aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Analysis/BranchProbabilityInfo.cpp
diff options
context:
space:
mode:
authorDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
committerDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
commit0b57cec536236d46e3dba9bd041533462f33dbb7 (patch)
tree56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm-project/llvm/lib/Analysis/BranchProbabilityInfo.cpp
parent718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff)
Notes
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Analysis/BranchProbabilityInfo.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Analysis/BranchProbabilityInfo.cpp1044
1 files changed, 1044 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Analysis/BranchProbabilityInfo.cpp b/contrib/llvm-project/llvm/lib/Analysis/BranchProbabilityInfo.cpp
new file mode 100644
index 000000000000..5eb95003f5d8
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Analysis/BranchProbabilityInfo.cpp
@@ -0,0 +1,1044 @@
+//===- BranchProbabilityInfo.cpp - Branch Probability Analysis ------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// Loops should be simplified before this analysis.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/BranchProbabilityInfo.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/SCCIterator.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/PassManager.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/BranchProbability.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cassert>
+#include <cstdint>
+#include <iterator>
+#include <utility>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "branch-prob"
+
+static cl::opt<bool> PrintBranchProb(
+ "print-bpi", cl::init(false), cl::Hidden,
+ cl::desc("Print the branch probability info."));
+
+cl::opt<std::string> PrintBranchProbFuncName(
+ "print-bpi-func-name", cl::Hidden,
+ cl::desc("The option to specify the name of the function "
+ "whose branch probability info is printed."));
+
+INITIALIZE_PASS_BEGIN(BranchProbabilityInfoWrapperPass, "branch-prob",
+ "Branch Probability Analysis", false, true)
+INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
+INITIALIZE_PASS_END(BranchProbabilityInfoWrapperPass, "branch-prob",
+ "Branch Probability Analysis", false, true)
+
+char BranchProbabilityInfoWrapperPass::ID = 0;
+
+// Weights are for internal use only. They are used by heuristics to help to
+// estimate edges' probability. Example:
+//
+// Using "Loop Branch Heuristics" we predict weights of edges for the
+// block BB2.
+// ...
+// |
+// V
+// BB1<-+
+// | |
+// | | (Weight = 124)
+// V |
+// BB2--+
+// |
+// | (Weight = 4)
+// V
+// BB3
+//
+// Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875
+// Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125
+static const uint32_t LBH_TAKEN_WEIGHT = 124;
+static const uint32_t LBH_NONTAKEN_WEIGHT = 4;
+// Unlikely edges within a loop are half as likely as other edges
+static const uint32_t LBH_UNLIKELY_WEIGHT = 62;
+
+/// Unreachable-terminating branch taken probability.
+///
+/// This is the probability for a branch being taken to a block that terminates
+/// (eventually) in unreachable. These are predicted as unlikely as possible.
+/// All reachable probability will equally share the remaining part.
+static const BranchProbability UR_TAKEN_PROB = BranchProbability::getRaw(1);
+
+/// Weight for a branch taken going into a cold block.
+///
+/// This is the weight for a branch taken toward a block marked
+/// cold. A block is marked cold if it's postdominated by a
+/// block containing a call to a cold function. Cold functions
+/// are those marked with attribute 'cold'.
+static const uint32_t CC_TAKEN_WEIGHT = 4;
+
+/// Weight for a branch not-taken into a cold block.
+///
+/// This is the weight for a branch not taken toward a block marked
+/// cold.
+static const uint32_t CC_NONTAKEN_WEIGHT = 64;
+
+static const uint32_t PH_TAKEN_WEIGHT = 20;
+static const uint32_t PH_NONTAKEN_WEIGHT = 12;
+
+static const uint32_t ZH_TAKEN_WEIGHT = 20;
+static const uint32_t ZH_NONTAKEN_WEIGHT = 12;
+
+static const uint32_t FPH_TAKEN_WEIGHT = 20;
+static const uint32_t FPH_NONTAKEN_WEIGHT = 12;
+
+/// Invoke-terminating normal branch taken weight
+///
+/// This is the weight for branching to the normal destination of an invoke
+/// instruction. We expect this to happen most of the time. Set the weight to an
+/// absurdly high value so that nested loops subsume it.
+static const uint32_t IH_TAKEN_WEIGHT = 1024 * 1024 - 1;
+
+/// Invoke-terminating normal branch not-taken weight.
+///
+/// This is the weight for branching to the unwind destination of an invoke
+/// instruction. This is essentially never taken.
+static const uint32_t IH_NONTAKEN_WEIGHT = 1;
+
+/// Add \p BB to PostDominatedByUnreachable set if applicable.
+void
+BranchProbabilityInfo::updatePostDominatedByUnreachable(const BasicBlock *BB) {
+ const Instruction *TI = BB->getTerminator();
+ if (TI->getNumSuccessors() == 0) {
+ if (isa<UnreachableInst>(TI) ||
+ // If this block is terminated by a call to
+ // @llvm.experimental.deoptimize then treat it like an unreachable since
+ // the @llvm.experimental.deoptimize call is expected to practically
+ // never execute.
+ BB->getTerminatingDeoptimizeCall())
+ PostDominatedByUnreachable.insert(BB);
+ return;
+ }
+
+ // If the terminator is an InvokeInst, check only the normal destination block
+ // as the unwind edge of InvokeInst is also very unlikely taken.
