aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Analysis/CGSCCPassManager.cpp
diff options
context:
space:
mode:
authorDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
committerDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
commit0b57cec536236d46e3dba9bd041533462f33dbb7 (patch)
tree56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm-project/llvm/lib/Analysis/CGSCCPassManager.cpp
parent718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff)
Notes
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Analysis/CGSCCPassManager.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Analysis/CGSCCPassManager.cpp709
1 files changed, 709 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Analysis/CGSCCPassManager.cpp b/contrib/llvm-project/llvm/lib/Analysis/CGSCCPassManager.cpp
new file mode 100644
index 000000000000..a0b3f83cca6a
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Analysis/CGSCCPassManager.cpp
@@ -0,0 +1,709 @@
+//===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/CGSCCPassManager.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/Analysis/LazyCallGraph.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/InstIterator.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/PassManager.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cassert>
+#include <iterator>
+
+#define DEBUG_TYPE "cgscc"
+
+using namespace llvm;
+
+// Explicit template instantiations and specialization definitions for core
+// template typedefs.
+namespace llvm {
+
+// Explicit instantiations for the core proxy templates.
+template class AllAnalysesOn<LazyCallGraph::SCC>;
+template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>;
+template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager,
+ LazyCallGraph &, CGSCCUpdateResult &>;
+template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>;
+template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
+ LazyCallGraph::SCC, LazyCallGraph &>;
+template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>;
+
+/// Explicitly specialize the pass manager run method to handle call graph
+/// updates.
+template <>
+PreservedAnalyses
+PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &,
+ CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC,
+ CGSCCAnalysisManager &AM,
+ LazyCallGraph &G, CGSCCUpdateResult &UR) {
+ // Request PassInstrumentation from analysis manager, will use it to run
+ // instrumenting callbacks for the passes later.
+ PassInstrumentation PI =
+ AM.getResult<PassInstrumentationAnalysis>(InitialC, G);
+
+ PreservedAnalyses PA = PreservedAnalyses::all();
+
+ if (DebugLogging)
+ dbgs() << "Starting CGSCC pass manager run.\n";
+
+ // The SCC may be refined while we are running passes over it, so set up
+ // a pointer that we can update.
+ LazyCallGraph::SCC *C = &InitialC;
+
+ for (auto &Pass : Passes) {
+ if (DebugLogging)
+ dbgs() << "Running pass: " << Pass->name() << " on " << *C << "\n";
+
+ // Check the PassInstrumentation's BeforePass callbacks before running the
+ // pass, skip its execution completely if asked to (callback returns false).
+ if (!PI.runBeforePass(*Pass, *C))
+ continue;
+
+ PreservedAnalyses PassPA = Pass->run(*C, AM, G, UR);
+
+ if (UR.InvalidatedSCCs.count(C))
+ PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass);
+ else
+ PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C);
+
+ // Update the SCC if necessary.
+ C = UR.UpdatedC ? UR.UpdatedC : C;
+
+ // If the CGSCC pass wasn't able to provide a valid updated SCC, the
+ // current SCC may simply need to be skipped if invalid.
+ if (UR.InvalidatedSCCs.count(C)) {
+ LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
+ break;
+ }
+ // Check that we didn't miss any update scenario.
+ assert(C->begin() != C->end() && "Cannot have an empty SCC!");
+
+ // Update the analysis manager as each pass runs and potentially
+ // invalidates analyses.
+ AM.invalidate(*C, PassPA);
+
+ // Finally, we intersect the final preserved analyses to compute the
+ // aggregate preserved set for this pass manager.
+ PA.intersect(std::move(PassPA));
+
+ // FIXME: Historically, the pass managers all called the LLVM context's
+ // yield function here. We don't have a generic way to acquire the
+ // context and it isn't yet clear what the right pattern is for yielding
+ // in the new pass manager so it is currently omitted.
