diff options
author | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 |
---|---|---|
committer | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 |
commit | 0b57cec536236d46e3dba9bd041533462f33dbb7 (patch) | |
tree | 56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm-project/clang/lib/StaticAnalyzer/Core/SimpleSValBuilder.cpp | |
parent | 718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff) |
Notes
Diffstat (limited to 'contrib/llvm-project/clang/lib/StaticAnalyzer/Core/SimpleSValBuilder.cpp')
-rw-r--r-- | contrib/llvm-project/clang/lib/StaticAnalyzer/Core/SimpleSValBuilder.cpp | 1350 |
1 files changed, 1350 insertions, 0 deletions
diff --git a/contrib/llvm-project/clang/lib/StaticAnalyzer/Core/SimpleSValBuilder.cpp b/contrib/llvm-project/clang/lib/StaticAnalyzer/Core/SimpleSValBuilder.cpp new file mode 100644 index 000000000000..84c52f53ca5e --- /dev/null +++ b/contrib/llvm-project/clang/lib/StaticAnalyzer/Core/SimpleSValBuilder.cpp @@ -0,0 +1,1350 @@ +// SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*- +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file defines SimpleSValBuilder, a basic implementation of SValBuilder. +// +//===----------------------------------------------------------------------===// + +#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h" +#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h" +#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h" +#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" +#include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h" +#include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h" + +using namespace clang; +using namespace ento; + +namespace { +class SimpleSValBuilder : public SValBuilder { +protected: + SVal dispatchCast(SVal val, QualType castTy) override; + SVal evalCastFromNonLoc(NonLoc val, QualType castTy) override; + SVal evalCastFromLoc(Loc val, QualType castTy) override; + +public: + SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context, + ProgramStateManager &stateMgr) + : SValBuilder(alloc, context, stateMgr) {} + ~SimpleSValBuilder() override {} + + SVal evalMinus(NonLoc val) override; + SVal evalComplement(NonLoc val) override; + SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op, + NonLoc lhs, NonLoc rhs, QualType resultTy) override; + SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op, + Loc lhs, Loc rhs, QualType resultTy) override; + SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op, + Loc lhs, NonLoc rhs, QualType resultTy) override; + + /// getKnownValue - evaluates a given SVal. If the SVal has only one possible + /// (integer) value, that value is returned. Otherwise, returns NULL. + const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal V) override; + + /// Recursively descends into symbolic expressions and replaces symbols + /// with their known values (in the sense of the getKnownValue() method). + SVal simplifySVal(ProgramStateRef State, SVal V) override; + + SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op, + const llvm::APSInt &RHS, QualType resultTy); +}; +} // end anonymous namespace + +SValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc, + ASTContext &context, + ProgramStateManager &stateMgr) { + return new SimpleSValBuilder(alloc, context, stateMgr); +} + +//===----------------------------------------------------------------------===// +// Transfer function for Casts. +//===----------------------------------------------------------------------===// + +SVal SimpleSValBuilder::dispatchCast(SVal Val, QualType CastTy) { + assert(Val.getAs<Loc>() || Val.getAs<NonLoc>()); + return Val.getAs<Loc>() ? evalCastFromLoc(Val.castAs<Loc>(), CastTy) + : evalCastFromNonLoc(Val.castAs<NonLoc>(), CastTy); +} + +SVal SimpleSValBuilder::evalCastFromNonLoc(NonLoc val, QualType castTy) { + bool isLocType = Loc::isLocType(castTy); + if (val.getAs<nonloc::PointerToMember>()) + return val; + + if (Optional<nonloc::LocAsInteger> LI = val.getAs<nonloc::LocAsInteger>()) { + if (isLocType) + return LI->getLoc(); + // FIXME: Correctly support promotions/truncations. + unsigned castSize = Context.getIntWidth(castTy); + if (castSize == LI->getNumBits()) + return val; + return makeLocAsInteger(LI->getLoc(), castSize); + } + + if (const SymExpr *se = val.getAsSymbolicExpression()) { + QualType T = Context.getCanonicalType(se->getType()); + // If types are the same or both are integers, ignore the cast. + // FIXME: Remove this hack when we support symbolic truncation/extension. + // HACK: If both castTy and T are integers, ignore the cast. This is + // not a permanent solution. Eventually we want to precisely handle + // extension/truncation of symbolic integers. This prevents us from losing + // precision when we assign 'x = y' and 'y' is symbolic and x and y are + // different integer types. + if (haveSameType(T, castTy)) + return val; + + if (!isLocType) + return makeNonLoc(se, T, castTy); + return UnknownVal(); + } + + // If value is a non-integer constant, produce unknown. + if (!val.getAs<nonloc::ConcreteInt>()) + return UnknownVal(); + + // Handle casts to a boolean type. + if (castTy->isBooleanType()) { + bool b = val.castAs<nonloc::ConcreteInt>().getValue().getBoolValue(); + return makeTruthVal(b, castTy); + } + + // Only handle casts from integers to integers - if val is an integer constant + // being cast to a non-integer type, produce unknown. + if (!isLocType && !castTy->isIntegralOrEnumerationType()) + return UnknownVal(); + + llvm::APSInt i = val.castAs<nonloc::ConcreteInt>().getValue(); + BasicVals.getAPSIntType(castTy).apply(i); + + if (isLocType) + return makeIntLocVal(i); + else + return makeIntVal(i); +} + +SVal SimpleSValBuilder::evalCastFromLoc(Loc val, QualType castTy) { + + // Casts from pointers -> pointers, just return the lval. + // + // Casts from pointers -> references, just