diff options
author | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 |
---|---|---|
committer | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 |
commit | 0b57cec536236d46e3dba9bd041533462f33dbb7 (patch) | |
tree | 56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm-project/llvm/lib/Analysis/BranchProbabilityInfo.cpp | |
parent | 718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff) |
Notes
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Analysis/BranchProbabilityInfo.cpp')
-rw-r--r-- | contrib/llvm-project/llvm/lib/Analysis/BranchProbabilityInfo.cpp | 1044 |
1 files changed, 1044 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Analysis/BranchProbabilityInfo.cpp b/contrib/llvm-project/llvm/lib/Analysis/BranchProbabilityInfo.cpp new file mode 100644 index 000000000000..5eb95003f5d8 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Analysis/BranchProbabilityInfo.cpp @@ -0,0 +1,1044 @@ +//===- BranchProbabilityInfo.cpp - Branch Probability Analysis ------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// Loops should be simplified before this analysis. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/BranchProbabilityInfo.h" +#include "llvm/ADT/PostOrderIterator.h" +#include "llvm/ADT/SCCIterator.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/CFG.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/PassManager.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Value.h" +#include "llvm/Pass.h" +#include "llvm/Support/BranchProbability.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include <cassert> +#include <cstdint> +#include <iterator> +#include <utility> + +using namespace llvm; + +#define DEBUG_TYPE "branch-prob" + +static cl::opt<bool> PrintBranchProb( + "print-bpi", cl::init(false), cl::Hidden, + cl::desc("Print the branch probability info.")); + +cl::opt<std::string> PrintBranchProbFuncName( + "print-bpi-func-name", cl::Hidden, + cl::desc("The option to specify the name of the function " + "whose branch probability info is printed.")); + +INITIALIZE_PASS_BEGIN(BranchProbabilityInfoWrapperPass, "branch-prob", + "Branch Probability Analysis", false, true) +INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) +INITIALIZE_PASS_END(BranchProbabilityInfoWrapperPass, "branch-prob", + "Branch Probability Analysis", false, true) + +char BranchProbabilityInfoWrapperPass::ID = 0; + +// Weights are for internal use only. They are used by heuristics to help to +// estimate edges' probability. Example: +// +// Using "Loop Branch Heuristics" we predict weights of edges for the +// block BB2. +// ... +// | +// V +// BB1<-+ +// | | +// | | (Weight = 124) +// V | +// BB2--+ +// | +// | (Weight = 4) +// V +// BB3 +// +// Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875 +// Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125 +static const uint32_t LBH_TAKEN_WEIGHT = 124; +static const uint32_t LBH_NONTAKEN_WEIGHT = 4; +// Unlikely edges within a loop are half as likely as other edges +static const uint32_t LBH_UNLIKELY_WEIGHT = 62; + +/// Unreachable-terminating branch taken probability. +/// +/// This is the probability for a branch being taken to a block that terminates +/// (eventually) in unreachable. These are predicted as unlikely as possible. +/// All reachable probability will equally share the remaining part. +static const BranchProbability UR_TAKEN_PROB = BranchProbability::getRaw(1); + +/// Weight for a branch taken going into a cold block. +/// +/// This is the weight for a branch taken toward a block marked +/// cold. A block is marked cold if it's postdominated by a +/// block containing a call to a cold function. Cold functions +/// are those marked with attribute 'cold'. +static const uint32_t CC_TAKEN_WEIGHT = 4; + +/// Weight for a branch not-taken into a cold block. +/// +/// This is the weight for a branch not taken toward a block marked +/// cold. +static const uint32_t CC_NONTAKEN_WEIGHT = 64; + +static const uint32_t PH_TAKEN_WEIGHT = 20; +static const uint32_t PH_NONTAKEN_WEIGHT = 12; + +static const uint32_t ZH_TAKEN_WEIGHT = 20; +static const uint32_t ZH_NONTAKEN_WEIGHT = 12; + +static const uint32_t FPH_TAKEN_WEIGHT = 20; +static const uint32_t FPH_NONTAKEN_WEIGHT = 12; + +/// Invoke-terminating normal branch taken weight +/// +/// This is the weight for branching to the normal destination of an invoke +/// instruction. We expect this to happen