+ // ...getContext().yield();
+ }
+
+ // Before we mark all of *this* SCC's analyses as preserved below, intersect
+ // this with the cross-SCC preserved analysis set. This is used to allow
+ // CGSCC passes to mutate ancestor SCCs and still trigger proper invalidation
+ // for them.
+ UR.CrossSCCPA.intersect(PA);
+
+ // Invalidation was handled after each pass in the above loop for the current
+ // SCC. Therefore, the remaining analysis results in the AnalysisManager are
+ // preserved. We mark this with a set so that we don't need to inspect each
+ // one individually.
+ PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>();
+
+ if (DebugLogging)
+ dbgs() << "Finished CGSCC pass manager run.\n";
+
+ return PA;
+}
+
+bool CGSCCAnalysisManagerModuleProxy::Result::invalidate(
+ Module &M, const PreservedAnalyses &PA,
+ ModuleAnalysisManager::Invalidator &Inv) {
+ // If literally everything is preserved, we're done.
+ if (PA.areAllPreserved())
+ return false; // This is still a valid proxy.
+
+ // If this proxy or the call graph is going to be invalidated, we also need
+ // to clear all the keys coming from that analysis.
+ //
+ // We also directly invalidate the FAM's module proxy if necessary, and if
+ // that proxy isn't preserved we can't preserve this proxy either. We rely on
+ // it to handle module -> function analysis invalidation in the face of
+ // structural changes and so if it's unavailable we conservatively clear the
+ // entire SCC layer as well rather than trying to do invalidation ourselves.
+ auto PAC = PA.getChecker<CGSCCAnalysisManagerModuleProxy>();
+ if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()) ||
+ Inv.invalidate<LazyCallGraphAnalysis>(M, PA) ||
+ Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) {
+ InnerAM->clear();
+
+ // And the proxy itself should be marked as invalid so that we can observe
+ // the new call graph. This isn't strictly necessary because we cheat
+ // above, but is still useful.
+ return true;
+ }
+
+ // Directly check if the relevant set is preserved so we can short circuit
+ // invalidating SCCs below.
+ bool AreSCCAnalysesPreserved =
+ PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>();
+
+ // Ok, we have a graph, so we can propagate the invalidation down into it.
+ G->buildRefSCCs();
+ for (auto &RC : G->postorder_ref_sccs())
+ for (auto &C : RC) {
+ Optional<PreservedAnalyses> InnerPA;
+
+ // Check to see whether the preserved set needs to be adjusted based on
+ // module-level analysis invalidation triggering deferred invalidation
+ // for this SCC.
+ if (auto *OuterProxy =
+ InnerAM->getCachedResult<ModuleAnalysisManagerCGSCCProxy>(C))
+ for (const auto &OuterInvalidationPair :
+ OuterProxy->getOuterInvalidations()) {
+ AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
+ const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
+ if (Inv.invalidate(OuterAnalysisID, M, PA)) {
+ if (!InnerPA)
+ InnerPA = PA;
+ for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
+ InnerPA->abandon(InnerAnalysisID);
+ }
+ }
+
+ // Check if we needed a custom PA set. If so we'll need to run the inner
+ // invalidation.
+ if (InnerPA) {
+ InnerAM->invalidate(C, *InnerPA);
+ continue;
+ }
+
+ // Otherwise we only need to do invalidation if the original PA set didn't
+ // preserve all SCC analyses.
+ if (!AreSCCAnalysesPreserved)
+ InnerAM->invalidate(C, PA);
+ }
+
+ // Return false to indicate that this result is still a valid proxy.
+ return false;
+}
+
+template <>
+CGSCCAnalysisManagerModuleProxy::Result
+CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) {
+ // Force the Function analysis manager to also be available so that it can
+ // be accessed in an SCC analysis and proxied onward to function passes.
+ // FIXME: It is pretty awkward to just drop the result here and assert that
+ // we can find it again later.
+ (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M);
+
+ return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M));
+}
+
+AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key;
+
+FunctionAnalysisManagerCGSCCProxy::Result
+FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C,
+ CGSCCAnalysisManager &AM,
+ LazyCallGraph &CG) {
+ // Collect the FunctionAnalysisManager from the Module layer and use that to
+ // build the proxy result.