return the lval. These + // can be introduced by the frontend for corner cases, e.g + // casting from va_list* to __builtin_va_list&. + // + if (Loc::isLocType(castTy) || castTy->isReferenceType()) + return val; + + // FIXME: Handle transparent unions where a value can be "transparently" + // lifted into a union type. + if (castTy->isUnionType()) + return UnknownVal(); + + // Casting a Loc to a bool will almost always be true, + // unless this is a weak function or a symbolic region. + if (castTy->isBooleanType()) { + switch (val.getSubKind()) { + case loc::MemRegionValKind: { + const MemRegion *R = val.castAs<loc::MemRegionVal>().getRegion(); + if (const FunctionCodeRegion *FTR = dyn_cast<FunctionCodeRegion>(R)) + if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FTR->getDecl())) + if (FD->isWeak()) + // FIXME: Currently we are using an extent symbol here, + // because there are no generic region address metadata + // symbols to use, only content metadata. + return nonloc::SymbolVal(SymMgr.getExtentSymbol(FTR)); + + if (const SymbolicRegion *SymR = R->getSymbolicBase()) + return makeNonLoc(SymR->getSymbol(), BO_NE, + BasicVals.getZeroWithPtrWidth(), castTy); + + // FALL-THROUGH + LLVM_FALLTHROUGH; + } + + case loc::GotoLabelKind: + // Labels and non-symbolic memory regions are always true. + return makeTruthVal(true, castTy); + } + } + + if (castTy->isIntegralOrEnumerationType()) { + unsigned BitWidth = Context.getIntWidth(castTy); + + if (!val.getAs<loc::ConcreteInt>()) + return makeLocAsInteger(val, BitWidth); + + llvm::APSInt i = val.castAs<loc::ConcreteInt>().getValue(); + BasicVals.getAPSIntType(castTy).apply(i); + return makeIntVal(i); + } + + // All other cases: return 'UnknownVal'. This includes casting pointers + // to floats, which is probably badness it itself, but this is a good + // intermediate solution until we do something better. + return UnknownVal(); +} + +//===----------------------------------------------------------------------===// +// Transfer function for unary operators. +//===----------------------------------------------------------------------===// + +SVal SimpleSValBuilder::evalMinus(NonLoc val) { + switch (val.getSubKind()) { + case nonloc::ConcreteIntKind: + return val.castAs<nonloc::ConcreteInt>().evalMinus(*this); + default: + return UnknownVal(); + } +} + +SVal SimpleSValBuilder::evalComplement(NonLoc X) { + switch (X.getSubKind()) { + case nonloc::ConcreteIntKind: + return X.castAs<nonloc::ConcreteInt>().evalComplement(*this); + default: + return UnknownVal(); + } +} + +//===----------------------------------------------------------------------===// +// Transfer function for binary operators. +//===----------------------------------------------------------------------===// + +SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS, + BinaryOperator::Opcode op, + const llvm::APSInt &RHS, + QualType resultTy) { + bool isIdempotent = false; + + // Check for a few special cases with known reductions first. + switch (op) { + default: + // We can't reduce this case; just treat it normally. + break; + case BO_Mul: + // a*0 and a*1 + if (RHS == 0) + return makeIntVal(0, resultTy); + else if (RHS == 1) + isIdempotent = true; + break; + case BO_Div: + // a/0 and a/1 + if (RHS == 0) + // This is also handled elsewhere. + return UndefinedVal(); + else if (RHS == 1) + isIdempotent = true; + break; + case BO_Rem: + // a%0 and a%1 + if (RHS == 0) + // This is also handled elsewhere. + return UndefinedVal(); + else if (RHS == 1) + return makeIntVal(0, resultTy); + break; + case BO_Add: + case BO_Sub: + case BO_Shl: + case BO_Shr: + case BO_Xor: + // a+0, a-0, a<<0, a>>0, a^0 + if (RHS == 0) + isIdempotent = true; + break; + case BO_And: + // a&0 and a&(~0) + if (RHS == 0) + return makeIntVal(0, resultTy); + else if (RHS.isAllOnesValue()) + isIdempotent = true; + break; + case BO_Or: + // a|0 and a|(~0) + if (RHS == 0) + isIdempotent = true; + else if (RHS.isAllOnesValue()) { + const llvm::APSInt &Result = BasicVals.Convert(resultTy, RHS); + return nonloc::ConcreteInt(Result); + } + break; + } + + // Idempotent ops (like a*1) can still change the type of an expression. + // Wrap the LHS up in a NonLoc again and let evalCastFromNonLoc do the + // dirty work. + if (isIdempotent) + return evalCastFromNonLoc(nonloc::SymbolVal(LHS), resultTy); + + // If we reach this point, the expression cannot be simplified. + // Make a SymbolVal for the entire expression, after converting the RHS. + const llvm::APSInt *ConvertedRHS = &RHS; + if (BinaryOperator::isComparisonOp(op)) { + // We're looking for a type big enough to compare the symbolic value + // with the given constant. + // FIXME: This is an approximation of Sema::UsualArithmeticConversions. + ASTContext &Ctx = getContext(); + QualType SymbolType = LHS->getType(); + uint64_t ValWidth = RHS.getBitWidth(); + uint64_t TypeWidth = Ctx.getTypeSize(SymbolType); + + if (ValWidth < TypeWidth) { + // If the value is too small, extend it. + ConvertedRHS = &BasicVals.Convert(SymbolType, RHS); + } else if (ValWidth == TypeWidth) { + // If the value is signed but the symbol is unsigned, do the comparison + // in unsigned space. [C99 6.3.1.8] + // (For the opposite case, the value is already unsigned.) + if (RHS.isSigned() && !SymbolType->isSignedIntegerOrEnumerationType()) + ConvertedRHS = &BasicVals.Convert(SymbolType, RHS); + } + } else + ConvertedRHS = &BasicVals.Convert(resultTy, RHS); + + return makeNonLoc(LHS, op, *ConvertedRHS, resultTy); +} + +// See if Sym is known to be a relation Rel with Bound. +static bool isInRelation(BinaryOperator::Opcode Rel, SymbolRef Sym, + llvm::APSInt Bound, ProgramStateRef State) { + SValBuilder &SVB = State->getStateManager().getSValBuilder(); + SVal Result = + SVB.evalBinOpNN(State, Rel, nonloc::SymbolVal(Sym), + nonloc::ConcreteInt(Bound), SVB.getConditionType()); + if (auto DV = Result.getAs<DefinedSVal>()) { + return !State->assume(*DV, false); + } + return false; +} + +// See if Sym is known to be within [min/4, max/4], where min and max +// are the bounds of the symbol's integral type. With such symbols, +// some manipulations can be performed without the risk of overflow. +// assume() doesn't cause infinite recursion because we should be dealing +// with simpler symbols on every recursive call. +static bool isWithinConstantOverflowBounds(SymbolRef Sym, + ProgramStateRef State) { + SValBuilder &SVB = State->getStateManager().getSValBuilder(); + BasicValueFactory &BV = SVB.getBasicValueFactory(); + + QualType T = Sym->getType(); + assert(T->isSignedIntegerOrEnumerationType() && + "This only works with signed integers!"); + APSIntType AT = BV.getAPSIntType(T); + + llvm::APSInt Max = AT.getMaxValue() / AT.getValue(4), Min = -Max; + return isInRelation(BO_LE, Sym, Max, State) && + isInRelation(BO_GE, Sym, Min, State); +} + +// Same for the concrete integers: see if I is within [min/4, max/4]. +static bool isWithinConstantOverflowBounds(llvm::APSInt I) { + APSIntType AT(I); + assert(!AT.isUnsigned() && + "This only works with signed integers!"); + + llvm::APSInt Max = AT.getMaxValue() / AT.getValue(4), Min = -Max; + return (I <= Max) && (I >= -Max); +} + +static std::pair<SymbolRef, llvm::APSInt> +decomposeSymbol(SymbolRef Sym, BasicValueFactory &BV) { + if (const auto *SymInt = dyn_cast<SymIntExpr>(Sym)) + if (BinaryOperator::isAdditiveOp(SymInt->getOpcode())) + return std::make_pair(SymInt->getLHS(), + (SymInt->getOpcode() == BO_Add) ? + (SymInt->getRHS()) : + (-SymInt->getRHS())); + + // Fail to decompose: "reduce" the problem to the "$x + 0" case. + return std::make_pair(Sym, BV.getValue(0, Sym->getType())); +} + +// Simplify "(LSym + LInt) Op (RSym + RInt)" assuming all values are of the +// same signed integral type and no overflows occur (which should be checked +// by the caller). +static NonLoc doRearrangeUnchecked(ProgramStateRef State, + BinaryOperator::Opcode Op, + SymbolRef LSym, llvm::APSInt LInt, + SymbolRef RSym, llvm::APSInt RInt) { + SValBuilder &SVB = State->getStateManager().getSValBuilder(); + BasicValueFactory &BV = SVB.getBasicValueFactory(); + SymbolManager &SymMgr = SVB.getSymbolManager(); + + QualType SymTy = LSym->getType(); + assert(SymTy == RSym->getType() && + "Symbols are not of the same type!"); + assert(APSIntType(LInt) == BV.getAPSIntType(SymTy) && + "Integers are not of the same type as symbols!"); + assert(APSIntType(RInt) == BV.getAPSIntType(SymTy) && + "Integers are not of the same type as symbols!"); + + QualType ResultTy; + if (BinaryOperator::isComparisonOp(Op)) + ResultTy = SVB.getConditionType(); + else if (BinaryOperator::isAdditiveOp(Op)) + ResultTy = SymTy; + else + llvm_unreachable("Operation not suitable for unchecked rearrangement!"); + + // FIXME: Can we use assume() without getting into an infinite recursion? + if (LSym == RSym) + return SVB.evalBinOpNN(State, Op, nonloc::ConcreteInt(LInt), + nonloc::ConcreteInt(RInt), ResultTy) + .castAs<NonLoc>(); + + SymbolRef ResultSym = nullptr; + BinaryOperator::Opcode ResultOp; + llvm::APSInt ResultInt; + if (BinaryOperator::isComparisonOp(Op)) { + // Prefer comparing to a non-negative number. + // FIXME: Maybe it'd be better to have consistency in + // "$x - $y" vs. "$y - $x" because those are solver's keys. + if (LInt > RInt) { + ResultSym = SymMgr.getSymSymExpr(RSym, BO_Sub, LSym, SymTy); + ResultOp = BinaryOperator::reverseComparisonOp(Op); + ResultInt = LInt - RInt; // Opposite order! + } else { + ResultSym = SymMgr.getSymSymExpr(LSym, BO_Sub, RSym, SymTy); + ResultOp = Op; + ResultInt = RInt - LInt; // Opposite order! + } + } else { + ResultSym = SymMgr.getSymSymExpr(LSym, Op, RSym, SymTy); + ResultInt = (Op == BO_Add) ? (LInt + RInt) : (LInt - RInt); + ResultOp = BO_Add; + // Bring back the cosmetic difference. + if (ResultInt < 0) { + ResultInt = -ResultInt; + ResultOp = BO_Sub; + } else if (ResultInt == 0) { + // Shortcut: Simplify "$x + 0" to "$x". + return nonloc::SymbolVal(ResultSym); + } + } + const llvm::APSInt &PersistentResultInt = BV.getValue(ResultInt); + return nonloc::SymbolVal( + SymMgr.getSymIntExpr(ResultSym, ResultOp, PersistentResultInt, ResultTy)); +} + +// Rearrange if symbol type matches the result type and if the operator is a +// comparison operator, both symbol and constant must be within constant +// overflow bounds. +static bool shouldRearrange(ProgramStateRef State, BinaryOperator::Opcode Op, + SymbolRef Sym, llvm::APSInt Int, QualType Ty) { + return Sym->getType() == Ty && + (!BinaryOperator::isComparisonOp(Op) || + (isWithinConstantOverflowBounds(Sym, State) && + isWithinConstantOverflowBounds(Int))); +} + +static Optional<NonLoc> tryRearrange(ProgramStateRef State, + BinaryOperator::Opcode Op, NonLoc Lhs, + NonLoc Rhs, QualType ResultTy) { + ProgramStateManager &StateMgr = State->getStateManager(); + SValBuilder &SVB = StateMgr.getSValBuilder(); + + // We expect everything to be of the same type - this type. + QualType SingleTy; + + auto &Opts = + StateMgr.getOwningEngine().getAnalysisManager().getAnalyzerOptions(); + + // FIXME: After putting complexity threshold to the symbols we can always + // rearrange additive operations but rearrange comparisons only if + // option is set. + if(!Opts.ShouldAggressivelySimplifyBinaryOperation) + return None; + + SymbolRef LSym = Lhs.getAsSymbol(); + if (!LSym) + return None; + + if (BinaryOperator::isComparisonOp(Op)) { + SingleTy = LSym->getType(); + if (ResultTy != SVB.getConditionType()) + return None; + // Initialize SingleTy later with a symbol's type. + } else if (BinaryOperator::isAdditiveOp(Op)) { + SingleTy = ResultTy; + if (LSym->getType() != SingleTy) + return None; + } else { + // Don't rearrange other operations. + return