most of the time. Set the weight to an +/// absurdly high value so that nested loops subsume it. +static const uint32_t IH_TAKEN_WEIGHT = 1024 * 1024 - 1; + +/// Invoke-terminating normal branch not-taken weight. +/// +/// This is the weight for branching to the unwind destination of an invoke +/// instruction. This is essentially never taken. +static const uint32_t IH_NONTAKEN_WEIGHT = 1; + +/// Add \p BB to PostDominatedByUnreachable set if applicable. +void +BranchProbabilityInfo::updatePostDominatedByUnreachable(const BasicBlock *BB) { + const Instruction *TI = BB->getTerminator(); + if (TI->getNumSuccessors() == 0) { + if (isa<UnreachableInst>(TI) || + // If this block is terminated by a call to + // @llvm.experimental.deoptimize then treat it like an unreachable since + // the @llvm.experimental.deoptimize call is expected to practically + // never execute. + BB->getTerminatingDeoptimizeCall()) + PostDominatedByUnreachable.insert(BB); + return; + } + + // If the terminator is an InvokeInst, check only the normal destination block + // as the unwind edge of InvokeInst is also very unlikely taken. + if (auto *II = dyn_cast<InvokeInst>(TI)) { + if (PostDominatedByUnreachable.count(II->getNormalDest())) + PostDominatedByUnreachable.insert(BB); + return; + } + + for (auto *I : successors(BB)) + // If any of successor is not post dominated then BB is also not. + if (!PostDominatedByUnreachable.count(I)) + return; + + PostDominatedByUnreachable.insert(BB); +} + +/// Add \p BB to PostDominatedByColdCall set if applicable. +void +BranchProbabilityInfo::updatePostDominatedByColdCall(const BasicBlock *BB) { + assert(!PostDominatedByColdCall.count(BB)); + const Instruction *TI = BB->getTerminator(); + if (TI->getNumSuccessors() == 0) + return; + + // If all of successor are post dominated then BB is also done. + if (llvm::all_of(successors(BB), [&](const BasicBlock *SuccBB) { + return PostDominatedByColdCall.count(SuccBB); + })) { + PostDominatedByColdCall.insert(BB); + return; + } + + // If the terminator is an InvokeInst, check only the normal destination + // block as the unwind edge of InvokeInst is also very unlikely taken. + if (auto *II = dyn_cast<InvokeInst>(TI)) + if (PostDominatedByColdCall.count(II->getNormalDest())) { + PostDominatedByColdCall.insert(BB); + return; + } + + // Otherwise, if the block itself contains a cold function, add it to the + // set of blocks post-dominated by a cold call. + for (auto &I : *BB) + if (const CallInst *CI = dyn_cast<CallInst>(&I)) + if (CI->hasFnAttr(Attribute::Cold)) { + PostDominatedByColdCall.insert(BB); + return; + } +} + +/// Calculate edge weights for successors lead to unreachable. +/// +/// Predict that a successor which leads necessarily to an +/// unreachable-terminated block as extremely unlikely. +bool BranchProbabilityInfo::calcUnreachableHeuristics(const BasicBlock *BB) { + const Instruction *TI = BB->getTerminator(); + (void) TI; + assert(TI->getNumSuccessors() > 1 && "expected more than one successor!"); + assert(!isa<InvokeInst>(TI) && + "Invokes should have already been handled by calcInvokeHeuristics"); + + SmallVector<unsigned, 4> UnreachableEdges; + SmallVector<unsigned, 4> ReachableEdges; + + for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) + if (PostDominatedByUnreachable.count(*I)) + UnreachableEdges.push_back(I.getSuccessorIndex()); + else + ReachableEdges.push_back(I.getSuccessorIndex()); + + // Skip probabilities if all were reachable. + if (UnreachableEdges.empty()) + return false; + + if (ReachableEdges.empty()) { + BranchProbability Prob(1, UnreachableEdges.size()); + for (unsigned SuccIdx : UnreachableEdges) + setEdgeProbability(BB, SuccIdx, Prob); + return true; + } + + auto UnreachableProb = UR_TAKEN_PROB; + auto ReachableProb = + (BranchProbability::getOne() - UR_TAKEN_PROB * UnreachableEdges.size()) / + ReachableEdges.size(); + + for (unsigned SuccIdx : UnreachableEdges) + setEdgeProbability(BB, SuccIdx, UnreachableProb); + for (unsigned SuccIdx : ReachableEdges) + setEdgeProbability(BB, SuccIdx, ReachableProb); + + return true; +} + +// Propagate existing explicit probabilities from either profile data or +// 'expect' intrinsic processing. Examine metadata against unreachable +// heuristic. The probability of the edge coming to unreachable block is +// set to min of metadata and unreachable heuristic. +bool BranchProbabilityInfo::calcMetadataWeights(const