aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/clang/lib/StaticAnalyzer/Core/SimpleSValBuilder.cpp
diff options
context:
space:
mode:
authorDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
committerDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
commit0b57cec536236d46e3dba9bd041533462f33dbb7 (patch)
tree56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm-project/clang/lib/StaticAnalyzer/Core/SimpleSValBuilder.cpp
parent718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff)
Notes
Diffstat (limited to 'contrib/llvm-project/clang/lib/StaticAnalyzer/Core/SimpleSValBuilder.cpp')
-rw-r--r--contrib/llvm-project/clang/lib/StaticAnalyzer/Core/SimpleSValBuilder.cpp1350
1 files changed, 1350 insertions, 0 deletions
diff --git a/contrib/llvm-project/clang/lib/StaticAnalyzer/Core/SimpleSValBuilder.cpp b/contrib/llvm-project/clang/lib/StaticAnalyzer/Core/SimpleSValBuilder.cpp
new file mode 100644
index 000000000000..84c52f53ca5e
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/StaticAnalyzer/Core/SimpleSValBuilder.cpp
@@ -0,0 +1,1350 @@
+// SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*-
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines SimpleSValBuilder, a basic implementation of SValBuilder.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+class SimpleSValBuilder : public SValBuilder {
+protected:
+ SVal dispatchCast(SVal val, QualType castTy) override;
+ SVal evalCastFromNonLoc(NonLoc val, QualType castTy) override;
+ SVal evalCastFromLoc(Loc val, QualType castTy) override;
+
+public:
+ SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context,
+ ProgramStateManager &stateMgr)
+ : SValBuilder(alloc, context, stateMgr) {}
+ ~SimpleSValBuilder() override {}
+
+ SVal evalMinus(NonLoc val) override;
+ SVal evalComplement(NonLoc val) override;
+ SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op,
+ NonLoc lhs, NonLoc rhs, QualType resultTy) override;
+ SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op,
+ Loc lhs, Loc rhs, QualType resultTy) override;
+ SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op,
+ Loc lhs, NonLoc rhs, QualType resultTy) override;
+
+ /// getKnownValue - evaluates a given SVal. If the SVal has only one possible
+ /// (integer) value, that value is returned. Otherwise, returns NULL.
+ const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal V) override;
+
+ /// Recursively descends into symbolic expressions and replaces symbols
+ /// with their known values (in the sense of the getKnownValue() method).
+ SVal simplifySVal(ProgramStateRef State, SVal V) override;
+
+ SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op,
+ const llvm::APSInt &RHS, QualType resultTy);
+};
+} // end anonymous namespace
+
+SValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc,
+ ASTContext &context,
+ ProgramStateManager &stateMgr) {
+ return new SimpleSValBuilder(alloc, context, stateMgr);
+}
+
+//===----------------------------------------------------------------------===//
+// Transfer function for Casts.
+//===----------------------------------------------------------------------===//
+
+SVal SimpleSValBuilder::dispatchCast(SVal Val, QualType CastTy) {
+ assert(Val.getAs<Loc>() || Val.getAs<NonLoc>());
+ return Val.getAs<Loc>() ? evalCastFromLoc(Val.castAs<Loc>(), CastTy)
+ : evalCastFromNonLoc(Val.castAs<NonLoc>(), CastTy);
+}
+
+SVal SimpleSValBuilder::evalCastFromNonLoc(NonLoc val, QualType castTy) {
+ bool isLocType = Loc::isLocType(castTy);
+ if (val.getAs<nonloc::PointerToMember>())
+ return val;
+
+ if (Optional<nonloc::LocAsInteger> LI = val.getAs<nonloc::LocAsInteger>()) {
+ if (isLocType)
+ return LI->getLoc();
+ // FIXME: Correctly support promotions/truncations.
+ unsigned castSize = Context.getIntWidth(castTy);
+ if (castSize == LI->getNumBits())
+ return val;
+ return makeLocAsInteger(LI->getLoc(), castSize);
+ }
+
+ if (const SymExpr *se = val.getAsSymbolicExpression()) {
+ QualType T = Context.getCanonicalType(se->getType());
+ // If types are the same or both are integers, ignore the cast.
+ // FIXME: Remove this hack when we support symbolic truncation/extension.
+ // HACK: If both castTy and T are integers, ignore the cast. This is
+ // not a permanent solution. Eventually we want to precisely handle
+ // extension/truncation of symbolic integers. This prevents us from losing
+ // precision when we assign 'x = y' and 'y' is symbolic and x and y are
+ // different integer types.
+ if (haveSameType(T, castTy))
+ return val;
+
+ if (!isLocType)
+ return makeNonLoc(se, T, castTy);
+ return UnknownVal();
+ }
+
+ // If value is a non-integer constant, produce unknown.
+ if (!val.getAs<nonloc::ConcreteInt>())
+ return UnknownVal();
+
+ // Handle casts to a boolean type.
+ if (castTy->isBooleanType()) {
+ bool b = val.castAs<nonloc::ConcreteInt>().getValue().getBoolValue();
+ return makeTruthVal(b, castTy);
+ }
+
+ // Only handle casts from integers to integers - if val is an integer constant
+ // being cast to a non-integer type, produce unknown.
+ if (!isLocType && !castTy->isIntegralOrEnumerationType())
+ return UnknownVal();
+
+ llvm::APSInt i = val.castAs<nonloc::ConcreteInt>().getValue();
+ BasicVals.getAPSIntType(castTy).apply(i);
+
+ if (isLocType)
+ return makeIntLocVal(i);
+ else
+ return makeIntVal(i);
+}
+
+SVal SimpleSValBuilder::evalCastFromLoc(Loc val, QualType castTy) {
+
+ // Casts from pointers -> pointers, just return the lval.
+ //
+ // Casts from pointers -> references, just return the lval. These
+ // can be introduced by the frontend for corner cases, e.g
+ // casting from va_list* to __builtin_va_list&.
+ //
+ if (Loc::isLocType(castTy) || castTy->isReferenceType())
+ return val;
+
+ // FIXME: Handle transparent unions where a value can be "transparently"
+ // lifted into a union type.
+ if (castTy->isUnionType())
+ return UnknownVal();
+
+ // Casting a Loc to a bool will almost always be true,
+ // unless this is a weak function or a symbolic region.
+ if (castTy->isBooleanType()) {
+ switch (val.getSubKind()) {
+ case loc::MemRegionValKind: {
+ const MemRegion *R = val.castAs<loc::MemRegionVal>().getRegion();
+ if (const FunctionCodeRegion *FTR = dyn_cast<FunctionCodeRegion>(R))
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FTR->getDecl()))
+ if (FD->isWeak())
+ // FIXME: Currently we are using an extent symbol here,
+ // because there are no generic region address metadata
+ // symbols to use, only content metadata.
