
+
+ const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
+ Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
+
+ // If we devirtualized to a different member function, we need to make sure
+ // we have the proper layering of CXXBaseObjectRegions.
+ if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
+ ASTContext &Ctx = SVB.getContext();
+ const CXXRecordDecl *Class = MD->getParent();
+ QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));
+
+ // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
+ bool Failed;
+ ThisVal = StateMgr.getStoreManager().attemptDownCast(ThisVal, Ty, Failed);
+ if (Failed) {
+ // We might have suffered some sort of placement new earlier, so
+ // we're constructing in a completely unexpected storage.
+ // Fall back to a generic pointer cast for this-value.
+ const CXXMethodDecl *StaticMD = cast<CXXMethodDecl>(getDecl());
+ const CXXRecordDecl *StaticClass = StaticMD->getParent();
+ QualType StaticTy = Ctx.getPointerType(Ctx.getRecordType(StaticClass));
+ ThisVal = SVB.evalCast(ThisVal, Ty, StaticTy);
+ }
+ }
+
+ if (!ThisVal.isUnknown())
+ Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
+ }
+}
+
+const Expr *CXXMemberCall::getCXXThisExpr() const {
+ return getOriginExpr()->getImplicitObjectArgument();
+}
+
+RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
+ // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
+ // id-expression in the class member access expression is a qualified-id,
+ // that function is called. Otherwise, its final overrider in the dynamic type
+ // of the object expression is called.
+ if (const auto *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
+ if (ME->hasQualifier())
+ return AnyFunctionCall::getRuntimeDefinition();
+
+ return CXXInstanceCall::getRuntimeDefinition();
+}
+
+const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
+ return getOriginExpr()->getArg(0);
+}
+
+const BlockDataRegion *BlockCall::getBlockRegion() const {
+ const Expr *Callee = getOriginExpr()->getCallee();
+ const MemRegion *DataReg = getSVal(Callee).getAsRegion();
+
+ return dyn_cast_or_null<BlockDataRegion>(DataReg);
+}
+
+ArrayRef<ParmVarDecl*> BlockCall::parameters() const {
+ const BlockDecl *D = getDecl();
+ if (!D)
+ return None;
+ return D->parameters();
+}
+
+void BlockCall::getExtraInvalidatedValues(ValueList &Values,
+ RegionAndSymbolInvalidationTraits *ETraits) const {
+ // FIXME: This also needs to invalidate captured globals.
+ if (const MemRegion *R = getBlockRegion())
+ Values.push_back(loc::MemRegionVal(R));
+}
+
+void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
+ BindingsTy &Bindings) const {
+ SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
+ ArrayRef<ParmVarDecl*> Params;
+ if (isConversionFromLambda()) {
+ auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl());
+ Params = LambdaOperatorDecl->parameters();
+
+ // For blocks converted from a C++ lambda, the callee declaration is the
+ // operator() method on the lambda so we bind "this" to
+ // the lambda captured by the block.
+ const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda();
+ SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion);
+ Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx);
+ Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
+ } else {
+ Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters();
+ }
+
+ addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
+ Params);
+}
+
+SVal CXXConstructorCall::getCXXThisVal() const {
+ if (Data)
+ return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
+ return UnknownVal();
+}
+
+void CXXConstructorCall::getExtraInvalidatedValues(ValueList &Values,
+ RegionAndSymbolInvalidationTraits *ETraits) const {
+ if (Data) {
+ loc::MemRegionVal MV(static_cast<const MemRegion *>(Data));
+ if (SymbolRef Sym = MV.getAsSymbol(true))
+ ETraits->setTrait(Sym,
+ RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
+ Values.push_back(MV);
+ }
+}
+
+void CXXConstructorCall::getInitialStackFrameContents(
+ const StackFrameContext *CalleeCtx,
+ BindingsTy &Bindings) const {
+ AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
+
+ SVal ThisVal = getCXXThisVal();
+ if (!ThisVal.isUnknown()) {
+ SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
+ const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
+ Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
+ Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
+ }
+}
+
+SVal CXXDestructorCall::getCXXThisVal() const {
+ if (Data)
+ return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
+ return UnknownVal();
+}
+
+RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
+ // Base destructors are always called non-virtually.
+ // Skip CXXInstanceCall's devirtualization logic in this case.