BasicBlock *BB) { + const Instruction *TI = BB->getTerminator(); + assert(TI->getNumSuccessors() > 1 && "expected more than one successor!"); + if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) || isa<IndirectBrInst>(TI))) + return false; + + MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); + if (!WeightsNode) + return false; + + // Check that the number of successors is manageable. + assert(TI->getNumSuccessors() < UINT32_MAX && "Too many successors"); + + // Ensure there are weights for all of the successors. Note that the first + // operand to the metadata node is a name, not a weight. + if (WeightsNode->getNumOperands() != TI->getNumSuccessors() + 1) + return false; + + // Build up the final weights that will be used in a temporary buffer. + // Compute the sum of all weights to later decide whether they need to + // be scaled to fit in 32 bits. + uint64_t WeightSum = 0; + SmallVector<uint32_t, 2> Weights; + SmallVector<unsigned, 2> UnreachableIdxs; + SmallVector<unsigned, 2> ReachableIdxs; + Weights.reserve(TI->getNumSuccessors()); + for (unsigned i = 1, e = WeightsNode->getNumOperands(); i != e; ++i) { + ConstantInt *Weight = + mdconst::dyn_extract<ConstantInt>(WeightsNode->getOperand(i)); + if (!Weight) + return false; + assert(Weight->getValue().getActiveBits() <= 32 && + "Too many bits for uint32_t"); + Weights.push_back(Weight->getZExtValue()); + WeightSum += Weights.back(); + if (PostDominatedByUnreachable.count(TI->getSuccessor(i - 1))) + UnreachableIdxs.push_back(i - 1); + else + ReachableIdxs.push_back(i - 1); + } + assert(Weights.size() == TI->getNumSuccessors() && "Checked above"); + + // If the sum of weights does not fit in 32 bits, scale every weight down + // accordingly. + uint64_t ScalingFactor = + (WeightSum > UINT32_MAX) ? WeightSum / UINT32_MAX + 1 : 1; + + if (ScalingFactor > 1) { + WeightSum = 0; + for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { + Weights[i] /= ScalingFactor; + WeightSum += Weights[i]; + } + } + assert(WeightSum <= UINT32_MAX && + "Expected weights to scale down to 32 bits"); + + if (WeightSum == 0 || ReachableIdxs.size() == 0) { + for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) + Weights[i] = 1; + WeightSum = TI->getNumSuccessors(); + } + + // Set the probability. + SmallVector<BranchProbability, 2> BP; + for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) + BP.push_back({ Weights[i], static_cast<uint32_t>(WeightSum) }); + + // Examine the metadata against unreachable heuristic. + // If the unreachable heuristic is more strong then we use it for this edge. + if (UnreachableIdxs.size() > 0 && ReachableIdxs.size() > 0) { + auto ToDistribute = BranchProbability::getZero(); + auto UnreachableProb = UR_TAKEN_PROB; + for (auto i : UnreachableIdxs) + if (UnreachableProb < BP[i]) { + ToDistribute += BP[i] - UnreachableProb; + BP[i] = UnreachableProb; + } + + // If we modified the probability of some edges then we must distribute + // the difference between reachable blocks. + if (ToDistribute > BranchProbability::getZero()) { + BranchProbability PerEdge = ToDistribute / ReachableIdxs.size(); + for (auto i : ReachableIdxs) + BP[i] += PerEdge; + } + } + + for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) + setEdgeProbability(BB, i, BP[i]); + + return true; +} + +/// Calculate edge weights for edges leading to cold blocks. +/// +/// A cold block is one post-dominated by a block with a call to a +/// cold function. Those edges are unlikely to be taken, so we give +/// them relatively low weight. +/// +/// Return true if we could compute the weights for cold edges. +/// Return false, otherwise. +bool BranchProbabilityInfo::calcColdCallHeuristics(const BasicBlock *BB) { + const Instruction *TI = BB->getTerminator(); + (void) TI; + assert(TI->getNumSuccessors() > 1 && "expected more than one successor!"); + assert(!isa<InvokeInst>(TI) && + "Invokes should have already been handled by calcInvokeHeuristics"); + + // Determine which successors are post-dominated by a cold block. + SmallVector<unsigned, 4> ColdEdges; + SmallVector<unsigned, 4> NormalEdges; + for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) + if (PostDominatedByColdCall.count(*I)) + ColdEdges.push_back(I.getSuccessorIndex()); + else + NormalEdges.push_back(I.getSuccessorIndex()); + + // Skip probabilities if no cold edges. + if (ColdEdges.empty()) + return false; + + if (NormalEdges.empty()) { + BranchProbability Prob(1, ColdEdges.size()); + for (unsigned SuccIdx : ColdEdges) + setEdgeProbability(BB, SuccIdx, Prob); + return true; + } + + auto ColdProb = BranchProbability::getBranchProbability( + CC_TAKEN_WEIGHT, + (CC_TAKEN_WEIGHT + CC_NONTAKEN_WEIGHT) * uint64_t(ColdEdges.size())); + auto NormalProb = BranchProbability::getBranchProbability( + CC_NONTAKEN_WEIGHT, + (CC_TAKEN_WEIGHT + CC_NONTAKEN_WEIGHT) * uint64_t(NormalEdges.size())); + + for (unsigned SuccIdx : ColdEdges) + setEdgeProbability(BB, SuccIdx, ColdProb); + for (unsigned SuccIdx : NormalEdges) + setEdgeProbability(BB, SuccIdx, NormalProb); + + return true; +} + +// Calculate Edge Weights using "Pointer Heuristics". Predict a comparison +// between two pointer or pointer and NULL will fail. +bool BranchProbabilityInfo::calcPointerHeuristics(const BasicBlock *BB) { + const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); + if (!BI || !BI->isConditional()) + return false; + + Value *Cond = BI->getCondition(); + ICmpInst *CI = dyn_cast<ICmpInst>(Cond); + if (!CI || !CI->isEquality()) + return false; + + Value *LHS = CI->getOperand(0); + + if (!LHS->getType()->isPointerTy()) + return false; + + assert(CI->getOperand(1)->getType()->isPointerTy()); + + // p != 0 -> isProb = true + // p == 0 -> isProb = false + // p != q -> isProb = true + // p == q -> isProb = false; + unsigned TakenIdx = 0, NonTakenIdx = 1; + bool isProb = CI->getPredicate() == ICmpInst::ICMP_NE; + if (!isProb) + std::swap(TakenIdx, NonTakenIdx); + + BranchProbability TakenProb(PH_TAKEN_WEIGHT, + PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT); + setEdgeProbability(BB, TakenIdx, TakenProb); + setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl()); + return true; +} + +static int getSCCNum(const BasicBlock *BB, + const BranchProbabilityInfo::SccInfo &SccI) { + auto SccIt = SccI.SccNums.find(BB); + if (SccIt == SccI.SccNums.end()) + return -1; + return SccIt->second; +} + +// Consider any block that is an entry point to the SCC as a header. +static bool isSCCHeader(const BasicBlock *BB, int SccNum, + BranchProbabilityInfo::SccInfo &SccI) { + assert(getSCCNum(BB, SccI) == SccNum); + + // Lazily compute the set of headers for a given SCC and cache the results + // in the SccHeaderMap. + if (SccI.SccHeaders.size() <= static_cast<unsigned>(SccNum)) + SccI.SccHeaders.resize(SccNum + 1); + auto &HeaderMap = SccI.SccHeaders[SccNum]; + bool Inserted; + BranchProbabilityInfo::SccHeaderMap::iterator HeaderMapIt; + std::tie(HeaderMapIt, Inserted) = HeaderMap.insert(std::make_pair(BB, false)); + if (Inserted) { + bool IsHeader = llvm::any_of(make_range(pred_begin(BB), pred_end(BB)), + [&](const BasicBlock *Pred) { + return getSCCNum(Pred, SccI) != SccNum; + }); + HeaderMapIt->second = IsHeader; + return IsHeader; + } else + return HeaderMapIt->second; +} + +// Compute the unlikely successors to the block BB in the loop L, specifically +// those that are unlikely because this is a loop, and add them to the +// UnlikelyBlocks set. +static void +computeUnlikelySuccessors(const BasicBlock *BB, Loop *L, + SmallPtrSetImpl<const BasicBlock*> &UnlikelyBlocks) { + // Sometimes in a loop we have a branch whose condition is made false by + // taking it. This is typically something like + // int n = 0; + // while (...) { + // if (++n >= MAX) { + // n = 0; + // } + // } + // In this sort of situation taking the branch means that at the very least it + // won't be taken again in the next iteration of the loop, so we should + // consider it less likely than a typical branch. + // + // We detect this by looking back through the graph of PHI nodes that sets the + // value that the condition depends on, and seeing if we can reach a successor + // block which can be determined to make the condition false. + // + // FIXME: We currently consider unlikely blocks to be half as likely as other + // blocks, but if we consider the example above the likelyhood is actually + // 1/MAX. We could therefore be more precise in how unlikely we consider + // blocks to be, but it would require more careful examination of the form + // of the comparison expression. + const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); + if (!BI || !BI->isConditional()) + return; + + // Check if the branch is based on an instruction compared with a constant + CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); + if (!CI || !isa<Instruction>(CI->getOperand(0)) || + !isa<Constant>(CI->getOperand(1))) + return; + + // Either the instruction must be a PHI, or a chain of operations involving + // constants that ends in a PHI which we can then collapse into a single value + // if the PHI value is known. + Instruction *CmpLHS = dyn_cast<Instruction>(CI->getOperand(0)); + PHINode *CmpPHI = dyn_cast<PHINode>(CmpLHS); + Constant *CmpConst = dyn_cast<Constant>(CI->getOperand(1)); + // Collect the instructions until we hit a PHI + SmallVector<BinaryOperator *, 1> InstChain; + while (!CmpPHI && CmpLHS && isa<BinaryOperator>(CmpLHS) && + isa<Constant>(CmpLHS->getOperand(1))) { + // Stop if the chain extends outside of the loop + if (!L->contains(CmpLHS)) + return; + InstChain.push_back(cast<BinaryOperator>(CmpLHS)); + CmpLHS = dyn_cast<Instruction>(CmpLHS->getOperand(0)); + if (CmpLHS) + CmpPHI = dyn_cast<PHINode>(CmpLHS); + } + if (!CmpPHI || !L->contains(CmpPHI)) + return; + + // Trace the phi node to find all values that come from successors of BB + SmallPtrSet<PHINode*, 8> VisitedInsts; + SmallVector<PHINode*, 8> WorkList; + WorkList.push_back(CmpPHI); + VisitedInsts.insert(CmpPHI); + while (!WorkList.empty()) { + PHINode *P = WorkList.back(); + WorkList.pop_back(); + for (BasicBlock *B : P->blocks()) { + // Skip blocks that aren't part of the loop + if (!L->contains(B)) + continue; + Value *V = P->getIncomingValueForBlock(B); + // If the source is a PHI add it to the work list if we haven't + // already visited it. + if (PHINode *PN = dyn_cast<PHINode>(V)) { + if (VisitedInsts.insert(PN).second) + WorkList.push_back(PN); + continue; + } + // If this incoming value is a constant and B is a successor of BB, then + // we can constant-evaluate the compare to see if it makes the branch be + // taken or not. + Constant *CmpLHSConst = dyn_cast<Constant>(V); + if (!CmpLHSConst || + std::find(succ_begin(BB), succ_end(BB), B) == succ_end(BB)) + continue; + // First collapse InstChain + for (Instruction *I : llvm::reverse(InstChain)) { + CmpLHSConst = ConstantExpr::get(I->getOpcode(), CmpLHSConst, + cast<Constant>(I->getOperand(1)), true); + if (!CmpLHSConst) + break; + } + if (!CmpLHSConst) + continue; + // Now constant-evaluate the compare + Constant *Result = ConstantExpr::getCompare(CI->getPredicate(), + CmpLHSConst, CmpConst, true); + // If the result means we don't branch to the block then that block is + // unlikely. + if (Result && + ((Result->isZeroValue() && B == BI->getSuccessor(0)) || + (Result->isOneValue() && B == BI->getSuccessor(1)))) + UnlikelyBlocks.insert(B); + } + } +} + +// Calculate Edge Weights using "Loop Branch Heuristics". Predict backedges +// as taken, exiting edges as not-taken. +bool BranchProbabilityInfo::calcLoopBranchHeuristics(const BasicBlock *BB, + const LoopInfo &LI, + SccInfo &SccI) { + int SccNum; + Loop *L = LI.getLoopFor(BB); + if (!L) { + SccNum = getSCCNum(BB, SccI); + if (SccNum < 0) + return false; + } + + SmallPtrSet<const BasicBlock*, 8> UnlikelyBlocks; + if (L) + computeUnlikelySuccessors(BB, L, UnlikelyBlocks); + + SmallVector<unsigned, 8> BackEdges; + SmallVector<unsigned, 8> ExitingEdges; + SmallVector<unsigned, 8> InEdges; // Edges from header to the loop. + SmallVector<unsigned, 8> UnlikelyEdges; + + for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) { + // Use LoopInfo if we have it, otherwise fall-back to SCC info to catch + // irreducible loops. + if (L) { + if (UnlikelyBlocks.count(*I) != 0) + UnlikelyEdges.push_back(I.getSuccessorIndex()); + else if (!L->contains(*I)) + ExitingEdges.push_back(I.getSuccessorIndex()); + else if (L->getHeader() == *I) + BackEdges.push_back(I.getSuccessorIndex()); + else + InEdges.push_back(I.getSuccessorIndex()); + } else { + if (getSCCNum(*I, SccI) != SccNum) + ExitingEdges.push_back(I.getSuccessorIndex()); + else if (isSCCHeader(*I, SccNum, SccI)) + BackEdges.push_back(I.getSuccessorIndex()); + else + InEdges.push_back(I.getSuccessorIndex()); + } + } + + if (BackEdges.empty() && ExitingEdges.empty() && UnlikelyEdges.empty()) + return false; + + // Collect the sum of probabilities of back-edges/in-edges/exiting-edges, and + // normalize them so that they sum up to one. + unsigned Denom = (BackEdges.empty() ? 0 : LBH_TAKEN_WEIGHT) + + (InEdges.empty() ? 0 : LBH_TAKEN_WEIGHT) + + (UnlikelyEdges.empty() ? 0 : LBH_UNLIKELY_WEIGHT) + + (ExitingEdges.empty() ? 