+ //
+ // This allows us to rely on the FunctionAnalysisMangaerModuleProxy to
+ // invalidate the function analyses.
+ auto &MAM = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG).getManager();
+ Module &M = *C.begin()->getFunction().getParent();
+ auto *FAMProxy = MAM.getCachedResult<FunctionAnalysisManagerModuleProxy>(M);
+ assert(FAMProxy && "The CGSCC pass manager requires that the FAM module "
+ "proxy is run on the module prior to entering the CGSCC "
+ "walk.");
+
+ // Note that we special-case invalidation handling of this proxy in the CGSCC
+ // analysis manager's Module proxy. This avoids the need to do anything
+ // special here to recompute all of this if ever the FAM's module proxy goes
+ // away.
+ return Result(FAMProxy->getManager());
+}
+
+bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate(
+ LazyCallGraph::SCC &C, const PreservedAnalyses &PA,
+ CGSCCAnalysisManager::Invalidator &Inv) {
+ // If literally everything is preserved, we're done.
+ if (PA.areAllPreserved())
+ return false; // This is still a valid proxy.
+
+ // If this proxy isn't marked as preserved, then even if the result remains
+ // valid, the key itself may no longer be valid, so we clear everything.
+ //
+ // Note that in order to preserve this proxy, a module pass must ensure that
+ // the FAM has been completely updated to handle the deletion of functions.
+ // Specifically, any FAM-cached results for those functions need to have been
+ // forcibly cleared. When preserved, this proxy will only invalidate results
+ // cached on functions *still in the module* at the end of the module pass.
+ auto PAC = PA.getChecker<FunctionAnalysisManagerCGSCCProxy>();
+ if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) {
+ for (LazyCallGraph::Node &N : C)
+ FAM->clear(N.getFunction(), N.getFunction().getName());
+
+ return true;
+ }
+
+ // Directly check if the relevant set is preserved.
+ bool AreFunctionAnalysesPreserved =
+ PA.allAnalysesInSetPreserved<AllAnalysesOn<Function>>();
+
+ // Now walk all the functions to see if any inner analysis invalidation is
+ // necessary.
+ for (LazyCallGraph::Node &N : C) {
+ Function &F = N.getFunction();
+ Optional<PreservedAnalyses> FunctionPA;
+
+ // Check to see whether the preserved set needs to be pruned based on
+ // SCC-level analysis invalidation that triggers deferred invalidation
+ // registered with the outer analysis manager proxy for this function.
+ if (auto *OuterProxy =
+ FAM->getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F))
+ for (const auto &OuterInvalidationPair :
+ OuterProxy->getOuterInvalidations()) {
+ AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
+ const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
+ if (Inv.invalidate(OuterAnalysisID, C, PA)) {
+ if (!FunctionPA)
+ FunctionPA = PA;
+ for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
+ FunctionPA->abandon(InnerAnalysisID);
+ }
+ }
+
+ // Check if we needed a custom PA set, and if so we'll need to run the
+ // inner invalidation.
+ if (FunctionPA) {
+ FAM->invalidate(F, *FunctionPA);
+ continue;
+ }
+
+ // Otherwise we only need to do invalidation if the original PA set didn't
+ // preserve all function analyses.
+ if (!AreFunctionAnalysesPreserved)
+ FAM->invalidate(F, PA);
+ }
+
+ // Return false to indicate that this result is still a valid proxy.
+ return false;
+}
+
+} // end namespace llvm
+
+/// When a new SCC is created for the graph and there might be function
+/// analysis results cached for the functions now in that SCC two forms of
+/// updates are required.
+///
+/// First, a proxy from the SCC to the FunctionAnalysisManager needs to be
+/// created so that any subsequent invalidation events to the SCC are
+/// propagated to the function analysis results cached for functions within it.