None; + } + + assert(!SingleTy.isNull() && "We should have figured out the type by now!"); + + // Rearrange signed symbolic expressions only + if (!SingleTy->isSignedIntegerOrEnumerationType()) + return None; + + SymbolRef RSym = Rhs.getAsSymbol(); + if (!RSym || RSym->getType() != SingleTy) + return None; + + BasicValueFactory &BV = State->getBasicVals(); + llvm::APSInt LInt, RInt; + std::tie(LSym, LInt) = decomposeSymbol(LSym, BV); + std::tie(RSym, RInt) = decomposeSymbol(RSym, BV); + if (!shouldRearrange(State, Op, LSym, LInt, SingleTy) || + !shouldRearrange(State, Op, RSym, RInt, SingleTy)) + return None; + + // We know that no overflows can occur anymore. + return doRearrangeUnchecked(State, Op, LSym, LInt, RSym, RInt); +} + +SVal SimpleSValBuilder::evalBinOpNN(ProgramStateRef state, + BinaryOperator::Opcode op, + NonLoc lhs, NonLoc rhs, + QualType resultTy) { + NonLoc InputLHS = lhs; + NonLoc InputRHS = rhs; + + // Handle trivial case where left-side and right-side are the same. + if (lhs == rhs) + switch (op) { + default: + break; + case BO_EQ: + case BO_LE: + case BO_GE: + return makeTruthVal(true, resultTy); + case BO_LT: + case BO_GT: + case BO_NE: + return makeTruthVal(false, resultTy); + case BO_Xor: + case BO_Sub: + if (resultTy->isIntegralOrEnumerationType()) + return makeIntVal(0, resultTy); + return evalCastFromNonLoc(makeIntVal(0, /*isUnsigned=*/false), resultTy); + case BO_Or: + case BO_And: + return evalCastFromNonLoc(lhs, resultTy); + } + + while (1) { + switch (lhs.getSubKind()) { + default: + return makeSymExprValNN(op, lhs, rhs, resultTy); + case nonloc::PointerToMemberKind: { + assert(rhs.getSubKind() == nonloc::PointerToMemberKind && + "Both SVals should have pointer-to-member-type"); + auto LPTM = lhs.castAs<nonloc::PointerToMember>(), + RPTM = rhs.castAs<nonloc::PointerToMember>(); + auto LPTMD = LPTM.getPTMData(), RPTMD = RPTM.getPTMData(); + switch (op) { + case BO_EQ: + return makeTruthVal(LPTMD == RPTMD, resultTy); + case BO_NE: + return makeTruthVal(LPTMD != RPTMD, resultTy); + default: + return UnknownVal(); + } + } + case nonloc::LocAsIntegerKind: { + Loc lhsL = lhs.castAs<nonloc::LocAsInteger>().getLoc(); + switch (rhs.getSubKind()) { + case nonloc::LocAsIntegerKind: + // FIXME: at the moment the implementation + // of modeling "pointers as integers" is not complete. + if (!BinaryOperator::isComparisonOp(op)) + return UnknownVal(); + return evalBinOpLL(state, op, lhsL, + rhs.castAs<nonloc::LocAsInteger>().getLoc(), + resultTy); + case nonloc::ConcreteIntKind: { + // FIXME: at the moment the implementation + // of modeling "pointers as integers" is not complete. + if (!BinaryOperator::isComparisonOp(op)) + return UnknownVal(); + // Transform the integer into a location and compare. + // FIXME: This only makes sense for comparisons. If we want to, say, + // add 1 to a LocAsInteger, we'd better unpack the Loc and add to it, + // then pack it back into a LocAsInteger. + llvm::APSInt i = rhs.castAs<nonloc::ConcreteInt>().getValue(); + // If the region has a symbolic base, pay attention to the type; it + // might be coming from a non-default address space. For non-symbolic + // regions it doesn't matter that much because such comparisons would + // most likely evaluate to concrete false anyway. FIXME: We might + // still need to handle the non-comparison case. + if (SymbolRef lSym = lhs.getAsLocSymbol(true)) + BasicVals.getAPSIntType(lSym->getType()).apply(i); + else + BasicVals.getAPSIntType(Context.VoidPtrTy).apply(i); + return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy); + } + default: + switch (op) { + case BO_EQ: + return makeTruthVal(false, resultTy); + case BO_NE: + return makeTruthVal(true, resultTy); + default: + // This case also handles pointer arithmetic. + return makeSymExprValNN(op, InputLHS, InputRHS, resultTy); + } + } + } + case nonloc::ConcreteIntKind: { + llvm::APSInt LHSValue = lhs.castAs<nonloc::ConcreteInt>().getValue(); + + // If we're dealing with two known constants, just perform the operation. + if (const llvm::APSInt *KnownRHSValue = getKnownValue(state, rhs)) { + llvm::APSInt RHSValue = *KnownRHSValue; + if (BinaryOperator::isComparisonOp(op)) { + // We're looking for a type big enough to compare the two values. + // FIXME: This is not correct. char + short will result in a promotion + // to int. Unfortunately we have lost types by this point. + APSIntType CompareType = std::max(APSIntType(LHSValue), + APSIntType(RHSValue)); + CompareType.apply(LHSValue); + CompareType.apply(RHSValue); + } else if (!BinaryOperator::isShiftOp(op)) { + APSIntType IntType = BasicVals.getAPSIntType(resultTy); + IntType.apply(LHSValue); + IntType.apply(RHSValue); + } + + const llvm::APSInt *Result = + BasicVals.evalAPSInt(op, LHSValue, RHSValue); + if (!Result) + return UndefinedVal(); + + return nonloc::ConcreteInt(*Result); + } + + // Swap the left and right sides and flip the operator if doing so + // allows us to better reason about the expression (this is a form + // of expression canonicalization). + // While we're at it, catch some special cases for non-commutative ops. + switch (op) { + case BO_LT: + case BO_GT: + case BO_LE: + case BO_GE: + op = BinaryOperator::reverseComparisonOp(op); + LLVM_FALLTHROUGH; + case BO_EQ: + case BO_NE: + case BO_Add: + case BO_Mul: + case BO_And: + case BO_Xor: + case BO_Or: + std::swap(lhs, rhs); + continue; + case BO_Shr: + // (~0)>>a + if (LHSValue.isAllOnesValue() && LHSValue.isSigned()) + return evalCastFromNonLoc(lhs, resultTy); + LLVM_FALLTHROUGH; + case BO_Shl: + // 0<<a and 0>>a + if (LHSValue == 0) + return evalCastFromNonLoc(lhs, resultTy); + return makeSymExprValNN(op, InputLHS, InputRHS, resultTy); + default: + return makeSymExprValNN(op, InputLHS, InputRHS, resultTy); + } + } + case nonloc::SymbolValKind: { + // We only handle LHS as simple symbols or SymIntExprs. + SymbolRef