0 : LBH_NONTAKEN_WEIGHT); + + if (uint32_t numBackEdges = BackEdges.size()) { + BranchProbability TakenProb = BranchProbability(LBH_TAKEN_WEIGHT, Denom); + auto Prob = TakenProb / numBackEdges; + for (unsigned SuccIdx : BackEdges) + setEdgeProbability(BB, SuccIdx, Prob); + } + + if (uint32_t numInEdges = InEdges.size()) { + BranchProbability TakenProb = BranchProbability(LBH_TAKEN_WEIGHT, Denom); + auto Prob = TakenProb / numInEdges; + for (unsigned SuccIdx : InEdges) + setEdgeProbability(BB, SuccIdx, Prob); + } + + if (uint32_t numExitingEdges = ExitingEdges.size()) { + BranchProbability NotTakenProb = BranchProbability(LBH_NONTAKEN_WEIGHT, + Denom); + auto Prob = NotTakenProb / numExitingEdges; + for (unsigned SuccIdx : ExitingEdges) + setEdgeProbability(BB, SuccIdx, Prob); + } + + if (uint32_t numUnlikelyEdges = UnlikelyEdges.size()) { + BranchProbability UnlikelyProb = BranchProbability(LBH_UNLIKELY_WEIGHT, + Denom); + auto Prob = UnlikelyProb / numUnlikelyEdges; + for (unsigned SuccIdx : UnlikelyEdges) + setEdgeProbability(BB, SuccIdx, Prob); + } + + return true; +} + +bool BranchProbabilityInfo::calcZeroHeuristics(const BasicBlock *BB, + const TargetLibraryInfo *TLI) { + const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); + if (!BI || !BI->isConditional()) + return false; + + Value *Cond = BI->getCondition(); + ICmpInst *CI = dyn_cast<ICmpInst>(Cond); + if (!CI) + return false; + + auto GetConstantInt = [](Value *V) { + if (auto *I = dyn_cast<BitCastInst>(V)) + return dyn_cast<ConstantInt>(I->getOperand(0)); + return dyn_cast<ConstantInt>(V); + }; + + Value *RHS = CI->getOperand(1); + ConstantInt *CV = GetConstantInt(RHS); + if (!CV) + return false; + + // If the LHS is the result of AND'ing a value with a single bit bitmask, + // we don't have information about probabilities. + if (Instruction *LHS = dyn_cast<Instruction>(CI->getOperand(0))) + if (LHS->getOpcode() == Instruction::And) + if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) + if (AndRHS->getValue().isPowerOf2()) + return false; + + // Check if the LHS is the return value of a library function + LibFunc Func = NumLibFuncs; + if (TLI) + if (CallInst *Call = dyn_cast<CallInst>(CI->getOperand(0))) + if (Function *CalledFn = Call->getCalledFunction()) + TLI->getLibFunc(*CalledFn, Func); + + bool isProb; + if (Func == LibFunc_strcasecmp || + Func == LibFunc_strcmp || + Func == LibFunc_strncasecmp || + Func == LibFunc_strncmp || + Func == LibFunc_memcmp) { + // strcmp and similar functions return zero, negative, or positive, if the + // first string is equal, less, or greater than the second. We consider it + // likely that the strings are not equal, so a comparison with zero is + // probably false, but also a comparison with any other number is also + // probably false given that what exactly is returned for nonzero values is + // not specified. Any kind of comparison other than equality we know + // nothing about. + switch (CI->getPredicate()) { + case CmpInst::ICMP_EQ: + isProb = false; + break; + case CmpInst::ICMP_NE: + isProb = true; + break; + default: + return false; + } + } else if (CV->isZero()) { + switch (CI->getPredicate()) { + case CmpInst::ICMP_EQ: + // X == 0 -> Unlikely + isProb = false; + break; + case CmpInst::ICMP_NE: + // X != 0 -> Likely + isProb = true; + break; + case CmpInst::ICMP_SLT: + // X < 0 -> Unlikely + isProb = false; + break; + case CmpInst::ICMP_SGT: + // X > 0 -> Likely + isProb = true; + break; + default: + return false; + } + } else if (CV->isOne() && CI->getPredicate() == CmpInst::ICMP_SLT) { + // InstCombine canonicalizes X <= 0 into X < 1. + // X <= 0 -> Unlikely + isProb = false; + } else if (CV->isMinusOne()) { + switch (CI->getPredicate()) { + case CmpInst::ICMP_EQ: + // X == -1 -> Unlikely + isProb = false; + break; + case CmpInst::ICMP_NE: + // X != -1 -> Likely + isProb = true; + break; + case CmpInst::ICMP_SGT: + // InstCombine canonicalizes X >= 0 into X > -1. + // X >= 0 -> Likely + isProb = true; + break; + default: + return false; + } + } else { + return false; + } + + unsigned TakenIdx = 0, NonTakenIdx = 1; + + if (!isProb) + std::swap(TakenIdx, NonTakenIdx); + + BranchProbability TakenProb(ZH_TAKEN_WEIGHT, + ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT); + setEdgeProbability(BB, TakenIdx, TakenProb); + setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl()); + return true; +} + +bool