+ return nonloc::SymbolVal(SymMgr.getExtentSymbol(FTR));
+
+ if (const SymbolicRegion *SymR = R->getSymbolicBase())
+ return makeNonLoc(SymR->getSymbol(), BO_NE,
+ BasicVals.getZeroWithPtrWidth(), castTy);
+
+ // FALL-THROUGH
+ LLVM_FALLTHROUGH;
+ }
+
+ case loc::GotoLabelKind:
+ // Labels and non-symbolic memory regions are always true.
+ return makeTruthVal(true, castTy);
+ }
+ }
+
+ if (castTy->isIntegralOrEnumerationType()) {
+ unsigned BitWidth = Context.getIntWidth(castTy);
+
+ if (!val.getAs<loc::ConcreteInt>())
+ return makeLocAsInteger(val, BitWidth);
+
+ llvm::APSInt i = val.castAs<loc::ConcreteInt>().getValue();
+ BasicVals.getAPSIntType(castTy).apply(i);
+ return makeIntVal(i);
+ }
+
+ // All other cases: return 'UnknownVal'. This includes casting pointers
+ // to floats, which is probably badness it itself, but this is a good
+ // intermediate solution until we do something better.
+ return UnknownVal();
+}
+
+//===----------------------------------------------------------------------===//
+// Transfer function for unary operators.
+//===----------------------------------------------------------------------===//
+
+SVal SimpleSValBuilder::evalMinus(NonLoc val) {
+ switch (val.getSubKind()) {
+ case nonloc::ConcreteIntKind:
+ return val.castAs<nonloc::ConcreteInt>().evalMinus(*this);
+ default:
+ return UnknownVal();
+ }
+}
+
+SVal SimpleSValBuilder::evalComplement(NonLoc X) {
+ switch (X.getSubKind()) {
+ case nonloc::ConcreteIntKind:
+ return X.castAs<nonloc::ConcreteInt>().evalComplement(*this);
+ default:
+ return UnknownVal();
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Transfer function for binary operators.
+//===----------------------------------------------------------------------===//
+
+SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS,
+ BinaryOperator::Opcode op,
+ const llvm::APSInt &RHS,
+ QualType resultTy) {
+ bool isIdempotent = false;
+
+ // Check for a few special cases with known reductions first.
+ switch (op) {
+ default:
+ // We can't reduce this case; just treat it normally.
+ break;
+ case BO_Mul:
+ // a*0 and a*1
+ if (RHS == 0)
+ return makeIntVal(0, resultTy);
+ else if (RHS == 1)
+ isIdempotent = true;
+ break;
+ case BO_Div:
+ // a/0 and a/1
+ if (RHS == 0)
+ // This is also handled elsewhere.
+ return UndefinedVal();
+ else if (RHS == 1)
+ isIdempotent = true;
+ break;
+ case BO_Rem:
+ // a%0 and a%1
+ if (RHS == 0)
+ // This is also handled elsewhere.
+ return UndefinedVal();
+ else if (RHS == 1)
+ return makeIntVal(0, resultTy);
+ break;
+ case BO_Add:
+ case BO_Sub:
+ case BO_Shl:
+ case BO_Shr:
+ case BO_Xor:
+ // a+0, a-0, a<<0, a>>0, a^0
+ if (RHS == 0)
+ isIdempotent = true;
+ break;
+ case BO_And:
+ // a&0 and a&(~0)
+ if (RHS == 0)
+ return makeIntVal(0, resultTy);
+ else if (RHS.isAllOnesValue())
+ isIdempotent = true;
+ break;
+ case BO_Or:
+ // a|0 and a|(~0)
+ if (RHS == 0)
+ isIdempotent = true;
+ else if (RHS.isAllOnesValue()) {
+ const llvm::APSInt &Result = BasicVals.Convert(resultTy, RHS);
+ return nonloc::ConcreteInt(Result);
+ }
+ break;
+ }
+
+ // Idempotent ops (like a*1) can still change the type of an expression.
+ // Wrap the LHS up in a NonLoc again and let evalCastFromNonLoc do the
+ // dirty work.
+ if (isIdempotent)
+ return evalCastFromNonLoc(nonloc::SymbolVal(LHS), resultTy);
+
+ // If we reach this point, the expression cannot be simplified.
+ // Make a SymbolVal for the entire expression, after converting the RHS.
+ const llvm::APSInt *ConvertedRHS = &RHS;
+ if (BinaryOperator::isComparisonOp(op)) {
+ // We're looking for a type big enough to compare the symbolic value
+ // with the given constant.
+ // FIXME: This is an approximation of Sema::UsualArithmeticConversions.
+ ASTContext &Ctx = getContext();
+ QualType SymbolType = LHS->getType();
+ uint64_t ValWidth = RHS.getBitWidth();
+ uint64_t TypeWidth = Ctx.getTypeSize(SymbolType);
+
+ if (ValWidth < TypeWidth) {
+ // If the value is too small, extend it.
+ ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
+ } else if (ValWidth == TypeWidth) {
+ // If the value is signed but the symbol is unsigned, do the comparison
+ // in unsigned space. [C99 6.3.1.8]
+ // (For the opposite case, the value is already unsigned.)
+ if (RHS.isSigned() && !SymbolType->isSignedIntegerOrEnumerationType())
+ ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
+ }
+ } else
+ ConvertedRHS = &BasicVals.Convert(resultTy, RHS);
+
+ return makeNonLoc(LHS, op, *ConvertedRHS, resultTy);
+}
+
+// See if Sym is known to be a relation Rel with Bound.
+static bool isInRelation(BinaryOperator::Opcode Rel, SymbolRef Sym,
+ llvm::APSInt Bound, ProgramStateRef State) {
+ SValBuilder &SVB = State->getStateManager().getSValBuilder();
+ SVal Result =
+ SVB.evalBinOpNN(State, Rel, nonloc::SymbolVal(Sym),
+ nonloc::ConcreteInt(Bound), SVB.getConditionType());
+ if (auto DV = Result.getAs<DefinedSVal>()) {
+ return !State->assume(*DV, false);
+ }
+ return false;
+}
+
+// See if Sym is known to be within [min/4, max/4], where min and max
+// are the bounds of the symbol's integral type. With such symbols,
+// some manipulations can be performed without the risk of overflow.
+// assume() doesn't cause infinite recursion because we should be dealing
+// with simpler symbols on every recursive call.
+static bool isWithinConstantOverflowBounds(SymbolRef Sym,
+ ProgramStateRef State) {
+ SValBuilder &SVB = State->getStateManager().getSValBuilder();
+ BasicValueFactory &BV = SVB.getBasicValueFactory();
+
+ QualType T = Sym->getType();
+ assert(T->isSignedIntegerOrEnumerationType() &&
+ "This only works with signed integers!");
+ APSIntType AT = BV.getAPSIntType(T);
+
+ llvm::APSInt Max = AT.getMaxValue() / AT.getValue(4), Min = -Max;
+ return isInRelation(BO_LE, Sym, Max, State) &&
+ isInRelation(BO_GE, Sym, Min, State);
+}
+
+// Same for the concrete integers: see if I is within [min/4, max/4].