+ if (auto *II = dyn_cast<InvokeInst>(TI)) {
+ if (PostDominatedByUnreachable.count(II->getNormalDest()))
+ PostDominatedByUnreachable.insert(BB);
+ return;
+ }
+
+ for (auto *I : successors(BB))
+ // If any of successor is not post dominated then BB is also not.
+ if (!PostDominatedByUnreachable.count(I))
+ return;
+
+ PostDominatedByUnreachable.insert(BB);
+}
+
+/// Add \p BB to PostDominatedByColdCall set if applicable.
+void
+BranchProbabilityInfo::updatePostDominatedByColdCall(const BasicBlock *BB) {
+ assert(!PostDominatedByColdCall.count(BB));
+ const Instruction *TI = BB->getTerminator();
+ if (TI->getNumSuccessors() == 0)
+ return;
+
+ // If all of successor are post dominated then BB is also done.
+ if (llvm::all_of(successors(BB), [&](const BasicBlock *SuccBB) {
+ return PostDominatedByColdCall.count(SuccBB);
+ })) {
+ PostDominatedByColdCall.insert(BB);
+ return;
+ }
+
+ // If the terminator is an InvokeInst, check only the normal destination
+ // block as the unwind edge of InvokeInst is also very unlikely taken.
+ if (auto *II = dyn_cast<InvokeInst>(TI))
+ if (PostDominatedByColdCall.count(II->getNormalDest())) {
+ PostDominatedByColdCall.insert(BB);
+ return;
+ }
+
+ // Otherwise, if the block itself contains a cold function, add it to the
+ // set of blocks post-dominated by a cold call.
+ for (auto &I : *BB)
+ if (const CallInst *CI = dyn_cast<CallInst>(&I))
+ if (CI->hasFnAttr(Attribute::Cold)) {
+ PostDominatedByColdCall.insert(BB);
+ return;
+ }
+}
+
+/// Calculate edge weights for successors lead to unreachable.
+///
+/// Predict that a successor which leads necessarily to an
+/// unreachable-terminated block as extremely unlikely.
+bool BranchProbabilityInfo::calcUnreachableHeuristics(const BasicBlock *BB) {
+ const Instruction *TI = BB->getTerminator();
+ (void) TI;
+ assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
+ assert(!isa<InvokeInst>(TI) &&
+ "Invokes should have already been handled by calcInvokeHeuristics");
+
+ SmallVector<unsigned, 4> UnreachableEdges;
+ SmallVector<unsigned, 4> ReachableEdges;
+
+ for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
+ if (PostDominatedByUnreachable.count(*I))
+ UnreachableEdges.push_back(I.getSuccessorIndex());
+ else
+ ReachableEdges.push_back(I.getSuccessorIndex());
+
+ // Skip probabilities if all were reachable.
+ if (UnreachableEdges.empty())
+ return false;
+
+ if (ReachableEdges.empty()) {
+ BranchProbability Prob(1, UnreachableEdges.size());
+ for (unsigned SuccIdx : UnreachableEdges)
+ setEdgeProbability(BB, SuccIdx, Prob);
+ return true;
+ }
+
+ auto UnreachableProb = UR_TAKEN_PROB;
+ auto ReachableProb =
+ (BranchProbability::getOne() - UR_TAKEN_PROB * UnreachableEdges.size()) /
+ ReachableEdges.size();
+
+ for (unsigned SuccIdx : UnreachableEdges)
+ setEdgeProbability(BB, SuccIdx, UnreachableProb);
+ for (unsigned SuccIdx : ReachableEdges)
+ setEdgeProbability(BB, SuccIdx, ReachableProb);
+
+ return true;
+}
+
+// Propagate existing explicit probabilities from either profile data or
+// 'expect' intrinsic processing. Examine metadata against unreachable
+// heuristic. The probability of the edge coming to unreachable block is
+// set to min of metadata and unreachable heuristic.
+bool BranchProbabilityInfo::calcMetadataWeights(const BasicBlock *BB) {
+ const Instruction *TI = BB->getTerminator();
+ assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
+ if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) || isa<IndirectBrInst>(TI)))
+ return false;
+
+ MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
+ if (!WeightsNode)
+ return false;
+
+ // Check that the number of successors is manageable.
+ assert(TI->getNumSuccessors() < UINT32_MAX && "Too many successors");
+
+ // Ensure there are weights for all of the successors. Note that the first
+ // operand to the metadata node is a name, not a weight.
+ if (WeightsNode->getNumOperands() != TI->getNumSuccessors() + 1)
+ return false;
+
+ // Build up the final weights that will be used in a temporary buffer.
+ // Compute the sum of all weights to later decide whether they need to
+ // be scaled to fit in 32 bits.