BranchProbabilityInfo::calcFloatingPointHeuristics(const BasicBlock *BB) { + const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); + if (!BI || !BI->isConditional()) + return false; + + Value *Cond = BI->getCondition(); + FCmpInst *FCmp = dyn_cast<FCmpInst>(Cond); + if (!FCmp) + return false; + + bool isProb; + if (FCmp->isEquality()) { + // f1 == f2 -> Unlikely + // f1 != f2 -> Likely + isProb = !FCmp->isTrueWhenEqual(); + } else if (FCmp->getPredicate() == FCmpInst::FCMP_ORD) { + // !isnan -> Likely + isProb = true; + } else if (FCmp->getPredicate() == FCmpInst::FCMP_UNO) { + // isnan -> Unlikely + isProb = false; + } else { + return false; + } + + unsigned TakenIdx = 0, NonTakenIdx = 1; + + if (!isProb) + std::swap(TakenIdx, NonTakenIdx); + + BranchProbability TakenProb(FPH_TAKEN_WEIGHT, + FPH_TAKEN_WEIGHT + FPH_NONTAKEN_WEIGHT); + setEdgeProbability(BB, TakenIdx, TakenProb); + setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl()); + return true; +} + +bool BranchProbabilityInfo::calcInvokeHeuristics(const BasicBlock *BB) { + const InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator()); + if (!II) + return false; + + BranchProbability TakenProb(IH_TAKEN_WEIGHT, + IH_TAKEN_WEIGHT + IH_NONTAKEN_WEIGHT); + setEdgeProbability(BB, 0 /*Index for Normal*/, TakenProb); + setEdgeProbability(BB, 1 /*Index for Unwind*/, TakenProb.getCompl()); + return true; +} + +void BranchProbabilityInfo::releaseMemory() { + Probs.clear(); +} + +void BranchProbabilityInfo::print(raw_ostream &OS) const { + OS << "---- Branch Probabilities ----\n"; + // We print the probabilities from the last function the analysis ran over, + // or the function it is currently running over. + assert(LastF && "Cannot print prior to running over a function"); + for (const auto &BI : *LastF) { + for (succ_const_iterator SI = succ_begin(&BI), SE = succ_end(&BI); SI != SE; + ++SI) { + printEdgeProbability(OS << " ", &BI, *SI); + } + } +} + +bool BranchProbabilityInfo:: +isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const { + // Hot probability is at least 4/5 = 80% + // FIXME: Compare against a static "hot" BranchProbability. + return getEdgeProbability(Src, Dst) > BranchProbability(4, 5); +} + +const BasicBlock * +BranchProbabilityInfo::getHotSucc(const BasicBlock *BB) const { + auto MaxProb = BranchProbability::getZero(); + const BasicBlock *MaxSucc = nullptr; + + for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) { + const BasicBlock *Succ = *I; + auto Prob = getEdgeProbability(BB, Succ); + if (Prob > MaxProb) { + MaxProb = Prob; + MaxSucc = Succ; + } + } + + // Hot probability is at least 4/5 = 80% + if (MaxProb > BranchProbability(4, 5)) + return MaxSucc; + + return nullptr; +} + +/// Get the raw edge probability for the edge. If can't find it, return a +/// default probability 1/N where N is the number of successors. Here an edge is +/// specified using PredBlock and an +/// index to the successors. +BranchProbability +BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src, + unsigned IndexInSuccessors) const { + auto I = Probs.find(std::make_pair(Src, IndexInSuccessors)); + + if (I != Probs.end()) + return I->second; + + return {1, static_cast<uint32_t>(succ_size(Src))}; +} + +BranchProbability +BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src, + succ_const_iterator Dst) const { + return getEdgeProbability(Src, Dst.getSuccessorIndex()); +} + +/// Get the raw edge probability calculated for the block pair. This returns the +/// sum of all raw edge probabilities from Src to Dst. +BranchProbability +BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src, + const BasicBlock *Dst) const { + auto Prob = BranchProbability::getZero(); + bool FoundProb = false; + for (succ_const_iterator I = succ_begin(Src), E = succ_end(Src); I != E; ++I) + if (*I == Dst) { + auto MapI = Probs.find(std::make_pair(Src, I.getSuccessorIndex())); + if (MapI != Probs.end()) { + FoundProb = true; + Prob += MapI->second; + } + } + uint32_t succ_num = std::distance(succ_begin(Src), succ_end(Src)); + return FoundProb ? Prob : BranchProbability(1, succ_num); +} + +/// Set the edge probability for a given edge specified by PredBlock and an +/// index to the successors. +void BranchProbabilityInfo::setEdgeProbability(const BasicBlock *Src, + unsigned IndexInSuccessors, + BranchProbability