+static bool isWithinConstantOverflowBounds(llvm::APSInt I) {
+ APSIntType AT(I);
+ assert(!AT.isUnsigned() &&
+ "This only works with signed integers!");
+
+ llvm::APSInt Max = AT.getMaxValue() / AT.getValue(4), Min = -Max;
+ return (I <= Max) && (I >= -Max);
+}
+
+static std::pair<SymbolRef, llvm::APSInt>
+decomposeSymbol(SymbolRef Sym, BasicValueFactory &BV) {
+ if (const auto *SymInt = dyn_cast<SymIntExpr>(Sym))
+ if (BinaryOperator::isAdditiveOp(SymInt->getOpcode()))
+ return std::make_pair(SymInt->getLHS(),
+ (SymInt->getOpcode() == BO_Add) ?
+ (SymInt->getRHS()) :
+ (-SymInt->getRHS()));
+
+ // Fail to decompose: "reduce" the problem to the "$x + 0" case.
+ return std::make_pair(Sym, BV.getValue(0, Sym->getType()));
+}
+
+// Simplify "(LSym + LInt) Op (RSym + RInt)" assuming all values are of the
+// same signed integral type and no overflows occur (which should be checked
+// by the caller).
+static NonLoc doRearrangeUnchecked(ProgramStateRef State,
+ BinaryOperator::Opcode Op,
+ SymbolRef LSym, llvm::APSInt LInt,
+ SymbolRef RSym, llvm::APSInt RInt) {
+ SValBuilder &SVB = State->getStateManager().getSValBuilder();
+ BasicValueFactory &BV = SVB.getBasicValueFactory();
+ SymbolManager &SymMgr = SVB.getSymbolManager();
+
+ QualType SymTy = LSym->getType();
+ assert(SymTy == RSym->getType() &&
+ "Symbols are not of the same type!");
+ assert(APSIntType(LInt) == BV.getAPSIntType(SymTy) &&
+ "Integers are not of the same type as symbols!");
+ assert(APSIntType(RInt) == BV.getAPSIntType(SymTy) &&
+ "Integers are not of the same type as symbols!");
+
+ QualType ResultTy;
+ if (BinaryOperator::isComparisonOp(Op))
+ ResultTy = SVB.getConditionType();
+ else if (BinaryOperator::isAdditiveOp(Op))
+ ResultTy = SymTy;
+ else
+ llvm_unreachable("Operation not suitable for unchecked rearrangement!");
+
+ // FIXME: Can we use assume() without getting into an infinite recursion?
+ if (LSym == RSym)
+ return SVB.evalBinOpNN(State, Op, nonloc::ConcreteInt(LInt),
+ nonloc::ConcreteInt(RInt), ResultTy)
+ .castAs<NonLoc>();
+
+ SymbolRef ResultSym = nullptr;
+ BinaryOperator::Opcode ResultOp;
+ llvm::APSInt ResultInt;
+ if (BinaryOperator::isComparisonOp(Op)) {
+ // Prefer comparing to a non-negative number.
+ // FIXME: Maybe it'd be better to have consistency in
+ // "$x - $y" vs. "$y - $x" because those are solver's keys.
+ if (LInt > RInt) {
+ ResultSym = SymMgr.getSymSymExpr(RSym, BO_Sub, LSym, SymTy);
+ ResultOp = BinaryOperator::reverseComparisonOp(Op);
+ ResultInt = LInt - RInt; // Opposite order!
+ } else {
+ ResultSym = SymMgr.getSymSymExpr(LSym, BO_Sub, RSym, SymTy);
+ ResultOp = Op;
+ ResultInt = RInt - LInt; // Opposite order!
+ }
+ } else {
+ ResultSym = SymMgr.getSymSymExpr(LSym, Op, RSym, SymTy);
+ ResultInt = (Op == BO_Add) ? (LInt + RInt) : (LInt - RInt);
+ ResultOp = BO_Add;
+ // Bring back the cosmetic difference.
+ if (ResultInt < 0) {
+ ResultInt = -ResultInt;
+ ResultOp = BO_Sub;
+ } else if (ResultInt == 0) {
+ // Shortcut: Simplify "$x + 0" to "$x".
+ return nonloc::SymbolVal(ResultSym);
+ }
+ }
+ const llvm::APSInt &PersistentResultInt = BV.getValue(ResultInt);
+ return nonloc::SymbolVal(
+ SymMgr.getSymIntExpr(ResultSym, ResultOp, PersistentResultInt, ResultTy));
+}
+
+// Rearrange if symbol type matches the result type and if the operator is a
+// comparison operator, both symbol and constant must be within constant
+// overflow bounds.
+static bool shouldRearrange(ProgramStateRef State, BinaryOperator::Opcode Op,
+ SymbolRef Sym, llvm::APSInt Int, QualType Ty) {
+ return Sym->getType() == Ty &&
+ (!BinaryOperator::isComparisonOp(Op) ||
+ (isWithinConstantOverflowBounds(Sym, State) &&
+ isWithinConstantOverflowBounds(Int)));
+}
+
+static Optional<NonLoc> tryRearrange(ProgramStateRef State,
+ BinaryOperator::Opcode Op, NonLoc Lhs,
+ NonLoc Rhs, QualType ResultTy) {
+ ProgramStateManager &StateMgr = State->getStateManager();
+ SValBuilder &SVB = StateMgr.getSValBuilder();
+
+ // We expect everything to be of the same type - this type.
+ QualType SingleTy;
+
+ auto &Opts =
+ StateMgr.getOwningEngine().getAnalysisManager().getAnalyzerOptions();
+
+ // FIXME: After putting complexity threshold to the symbols we can always
+ // rearrange additive operations but rearrange comparisons only if
+ // option is set.
+ if(!Opts.ShouldAggressivelySimplifyBinaryOperation)
+ return None;
+
+ SymbolRef LSym = Lhs.getAsSymbol();
+ if (!LSym)
+ return None;
+
+ if (BinaryOperator::isComparisonOp(Op)) {
+ SingleTy = LSym->getType();
+ if (ResultTy != SVB.getConditionType())
+ return None;
+ // Initialize SingleTy later with a symbol's type.
+ } else if (BinaryOperator::isAdditiveOp(Op)) {
+ SingleTy = ResultTy;
+ if (LSym->getType() != SingleTy)
+ return None;
+ } else {
+ // Don't rearrange other operations.
+ return None;
+ }
+
+ assert(!SingleTy.isNull() && "We should have figured out the type by now!");
+
+ // Rearrange signed symbolic expressions only
+ if (!SingleTy->isSignedIntegerOrEnumerationType())
+ return None;
+
+ SymbolRef RSym = Rhs.getAsSymbol();
+ if (!RSym || RSym->getType() != SingleTy)
+ return None;
+
+ BasicValueFactory &BV = State->getBasicVals();
+ llvm::APSInt LInt, RInt;
+ std::tie(LSym, LInt) = decomposeSymbol(LSym, BV);
+ std::tie(RSym, RInt) = decomposeSymbol(RSym, BV);
+ if (!shouldRearrange(State, Op, LSym, LInt, SingleTy) ||
+ !shouldRearrange(State, Op, RSym, RInt, SingleTy))
+ return None;
+
+ // We know that no overflows can occur anymore.