+ uint64_t WeightSum = 0;
+ SmallVector<uint32_t, 2> Weights;
+ SmallVector<unsigned, 2> UnreachableIdxs;
+ SmallVector<unsigned, 2> ReachableIdxs;
+ Weights.reserve(TI->getNumSuccessors());
+ for (unsigned i = 1, e = WeightsNode->getNumOperands(); i != e; ++i) {
+ ConstantInt *Weight =
+ mdconst::dyn_extract<ConstantInt>(WeightsNode->getOperand(i));
+ if (!Weight)
+ return false;
+ assert(Weight->getValue().getActiveBits() <= 32 &&
+ "Too many bits for uint32_t");
+ Weights.push_back(Weight->getZExtValue());
+ WeightSum += Weights.back();
+ if (PostDominatedByUnreachable.count(TI->getSuccessor(i - 1)))
+ UnreachableIdxs.push_back(i - 1);
+ else
+ ReachableIdxs.push_back(i - 1);
+ }
+ assert(Weights.size() == TI->getNumSuccessors() && "Checked above");
+
+ // If the sum of weights does not fit in 32 bits, scale every weight down
+ // accordingly.
+ uint64_t ScalingFactor =
+ (WeightSum > UINT32_MAX) ? WeightSum / UINT32_MAX + 1 : 1;
+
+ if (ScalingFactor > 1) {
+ WeightSum = 0;
+ for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
+ Weights[i] /= ScalingFactor;
+ WeightSum += Weights[i];
+ }
+ }
+ assert(WeightSum <= UINT32_MAX &&
+ "Expected weights to scale down to 32 bits");
+
+ if (WeightSum == 0 || ReachableIdxs.size() == 0) {
+ for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
+ Weights[i] = 1;
+ WeightSum = TI->getNumSuccessors();
+ }
+
+ // Set the probability.
+ SmallVector<BranchProbability, 2> BP;
+ for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
+ BP.push_back({ Weights[i], static_cast<uint32_t>(WeightSum) });
+
+ // Examine the metadata against unreachable heuristic.
+ // If the unreachable heuristic is more strong then we use it for this edge.
+ if (UnreachableIdxs.size() > 0 && ReachableIdxs.size() > 0) {
+ auto ToDistribute = BranchProbability::getZero();
+ auto UnreachableProb = UR_TAKEN_PROB;
+ for (auto i : UnreachableIdxs)
+ if (UnreachableProb < BP[i]) {
+ ToDistribute += BP[i] - UnreachableProb;
+ BP[i] = UnreachableProb;
+ }
+
+ // If we modified the probability of some edges then we must distribute
+ // the difference between reachable blocks.
+ if (ToDistribute > BranchProbability::getZero()) {
+ BranchProbability PerEdge = ToDistribute / ReachableIdxs.size();
+ for (auto i : ReachableIdxs)
+ BP[i] += PerEdge;
+ }
+ }
+
+ for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
+ setEdgeProbability(BB, i, BP[i]);
+
+ return true;
+}
+
+/// Calculate edge weights for edges leading to cold blocks.
+///
+/// A cold block is one post-dominated by a block with a call to a
+/// cold function. Those edges are unlikely to be taken, so we give
+/// them relatively low weight.
+///
+/// Return true if we could compute the weights for cold edges.
+/// Return false, otherwise.
+bool BranchProbabilityInfo::calcColdCallHeuristics(const BasicBlock *BB) {
+ const Instruction *TI = BB->getTerminator();
+ (void) TI;
+ assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
+ assert(!isa<InvokeInst>(TI) &&
+ "Invokes should have already been handled by calcInvokeHeuristics");
+
+ // Determine which successors are post-dominated by a cold block.
+ SmallVector<unsigned, 4> ColdEdges;
+ SmallVector<unsigned, 4> NormalEdges;
+ for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
+ if (PostDominatedByColdCall.count(*I))
+ ColdEdges.push_back(I.getSuccessorIndex());
+ else
+ NormalEdges.push_back(I.getSuccessorIndex());
+
+ // Skip probabilities if no cold edges.
+ if (ColdEdges.empty())
+ return false;
+
+ if (NormalEdges.empty()) {
+ BranchProbability Prob(1, ColdEdges.size());
+ for (unsigned SuccIdx : ColdEdges)
+ setEdgeProbability(BB, SuccIdx, Prob);
+ return true;
+ }
+
+ auto ColdProb = BranchProbability::getBranchProbability(
+ CC_TAKEN_WEIGHT,
+ (CC_TAKEN_WEIGHT + CC_NONTAKEN_WEIGHT) * uint64_t(ColdEdges.size()));
+ auto NormalProb = BranchProbability::getBranchProbability(
+ CC_NONTAKEN_WEIGHT,
+ (CC_TAKEN_WEIGHT + CC_NONTAKEN_WEIGHT) * uint64_t(NormalEdges.size()));
+
+ for (unsigned SuccIdx : ColdEdges)
+ setEdgeProbability(BB, SuccIdx, ColdProb);
+ for (unsigned SuccIdx : NormalEdges)
+ setEdgeProbability(BB, SuccIdx, NormalProb);
+
+ return true;
+}
+
+// Calculate Edge Weights using "Pointer Heuristics". Predict a comparison
+// between two pointer or pointer and NULL will fail.