Sym = lhs.castAs<nonloc::SymbolVal>().getSymbol(); + + // LHS is a symbolic expression. + if (const SymIntExpr *symIntExpr = dyn_cast<SymIntExpr>(Sym)) { + + // Is this a logical not? (!x is represented as x == 0.) + if (op == BO_EQ && rhs.isZeroConstant()) { + // We know how to negate certain expressions. Simplify them here. + + BinaryOperator::Opcode opc = symIntExpr->getOpcode(); + switch (opc) { + default: + // We don't know how to negate this operation. + // Just handle it as if it were a normal comparison to 0. + break; + case BO_LAnd: + case BO_LOr: + llvm_unreachable("Logical operators handled by branching logic."); + case BO_Assign: + case BO_MulAssign: + case BO_DivAssign: + case BO_RemAssign: + case BO_AddAssign: + case BO_SubAssign: + case BO_ShlAssign: + case BO_ShrAssign: + case BO_AndAssign: + case BO_XorAssign: + case BO_OrAssign: + case BO_Comma: + llvm_unreachable("'=' and ',' operators handled by ExprEngine."); + case BO_PtrMemD: + case BO_PtrMemI: + llvm_unreachable("Pointer arithmetic not handled here."); + case BO_LT: + case BO_GT: + case BO_LE: + case BO_GE: + case BO_EQ: + case BO_NE: + assert(resultTy->isBooleanType() || + resultTy == getConditionType()); + assert(symIntExpr->getType()->isBooleanType() || + getContext().hasSameUnqualifiedType(symIntExpr->getType(), + getConditionType())); + // Negate the comparison and make a value. + opc = BinaryOperator::negateComparisonOp(opc); + return makeNonLoc(symIntExpr->getLHS(), opc, + symIntExpr->getRHS(), resultTy); + } + } + + // For now, only handle expressions whose RHS is a constant. + if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs)) { + // If both the LHS and the current expression are additive, + // fold their constants and try again. + if (BinaryOperator::isAdditiveOp(op)) { + BinaryOperator::Opcode lop = symIntExpr->getOpcode(); + if (BinaryOperator::isAdditiveOp(lop)) { + // Convert the two constants to a common type, then combine them. + + // resultTy may not be the best type to convert to, but it's + // probably the best choice in expressions with mixed type + // (such as x+1U+2LL). The rules for implicit conversions should + // choose a reasonable type to preserve the expression, and will + // at least match how the value is going to be used. + APSIntType IntType = BasicVals.getAPSIntType(resultTy); + const llvm::APSInt &first = IntType.convert(symIntExpr->getRHS()); + const llvm::APSInt &second = IntType.convert(*RHSValue); + + const llvm::APSInt *newRHS; + if (lop == op) + newRHS = BasicVals.evalAPSInt(BO_Add, first, second); + else + newRHS = BasicVals.evalAPSInt(BO_Sub, first, second); + + assert(newRHS && "Invalid operation despite common type!"); + rhs = nonloc::ConcreteInt(*newRHS); + lhs = nonloc::SymbolVal(symIntExpr->getLHS()); + op = lop; + continue; + } + } + + // Otherwise, make a SymIntExpr out of the expression. + return MakeSymIntVal(symIntExpr, op, *RHSValue, resultTy); + } + } + + // Does the symbolic expression simplify to a constant? + // If so, "fold" the constant by setting 'lhs' to a ConcreteInt + // and try again. + SVal simplifiedLhs = simplifySVal(state, lhs); + if (simplifiedLhs != lhs) + if (auto simplifiedLhsAsNonLoc = simplifiedLhs.getAs<NonLoc>()) { + lhs = *simplifiedLhsAsNonLoc; + continue; + } + + // Is the RHS a constant? + if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs)) + return MakeSymIntVal(Sym, op, *RHSValue, resultTy); + + if (Optional<NonLoc> V = tryRearrange(state, op, lhs, rhs, resultTy)) + return *V; + + // Give up -- this is not a symbolic expression we can handle. + return makeSymExprValNN(op, InputLHS, InputRHS, resultTy); + } + } + } +} + +static SVal evalBinOpFieldRegionFieldRegion(const FieldRegion *LeftFR, + const FieldRegion *RightFR, + BinaryOperator::Opcode op, + QualType resultTy, + SimpleSValBuilder &SVB) { + // Only comparisons are meaningful here! + if (!BinaryOperator::isComparisonOp(op)) + return UnknownVal(); + + // Next, see if the two FRs have the same super-region. + // FIXME: This doesn't handle casts yet, and simply stripping the casts + // doesn't help. + if (LeftFR->getSuperRegion() != RightFR->getSuperRegion()) + return UnknownVal(); + + const FieldDecl *LeftFD = LeftFR->getDecl(); + const FieldDecl *RightFD = RightFR->getDecl(); + const RecordDecl *RD = LeftFD->getParent(); + + // Make sure the two FRs are from the same kind of record. Just in case! + // FIXME: This is probably where inheritance would be a problem. + if (RD != RightFD->getParent()) + return UnknownVal(); + + // We know for sure that the two fields are not the same, since that + // would have given us the same SVal. + if (op == BO_EQ) + return SVB.makeTruthVal(false, resultTy); + if (op == BO_NE) + return SVB.makeTruthVal(true, resultTy); + + // Iterate through the fields and see which one comes first. + // [C99 6.7.2.1.13] "Within a structure object, the non-bit-field + // members and the units in which bit-fields reside have addresses that + // increase in the order in which they are declared." + bool leftFirst = (op == BO_LT || op == BO_LE); + for (const auto *I : RD->fields()) { + if (I == LeftFD) + return SVB.makeTruthVal(leftFirst, resultTy); + if (I == RightFD) + return SVB.makeTruthVal(!leftFirst, resultTy); + } + + llvm_unreachable("Fields not found in parent record's definition"); +} + +// FIXME: all this logic will change if/when we have MemRegion::getLocation(). +SVal SimpleSValBuilder::evalBinOpLL(ProgramStateRef state, + BinaryOperator::Opcode op, + Loc lhs, Loc rhs, + QualType resultTy) { + // Only comparisons and subtractions are valid operations on two pointers. + // See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15]. + // However, if a pointer is casted to an integer, evalBinOpNN may end up + // calling this function with another operation (PR7527). We don't attempt to + // model this