+ return doRearrangeUnchecked(State, Op, LSym, LInt, RSym, RInt);
+}
+
+SVal SimpleSValBuilder::evalBinOpNN(ProgramStateRef state,
+ BinaryOperator::Opcode op,
+ NonLoc lhs, NonLoc rhs,
+ QualType resultTy) {
+ NonLoc InputLHS = lhs;
+ NonLoc InputRHS = rhs;
+
+ // Handle trivial case where left-side and right-side are the same.
+ if (lhs == rhs)
+ switch (op) {
+ default:
+ break;
+ case BO_EQ:
+ case BO_LE:
+ case BO_GE:
+ return makeTruthVal(true, resultTy);
+ case BO_LT:
+ case BO_GT:
+ case BO_NE:
+ return makeTruthVal(false, resultTy);
+ case BO_Xor:
+ case BO_Sub:
+ if (resultTy->isIntegralOrEnumerationType())
+ return makeIntVal(0, resultTy);
+ return evalCastFromNonLoc(makeIntVal(0, /*isUnsigned=*/false), resultTy);
+ case BO_Or:
+ case BO_And:
+ return evalCastFromNonLoc(lhs, resultTy);
+ }
+
+ while (1) {
+ switch (lhs.getSubKind()) {
+ default:
+ return makeSymExprValNN(op, lhs, rhs, resultTy);
+ case nonloc::PointerToMemberKind: {
+ assert(rhs.getSubKind() == nonloc::PointerToMemberKind &&
+ "Both SVals should have pointer-to-member-type");
+ auto LPTM = lhs.castAs<nonloc::PointerToMember>(),
+ RPTM = rhs.castAs<nonloc::PointerToMember>();
+ auto LPTMD = LPTM.getPTMData(), RPTMD = RPTM.getPTMData();
+ switch (op) {
+ case BO_EQ:
+ return makeTruthVal(LPTMD == RPTMD, resultTy);
+ case BO_NE:
+ return makeTruthVal(LPTMD != RPTMD, resultTy);
+ default:
+ return UnknownVal();
+ }
+ }
+ case nonloc::LocAsIntegerKind: {
+ Loc lhsL = lhs.castAs<nonloc::LocAsInteger>().getLoc();
+ switch (rhs.getSubKind()) {
+ case nonloc::LocAsIntegerKind:
+ // FIXME: at the moment the implementation
+ // of modeling "pointers as integers" is not complete.
+ if (!BinaryOperator::isComparisonOp(op))
+ return UnknownVal();
+ return evalBinOpLL(state, op, lhsL,
+ rhs.castAs<nonloc::LocAsInteger>().getLoc(),
+ resultTy);
+ case nonloc::ConcreteIntKind: {
+ // FIXME: at the moment the implementation
+ // of modeling "pointers as integers" is not complete.
+ if (!BinaryOperator::isComparisonOp(op))
+ return UnknownVal();
+ // Transform the integer into a location and compare.
+ // FIXME: This only makes sense for comparisons. If we want to, say,
+ // add 1 to a LocAsInteger, we'd better unpack the Loc and add to it,
+ // then pack it back into a LocAsInteger.
+ llvm::APSInt i = rhs.castAs<nonloc::ConcreteInt>().getValue();
+ // If the region has a symbolic base, pay attention to the type; it
+ // might be coming from a non-default address space. For non-symbolic
+ // regions it doesn't matter that much because such comparisons would
+ // most likely evaluate to concrete false anyway. FIXME: We might
+ // still need to handle the non-comparison case.
+ if (SymbolRef lSym = lhs.getAsLocSymbol(true))
+ BasicVals.getAPSIntType(lSym->getType()).apply(i);
+ else
+ BasicVals.getAPSIntType(Context.VoidPtrTy).apply(i);
+ return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy);
+ }
+ default:
+ switch (op) {
+ case BO_EQ:
+ return makeTruthVal(false, resultTy);
+ case BO_NE:
+ return makeTruthVal(true, resultTy);
+ default:
+ // This case also handles pointer arithmetic.
+ return makeSymExprValNN(op, InputLHS, InputRHS, resultTy);
+ }
+ }
+ }
+ case nonloc::ConcreteIntKind: {
+ llvm::APSInt LHSValue = lhs.castAs<nonloc::ConcreteInt>().getValue();
+
+ // If we're dealing with two known constants, just perform the operation.
+ if (const llvm::APSInt *KnownRHSValue = getKnownValue(state, rhs)) {
+ llvm::APSInt RHSValue = *KnownRHSValue;
+ if (BinaryOperator::isComparisonOp(op)) {
+ // We're looking for a type big enough to compare the two values.
+ // FIXME: This is not correct. char + short will result in a promotion
+ // to int. Unfortunately we have lost types by this point.
+ APSIntType CompareType = std::max(APSIntType(LHSValue),
+ APSIntType(RHSValue));
+ CompareType.apply(LHSValue);
+ CompareType.apply(RHSValue);
+ } else if (!BinaryOperator::isShiftOp(op)) {
+ APSIntType IntType = BasicVals.getAPSIntType(resultTy);
+ IntType.apply(LHSValue);
+ IntType.apply(RHSValue);
+ }
+
+ const llvm::APSInt *Result =
+ BasicVals.evalAPSInt(op, LHSValue, RHSValue);
+ if (!Result)
+ return UndefinedVal();
+
+ return nonloc::ConcreteInt(*Result);
+ }
+
+ // Swap the left and right sides and flip the operator if doing so
+ // allows us to better reason about the expression (this is a form
+ // of expression canonicalization).
+ // While we're at it, catch some special cases for non-commutative ops.
+ switch (op) {
+ case BO_LT:
+ case BO_GT:
+ case BO_LE:
+ case BO_GE:
+ op = BinaryOperator::reverseComparisonOp(op);
+ LLVM_FALLTHROUGH;
+ case BO_EQ:
+ case BO_NE:
+ case BO_Add:
+ case BO_Mul:
+ case BO_And:
+ case BO_Xor:
+ case BO_Or:
+ std::swap(lhs, rhs);
+ continue;
+ case BO_Shr:
+ // (~0)>>a
+ if (LHSValue.isAllOnesValue() && LHSValue.isSigned())
+ return evalCastFromNonLoc(lhs, resultTy);
+ LLVM_FALLTHROUGH;
+ case BO_Shl:
+ // 0<<a and 0>>a
+ if (LHSValue == 0)
+ return evalCastFromNonLoc(lhs, resultTy);
+ return makeSymExprValNN(op, InputLHS, InputRHS, resultTy);
+ default:
+ return makeSymExprValNN(op, InputLHS, InputRHS, resultTy);
+ }
+ }
+ case nonloc::SymbolValKind: {
+ // We only handle LHS as simple symbols or SymIntExprs.