+bool BranchProbabilityInfo::calcPointerHeuristics(const BasicBlock *BB) {
+ const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
+ if (!BI || !BI->isConditional())
+ return false;
+
+ Value *Cond = BI->getCondition();
+ ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
+ if (!CI || !CI->isEquality())
+ return false;
+
+ Value *LHS = CI->getOperand(0);
+
+ if (!LHS->getType()->isPointerTy())
+ return false;
+
+ assert(CI->getOperand(1)->getType()->isPointerTy());
+
+ // p != 0 -> isProb = true
+ // p == 0 -> isProb = false
+ // p != q -> isProb = true
+ // p == q -> isProb = false;
+ unsigned TakenIdx = 0, NonTakenIdx = 1;
+ bool isProb = CI->getPredicate() == ICmpInst::ICMP_NE;
+ if (!isProb)
+ std::swap(TakenIdx, NonTakenIdx);
+
+ BranchProbability TakenProb(PH_TAKEN_WEIGHT,
+ PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
+ setEdgeProbability(BB, TakenIdx, TakenProb);
+ setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl());
+ return true;
+}
+
+static int getSCCNum(const BasicBlock *BB,
+ const BranchProbabilityInfo::SccInfo &SccI) {
+ auto SccIt = SccI.SccNums.find(BB);
+ if (SccIt == SccI.SccNums.end())
+ return -1;
+ return SccIt->second;
+}
+
+// Consider any block that is an entry point to the SCC as a header.
+static bool isSCCHeader(const BasicBlock *BB, int SccNum,
+ BranchProbabilityInfo::SccInfo &SccI) {
+ assert(getSCCNum(BB, SccI) == SccNum);
+
+ // Lazily compute the set of headers for a given SCC and cache the results
+ // in the SccHeaderMap.
+ if (SccI.SccHeaders.size() <= static_cast<unsigned>(SccNum))
+ SccI.SccHeaders.resize(SccNum + 1);
+ auto &HeaderMap = SccI.SccHeaders[SccNum];
+ bool Inserted;
+ BranchProbabilityInfo::SccHeaderMap::iterator HeaderMapIt;
+ std::tie(HeaderMapIt, Inserted) = HeaderMap.insert(std::make_pair(BB, false));
+ if (Inserted) {
+ bool IsHeader = llvm::any_of(make_range(pred_begin(BB), pred_end(BB)),
+ [&](const BasicBlock *Pred) {
+ return getSCCNum(Pred, SccI) != SccNum;
+ });
+ HeaderMapIt->second = IsHeader;
+ return IsHeader;
+ } else
+ return HeaderMapIt->second;
+}
+
+// Compute the unlikely successors to the block BB in the loop L, specifically
+// those that are unlikely because this is a loop, and add them to the
+// UnlikelyBlocks set.
+static void
+computeUnlikelySuccessors(const BasicBlock *BB, Loop *L,
+ SmallPtrSetImpl<const BasicBlock*> &UnlikelyBlocks) {
+ // Sometimes in a loop we have a branch whose condition is made false by
+ // taking it. This is typically something like
+ // int n = 0;
+ // while (...) {
+ // if (++n >= MAX) {
+ // n = 0;
+ // }
+ // }
+ // In this sort of situation taking the branch means that at the very least it
+ // won't be taken again in the next iteration of the loop, so we should
+ // consider it less likely than a typical branch.
+ //
+ // We detect this by looking back through the graph of PHI nodes that sets the
+ // value that the condition depends on, and seeing if we can reach a successor
+ // block which can be determined to make the condition false.
+ //
+ // FIXME: We currently consider unlikely blocks to be half as likely as other
+ // blocks, but if we consider the example above the likelyhood is actually
+ // 1/MAX. We could therefore be more precise in how unlikely we consider
+ // blocks to be, but it would require more careful examination of the form
+ // of the comparison expression.
+ const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
+ if (!BI || !BI->isConditional())
+ return;
+
+ // Check if the branch is based on an instruction compared with a constant
+ CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
+ if (!CI || !isa<Instruction>(CI->getOperand(0)) ||
+ !isa<Constant>(CI->getOperand(1)))
+ return;
+
+ // Either the instruction must be a PHI, or a chain of operations involving
+ // constants that ends in a PHI which we can then collapse into a single value
+ // if the PHI value is known.
+ Instruction *CmpLHS = dyn_cast<Instruction>(CI->getOperand(0));
+ PHINode *CmpPHI = dyn_cast<PHINode>(CmpLHS);
+ Constant *CmpConst = dyn_cast<Constant>(CI->getOperand(1));
+ // Collect the instructions until we hit a PHI
+ SmallVector<BinaryOperator *, 1> InstChain;
+ while (!CmpPHI && CmpLHS && isa<BinaryOperator>(CmpLHS) &&
+ isa<Constant>(CmpLHS->getOperand(1))) {
+ // Stop if the chain extends outside of the loop
+ if (!L->contains(CmpLHS))
+ return;
+ InstChain.push_back(cast<BinaryOperator>(CmpLHS));
+ CmpLHS = dyn_cast<Instruction>(CmpLHS->getOperand(0));
+ if (CmpLHS)
+ CmpPHI = dyn_cast<PHINode>(CmpLHS);
+ }
+ if (!CmpPHI || !L->contains(CmpPHI))
+ return;
+
+ // Trace the phi node to find all values that come from successors of BB
+ SmallPtrSet<PHINode*, 8> VisitedInsts;
+ SmallVector<PHINode*, 8> WorkList;
+ WorkList.push_back(CmpPHI);
+ VisitedInsts.insert(CmpPHI);
+ while (!WorkList.empty()) {
+ PHINode *P = WorkList.back();
+ WorkList.pop_back();
+ for (BasicBlock *B : P->blocks()) {
+ // Skip blocks that aren't part of the loop
+ if (!L->contains(B))
+ continue;
+ Value *V = P->getIncomingValueForBlock(B);
+ // If the source is a PHI add it to the work list if we haven't
+ // already visited it.