for now, but it could be useful, particularly when the + // "location" is actually an integer value that's been passed through a void*. + if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub)) + return UnknownVal(); + + // Special cases for when both sides are identical. + if (lhs == rhs) { + switch (op) { + default: + llvm_unreachable("Unimplemented operation for two identical values"); + case BO_Sub: + return makeZeroVal(resultTy); + case BO_EQ: + case BO_LE: + case BO_GE: + return makeTruthVal(true, resultTy); + case BO_NE: + case BO_LT: + case BO_GT: + return makeTruthVal(false, resultTy); + } + } + + switch (lhs.getSubKind()) { + default: + llvm_unreachable("Ordering not implemented for this Loc."); + + case loc::GotoLabelKind: + // The only thing we know about labels is that they're non-null. + if (rhs.isZeroConstant()) { + switch (op) { + default: + break; + case BO_Sub: + return evalCastFromLoc(lhs, resultTy); + case BO_EQ: + case BO_LE: + case BO_LT: + return makeTruthVal(false, resultTy); + case BO_NE: + case BO_GT: + case BO_GE: + return makeTruthVal(true, resultTy); + } + } + // There may be two labels for the same location, and a function region may + // have the same address as a label at the start of the function (depending + // on the ABI). + // FIXME: we can probably do a comparison against other MemRegions, though. + // FIXME: is there a way to tell if two labels refer to the same location? + return UnknownVal(); + + case loc::ConcreteIntKind: { + // If one of the operands is a symbol and the other is a constant, + // build an expression for use by the constraint manager. + if (SymbolRef rSym = rhs.getAsLocSymbol()) { + // We can only build expressions with symbols on the left, + // so we need a reversible operator. + if (!BinaryOperator::isComparisonOp(op) || op == BO_Cmp) + return UnknownVal(); + + const llvm::APSInt &lVal = lhs.castAs<loc::ConcreteInt>().getValue(); + op = BinaryOperator::reverseComparisonOp(op); + return makeNonLoc(rSym, op, lVal, resultTy); + } + + // If both operands are constants, just perform the operation. + if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) { + SVal ResultVal = + lhs.castAs<loc::ConcreteInt>().evalBinOp(BasicVals, op, *rInt); + if (Optional<NonLoc> Result = ResultVal.getAs<NonLoc>()) + return evalCastFromNonLoc(*Result, resultTy); + + assert(!ResultVal.getAs<Loc>() && "Loc-Loc ops should not produce Locs"); + return UnknownVal(); + } + + // Special case comparisons against NULL. + // This must come after the test if the RHS is a symbol, which is used to + // build constraints. The address of any non-symbolic region is guaranteed + // to be non-NULL, as is any label. + assert(rhs.getAs<loc::MemRegionVal>() || rhs.getAs<loc::GotoLabel>()); + if (lhs.isZeroConstant()) { + switch (op) { + default: + break; + case BO_EQ: + case BO_GT: + case BO_GE: + return makeTruthVal(false, resultTy); + case BO_NE: + case BO_LT: + case BO_LE: + return makeTruthVal(true, resultTy); + } + } + + // Comparing an arbitrary integer to a region or label address is + // completely unknowable. + return UnknownVal(); + } + case loc::MemRegionValKind: { + if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) { + // If one of the operands is a symbol and the other is a constant, + // build an expression for use by the constraint manager. + if (SymbolRef lSym = lhs.getAsLocSymbol(true)) { + if (BinaryOperator::isComparisonOp(op)) + return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy); + return UnknownVal(); + } + // Special case comparisons to NULL. + // This must come after the test if the LHS is a symbol, which is used to + // build constraints. The address of any non-symbolic region is guaranteed + // to be non-NULL. + if (rInt->isZeroConstant()) { + if (op == BO_Sub) + return evalCastFromLoc(lhs, resultTy); + + if (BinaryOperator::isComparisonOp(op)) { + QualType boolType = getContext().BoolTy; + NonLoc l = evalCastFromLoc(lhs, boolType).castAs<NonLoc>(); + NonLoc r = makeTruthVal(false, boolType).castAs<NonLoc>(); + return evalBinOpNN(state, op, l, r, resultTy); + } + } + + // Comparing a region to an arbitrary integer is completely unknowable. + return UnknownVal(); + } + + // Get both values as regions, if possible. + const MemRegion *LeftMR = lhs.getAsRegion(); + assert(LeftMR && "MemRegionValKind SVal doesn't have a region!"); + + const MemRegion *RightMR = rhs.getAsRegion(); + if (!RightMR) + // The RHS is probably a label, which in theory could address a region. + // FIXME: we can probably make a more useful statement about non-code + // regions, though. + return UnknownVal(); + + const MemRegion *LeftBase = LeftMR->getBaseRegion(); + const MemRegion *RightBase = RightMR->getBaseRegion(); + const MemSpaceRegion *LeftMS = LeftBase->getMemorySpace(); + const MemSpaceRegion *RightMS = RightBase->getMemorySpace(); + const MemSpaceRegion *UnknownMS = MemMgr.getUnknownRegion(); + + // If the two regions are from different known memory spaces they cannot be + // equal. Also, assume that no symbolic region (whose memory space is + // unknown) is on the stack. + if (LeftMS != RightMS && + ((LeftMS != UnknownMS && RightMS != UnknownMS) || + (isa<StackSpaceRegion>(LeftMS) || isa<StackSpaceRegion>(RightMS)))) { + switch (op) { + default: + return UnknownVal(); + case BO_EQ: + return makeTruthVal(false, resultTy); + case BO_NE: + return makeTruthVal(true, resultTy); + } + } + + // If both values wrap regions, see if they're from different base regions. + // Note, heap base symbolic regions are assumed to not alias with + // each other; for example, we assume that malloc returns different address + // on each invocation. + // FIXME: ObjC object pointers always reside on the heap, but currently + // we treat their memory space as unknown, because symbolic pointers + // to ObjC objects may alias. There should be