+///
+/// Second, if any of the functions within the SCC have analysis results with
+/// outer analysis dependencies, then those dependencies would point to the
+/// *wrong* SCC's analysis result. We forcibly invalidate the necessary
+/// function analyses so that they don't retain stale handles.
+static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC &C,
+ LazyCallGraph &G,
+ CGSCCAnalysisManager &AM) {
+ // Get the relevant function analysis manager.
+ auto &FAM =
+ AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, G).getManager();
+
+ // Now walk the functions in this SCC and invalidate any function analysis
+ // results that might have outer dependencies on an SCC analysis.
+ for (LazyCallGraph::Node &N : C) {
+ Function &F = N.getFunction();
+
+ auto *OuterProxy =
+ FAM.getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F);
+ if (!OuterProxy)
+ // No outer analyses were queried, nothing to do.
+ continue;
+
+ // Forcibly abandon all the inner analyses with dependencies, but
+ // invalidate nothing else.
+ auto PA = PreservedAnalyses::all();
+ for (const auto &OuterInvalidationPair :
+ OuterProxy->getOuterInvalidations()) {
+ const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
+ for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
+ PA.abandon(InnerAnalysisID);
+ }
+
+ // Now invalidate anything we found.
+ FAM.invalidate(F, PA);
+ }
+}
+
+/// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c
+/// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly
+/// added SCCs.
+///
+/// The range of new SCCs must be in postorder already. The SCC they were split
+/// out of must be provided as \p C. The current node being mutated and
+/// triggering updates must be passed as \p N.
+///
+/// This function returns the SCC containing \p N. This will be either \p C if
+/// no new SCCs have been split out, or it will be the new SCC containing \p N.
+template <typename SCCRangeT>
+static LazyCallGraph::SCC *
+incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G,
+ LazyCallGraph::Node &N, LazyCallGraph::SCC *C,
+ CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) {
+ using SCC = LazyCallGraph::SCC;
+
+ if (NewSCCRange.begin() == NewSCCRange.end())
+ return C;
+
+ // Add the current SCC to the worklist as its shape has changed.
+ UR.CWorklist.insert(C);
+ LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C
+ << "\n");
+
+ SCC *OldC = C;
+
+ // Update the current SCC. Note that if we have new SCCs, this must actually
+ // change the SCC.
+ assert(C != &*NewSCCRange.begin() &&
+ "Cannot insert new SCCs without changing current SCC!");
+ C = &*NewSCCRange.begin();
+ assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
+
+ // If we had a cached FAM proxy originally, we will want to create more of
+ // them for each SCC that was split off.
+ bool NeedFAMProxy =
+ AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*OldC) != nullptr;
+
+ // We need to propagate an invalidation call to all but the newly current SCC
+ // because the outer pass manager won't do that for us after splitting them.
+ // FIXME: We should accept a PreservedAnalysis from the CG updater so that if
+ // there are preserved analysis we can avoid invalidating them here for
+ // split-off SCCs.
+ // We know however that this will preserve any FAM proxy so go ahead and mark
+ // that.
+ PreservedAnalyses PA;
+ PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
+ AM.invalidate(*OldC, PA);
+
+ // Ensure the now-current SCC's function analyses are updated.
+ if (NeedFAMProxy)
+ updateNewSCCFunctionAnalyses(*C, G, AM);
+
+ for (SCC &NewC : llvm::reverse(make_range(std::next(NewSCCRange.begin()),
+ NewSCCRange.end()))) {
+ assert(C != &NewC && "No need to re-visit the current SCC!");
+ assert(OldC != &NewC && "Already handled the original SCC!");
+ UR.CWorklist.insert(&NewC);
+ LLVM_DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n");
+
+ // Ensure new SCCs' function analyses are updated.
+ if (NeedFAMProxy)
+ updateNewSCCFunctionAnalyses(NewC, G, AM);
+
+ // Also propagate a normal invalidation to the new SCC as only the current
+ // will get one from the pass manager infrastructure.