+ SymbolRef Sym = lhs.castAs<nonloc::SymbolVal>().getSymbol();
+
+ // LHS is a symbolic expression.
+ if (const SymIntExpr *symIntExpr = dyn_cast<SymIntExpr>(Sym)) {
+
+ // Is this a logical not? (!x is represented as x == 0.)
+ if (op == BO_EQ && rhs.isZeroConstant()) {
+ // We know how to negate certain expressions. Simplify them here.
+
+ BinaryOperator::Opcode opc = symIntExpr->getOpcode();
+ switch (opc) {
+ default:
+ // We don't know how to negate this operation.
+ // Just handle it as if it were a normal comparison to 0.
+ break;
+ case BO_LAnd:
+ case BO_LOr:
+ llvm_unreachable("Logical operators handled by branching logic.");
+ case BO_Assign:
+ case BO_MulAssign:
+ case BO_DivAssign:
+ case BO_RemAssign:
+ case BO_AddAssign:
+ case BO_SubAssign:
+ case BO_ShlAssign:
+ case BO_ShrAssign:
+ case BO_AndAssign:
+ case BO_XorAssign:
+ case BO_OrAssign:
+ case BO_Comma:
+ llvm_unreachable("'=' and ',' operators handled by ExprEngine.");
+ case BO_PtrMemD:
+ case BO_PtrMemI:
+ llvm_unreachable("Pointer arithmetic not handled here.");
+ case BO_LT:
+ case BO_GT:
+ case BO_LE:
+ case BO_GE:
+ case BO_EQ:
+ case BO_NE:
+ assert(resultTy->isBooleanType() ||
+ resultTy == getConditionType());
+ assert(symIntExpr->getType()->isBooleanType() ||
+ getContext().hasSameUnqualifiedType(symIntExpr->getType(),
+ getConditionType()));
+ // Negate the comparison and make a value.
+ opc = BinaryOperator::negateComparisonOp(opc);
+ return makeNonLoc(symIntExpr->getLHS(), opc,
+ symIntExpr->getRHS(), resultTy);
+ }
+ }
+
+ // For now, only handle expressions whose RHS is a constant.
+ if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs)) {
+ // If both the LHS and the current expression are additive,
+ // fold their constants and try again.
+ if (BinaryOperator::isAdditiveOp(op)) {
+ BinaryOperator::Opcode lop = symIntExpr->getOpcode();
+ if (BinaryOperator::isAdditiveOp(lop)) {
+ // Convert the two constants to a common type, then combine them.
+
+ // resultTy may not be the best type to convert to, but it's
+ // probably the best choice in expressions with mixed type
+ // (such as x+1U+2LL). The rules for implicit conversions should
+ // choose a reasonable type to preserve the expression, and will
+ // at least match how the value is going to be used.
+ APSIntType IntType = BasicVals.getAPSIntType(resultTy);
+ const llvm::APSInt &first = IntType.convert(symIntExpr->getRHS());
+ const llvm::APSInt &second = IntType.convert(*RHSValue);
+
+ const llvm::APSInt *newRHS;
+ if (lop == op)
+ newRHS = BasicVals.evalAPSInt(BO_Add, first, second);
+ else
+ newRHS = BasicVals.evalAPSInt(BO_Sub, first, second);
+
+ assert(newRHS && "Invalid operation despite common type!");
+ rhs = nonloc::ConcreteInt(*newRHS);
+ lhs = nonloc::SymbolVal(symIntExpr->getLHS());
+ op = lop;
+ continue;
+ }
+ }
+
+ // Otherwise, make a SymIntExpr out of the expression.
+ return MakeSymIntVal(symIntExpr, op, *RHSValue, resultTy);
+ }
+ }
+
+ // Does the symbolic expression simplify to a constant?
+ // If so, "fold" the constant by setting 'lhs' to a ConcreteInt
+ // and try again.
+ SVal simplifiedLhs = simplifySVal(state, lhs);
+ if (simplifiedLhs != lhs)
+ if (auto simplifiedLhsAsNonLoc = simplifiedLhs.getAs<NonLoc>()) {
+ lhs = *simplifiedLhsAsNonLoc;
+ continue;
+ }
+
+ // Is the RHS a constant?
+ if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs))
+ return MakeSymIntVal(Sym, op, *RHSValue, resultTy);
+
+ if (Optional<NonLoc> V = tryRearrange(state, op, lhs, rhs, resultTy))
+ return *V;
+
+ // Give up -- this is not a symbolic expression we can handle.
+ return makeSymExprValNN(op, InputLHS, InputRHS, resultTy);
+ }
+ }
+ }
+}
+
+static SVal evalBinOpFieldRegionFieldRegion(const FieldRegion *LeftFR,
+ const FieldRegion *RightFR,
+ BinaryOperator::Opcode op,
+ QualType resultTy,
+ SimpleSValBuilder &SVB) {
+ // Only comparisons are meaningful here!
+ if (!BinaryOperator::isComparisonOp(op))
+ return UnknownVal();
+
+ // Next, see if the two FRs have the same super-region.
+ // FIXME: This doesn't handle casts yet, and simply stripping the casts
+ // doesn't help.
+ if (LeftFR->getSuperRegion() != RightFR->getSuperRegion())
+ return UnknownVal();
+
+ const FieldDecl *LeftFD = LeftFR->getDecl();
+ const FieldDecl *RightFD = RightFR->getDecl();
+ const RecordDecl *RD = LeftFD->getParent();
+
+ // Make sure the two FRs are from the same kind of record. Just in case!
+ // FIXME: This is probably where inheritance would be a problem.
+ if (RD != RightFD->getParent())
+ return UnknownVal();
+
+ // We know for sure that the two fields are not the same, since that
+ // would have given us the same SVal.
+ if (op == BO_EQ)
+ return SVB.makeTruthVal(false, resultTy);
+ if (op == BO_NE)
+ return SVB.makeTruthVal(true, resultTy);
+
+ // Iterate through the fields and see which one comes first.
+ // [C99 6.7.2.1.13] "Within a structure object, the non-bit-field
+ // members and the units in which bit-fields reside have addresses that
+ // increase in the order in which they are declared."
+ bool leftFirst = (op == BO_LT || op == BO_LE);
+ for (const auto *I : RD->fields()) {
+ if (I == LeftFD)
+ return SVB.makeTruthVal(leftFirst, resultTy);
+ if (I == RightFD)
+ return SVB.makeTruthVal(!leftFirst, resultTy);
+ }
+
+ llvm_unreachable("Fields not found in parent record's definition");
+}
+
+// FIXME: all this logic will change if/when we have MemRegion::getLocation().
+SVal SimpleSValBuilder::evalBinOpLL(ProgramStateRef state,
+ BinaryOperator::Opcode op,
+ Loc lhs, Loc rhs,
+ QualType resultTy) {
+ // Only comparisons and subtractions are valid operations on two pointers.