+ if (isBaseDestructor())
+ return AnyFunctionCall::getRuntimeDefinition();
+
+ return CXXInstanceCall::getRuntimeDefinition();
+}
+
+ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const {
+ const ObjCMethodDecl *D = getDecl();
+ if (!D)
+ return None;
+ return D->parameters();
+}
+
+void ObjCMethodCall::getExtraInvalidatedValues(
+ ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
+
+ // If the method call is a setter for property known to be backed by
+ // an instance variable, don't invalidate the entire receiver, just
+ // the storage for that instance variable.
+ if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) {
+ if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) {
+ SVal IvarLVal = getState()->getLValue(PropIvar, getReceiverSVal());
+ if (const MemRegion *IvarRegion = IvarLVal.getAsRegion()) {
+ ETraits->setTrait(
+ IvarRegion,
+ RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
+ ETraits->setTrait(
+ IvarRegion,
+ RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
+ Values.push_back(IvarLVal);
+ }
+ return;
+ }
+ }
+
+ Values.push_back(getReceiverSVal());
+}
+
+SVal ObjCMethodCall::getSelfSVal() const {
+ const LocationContext *LCtx = getLocationContext();
+ const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl();
+ if (!SelfDecl)
+ return SVal();
+ return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx));
+}
+
+SVal ObjCMethodCall::getReceiverSVal() const {
+ // FIXME: Is this the best way to handle class receivers?
+ if (!isInstanceMessage())
+ return UnknownVal();
+
+ if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
+ return getSVal(RecE);
+
+ // An instance message with no expression means we are sending to super.
+ // In this case the object reference is the same as 'self'.
+ assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance);
+ SVal SelfVal = getSelfSVal();
+ assert(SelfVal.isValid() && "Calling super but not in ObjC method");
+ return SelfVal;
+}
+
+bool ObjCMethodCall::isReceiverSelfOrSuper() const {
+ if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
+ getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass)
+ return true;
+
+ if (!isInstanceMessage())
+ return false;
+
+ SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());
+
+ return (RecVal == getSelfSVal());
+}
+
+SourceRange ObjCMethodCall::getSourceRange() const {
+ switch (getMessageKind()) {
+ case OCM_Message:
+ return getOriginExpr()->getSourceRange();
+ case OCM_PropertyAccess:
+ case OCM_Subscript:
+ return getContainingPseudoObjectExpr()->getSourceRange();
+ }
+ llvm_unreachable("unknown message kind");
+}
+
+using ObjCMessageDataTy = llvm::PointerIntPair<const PseudoObjectExpr *, 2>;
+
+const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
+ assert(Data && "Lazy lookup not yet performed.");
+ assert(getMessageKind() != OCM_Message && "Explicit message send.");
+ return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
+}
+
+static const Expr *
+getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) {
+ const Expr *Syntactic = POE->getSyntacticForm();
+
+ // This handles the funny case of assigning to the result of a getter.
+ // This can happen if the getter returns a non-const reference.
+ if (const auto *BO = dyn_cast<BinaryOperator>(Syntactic))
+ Syntactic = BO->getLHS();
+
+ return Syntactic;
+}
+
+ObjCMessageKind ObjCMethodCall::getMessageKind() const {
+ if (!Data) {
+ // Find the parent, ignoring implicit casts.
+ ParentMap &PM = getLocationContext()->getParentMap();
+ const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr());
+
+ // Check if parent is a PseudoObjectExpr.
+ if (const auto *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
+ const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
+
+ ObjCMessageKind K;
+ switch (Syntactic->getStmtClass()) {
+ case Stmt::ObjCPropertyRefExprClass:
+ K = OCM_PropertyAccess;
+ break;
+ case Stmt::ObjCSubscriptRefExprClass:
+ K = OCM_Subscript;
+ break;
+ default:
+ // FIXME: Can this ever happen?
+ K = OCM_Message;
+ break;
+ }
+
+ if (K != OCM_Message) {
+ const_cast<ObjCMethodCall *>(this)->Data
+ = ObjCMessageDataTy(POE, K).getOpaqueValue();
+ assert(getMessageKind() == K);
+ return K;
+ }
+ }
+
+ const_cast<ObjCMethodCall *>(this)->Data
+ = ObjCMessageDataTy(nullptr, 1).getOpaqueValue();
+ assert(getMessageKind() == OCM_Message);
+ return OCM_Message;
+ }
+
+ ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
+ if (!Info.getPointer())
+ return OCM_Message;
+ return static_cast<ObjCMessageKind>(Info.getInt());
+}
+
+const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const {
+ // Look for properties accessed with property syntax (foo.bar = ...)