a way to construct + // possibly-aliasing heap-based regions. For instance, MacOSXApiChecker + // guesses memory space for ObjC object pointers manually instead of + // relying on us. + if (LeftBase != RightBase && + ((!isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) || + (isa<HeapSpaceRegion>(LeftMS) || isa<HeapSpaceRegion>(RightMS))) ){ + switch (op) { + default: + return UnknownVal(); + case BO_EQ: + return makeTruthVal(false, resultTy); + case BO_NE: + return makeTruthVal(true, resultTy); + } + } + + // Handle special cases for when both regions are element regions. + const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR); + const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR); + if (RightER && LeftER) { + // Next, see if the two ERs have the same super-region and matching types. + // FIXME: This should do something useful even if the types don't match, + // though if both indexes are constant the RegionRawOffset path will + // give the correct answer. + if (LeftER->getSuperRegion() == RightER->getSuperRegion() && + LeftER->getElementType() == RightER->getElementType()) { + // Get the left index and cast it to the correct type. + // If the index is unknown or undefined, bail out here. + SVal LeftIndexVal = LeftER->getIndex(); + Optional<NonLoc> LeftIndex = LeftIndexVal.getAs<NonLoc>(); + if (!LeftIndex) + return UnknownVal(); + LeftIndexVal = evalCastFromNonLoc(*LeftIndex, ArrayIndexTy); + LeftIndex = LeftIndexVal.getAs<NonLoc>(); + if (!LeftIndex) + return UnknownVal(); + + // Do the same for the right index. + SVal RightIndexVal = RightER->getIndex(); + Optional<NonLoc> RightIndex = RightIndexVal.getAs<NonLoc>(); + if (!RightIndex) + return UnknownVal(); + RightIndexVal = evalCastFromNonLoc(*RightIndex, ArrayIndexTy); + RightIndex = RightIndexVal.getAs<NonLoc>(); + if (!RightIndex) + return UnknownVal(); + + // Actually perform the operation. + // evalBinOpNN expects the two indexes to already be the right type. + return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy); + } + } + + // Special handling of the FieldRegions, even with symbolic offsets. + const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR); + const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR); + if (RightFR && LeftFR) { + SVal R = evalBinOpFieldRegionFieldRegion(LeftFR, RightFR, op, resultTy, + *this); + if (!R.isUnknown()) + return R; + } + + // Compare the regions using the raw offsets. + RegionOffset LeftOffset = LeftMR->getAsOffset(); + RegionOffset RightOffset = RightMR->getAsOffset(); + + if (LeftOffset.getRegion() != nullptr && + LeftOffset.getRegion() == RightOffset.getRegion() && + !LeftOffset.hasSymbolicOffset() && !RightOffset.hasSymbolicOffset()) { + int64_t left = LeftOffset.getOffset(); + int64_t right = RightOffset.getOffset(); + + switch (op) { + default: + return UnknownVal(); + case BO_LT: + return makeTruthVal(left < right, resultTy); + case BO_GT: + return makeTruthVal(left > right, resultTy); + case BO_LE: + return makeTruthVal(left <= right, resultTy); + case BO_GE: + return makeTruthVal(left >= right, resultTy); + case BO_EQ: + return makeTruthVal(left == right, resultTy); + case BO_NE: + return makeTruthVal(left != right, resultTy); + } + } + + // At this point we're not going to get a good answer, but we can try + // conjuring an expression instead. + SymbolRef LHSSym = lhs.getAsLocSymbol(); + SymbolRef RHSSym = rhs.getAsLocSymbol(); + if (LHSSym && RHSSym) + return makeNonLoc(LHSSym, op, RHSSym, resultTy); + + // If we get here, we have no way of comparing the regions. + return UnknownVal(); + } + } +} + +SVal SimpleSValBuilder::evalBinOpLN(ProgramStateRef state, + BinaryOperator::Opcode op, + Loc lhs, NonLoc rhs, QualType resultTy) { + if (op >= BO_PtrMemD && op <= BO_PtrMemI) { + if (auto PTMSV = rhs.getAs<nonloc::PointerToMember>()) { + if (PTMSV->isNullMemberPointer()) + return UndefinedVal(); + if (const FieldDecl *FD = PTMSV->getDeclAs<FieldDecl>()) { + SVal Result = lhs; + + for (const auto &I : *PTMSV) + Result = StateMgr.getStoreManager().evalDerivedToBase( + Result, I->getType(),I->isVirtual()); + return state->getLValue(FD, Result); + } + } + + return rhs; + } + + assert(!BinaryOperator::isComparisonOp(op) && + "arguments to comparison ops must be of the same type"); + + // Special case: rhs is a zero constant. + if (rhs.isZeroConstant()) + return lhs; + + // Perserve the null pointer so that it can be found by the DerefChecker. + if (lhs.isZeroConstant()) + return lhs; + + // We are dealing with pointer arithmetic. + + // Handle pointer arithmetic on constant values. + if (Optional<nonloc::ConcreteInt> rhsInt = rhs.getAs<nonloc::ConcreteInt>()) { + if (Optional<loc::ConcreteInt> lhsInt = lhs.getAs<loc::ConcreteInt>()) { + const llvm::APSInt &leftI = lhsInt->getValue(); + assert(leftI.isUnsigned()); + llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true); + + // Convert the bitwidth of rightI. This should deal with overflow + // since we are dealing with concrete values. + rightI = rightI.extOrTrunc(leftI.getBitWidth()); + + // Offset the increment by the pointer size. + llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true); + QualType pointeeType = resultTy->getPointeeType(); + Multiplicand = getContext().getTypeSizeInChars(pointeeType).getQuantity(); + rightI *= Multiplicand; + + // Compute the adjusted pointer. + switch (op) { + case BO_Add: + rightI = leftI + rightI; + break; + case BO_Sub: + rightI = leftI - rightI; + break; + default: + llvm_unreachable("Invalid pointer arithmetic operation"); + } + return loc::ConcreteInt(getBasicValueFactory().getValue(rightI)); + } + } + + // Handle cases where 'lhs' is a region. + if (const MemRegion *region = lhs.getAsRegion()) { + rhs = convertToArrayIndex(rhs).castAs<NonLoc>(); + SVal index = UnknownVal(); + const SubRegion *superR = nullptr; + // We