+ AM.invalidate(NewC, PA);
+ }
+ return C;
+}
+
+LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass(
+ LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
+ CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) {
+ using Node = LazyCallGraph::Node;
+ using Edge = LazyCallGraph::Edge;
+ using SCC = LazyCallGraph::SCC;
+ using RefSCC = LazyCallGraph::RefSCC;
+
+ RefSCC &InitialRC = InitialC.getOuterRefSCC();
+ SCC *C = &InitialC;
+ RefSCC *RC = &InitialRC;
+ Function &F = N.getFunction();
+
+ // Walk the function body and build up the set of retained, promoted, and
+ // demoted edges.
+ SmallVector<Constant *, 16> Worklist;
+ SmallPtrSet<Constant *, 16> Visited;
+ SmallPtrSet<Node *, 16> RetainedEdges;
+ SmallSetVector<Node *, 4> PromotedRefTargets;
+ SmallSetVector<Node *, 4> DemotedCallTargets;
+
+ // First walk the function and handle all called functions. We do this first
+ // because if there is a single call edge, whether there are ref edges is
+ // irrelevant.
+ for (Instruction &I : instructions(F))
+ if (auto CS = CallSite(&I))
+ if (Function *Callee = CS.getCalledFunction())
+ if (Visited.insert(Callee).second && !Callee->isDeclaration()) {
+ Node &CalleeN = *G.lookup(*Callee);
+ Edge *E = N->lookup(CalleeN);
+ // FIXME: We should really handle adding new calls. While it will
+ // make downstream usage more complex, there is no fundamental
+ // limitation and it will allow passes within the CGSCC to be a bit
+ // more flexible in what transforms they can do. Until then, we
+ // verify that new calls haven't been introduced.
+ assert(E && "No function transformations should introduce *new* "
+ "call edges! Any new calls should be modeled as "
+ "promoted existing ref edges!");
+ bool Inserted = RetainedEdges.insert(&CalleeN).second;
+ (void)Inserted;
+ assert(Inserted && "We should never visit a function twice.");
+ if (!E->isCall())
+ PromotedRefTargets.insert(&CalleeN);
+ }
+
+ // Now walk all references.
+ for (Instruction &I : instructions(F))
+ for (Value *Op : I.operand_values())
+ if (auto *C = dyn_cast<Constant>(Op))
+ if (Visited.insert(C).second)
+ Worklist.push_back(C);
+
+ auto VisitRef = [&](Function &Referee) {
+ Node &RefereeN = *G.lookup(Referee);
+ Edge *E = N->lookup(RefereeN);
+ // FIXME: Similarly to new calls, we also currently preclude
+ // introducing new references. See above for details.
+ assert(E && "No function transformations should introduce *new* ref "
+ "edges! Any new ref edges would require IPO which "
+ "function passes aren't allowed to do!");
+ bool Inserted = RetainedEdges.insert(&RefereeN).second;
+ (void)Inserted;
+ assert(Inserted && "We should never visit a function twice.");
+ if (E->isCall())
+ DemotedCallTargets.insert(&RefereeN);
+ };
+ LazyCallGraph::visitReferences(Worklist, Visited, VisitRef);
+
+ // Include synthetic reference edges to known, defined lib functions.
+ for (auto *F : G.getLibFunctions())
+ // While the list of lib functions doesn't have repeats, don't re-visit
+ // anything handled above.
+ if (!Visited.count(F))
+ VisitRef(*F);
+
+ // First remove all of the edges that are no longer present in this function.
+ // The first step makes these edges uniformly ref edges and accumulates them
+ // into a separate data structure so removal doesn't invalidate anything.
+ SmallVector<Node *, 4> DeadTargets;
+ for (Edge &E : *N) {
+ if (RetainedEdges.count(&E.getNode()))
+ continue;
+
+ SCC &TargetC = *G.lookupSCC(E.getNode());
+ RefSCC &TargetRC = TargetC.getOuterRefSCC();
+ if (&TargetRC == RC && E.isCall()) {
+ if (C != &TargetC) {
+ // For separate SCCs this is trivial.