+ if ( getMessageKind() == OCM_PropertyAccess) {
+ const PseudoObjectExpr *POE = getContainingPseudoObjectExpr();
+ assert(POE && "Property access without PseudoObjectExpr?");
+
+ const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
+ auto *RefExpr = cast<ObjCPropertyRefExpr>(Syntactic);
+
+ if (RefExpr->isExplicitProperty())
+ return RefExpr->getExplicitProperty();
+ }
+
+ // Look for properties accessed with method syntax ([foo setBar:...]).
+ const ObjCMethodDecl *MD = getDecl();
+ if (!MD || !MD->isPropertyAccessor())
+ return nullptr;
+
+ // Note: This is potentially quite slow.
+ return MD->findPropertyDecl();
+}
+
+bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
+ Selector Sel) const {
+ assert(IDecl);
+ AnalysisManager &AMgr =
+ getState()->getStateManager().getOwningEngine().getAnalysisManager();
+ // If the class interface is declared inside the main file, assume it is not
+ // subcassed.
+ // TODO: It could actually be subclassed if the subclass is private as well.
+ // This is probably very rare.
+ SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
+ if (InterfLoc.isValid() && AMgr.isInCodeFile(InterfLoc))
+ return false;
+
+ // Assume that property accessors are not overridden.
+ if (getMessageKind() == OCM_PropertyAccess)
+ return false;
+
+ // We assume that if the method is public (declared outside of main file) or
+ // has a parent which publicly declares the method, the method could be
+ // overridden in a subclass.
+
+ // Find the first declaration in the class hierarchy that declares
+ // the selector.
+ ObjCMethodDecl *D = nullptr;
+ while (true) {
+ D = IDecl->lookupMethod(Sel, true);
+
+ // Cannot find a public definition.
+ if (!D)
+ return false;
+
+ // If outside the main file,
+ if (D->getLocation().isValid() && !AMgr.isInCodeFile(D->getLocation()))
+ return true;
+
+ if (D->isOverriding()) {
+ // Search in the superclass on the next iteration.
+ IDecl = D->getClassInterface();
+ if (!IDecl)
+ return false;
+
+ IDecl = IDecl->getSuperClass();
+ if (!IDecl)
+ return false;
+
+ continue;
+ }
+
+ return false;
+ };
+
+ llvm_unreachable("The while loop should always terminate.");
+}
+
+static const ObjCMethodDecl *findDefiningRedecl(const ObjCMethodDecl *MD) {
+ if (!MD)
+ return MD;
+
+ // Find the redeclaration that defines the method.
+ if (!MD->hasBody()) {
+ for (auto I : MD->redecls())
+ if (I->hasBody())
+ MD = cast<ObjCMethodDecl>(I);
+ }
+ return MD;
+}
+
+static bool isCallToSelfClass(const ObjCMessageExpr *ME) {
+ const Expr* InstRec = ME->getInstanceReceiver();
+ if (!InstRec)
+ return false;
+ const auto *InstRecIg = dyn_cast<DeclRefExpr>(InstRec->IgnoreParenImpCasts());
+
+ // Check that receiver is called 'self'.
+ if (!InstRecIg || !InstRecIg->getFoundDecl() ||
+ !InstRecIg->getFoundDecl()->getName().equals("self"))
+ return false;
+
+ // Check that the method name is 'class'.
+ if (ME->getSelector().getNumArgs() != 0 ||
+ !ME->getSelector().getNameForSlot(0).equals("class"))
+ return false;
+
+ return true;
+}
+
+RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
+ const ObjCMessageExpr *E = getOriginExpr();
+ assert(E);
+ Selector Sel = E->getSelector();
+
+ if (E->isInstanceMessage()) {
+ // Find the receiver type.
+ const ObjCObjectPointerType *ReceiverT = nullptr;
+ bool CanBeSubClassed = false;
+ QualType SupersType = E->getSuperType();
+ const MemRegion *Receiver = nullptr;
+
+ if (!SupersType.isNull()) {
+ // The receiver is guaranteed to be 'super' in this case.
+ // Super always means the type of immediate predecessor to the method
+ // where the call occurs.