+ if (PHINode *PN = dyn_cast<PHINode>(V)) {
+ if (VisitedInsts.insert(PN).second)
+ WorkList.push_back(PN);
+ continue;
+ }
+ // If this incoming value is a constant and B is a successor of BB, then
+ // we can constant-evaluate the compare to see if it makes the branch be
+ // taken or not.
+ Constant *CmpLHSConst = dyn_cast<Constant>(V);
+ if (!CmpLHSConst ||
+ std::find(succ_begin(BB), succ_end(BB), B) == succ_end(BB))
+ continue;
+ // First collapse InstChain
+ for (Instruction *I : llvm::reverse(InstChain)) {
+ CmpLHSConst = ConstantExpr::get(I->getOpcode(), CmpLHSConst,
+ cast<Constant>(I->getOperand(1)), true);
+ if (!CmpLHSConst)
+ break;
+ }
+ if (!CmpLHSConst)
+ continue;
+ // Now constant-evaluate the compare
+ Constant *Result = ConstantExpr::getCompare(CI->getPredicate(),
+ CmpLHSConst, CmpConst, true);
+ // If the result means we don't branch to the block then that block is
+ // unlikely.
+ if (Result &&
+ ((Result->isZeroValue() && B == BI->getSuccessor(0)) ||
+ (Result->isOneValue() && B == BI->getSuccessor(1))))
+ UnlikelyBlocks.insert(B);
+ }
+ }
+}
+
+// Calculate Edge Weights using "Loop Branch Heuristics". Predict backedges
+// as taken, exiting edges as not-taken.
+bool BranchProbabilityInfo::calcLoopBranchHeuristics(const BasicBlock *BB,
+ const LoopInfo &LI,
+ SccInfo &SccI) {
+ int SccNum;
+ Loop *L = LI.getLoopFor(BB);
+ if (!L) {
+ SccNum = getSCCNum(BB, SccI);
+ if (SccNum < 0)
+ return false;
+ }
+
+ SmallPtrSet<const BasicBlock*, 8> UnlikelyBlocks;
+ if (L)
+ computeUnlikelySuccessors(BB, L, UnlikelyBlocks);
+
+ SmallVector<unsigned, 8> BackEdges;
+ SmallVector<unsigned, 8> ExitingEdges;
+ SmallVector<unsigned, 8> InEdges; // Edges from header to the loop.
+ SmallVector<unsigned, 8> UnlikelyEdges;
+
+ for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
+ // Use LoopInfo if we have it, otherwise fall-back to SCC info to catch
+ // irreducible loops.
+ if (L) {
+ if (UnlikelyBlocks.count(*I) != 0)
+ UnlikelyEdges.push_back(I.getSuccessorIndex());
+ else if (!L->contains(*I))
+ ExitingEdges.push_back(I.getSuccessorIndex());
+ else if (L->getHeader() == *I)
+ BackEdges.push_back(I.getSuccessorIndex());
+ else
+ InEdges.push_back(I.getSuccessorIndex());
+ } else {
+ if (getSCCNum(*I, SccI) != SccNum)
+ ExitingEdges.push_back(I.getSuccessorIndex());
+ else if (isSCCHeader(*I, SccNum, SccI))
+ BackEdges.push_back(I.getSuccessorIndex());
+ else
+ InEdges.push_back(I.getSuccessorIndex());
+ }
+ }
+
+ if (BackEdges.empty() && ExitingEdges.empty() && UnlikelyEdges.empty())
+ return false;
+
+ // Collect the sum of probabilities of back-edges/in-edges/exiting-edges, and
+ // normalize them so that they sum up to one.