Prob) { + Probs[std::make_pair(Src, IndexInSuccessors)] = Prob; + Handles.insert(BasicBlockCallbackVH(Src, this)); + LLVM_DEBUG(dbgs() << "set edge " << Src->getName() << " -> " + << IndexInSuccessors << " successor probability to " << Prob + << "\n"); +} + +raw_ostream & +BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS, + const BasicBlock *Src, + const BasicBlock *Dst) const { + const BranchProbability Prob = getEdgeProbability(Src, Dst); + OS << "edge " << Src->getName() << " -> " << Dst->getName() + << " probability is " << Prob + << (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n"); + + return OS; +} + +void BranchProbabilityInfo::eraseBlock(const BasicBlock *BB) { + for (auto I = Probs.begin(), E = Probs.end(); I != E; ++I) { + auto Key = I->first; + if (Key.first == BB) + Probs.erase(Key); + } +} + +void BranchProbabilityInfo::calculate(const Function &F, const LoopInfo &LI, + const TargetLibraryInfo *TLI) { + LLVM_DEBUG(dbgs() << "---- Branch Probability Info : " << F.getName() + << " ----\n\n"); + LastF = &F; // Store the last function we ran on for printing. + assert(PostDominatedByUnreachable.empty()); + assert(PostDominatedByColdCall.empty()); + + // Record SCC numbers of blocks in the CFG to identify irreducible loops. + // FIXME: We could only calculate this if the CFG is known to be irreducible + // (perhaps cache this info in LoopInfo if we can easily calculate it there?). + int SccNum = 0; + SccInfo SccI; + for (scc_iterator<const Function *> It = scc_begin(&F); !It.isAtEnd(); + ++It, ++SccNum) { + // Ignore single-block SCCs since they either aren't loops or LoopInfo will + // catch them. + const std::vector<const BasicBlock *> &Scc = *It; + if (Scc.size() == 1) + continue; + + LLVM_DEBUG(dbgs() << "BPI: SCC " << SccNum << ":"); + for (auto *BB : Scc) { + LLVM_DEBUG(dbgs() << " " << BB->getName()); + SccI.SccNums[BB] = SccNum; + } + LLVM_DEBUG(dbgs() << "\n"); + } + + // Walk the basic blocks in post-order so that we can build up state about + // the successors of a block iteratively. + for (auto BB : post_order(&F.getEntryBlock())) { + LLVM_DEBUG(dbgs() << "Computing probabilities for " << BB->getName() + << "\n"); + updatePostDominatedByUnreachable(BB); + updatePostDominatedByColdCall(BB); + // If there is no at least two successors, no sense to set probability. + if (BB->getTerminator()->getNumSuccessors() < 2) + continue; + if (calcMetadataWeights(BB)) + continue; + if (calcInvokeHeuristics(BB)) + continue; + if (calcUnreachableHeuristics(BB)) + continue; + if (calcColdCallHeuristics(BB)) + continue; + if (calcLoopBranchHeuristics(BB, LI, SccI)) + continue; + if (calcPointerHeuristics(BB)) + continue; + if (calcZeroHeuristics(BB, TLI)) + continue; + if (calcFloatingPointHeuristics(BB)) + continue; + } + + PostDominatedByUnreachable.clear(); + PostDominatedByColdCall.clear(); + + if (PrintBranchProb && + (PrintBranchProbFuncName.empty() || + F.getName().equals(PrintBranchProbFuncName))) { + print(dbgs()); + } +} + +void BranchProbabilityInfoWrapperPass::getAnalysisUsage( + AnalysisUsage &AU) const { + // We require DT so it's available when LI is available. The LI updating code + // asserts that DT is also present so if we don't make sure that we have DT + // here, that assert will trigger. + AU.addRequired<DominatorTreeWrapperPass>(); + AU.addRequired<LoopInfoWrapperPass>(); + AU.addRequired<TargetLibraryInfoWrapperPass>(); + AU.setPreservesAll(); +} + +bool BranchProbabilityInfoWrapperPass::runOnFunction(Function &F) { + const LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); + const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); + BPI.calculate(F, LI, &TLI); + return false; +} + +void BranchProbabilityInfoWrapperPass::releaseMemory() { BPI.releaseMemory(); } + +void BranchProbabilityInfoWrapperPass::print(raw_ostream &OS, + const Module *) const { + BPI.print(OS); +} + +AnalysisKey BranchProbabilityAnalysis::Key; +BranchProbabilityInfo +BranchProbabilityAnalysis::run(Function &F, FunctionAnalysisManager &AM) { + BranchProbabilityInfo BPI; + BPI.calculate(F, AM.getResult<LoopAnalysis>(F), &AM.getResult<TargetLibraryAnalysis>(F)); + return BPI; +} + +PreservedAnalyses +BranchProbabilityPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { + OS << "Printing analysis results of BPI for function " + << "'" << F.getName() << "':" + << "\n"; + AM.getResult<BranchProbabilityAnalysis>(F).print(OS); + return PreservedAnalyses::all(); +} |