need to know the type of the pointer in order to add an integer to it. + // Depending on the type, different amount of bytes is added. + QualType elementType; + + if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) { + assert(op == BO_Add || op == BO_Sub); + index = evalBinOpNN(state, op, elemReg->getIndex(), rhs, + getArrayIndexType()); + superR = cast<SubRegion>(elemReg->getSuperRegion()); + elementType = elemReg->getElementType(); + } + else if (isa<SubRegion>(region)) { + assert(op == BO_Add || op == BO_Sub); + index = (op == BO_Add) ? rhs : evalMinus(rhs); + superR = cast<SubRegion>(region); + // TODO: Is this actually reliable? Maybe improving our MemRegion + // hierarchy to provide typed regions for all non-void pointers would be + // better. For instance, we cannot extend this towards LocAsInteger + // operations, where result type of the expression is integer. + if (resultTy->isAnyPointerType()) + elementType = resultTy->getPointeeType(); + } + + // Represent arithmetic on void pointers as arithmetic on char pointers. + // It is fine when a TypedValueRegion of char value type represents + // a void pointer. Note that arithmetic on void pointers is a GCC extension. + if (elementType->isVoidType()) + elementType = getContext().CharTy; + + if (Optional<NonLoc> indexV = index.getAs<NonLoc>()) { + return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV, + superR, getContext())); + } + } + return UnknownVal(); +} + +const llvm::APSInt *SimpleSValBuilder::getKnownValue(ProgramStateRef state, + SVal V) { + V = simplifySVal(state, V); + if (V.isUnknownOrUndef()) + return nullptr; + + if (Optional<loc::ConcreteInt> X = V.getAs<loc::ConcreteInt>()) + return &X->getValue(); + + if (Optional<nonloc::ConcreteInt> X = V.getAs<nonloc::ConcreteInt>()) + return &X->getValue(); + + if (SymbolRef Sym = V.getAsSymbol()) + return state->getConstraintManager().getSymVal(state, Sym); + + // FIXME: Add support for SymExprs. + return nullptr; +} + +SVal SimpleSValBuilder::simplifySVal(ProgramStateRef State, SVal V) { + // For now, this function tries to constant-fold symbols inside a + // nonloc::SymbolVal, and does nothing else. More simplifications should + // be possible, such as constant-folding an index in an ElementRegion. + + class Simplifier : public FullSValVisitor<Simplifier, SVal> { + ProgramStateRef State; + SValBuilder &SVB; + + // Cache results for the lifetime of the Simplifier. Results change every + // time new constraints are added to the program state, which is the whole + // point of simplifying, and for that very reason it's pointless to maintain + // the same cache for the duration of the whole analysis. + llvm::DenseMap<SymbolRef, SVal> Cached; + + static bool isUnchanged(SymbolRef Sym, SVal Val) { + return Sym == Val.getAsSymbol(); + } + + SVal cache(SymbolRef Sym, SVal V) { + Cached[Sym] = V; + return V; + } + + SVal skip(SymbolRef Sym) { + return cache(Sym, SVB.makeSymbolVal(Sym)); + } + + public: + Simplifier(ProgramStateRef State) + : State(State), SVB(State->getStateManager().getSValBuilder()) {} + + SVal VisitSymbolData(const SymbolData *S) { + // No cache here. + if (const llvm::APSInt *I = + SVB.getKnownValue(State, SVB.makeSymbolVal(S))) + return Loc::isLocType(S->getType()) ? (SVal)SVB.makeIntLocVal(*I) + : (SVal)SVB.makeIntVal(*I); + return SVB.makeSymbolVal(S); + } + + // TODO: Support SymbolCast. Support IntSymExpr when/if we actually + // start producing them. + + SVal VisitSymIntExpr(const SymIntExpr *S) { + auto I = Cached.find(S); + if (I != Cached.end()) + return I->second; + + SVal LHS = Visit(S->getLHS()); + if (isUnchanged(S->getLHS(), LHS)) + return skip(S); + + SVal RHS; + // By looking at the APSInt in the right-hand side of S, we cannot + // figure out if it should be treated as a Loc or as a NonLoc. + // So make our guess by recalling that we cannot multiply pointers + // or compare a pointer to an integer. + if (Loc::isLocType(S->getLHS()->getType()) && + BinaryOperator::isComparisonOp(S->getOpcode())) { + // The usual conversion of $sym to &SymRegion{$sym}, as they have + // the same meaning for Loc-type symbols, but the latter form + // is preferred in SVal computations for being Loc itself. + if (SymbolRef Sym = LHS.getAsSymbol()) { + assert(Loc::isLocType(Sym->getType())); + LHS = SVB.makeLoc(Sym); + } + RHS = SVB.makeIntLocVal(S->getRHS()); + } else { + RHS = SVB.makeIntVal(S->getRHS()); + } + + return cache( + S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType())); + } + + SVal VisitSymSymExpr(const SymSymExpr *S) { + auto I = Cached.find(S); + if (I != Cached.end()) + return I->second; + + // For now don't try to simplify mixed Loc/NonLoc expressions + // because they often appear from LocAsInteger operations + // and we don't know how to combine a LocAsInteger + // with a concrete value. + if (Loc::isLocType(S->getLHS()->getType()) != + Loc::isLocType(S->getRHS()->getType())) + return skip(S); + + SVal LHS = Visit(S->getLHS()); + SVal RHS = Visit(S->getRHS()); + if (isUnchanged(S->getLHS(), LHS) && isUnchanged(S->getRHS(), RHS)) + return skip(S); + + return cache( + S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType())); + } + + SVal VisitSymExpr(SymbolRef S) { return nonloc::SymbolVal(S); } + + SVal VisitMemRegion(const MemRegion *R) { return loc::MemRegionVal(R); } + + SVal VisitNonLocSymbolVal(nonloc::SymbolVal V) { + // Simplification is much more costly than computing complexity. + // For high complexity, it may be not worth it. + return Visit(V.getSymbol()); + } + + SVal VisitSVal(SVal V) { return V; } + }; + + // A crude way of preventing this function from calling itself from evalBinOp. + static bool isReentering = false; + if (isReentering) + return V; + + isReentering = true; + SVal SimplifiedV = Simplifier(State).Visit(V); + isReentering = false; + + return SimplifiedV; +} |