+ unsigned Denom = (BackEdges.empty() ? 0 : LBH_TAKEN_WEIGHT) +
+ (InEdges.empty() ? 0 : LBH_TAKEN_WEIGHT) +
+ (UnlikelyEdges.empty() ? 0 : LBH_UNLIKELY_WEIGHT) +
+ (ExitingEdges.empty() ? 0 : LBH_NONTAKEN_WEIGHT);
+
+ if (uint32_t numBackEdges = BackEdges.size()) {
+ BranchProbability TakenProb = BranchProbability(LBH_TAKEN_WEIGHT, Denom);
+ auto Prob = TakenProb / numBackEdges;
+ for (unsigned SuccIdx : BackEdges)
+ setEdgeProbability(BB, SuccIdx, Prob);
+ }
+
+ if (uint32_t numInEdges = InEdges.size()) {
+ BranchProbability TakenProb = BranchProbability(LBH_TAKEN_WEIGHT, Denom);
+ auto Prob = TakenProb / numInEdges;
+ for (unsigned SuccIdx : InEdges)
+ setEdgeProbability(BB, SuccIdx, Prob);
+ }
+
+ if (uint32_t numExitingEdges = ExitingEdges.size()) {
+ BranchProbability NotTakenProb = BranchProbability(LBH_NONTAKEN_WEIGHT,
+ Denom);
+ auto Prob = NotTakenProb / numExitingEdges;
+ for (unsigned SuccIdx : ExitingEdges)
+ setEdgeProbability(BB, SuccIdx, Prob);
+ }
+
+ if (uint32_t numUnlikelyEdges = UnlikelyEdges.size()) {
+ BranchProbability UnlikelyProb = BranchProbability(LBH_UNLIKELY_WEIGHT,
+ Denom);
+ auto Prob = UnlikelyProb / numUnlikelyEdges;
+ for (unsigned SuccIdx : UnlikelyEdges)
+ setEdgeProbability(BB, SuccIdx, Prob);
+ }
+
+ return true;
+}
+
+bool BranchProbabilityInfo::calcZeroHeuristics(const BasicBlock *BB,
+ const TargetLibraryInfo *TLI) {
+ const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
+ if (!BI || !BI->isConditional())
+ return false;
+
+ Value *Cond = BI->getCondition();
+ ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
+ if (!CI)
+ return false;
+
+ auto GetConstantInt = [](Value *V) {
+ if (auto *I = dyn_cast<BitCastInst>(V))
+ return dyn_cast<ConstantInt>(I->getOperand(0));
+ return dyn_cast<ConstantInt>(V);
+ };
+
+ Value *RHS = CI->getOperand(1);
+ ConstantInt *CV = GetConstantInt(RHS);
+ if (!CV)
+ return false;
+
+ // If the LHS is the result of AND'ing a value with a single bit bitmask,
+ // we don't have information about probabilities.
+ if (Instruction *LHS = dyn_cast<Instruction>(CI->getOperand(0)))
+ if (LHS->getOpcode() == Instruction::And)
+ if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(LHS->getOperand(1)))
+ if (AndRHS->getValue().isPowerOf2())
+ return false;
+
+ // Check if the LHS is the return value of a library function
+ LibFunc Func = NumLibFuncs;
+ if (TLI)
+ if (CallInst *Call = dyn_cast<CallInst>(CI->getOperand(0)))
+ if (Function *CalledFn = Call->getCalledFunction())
+ TLI->getLibFunc(*CalledFn, Func);
+
+ bool isProb;
+ if (Func == LibFunc_strcasecmp ||
+ Func == LibFunc_strcmp ||
+ Func == LibFunc_strncasecmp ||
+ Func == LibFunc_strncmp ||
+ Func == LibFunc_memcmp) {
+ // strcmp and similar functions return zero, negative, or positive, if the
+ // first string is equal, less, or greater than the second. We consider it
+ // likely that the strings are not equal, so a comparison with zero is
+ // probably false, but also a comparison with any other number is also
+ // probably false given that what exactly is returned for nonzero values is
+ // not specified. Any kind of comparison other than equality we know
+ // nothing about.
+ switch (CI->getPredicate()) {
+ case CmpInst::ICMP_EQ:
+ isProb = false;
+ break;
+ case CmpInst::ICMP_NE:
+ isProb = true;
+ break;
+ default:
+ return false;
+ }
+ } else if (CV->isZero()) {
+ switch (CI->getPredicate()) {
+ case CmpInst::ICMP_EQ:
+ // X == 0 -> Unlikely
+ isProb = false;
+ break;
+ case CmpInst::ICMP_NE:
+ // X != 0 -> Likely
+ isProb = true;
+ break;
+ case CmpInst::ICMP_SLT:
+ // X < 0 -> Unlikely
+ isProb = false;
+ break;
+ case CmpInst::ICMP_SGT:
+ // X > 0 -> Likely
+ isProb = true;
+ break;
+ default:
+ return false;
+ }
+ } else if (CV->isOne() && CI->getPredicate() == CmpInst::ICMP_SLT) {
+ // InstCombine canonicalizes X <= 0 into X < 1.
+ // X <= 0 -> Unlikely
+ isProb = false;
+ } else if (CV->isMinusOne()) {
+ switch (CI->getPredicate()) {
+ case CmpInst::ICMP_EQ:
+ // X == -1 -> Unlikely
+ isProb = false;
+ break;
+ case CmpInst::ICMP_NE:
+ // X != -1 -> Likely
+ isProb = true;
+ break;
+ case CmpInst::ICMP_SGT:
+ // InstCombine canonicalizes X >= 0 into X > -1.