+ RC->switchTrivialInternalEdgeToRef(N, E.getNode());
+ } else {
+ // Now update the call graph.
+ C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, E.getNode()),
+ G, N, C, AM, UR);
+ }
+ }
+
+ // Now that this is ready for actual removal, put it into our list.
+ DeadTargets.push_back(&E.getNode());
+ }
+ // Remove the easy cases quickly and actually pull them out of our list.
+ DeadTargets.erase(
+ llvm::remove_if(DeadTargets,
+ [&](Node *TargetN) {
+ SCC &TargetC = *G.lookupSCC(*TargetN);
+ RefSCC &TargetRC = TargetC.getOuterRefSCC();
+
+ // We can't trivially remove internal targets, so skip
+ // those.
+ if (&TargetRC == RC)
+ return false;
+
+ RC->removeOutgoingEdge(N, *TargetN);
+ LLVM_DEBUG(dbgs() << "Deleting outgoing edge from '"
+ << N << "' to '" << TargetN << "'\n");
+ return true;
+ }),
+ DeadTargets.end());
+
+ // Now do a batch removal of the internal ref edges left.
+ auto NewRefSCCs = RC->removeInternalRefEdge(N, DeadTargets);
+ if (!NewRefSCCs.empty()) {
+ // The old RefSCC is dead, mark it as such.
+ UR.InvalidatedRefSCCs.insert(RC);
+
+ // Note that we don't bother to invalidate analyses as ref-edge
+ // connectivity is not really observable in any way and is intended
+ // exclusively to be used for ordering of transforms rather than for
+ // analysis conclusions.
+
+ // Update RC to the "bottom".
+ assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!");
+ RC = &C->getOuterRefSCC();
+ assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!");
+
+ // The RC worklist is in reverse postorder, so we enqueue the new ones in
+ // RPO except for the one which contains the source node as that is the
+ // "bottom" we will continue processing in the bottom-up walk.
+ assert(NewRefSCCs.front() == RC &&
+ "New current RefSCC not first in the returned list!");
+ for (RefSCC *NewRC : llvm::reverse(make_range(std::next(NewRefSCCs.begin()),
+ NewRefSCCs.end()))) {
+ assert(NewRC != RC && "Should not encounter the current RefSCC further "
+ "in the postorder list of new RefSCCs.");
+ UR.RCWorklist.insert(NewRC);
+ LLVM_DEBUG(dbgs() << "Enqueuing a new RefSCC in the update worklist: "
+ << *NewRC << "\n");
+ }
+ }
+
+ // Next demote all the call edges that are now ref edges. This helps make
+ // the SCCs small which should minimize the work below as we don't want to
+ // form cycles that this would break.
+ for (Node *RefTarget : DemotedCallTargets) {
+ SCC &TargetC = *G.lookupSCC(*RefTarget);
+ RefSCC &TargetRC = TargetC.getOuterRefSCC();
+
+ // The easy case is when the target RefSCC is not this RefSCC. This is
+ // only supported when the target RefSCC is a child of this RefSCC.
+ if (&TargetRC != RC) {
+ assert(RC->isAncestorOf(TargetRC) &&
+ "Cannot potentially form RefSCC cycles here!");
+ RC->switchOutgoingEdgeToRef(N, *RefTarget);
+ LLVM_DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N
+ << "' to '" << *RefTarget << "'\n");
+ continue;
+ }
+
+ // We are switching an internal call edge to a ref edge. This may split up
+ // some SCCs.
+ if (C != &TargetC) {
+ // For separate SCCs this is trivial.
+ RC->switchTrivialInternalEdgeToRef(N, *RefTarget);
+ continue;
+ }
+
+ // Now update the call graph.
+ C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, *RefTarget), G, N,
+ C, AM, UR);
+ }
+
+ // Now promote ref edges into call edges.
+ for (Node *CallTarget : PromotedRefTargets) {
+ SCC &TargetC = *G.lookupSCC(*CallTarget);
+ RefSCC &TargetRC = TargetC.getOuterRefSCC();
+
+ // The easy case is when the target RefSCC is not this RefSCC. This is
+ // only supported when the target RefSCC is a child of this RefSCC.