+ // See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15].
+ // However, if a pointer is casted to an integer, evalBinOpNN may end up
+ // calling this function with another operation (PR7527). We don't attempt to
+ // model this for now, but it could be useful, particularly when the
+ // "location" is actually an integer value that's been passed through a void*.
+ if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub))
+ return UnknownVal();
+
+ // Special cases for when both sides are identical.
+ if (lhs == rhs) {
+ switch (op) {
+ default:
+ llvm_unreachable("Unimplemented operation for two identical values");
+ case BO_Sub:
+ return makeZeroVal(resultTy);
+ case BO_EQ:
+ case BO_LE:
+ case BO_GE:
+ return makeTruthVal(true, resultTy);
+ case BO_NE:
+ case BO_LT:
+ case BO_GT:
+ return makeTruthVal(false, resultTy);
+ }
+ }
+
+ switch (lhs.getSubKind()) {
+ default:
+ llvm_unreachable("Ordering not implemented for this Loc.");
+
+ case loc::GotoLabelKind:
+ // The only thing we know about labels is that they're non-null.
+ if (rhs.isZeroConstant()) {
+ switch (op) {
+ default:
+ break;
+ case BO_Sub:
+ return evalCastFromLoc(lhs, resultTy);
+ case BO_EQ:
+ case BO_LE:
+ case BO_LT:
+ return makeTruthVal(false, resultTy);
+ case BO_NE:
+ case BO_GT:
+ case BO_GE:
+ return makeTruthVal(true, resultTy);
+ }
+ }
+ // There may be two labels for the same location, and a function region may
+ // have the same address as a label at the start of the function (depending
+ // on the ABI).
+ // FIXME: we can probably do a comparison against other MemRegions, though.
+ // FIXME: is there a way to tell if two labels refer to the same location?
+ return UnknownVal();
+
+ case loc::ConcreteIntKind: {
+ // If one of the operands is a symbol and the other is a constant,
+ // build an expression for use by the constraint manager.
+ if (SymbolRef rSym = rhs.getAsLocSymbol()) {
+ // We can only build expressions with symbols on the left,
+ // so we need a reversible operator.
+ if (!BinaryOperator::isComparisonOp(op) || op == BO_Cmp)
+ return UnknownVal();
+
+ const llvm::APSInt &lVal = lhs.castAs<loc::ConcreteInt>().getValue();
+ op = BinaryOperator::reverseComparisonOp(op);
+ return makeNonLoc(rSym, op, lVal, resultTy);
+ }
+
+ // If both operands are constants, just perform the operation.
+ if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) {
+ SVal ResultVal =
+ lhs.castAs<loc::ConcreteInt>().evalBinOp(BasicVals, op, *rInt);
+ if (Optional<NonLoc> Result = ResultVal.getAs<NonLoc>())
+ return evalCastFromNonLoc(*Result, resultTy);
+
+ assert(!ResultVal.getAs<Loc>() && "Loc-Loc ops should not produce Locs");
+ return UnknownVal();
+ }
+
+ // Special case comparisons against NULL.
+ // This must come after the test if the RHS is a symbol, which is used to
+ // build constraints. The address of any non-symbolic region is guaranteed
+ // to be non-NULL, as is any label.
+ assert(rhs.getAs<loc::MemRegionVal>() || rhs.getAs<loc::GotoLabel>());
+ if (lhs.isZeroConstant()) {
+ switch (op) {
+ default:
+ break;
+ case BO_EQ:
+ case BO_GT:
+ case BO_GE:
+ return makeTruthVal(false, resultTy);
+ case BO_NE:
+ case BO_LT:
+ case BO_LE:
+ return makeTruthVal(true, resultTy);
+ }
+ }
+
+ // Comparing an arbitrary integer to a region or label address is
+ // completely unknowable.
+ return UnknownVal();
+ }
+ case loc::MemRegionValKind: {
+ if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) {
+ // If one of the operands is a symbol and the other is a constant,
+ // build an expression for use by the constraint manager.
+ if (SymbolRef lSym = lhs.getAsLocSymbol(true)) {
+ if (BinaryOperator::isComparisonOp(op))
+ return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy);
+ return UnknownVal();
+ }
+ // Special case comparisons to NULL.
+ // This must come after the test if the LHS is a symbol, which is used to
+ // build constraints. The address of any non-symbolic region is guaranteed
+ // to be non-NULL.
+ if (rInt->isZeroConstant()) {
+ if (op == BO_Sub)
+ return evalCastFromLoc(lhs, resultTy);
+
+ if (BinaryOperator::isComparisonOp(op)) {
+ QualType boolType = getContext().BoolTy;
+ NonLoc l = evalCastFromLoc(lhs, boolType).castAs<NonLoc>();
+ NonLoc r = makeTruthVal(false, boolType).castAs<NonLoc>();
+ return evalBinOpNN(state, op, l, r, resultTy);
+ }
+ }
+
+ // Comparing a region to an arbitrary integer is completely unknowable.
+ return UnknownVal();
+ }
+
+ // Get both values as regions, if possible.
+ const MemRegion *LeftMR = lhs.getAsRegion();
+ assert(LeftMR && "MemRegionValKind SVal doesn't have a region!");
+
+ const MemRegion *RightMR = rhs.getAsRegion();
+ if (!RightMR)
+ // The RHS is probably a label, which in theory could address a region.
+ // FIXME: we can probably make a more useful statement about non-code
+ // regions, though.
+ return UnknownVal();
+
+ const MemRegion *LeftBase = LeftMR->getBaseRegion();
+ const MemRegion *RightBase = RightMR->getBaseRegion();
+ const MemSpaceRegion *LeftMS = LeftBase->getMemorySpace();
+ const MemSpaceRegion *RightMS = RightBase->getMemorySpace();
+ const MemSpaceRegion *UnknownMS = MemMgr.getUnknownRegion();
+
+ // If the two regions are from different known memory spaces they cannot be
+ // equal. Also, assume that no symbolic region (whose memory space is
+ // unknown) is on the stack.
+ if (LeftMS != RightMS &&
+ ((LeftMS != UnknownMS && RightMS != UnknownMS) ||
+ (isa<StackSpaceRegion>(LeftMS) || isa<StackSpaceRegion>(RightMS)))) {
+ switch (op) {
+ default:
+ return UnknownVal();
+ case BO_EQ:
+ return makeTruthVal(false, resultTy);
+ case BO_NE:
+ return makeTruthVal(true, resultTy);
+ }
+ }
+
+ // If both values wrap regions, see if they're from different base regions.
+ // Note, heap base symbolic regions are assumed to not alias with
+ // each other; for example, we assume that malloc returns different address
+ // on each invocation.
+ // FIXME: ObjC object pointers always reside on the heap, but currently
+ // we treat their memory space as unknown, because symbolic pointers
+ // to ObjC objects may alias. There should be a way to construct
+ // possibly-aliasing heap-based regions. For instance, MacOSXApiChecker
+ // guesses memory space for ObjC object pointers manually instead of
+ // relying on us.