+ // X >= 0 -> Likely
+ isProb = true;
+ break;
+ default:
+ return false;
+ }
+ } else {
+ return false;
+ }
+
+ unsigned TakenIdx = 0, NonTakenIdx = 1;
+
+ if (!isProb)
+ std::swap(TakenIdx, NonTakenIdx);
+
+ BranchProbability TakenProb(ZH_TAKEN_WEIGHT,
+ ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
+ setEdgeProbability(BB, TakenIdx, TakenProb);
+ setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl());
+ return true;
+}
+
+bool BranchProbabilityInfo::calcFloatingPointHeuristics(const BasicBlock *BB) {
+ const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
+ if (!BI || !BI->isConditional())
+ return false;
+
+ Value *Cond = BI->getCondition();
+ FCmpInst *FCmp = dyn_cast<FCmpInst>(Cond);
+ if (!FCmp)
+ return false;
+
+ bool isProb;
+ if (FCmp->isEquality()) {
+ // f1 == f2 -> Unlikely
+ // f1 != f2 -> Likely
+ isProb = !FCmp->isTrueWhenEqual();
+ } else if (FCmp->getPredicate() == FCmpInst::FCMP_ORD) {
+ // !isnan -> Likely
+ isProb = true;
+ } else if (FCmp->getPredicate() == FCmpInst::FCMP_UNO) {
+ // isnan -> Unlikely
+ isProb = false;
+ } else {
+ return false;
+ }
+
+ unsigned TakenIdx = 0, NonTakenIdx = 1;
+
+ if (!isProb)
+ std::swap(TakenIdx, NonTakenIdx);
+
+ BranchProbability TakenProb(FPH_TAKEN_WEIGHT,
+ FPH_TAKEN_WEIGHT + FPH_NONTAKEN_WEIGHT);
+ setEdgeProbability(BB, TakenIdx, TakenProb);
+ setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl());
+ return true;
+}
+
+bool BranchProbabilityInfo::calcInvokeHeuristics(const BasicBlock *BB) {
+ const InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator());
+ if (!II)
+ return false;
+
+ BranchProbability TakenProb(IH_TAKEN_WEIGHT,
+ IH_TAKEN_WEIGHT + IH_NONTAKEN_WEIGHT);
+ setEdgeProbability(BB, 0 /*Index for Normal*/, TakenProb);
+ setEdgeProbability(BB, 1 /*Index for Unwind*/, TakenProb.getCompl());
+ return true;
+}
+
+void BranchProbabilityInfo::releaseMemory() {
+ Probs.clear();
+}
+
+void BranchProbabilityInfo::print(raw_ostream &OS) const {
+ OS << "---- Branch Probabilities ----\n";
+ // We print the probabilities from the last function the analysis ran over,
+ // or the function it is currently running over.
+ assert(LastF && "Cannot print prior to running over a function");
+ for (const auto &BI : *LastF) {
+ for (succ_const_iterator SI = succ_begin(&BI), SE = succ_end(&BI); SI != SE;
+ ++SI) {
+ printEdgeProbability(OS << " ", &BI, *SI);
+ }
+ }
+}
+
+bool BranchProbabilityInfo::
+isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const {
+ // Hot probability is at least 4/5 = 80%
+ // FIXME: Compare against a static "hot" BranchProbability.
+ return getEdgeProbability(Src, Dst) > BranchProbability(4, 5);
+}
+
+const BasicBlock *
+BranchProbabilityInfo::getHotSucc(const BasicBlock *BB) const {
+ auto MaxProb = BranchProbability::getZero();
+ const BasicBlock *MaxSucc = nullptr;
+
+ for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
+ const BasicBlock *Succ = *I;
+ auto Prob = getEdgeProbability(BB, Succ);
+ if (Prob > MaxProb) {
+ MaxProb = Prob;
+ MaxSucc = Succ;
+ }
+ }
+
+ // Hot probability is at least 4/5 = 80%
+ if (MaxProb > BranchProbability(4, 5))
+ return MaxSucc;
+
+ return nullptr;
+}
+
+/// Get the raw edge probability for the edge. If can't find it, return a
+/// default probability 1/N where N is the number of successors. Here an edge is
+/// specified using PredBlock and an
+/// index to the successors.
+BranchProbability
+BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
+ unsigned IndexInSuccessors) const {
+ auto I = Probs.find(std::make_pair(Src, IndexInSuccessors));
+
+ if (I != Probs.end())
+ return I->second;
+
+ return {1, static_cast<uint32_t>(succ_size(Src))};
+}
+
+BranchProbability
+BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
+ succ_const_iterator Dst) const {
+ return getEdgeProbability(Src, Dst.getSuccessorIndex());
+}
+
+/// Get the raw edge probability calculated for the block pair. This returns the
+/// sum of all raw edge probabilities from Src to Dst.
+BranchProbability
+BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
+ const BasicBlock *Dst) const {
+ auto Prob = BranchProbability::getZero();
+ bool FoundProb = false;
+ for (succ_const_iterator I = succ_begin(Src), E = succ_end(Src); I != E; ++I)
+ if (*I == Dst) {
+ auto MapI = Probs.find(std::make_pair(Src, I.getSuccessorIndex()));
+ if (MapI != Probs.end()) {
+ FoundProb = true;
+ Prob += MapI->second;
+ }
+ }
+ uint32_t succ_num = std::distance(succ_begin(Src), succ_end(Src));
+ return FoundProb ? Prob : BranchProbability(1, succ_num);
+}
+
+/// Set the edge probability for a given edge specified by PredBlock and an
+/// index to the successors.