+ ReceiverT = cast<ObjCObjectPointerType>(SupersType);
+ } else {
+ Receiver = getReceiverSVal().getAsRegion();
+ if (!Receiver)
+ return {};
+
+ DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver);
+ if (!DTI.isValid()) {
+ assert(isa<AllocaRegion>(Receiver) &&
+ "Unhandled untyped region class!");
+ return {};
+ }
+
+ QualType DynType = DTI.getType();
+ CanBeSubClassed = DTI.canBeASubClass();
+ ReceiverT = dyn_cast<ObjCObjectPointerType>(DynType.getCanonicalType());
+
+ if (ReceiverT && CanBeSubClassed)
+ if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl())
+ if (!canBeOverridenInSubclass(IDecl, Sel))
+ CanBeSubClassed = false;
+ }
+
+ // Handle special cases of '[self classMethod]' and
+ // '[[self class] classMethod]', which are treated by the compiler as
+ // instance (not class) messages. We will statically dispatch to those.
+ if (auto *PT = dyn_cast_or_null<ObjCObjectPointerType>(ReceiverT)) {
+ // For [self classMethod], return the compiler visible declaration.
+ if (PT->getObjectType()->isObjCClass() &&
+ Receiver == getSelfSVal().getAsRegion())
+ return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
+
+ // Similarly, handle [[self class] classMethod].
+ // TODO: We are currently doing a syntactic match for this pattern with is
+ // limiting as the test cases in Analysis/inlining/InlineObjCClassMethod.m
+ // shows. A better way would be to associate the meta type with the symbol
+ // using the dynamic type info tracking and use it here. We can add a new
+ // SVal for ObjC 'Class' values that know what interface declaration they
+ // come from. Then 'self' in a class method would be filled in with
+ // something meaningful in ObjCMethodCall::getReceiverSVal() and we could
+ // do proper dynamic dispatch for class methods just like we do for
+ // instance methods now.
+ if (E->getInstanceReceiver())
+ if (const auto *M = dyn_cast<ObjCMessageExpr>(E->getInstanceReceiver()))
+ if (isCallToSelfClass(M))
+ return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
+ }
+
+ // Lookup the instance method implementation.
+ if (ReceiverT)
+ if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) {
+ // Repeatedly calling lookupPrivateMethod() is expensive, especially
+ // when in many cases it returns null. We cache the results so
+ // that repeated queries on the same ObjCIntefaceDecl and Selector
+ // don't incur the same cost. On some test cases, we can see the
+ // same query being issued thousands of times.
+ //
+ // NOTE: This cache is essentially a "global" variable, but it
+ // only gets lazily created when we get here. The value of the
+ // cache probably comes from it being global across ExprEngines,
+ // where the same queries may get issued. If we are worried about
+ // concurrency, or possibly loading/unloading ASTs, etc., we may
+ // need to revisit this someday. In terms of memory, this table
+ // stays around until clang quits, which also may be bad if we
+ // need to release memory.
+ using PrivateMethodKey = std::pair<const ObjCInterfaceDecl *, Selector>;
+ using PrivateMethodCache =
+ llvm::DenseMap<PrivateMethodKey, Optional<const ObjCMethodDecl *>>;
+
+ static PrivateMethodCache PMC;
+ Optional<const ObjCMethodDecl *> &Val = PMC[std::make_pair(IDecl, Sel)];
+
+ // Query lookupPrivateMethod() if the cache does not hit.
+ if (!Val.hasValue()) {
+ Val = IDecl->lookupPrivateMethod(Sel);
+
+ // If the method is a property accessor, we should try to "inline" it
+ // even if we don't actually have an implementation.
+ if (!*Val)
+ if (const ObjCMethodDecl *CompileTimeMD = E->getMethodDecl())
+ if (CompileTimeMD->isPropertyAccessor()) {
+ if (!CompileTimeMD->getSelfDecl() &&
+ isa<ObjCCategoryDecl>(CompileTimeMD->getDeclContext())) {
+ // If the method is an accessor in a category, and it doesn't
+ // have a self declaration, first
+ // try to find the method in a class extension. This
+ // works around a bug in Sema where multiple accessors
+ // are synthesized for properties in class
+ // extensions that are redeclared in a category and the
+ // the implicit parameters are not filled in for
+ // the method on the category.
+ // This ensures we find the accessor in the extension, which
+ // has the implicit parameters filled in.
+ auto *ID = CompileTimeMD->getClassInterface();
+ for (auto *CatDecl : ID->visible_extensions()) {
+ Val = CatDecl->getMethod(Sel,
+ CompileTimeMD->isInstanceMethod());
+ if (*Val)
+ break;
+ }
+ }
+ if (!*Val)
+ Val = IDecl->lookupInstanceMethod(Sel);
+ }
+ }
+
+ const ObjCMethodDecl *MD = Val.getValue();
+ if (CanBeSubClassed)
+ return RuntimeDefinition(MD, Receiver);
+ else
+ return RuntimeDefinition(MD, nullptr);
+ }
+ } else {
+ // This is a class method.