+ if (&TargetRC != RC) {
+ assert(RC->isAncestorOf(TargetRC) &&
+ "Cannot potentially form RefSCC cycles here!");
+ RC->switchOutgoingEdgeToCall(N, *CallTarget);
+ LLVM_DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N
+ << "' to '" << *CallTarget << "'\n");
+ continue;
+ }
+ LLVM_DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '"
+ << N << "' to '" << *CallTarget << "'\n");
+
+ // Otherwise we are switching an internal ref edge to a call edge. This
+ // may merge away some SCCs, and we add those to the UpdateResult. We also
+ // need to make sure to update the worklist in the event SCCs have moved
+ // before the current one in the post-order sequence
+ bool HasFunctionAnalysisProxy = false;
+ auto InitialSCCIndex = RC->find(*C) - RC->begin();
+ bool FormedCycle = RC->switchInternalEdgeToCall(
+ N, *CallTarget, [&](ArrayRef<SCC *> MergedSCCs) {
+ for (SCC *MergedC : MergedSCCs) {
+ assert(MergedC != &TargetC && "Cannot merge away the target SCC!");
+
+ HasFunctionAnalysisProxy |=
+ AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(
+ *MergedC) != nullptr;
+
+ // Mark that this SCC will no longer be valid.
+ UR.InvalidatedSCCs.insert(MergedC);
+
+ // FIXME: We should really do a 'clear' here to forcibly release
+ // memory, but we don't have a good way of doing that and
+ // preserving the function analyses.
+ auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
+ PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
+ AM.invalidate(*MergedC, PA);
+ }
+ });
+
+ // If we formed a cycle by creating this call, we need to update more data
+ // structures.
+ if (FormedCycle) {
+ C = &TargetC;
+ assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
+
+ // If one of the invalidated SCCs had a cached proxy to a function
+ // analysis manager, we need to create a proxy in the new current SCC as
+ // the invalidated SCCs had their functions moved.
+ if (HasFunctionAnalysisProxy)
+ AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G);
+
+ // Any analyses cached for this SCC are no longer precise as the shape
+ // has changed by introducing this cycle. However, we have taken care to
+ // update the proxies so it remains valide.
+ auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
+ PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
+ AM.invalidate(*C, PA);
+ }
+ auto NewSCCIndex = RC->find(*C) - RC->begin();
+ // If we have actually moved an SCC to be topologically "below" the current
+ // one due to merging, we will need to revisit the current SCC after
+ // visiting those moved SCCs.
+ //
+ // It is critical that we *do not* revisit the current SCC unless we
+ // actually move SCCs in the process of merging because otherwise we may
+ // form a cycle where an SCC is split apart, merged, split, merged and so
+ // on infinitely.
+ if (InitialSCCIndex < NewSCCIndex) {
+ // Put our current SCC back onto the worklist as we'll visit other SCCs
+ // that are now definitively ordered prior to the current one in the
+ // post-order sequence, and may end up observing more precise context to
+ // optimize the current SCC.
+ UR.CWorklist.insert(C);
+ LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C
+ << "\n");
+ // Enqueue in reverse order as we pop off the back of the worklist.
+ for (SCC &MovedC : llvm::reverse(make_range(RC->begin() + InitialSCCIndex,
+ RC->begin() + NewSCCIndex))) {
+ UR.CWorklist.insert(&MovedC);
+ LLVM_DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: "
+ << MovedC << "\n");
+ }
+ }
+ }
+
+ assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!");
+ assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!");
+ assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!");
+
+ // Record the current RefSCC and SCC for higher layers of the CGSCC pass
+ // manager now that all the updates have been applied.
+ if (RC != &InitialRC)
+ UR.UpdatedRC = RC;
+ if (C != &InitialC)
+ UR.UpdatedC = C;
+
+ return *C;
+}