+void BranchProbabilityInfo::setEdgeProbability(const BasicBlock *Src,
+ unsigned IndexInSuccessors,
+ BranchProbability Prob) {
+ Probs[std::make_pair(Src, IndexInSuccessors)] = Prob;
+ Handles.insert(BasicBlockCallbackVH(Src, this));
+ LLVM_DEBUG(dbgs() << "set edge " << Src->getName() << " -> "
+ << IndexInSuccessors << " successor probability to " << Prob
+ << "\n");
+}
+
+raw_ostream &
+BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS,
+ const BasicBlock *Src,
+ const BasicBlock *Dst) const {
+ const BranchProbability Prob = getEdgeProbability(Src, Dst);
+ OS << "edge " << Src->getName() << " -> " << Dst->getName()
+ << " probability is " << Prob
+ << (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n");
+
+ return OS;
+}
+
+void BranchProbabilityInfo::eraseBlock(const BasicBlock *BB) {
+ for (auto I = Probs.begin(), E = Probs.end(); I != E; ++I) {
+ auto Key = I->first;
+ if (Key.first == BB)
+ Probs.erase(Key);
+ }
+}
+
+void BranchProbabilityInfo::calculate(const Function &F, const LoopInfo &LI,
+ const TargetLibraryInfo *TLI) {
+ LLVM_DEBUG(dbgs() << "---- Branch Probability Info : " << F.getName()
+ << " ----\n\n");
+ LastF = &F; // Store the last function we ran on for printing.
+ assert(PostDominatedByUnreachable.empty());
+ assert(PostDominatedByColdCall.empty());
+
+ // Record SCC numbers of blocks in the CFG to identify irreducible loops.
+ // FIXME: We could only calculate this if the CFG is known to be irreducible
+ // (perhaps cache this info in LoopInfo if we can easily calculate it there?).
+ int SccNum = 0;
+ SccInfo SccI;
+ for (scc_iterator<const Function *> It = scc_begin(&F); !It.isAtEnd();
+ ++It, ++SccNum) {
+ // Ignore single-block SCCs since they either aren't loops or LoopInfo will
+ // catch them.
+ const std::vector<const BasicBlock *> &Scc = *It;
+ if (Scc.size() == 1)
+ continue;
+
+ LLVM_DEBUG(dbgs() << "BPI: SCC " << SccNum << ":");
+ for (auto *BB : Scc) {
+ LLVM_DEBUG(dbgs() << " " << BB->getName());
+ SccI.SccNums[BB] = SccNum;
+ }
+ LLVM_DEBUG(dbgs() << "\n");
+ }
+
+ // Walk the basic blocks in post-order so that we can build up state about
+ // the successors of a block iteratively.
+ for (auto BB : post_order(&F.getEntryBlock())) {
+ LLVM_DEBUG(dbgs() << "Computing probabilities for " << BB->getName()
+ << "\n");
+ updatePostDominatedByUnreachable(BB);
+ updatePostDominatedByColdCall(BB);
+ // If there is no at least two successors, no sense to set probability.
+ if (BB->getTerminator()->getNumSuccessors() < 2)
+ continue;
+ if (calcMetadataWeights(BB))
+ continue;
+ if (calcInvokeHeuristics(BB))
+ continue;
+ if (calcUnreachableHeuristics(BB))
+ continue;
+ if (calcColdCallHeuristics(BB))
+ continue;
+ if (calcLoopBranchHeuristics(BB, LI, SccI))
+ continue;
+ if (calcPointerHeuristics(BB))
+ continue;
+ if (calcZeroHeuristics(BB, TLI))
+ continue;
+ if (calcFloatingPointHeuristics(BB))
+ continue;
+ }
+
+ PostDominatedByUnreachable.clear();
+ PostDominatedByColdCall.clear();
+
+ if (PrintBranchProb &&
+ (PrintBranchProbFuncName.empty() ||
+ F.getName().equals(PrintBranchProbFuncName))) {
+ print(dbgs());
+ }
+}
+
+void BranchProbabilityInfoWrapperPass::getAnalysisUsage(
+ AnalysisUsage &AU) const {
+ // We require DT so it's available when LI is available. The LI updating code
+ // asserts that DT is also present so if we don't make sure that we have DT
+ // here, that assert will trigger.
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addRequired<LoopInfoWrapperPass>();
+ AU.addRequired<TargetLibraryInfoWrapperPass>();
+ AU.setPreservesAll();
+}
+
+bool BranchProbabilityInfoWrapperPass::runOnFunction(Function &F) {
+ const LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
+ const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
+ BPI.calculate(F, LI, &TLI);
+ return false;
+}
+
+void BranchProbabilityInfoWrapperPass::releaseMemory() { BPI.releaseMemory(); }
+
+void BranchProbabilityInfoWrapperPass::print(raw_ostream &OS,
+ const Module *) const {
+ BPI.print(OS);
+}
+
+AnalysisKey BranchProbabilityAnalysis::Key;
+BranchProbabilityInfo
+BranchProbabilityAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
+ BranchProbabilityInfo BPI;
+ BPI.calculate(F, AM.getResult<LoopAnalysis>(F), &AM.getResult<TargetLibraryAnalysis>(F));
+ return BPI;
+}
+
+PreservedAnalyses
+BranchProbabilityPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
+ OS << "Printing analysis results of BPI for function "
+ << "'" << F.getName() << "':"
+ << "\n";
+ AM.getResult<BranchProbabilityAnalysis>(F).print(OS);
+ return PreservedAnalyses::all();
+}