+ // If we have type info for the receiver class, we are calling via
+ // class name.
+ if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
+ // Find/Return the method implementation.
+ return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
+ }
+ }
+
+ return {};
+}
+
+bool ObjCMethodCall::argumentsMayEscape() const {
+ if (isInSystemHeader() && !isInstanceMessage()) {
+ Selector Sel = getSelector();
+ if (Sel.getNumArgs() == 1 &&
+ Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer"))
+ return true;
+ }
+
+ return CallEvent::argumentsMayEscape();
+}
+
+void ObjCMethodCall::getInitialStackFrameContents(
+ const StackFrameContext *CalleeCtx,
+ BindingsTy &Bindings) const {
+ const auto *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
+ SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
+ addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
+ D->parameters());
+
+ SVal SelfVal = getReceiverSVal();
+ if (!SelfVal.isUnknown()) {
+ const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
+ MemRegionManager &MRMgr = SVB.getRegionManager();
+ Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
+ Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
+ }
+}
+
+CallEventRef<>
+CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
+ const LocationContext *LCtx) {
+ if (const auto *MCE = dyn_cast<CXXMemberCallExpr>(CE))
+ return create<CXXMemberCall>(MCE, State, LCtx);
+
+ if (const auto *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
+ const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
+ if (const auto *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
+ if (MD->isInstance())
+ return create<CXXMemberOperatorCall>(OpCE, State, LCtx);
+
+ } else if (CE->getCallee()->getType()->isBlockPointerType()) {
+ return create<BlockCall>(CE, State, LCtx);
+ }
+
+ // Otherwise, it's a normal function call, static member function call, or
+ // something we can't reason about.
+ return create<SimpleFunctionCall>(CE, State, LCtx);
+}
+
+CallEventRef<>
+CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
+ ProgramStateRef State) {
+ const LocationContext *ParentCtx = CalleeCtx->getParent();
+ const LocationContext *CallerCtx = ParentCtx->getStackFrame();
+ assert(CallerCtx && "This should not be used for top-level stack frames");
+
+ const Stmt *CallSite = CalleeCtx->getCallSite();
+
+ if (CallSite) {
+ if (CallEventRef<> Out = getCall(CallSite, State, CallerCtx))
+ return Out;
+
+ // All other cases are handled by getCall.
+ assert(isa<CXXConstructExpr>(CallSite) &&
+ "This is not an inlineable statement");
+
+ SValBuilder &SVB = State->getStateManager().getSValBuilder();
+ const auto *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
+ Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
+ SVal ThisVal = State->getSVal(ThisPtr);
+
+ return getCXXConstructorCall(cast<CXXConstructExpr>(CallSite),
+ ThisVal.getAsRegion(), State, CallerCtx);
+ }
+
+ // Fall back to the CFG. The only thing we haven't handled yet is
+ // destructors, though this could change in the future.
+ const CFGBlock *B = CalleeCtx->getCallSiteBlock();
+ CFGElement E = (*B)[CalleeCtx->getIndex()];
+ assert((E.getAs<CFGImplicitDtor>() || E.getAs<CFGTemporaryDtor>()) &&
+ "All other CFG elements should have exprs");
+
+ SValBuilder &SVB = State->getStateManager().getSValBuilder();
+ const auto *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
+ Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
+ SVal ThisVal = State->getSVal(ThisPtr);
+
+ const Stmt *Trigger;
+ if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>())
+ Trigger = AutoDtor->getTriggerStmt();
+ else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>())
+ Trigger = DeleteDtor->getDeleteExpr();
+ else
+ Trigger = Dtor->getBody();
+
+ return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
+ E.getAs<CFGBaseDtor>().hasValue(), State,
+ CallerCtx);
+}
+
+CallEventRef<> CallEventManager::getCall(const Stmt *S, ProgramStateRef State,
+ const LocationContext *LC) {
+ if (const auto *CE = dyn_cast<CallExpr>(S)) {
+ return getSimpleCall(CE, State, LC);
+ } else if (const auto *NE = dyn_cast<CXXNewExpr>(S)) {
+ return getCXXAllocatorCall(NE, State, LC);
+ } else if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) {
+ return getObjCMethodCall(ME, State, LC);
+ } else {
+ return nullptr;
+ }
+}