+ if (LeftBase != RightBase &&
+ ((!isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) ||
+ (isa<HeapSpaceRegion>(LeftMS) || isa<HeapSpaceRegion>(RightMS))) ){
+ switch (op) {
+ default:
+ return UnknownVal();
+ case BO_EQ:
+ return makeTruthVal(false, resultTy);
+ case BO_NE:
+ return makeTruthVal(true, resultTy);
+ }
+ }
+
+ // Handle special cases for when both regions are element regions.
+ const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR);
+ const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR);
+ if (RightER && LeftER) {
+ // Next, see if the two ERs have the same super-region and matching types.
+ // FIXME: This should do something useful even if the types don't match,
+ // though if both indexes are constant the RegionRawOffset path will
+ // give the correct answer.
+ if (LeftER->getSuperRegion() == RightER->getSuperRegion() &&
+ LeftER->getElementType() == RightER->getElementType()) {
+ // Get the left index and cast it to the correct type.
+ // If the index is unknown or undefined, bail out here.
+ SVal LeftIndexVal = LeftER->getIndex();
+ Optional<NonLoc> LeftIndex = LeftIndexVal.getAs<NonLoc>();
+ if (!LeftIndex)
+ return UnknownVal();
+ LeftIndexVal = evalCastFromNonLoc(*LeftIndex, ArrayIndexTy);
+ LeftIndex = LeftIndexVal.getAs<NonLoc>();
+ if (!LeftIndex)
+ return UnknownVal();
+
+ // Do the same for the right index.
+ SVal RightIndexVal = RightER->getIndex();
+ Optional<NonLoc> RightIndex = RightIndexVal.getAs<NonLoc>();
+ if (!RightIndex)
+ return UnknownVal();
+ RightIndexVal = evalCastFromNonLoc(*RightIndex, ArrayIndexTy);
+ RightIndex = RightIndexVal.getAs<NonLoc>();
+ if (!RightIndex)
+ return UnknownVal();
+
+ // Actually perform the operation.
+ // evalBinOpNN expects the two indexes to already be the right type.
+ return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy);
+ }
+ }
+
+ // Special handling of the FieldRegions, even with symbolic offsets.
+ const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR);
+ const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR);
+ if (RightFR && LeftFR) {
+ SVal R = evalBinOpFieldRegionFieldRegion(LeftFR, RightFR, op, resultTy,
+ *this);
+ if (!R.isUnknown())
+ return R;
+ }
+
+ // Compare the regions using the raw offsets.
+ RegionOffset LeftOffset = LeftMR->getAsOffset();
+ RegionOffset RightOffset = RightMR->getAsOffset();
+
+ if (LeftOffset.getRegion() != nullptr &&
+ LeftOffset.getRegion() == RightOffset.getRegion() &&
+ !LeftOffset.hasSymbolicOffset() && !RightOffset.hasSymbolicOffset()) {
+ int64_t left = LeftOffset.getOffset();
+ int64_t right = RightOffset.getOffset();
+
+ switch (op) {
+ default:
+ return UnknownVal();
+ case BO_LT:
+ return makeTruthVal(left < right, resultTy);
+ case BO_GT:
+ return makeTruthVal(left > right, resultTy);
+ case BO_LE:
+ return makeTruthVal(left <= right, resultTy);
+ case BO_GE:
+ return makeTruthVal(left >= right, resultTy);
+ case BO_EQ:
+ return makeTruthVal(left == right, resultTy);
+ case BO_NE:
+ return makeTruthVal(left != right, resultTy);
+ }
+ }
+
+ // At this point we're not going to get a good answer, but we can try
+ // conjuring an expression instead.
+ SymbolRef LHSSym = lhs.getAsLocSymbol();
+ SymbolRef RHSSym = rhs.getAsLocSymbol();
+ if (LHSSym && RHSSym)
+ return makeNonLoc(LHSSym, op, RHSSym, resultTy);
+
+ // If we get here, we have no way of comparing the regions.
+ return UnknownVal();
+ }
+ }
+}
+
+SVal SimpleSValBuilder::evalBinOpLN(ProgramStateRef state,
+ BinaryOperator::Opcode op,
+ Loc lhs, NonLoc rhs, QualType resultTy) {
+ if (op >= BO_PtrMemD && op <= BO_PtrMemI) {
+ if (auto PTMSV = rhs.getAs<nonloc::PointerToMember>()) {
+ if (PTMSV->isNullMemberPointer())
+ return UndefinedVal();
+ if (const FieldDecl *FD = PTMSV->getDeclAs<FieldDecl>()) {
+ SVal Result = lhs;
+
+ for (const auto &I : *PTMSV)
+ Result = StateMgr.getStoreManager().evalDerivedToBase(
+ Result, I->getType(),I->isVirtual());
+ return state->getLValue(FD, Result);
+ }
+ }
+
+ return rhs;
+ }
+
+ assert(!BinaryOperator::isComparisonOp(op) &&
+ "arguments to comparison ops must be of the same type");
+
+ // Special case: rhs is a zero constant.
+ if (rhs.isZeroConstant())
+ return lhs;
+
+ // Perserve the null pointer so that it can be found by the DerefChecker.
+ if (lhs.isZeroConstant())
+ return lhs;
+
+ // We are dealing with pointer arithmetic.
+
+ // Handle pointer arithmetic on constant values.
+ if (Optional<nonloc::ConcreteInt> rhsInt = rhs.getAs<nonloc::ConcreteInt>()) {
+ if (Optional<loc::ConcreteInt> lhsInt = lhs.getAs<loc::ConcreteInt>()) {
+ const llvm::APSInt &leftI = lhsInt->getValue();
+ assert(leftI.isUnsigned());
+ llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true);
+
+ // Convert the bitwidth of rightI. This should deal with overflow
+ // since we are dealing with concrete values.
+ rightI = rightI.extOrTrunc(leftI.getBitWidth());
+
+ // Offset the increment by the pointer size.
+ llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true);
+ QualType pointeeType = resultTy->getPointeeType();
+ Multiplicand = getContext().getTypeSizeInChars(pointeeType).getQuantity();
+ rightI *= Multiplicand;
+
+ // Compute the adjusted pointer.
+ switch (op) {
+ case BO_Add:
+ rightI = leftI + rightI;
+ break;
+ case BO_Sub:
+ rightI = leftI - rightI;
+ break;
+ default:
+ llvm_unreachable("Invalid pointer arithmetic operation");
+ }
+ return loc::ConcreteInt(getBasicValueFactory().getValue(rightI));
+ }
+ }
+
+ // Handle cases where 'lhs' is a region.
+ if (const MemRegion *region = lhs.getAsRegion()) {
+ rhs = convertToArrayIndex(rhs).castAs<NonLoc>();
+ SVal index = UnknownVal();
+ const SubRegion *superR = nullptr;
+ // We need to know the type of the pointer in order to add an integer to it.
+ // Depending on the type, different amount of bytes is added.
+ QualType elementType;
+
+ if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) {
+ assert(op == BO_Add || op == BO_Sub);
+ index = evalBinOpNN(state, op, elemReg->getIndex(), rhs,
+ getArrayIndexType());
+ superR = cast<SubRegion>(elemReg->getSuperRegion());
+ elementType = elemReg->getElementType();
+ }
+ else if (isa<SubRegion>(region)) {
+ assert(op == BO_Add || op == BO_Sub);
+ index = (op == BO_Add) ? rhs : evalMinus(rhs);
+ superR = cast<SubRegion>(region);
+ // TODO: Is this actually reliable? Maybe improving our MemRegion
+ // hierarchy to provide typed regions for all non-void pointers would be
+ // better. For instance, we cannot extend this towards LocAsInteger
+ // operations, where result type of the expression is integer.
+ if (resultTy->isAnyPointerType())
+ elementType = resultTy->getPointeeType();
+ }
+
+ // Represent arithmetic on void pointers as arithmetic on char pointers.
+ // It is fine when a TypedValueRegion of char value type represents
+ // a void pointer. Note that arithmetic on void pointers is a GCC extension.
+ if (elementType->isVoidType())
+ elementType = getContext().CharTy;
+
+ if (Optional<NonLoc> indexV = index.getAs<NonLoc>()) {
+ return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV,
+ superR, getContext()));
+ }
+ }
+ return UnknownVal();
+}
+
+const llvm::APSInt *SimpleSValBuilder::getKnownValue(ProgramStateRef state,
+ SVal V) {
+ V = simplifySVal(state, V);
+ if (V.isUnknownOrUndef())
+ return nullptr;
+
+ if (Optional<loc::ConcreteInt> X = V.getAs<loc::ConcreteInt>())
+ return &X->getValue();
+
+ if (Optional<nonloc::ConcreteInt> X = V.getAs<nonloc::ConcreteInt>())
+ return &X->getValue();
+
+ if (SymbolRef Sym = V.getAsSymbol())
+ return state->getConstraintManager().getSymVal(state, Sym);
+
+ // FIXME: Add support for SymExprs.
+ return nullptr;
+}
+
+SVal SimpleSValBuilder::simplifySVal(ProgramStateRef State, SVal V) {
+ // For now, this function tries to constant-fold symbols inside a
+ // nonloc::SymbolVal, and does nothing else. More simplifications should
+ // be possible, such as constant-folding an index in an ElementRegion.
+
+ class Simplifier : public FullSValVisitor<Simplifier, SVal> {
+ ProgramStateRef State;
+ SValBuilder &SVB;
+
+ // Cache results for the lifetime of the Simplifier. Results change every
+ // time new constraints are added to the program state, which is the whole
+ // point of simplifying, and for that very reason it's pointless to maintain
+ // the same cache for the duration of the whole analysis.
+ llvm::DenseMap<SymbolRef, SVal> Cached;
+
+ static bool isUnchanged(SymbolRef Sym, SVal Val) {
+ return Sym == Val.getAsSymbol();
+ }
+
+ SVal cache(SymbolRef Sym, SVal V) {
+ Cached[Sym] = V;
+ return V;
+ }
+
+ SVal skip(SymbolRef Sym) {
+ return cache(Sym, SVB.makeSymbolVal(Sym));
+ }
+
+ public:
+ Simplifier(ProgramStateRef State)
+ : State(State), SVB(State->getStateManager().getSValBuilder()) {}
+
+ SVal VisitSymbolData(const SymbolData *S) {
+ // No cache here.
+ if (const llvm::APSInt *I =
+ SVB.getKnownValue(State, SVB.makeSymbolVal(S)))
+ return Loc::isLocType(S->getType()) ? (SVal)SVB.makeIntLocVal(*I)
+ : (SVal)SVB.makeIntVal(*I);
+ return SVB.makeSymbolVal(S);
+ }
+
+ // TODO: Support SymbolCast. Support IntSymExpr when/if we actually
+ // start producing them.
+
+ SVal VisitSymIntExpr(const SymIntExpr *S) {
+ auto I = Cached.find(S);
+ if (I != Cached.end())
+ return I->second;
+
+ SVal LHS = Visit(S->getLHS());
+ if (isUnchanged(S->getLHS(), LHS))
+ return skip(S);
+
+ SVal RHS;
+ // By looking at the APSInt in the right-hand side of S, we cannot
+ // figure out if it should be treated as a Loc or as a NonLoc.
+ // So make our guess by recalling that we cannot multiply pointers
+ // or compare a pointer to an integer.
+ if (Loc::isLocType(S->getLHS()->getType()) &&
+ BinaryOperator::isComparisonOp(S->getOpcode())) {
+ // The usual conversion of $sym to &SymRegion{$sym}, as they have
+ // the same meaning for Loc-type symbols, but the latter form
+ // is preferred in SVal computations for being Loc itself.
+ if (SymbolRef Sym = LHS.getAsSymbol()) {
+ assert(Loc::isLocType(Sym->getType()));
+ LHS = SVB.makeLoc(Sym);
+ }
+ RHS = SVB.makeIntLocVal(S->getRHS());
+ } else {
+ RHS = SVB.makeIntVal(S->getRHS());
+ }
+
+ return cache(
+ S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType()));
+ }
+
+ SVal VisitSymSymExpr(const SymSymExpr *S) {
+ auto I = Cached.find(S);
+ if (I != Cached.end())
+ return I->second;
+
+ // For now don't try to simplify mixed Loc/NonLoc expressions
+ // because they often appear from LocAsInteger operations
+ // and we don't know how to combine a LocAsInteger
+ // with a concrete value.
+ if (Loc::isLocType(S->getLHS()->getType()) !=
+ Loc::isLocType(S->getRHS()->getType()))
+ return skip(S);
+
+ SVal LHS = Visit(S->getLHS());
+ SVal RHS = Visit(S->getRHS());
+ if (isUnchanged(S->getLHS(), LHS) && isUnchanged(S->getRHS(), RHS))
+ return skip(S);
+
+ return cache(
+ S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType()));
+ }
+
+ SVal VisitSymExpr(SymbolRef S) { return nonloc::SymbolVal(S); }
+
+ SVal VisitMemRegion(const MemRegion *R) { return loc::MemRegionVal(R); }
+
+ SVal VisitNonLocSymbolVal(nonloc::SymbolVal V) {
+ // Simplification is much more costly than computing complexity.
+ // For high complexity, it may be not worth it.
+ return Visit(V.getSymbol());
+ }
+
+ SVal VisitSVal(SVal V) { return V; }
+ };
+
+ // A crude way of preventing this function from calling itself from evalBinOp.
+ static bool isReentering = false;
+ if (isReentering)
+ return V;
+
+ isReentering = true;
+ SVal SimplifiedV = Simplifier(State).Visit(V);
+ isReentering = false;
+
+ return SimplifiedV;
+}